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We calculate the flux from a spherical mirror which is expanding or contracting with nearly uniform
acceleration. The flux at an exterior poimthich could in principle be a functional of the mirror’s past hispory
is actually found to be a local function, depending on the first and second time derivatives of acceleration at the
retarded time[S0556-282(199)02718-9

PACS numbd(s): 04.62+v, 03.65.Pm, 03.76:k

I. INTRODUCTION of such violations in flat spacetim@'quantum interest)
have been formulated by Ford and Ronjd8] and others

Some of the most remarkable predictions of quantum field [14], [15], etc).
theory arise from zero point fluctuations of quantum states. More recently, Andersofl6] has used this result in the
One of the best known examples of this is the Unruh effectontext of the Geroch gedankenexperimgii]. In this ex-
[1-3], in which an accelerating detector measures the zergeriment, a box with mirrored walls is filled with radiation
point fluctuations of the inertialMinkowski) vacuum state  and lowered adiabatically toward a black hole. Unruh and
and finds they have a thermal SpeCtrum. Another is the Caf\/a|d [18] have shown that such a box is Subject to a buoy-
simir effect[4], in which the walls(or boundariesof a box  ancy force and will eventually reach a floating point above
experience a net force due to the difference between the zefge black hole. Anderson has examined this further and
point fluctuations of the states inside the box and out. shown that the ground state inside the box is the Boulware

It seems reasonable, then, to expect accelerating boundtate, whose energyhich becomes increasingly negative as
aries to produce interesting effects, and indeed they do. Fothe hox descendlss fed by Davies-Fulling fluxes from the
lowing studies of the Casimir effect between moving mirrorsreflecting walls. This accounts for the buoyancy felt by the
in 1+1 dimensions by Moor¢5], DeWitt pointed out that pox.
the single moving mirror problem would be interesting and  The volume of literature on moving mirrors is impressive,
could be solved exactly il +1)D [6]. Fulling [1] and De-  pyt it bears noting that all the results mentioned above are
Witt [7] have shown that eniformly accelerating mirror will  optained in %1 dimensions. Indeed, if one includes the re-
indeed alter the quantum state in the vicinity of the mirror.gylt for moving mirrors in curved space-times obtained by
However, a far more interesting result was obtained byottewill and Takagi 19] with those reviewed above, th@
Davies and Fulling[8,9] for a mirror experiencingnon- 1 1)p theory of moving mirrors can be considered essen-
uniformacceleration if1+1)D. Such a mirror actually emits tially complete. This is due largely to the conformal proper-
fluxes of quantum radiation, as though the mirror weretjeg of quantum field equations ifl+1)D, which allow
knocking zero point quanta out of the vacuum and off topoundaries, and even space-time itself, to be flattened,
infinity. More precisely, they found that a mirror with thereby enabling one to obtain results for complicated geom-
2-velocity u*=dx*/dr (u-u=—1) and accelerationra”  etries from those for much simpler geometries.

emits a flux This is not the case in81 dimensions, where only partial
results are available. The case of constant acceleration has
d_E: (T, yun"=— i i (a-n) (1.1) been solved for both plari20,21] and spherical22] mirror
dr my 127 d7 ' ' geometries. Ford and Vilenkir23] have extended the plane

mirror result to include non-constant acceleration for the case

in the direction of a unit spatial vector” orthogonal tou”*.  when the acceleration and its derivatives are small. More
This holds for either choicé&‘left” or “right” ) of n*. Thus,  recently, Hadaset al.[24] have considered arbitrafyadial)
a mirror whose acceleration is increasifagebraically to-  motion of a spherical mirror, but have restricted their atten-
ward the right will emit a stream of negative energy to thetion to the “S-wave approximation” where only spherically
right and a numerically equal positive stream to the left. symmetric modes are considered. Because of this restriction,

The implications of this result are intriguing. Davigld]  their result can be related to the-1 dimensional results of
and Ford[11] first raised the possibility that the negative- Davies and Fullind8,9].
energy flux from a moving mirror could be used to cool a hot  Consideration of quasi-stationary proces&eg. slow de-
body and thus violate the second law of thermodynamics in gcent of a mirror in a strong gravitational fi¢ldequires
guantum context, and this paradox was further discussed yhowledge of the flux emitted by a mirror whose accelera-
Deutsch, Ottewill and Sciar{d2]. Limitations on the extent tion is changing slowly, though it may be large. Our objec-
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tive in this paper is to derive an interesting and relativelyboundary condition can be reproduced by introducing a co-
simple result of this type in 81 dimensions. The central radial image chargg”=—(b/R’)?q’ at radiusR"=b?/R’.

tool is the use of a Green’s function perturbation technique. In the Lorentzian analogue of this problem, we are con-
Evaluating the perturbation is much more manageable if theerned with Green’s functions for the wave equatidrp
Green’s functions for the unperturbed problem are available=0 in Minkowski space-time, with Dirichlet boundary con-
in closed form. This is actually the case for a uniformly ditions on the pseudo-sphefiee. the time-like hyperboloid
accelerated spherical mirror, as shown by Frolov and Seresf one shegtR=b, where now

briany[22]. The mirror’s history is then a three-dimensional

pseudo-sphere of radils say, and the unperturbed problem R?= 7, XMX"=x+y?+ 22— t?=p?+ 22~ 1%, (2.1

is just the Minkowski-signature analogue of finding the four-, , ,

dimensional electrostatic potential of a point charge in thdn 2 self-evident notation.

presence of an earthed conducting 3-sphere of radiTiis The pseudo-spher®=Db represents the history of a
is easily solved by the method of images. spherical mirror of radiu® (constant as measured in its in-

Our objective in this paper is to solve the perturbedstantaneous rest framevhose center is fixed at the spatial

Frolov-Serebriany problem, i.e. to examine the effect of°"'9!n x=}/1=z=0 and which moves with uniform accelera-
small spherically symmetric non-uniformities of the accel-tiona=b". _ ,
eration of a spherical mirror. The image construgtlop gives for the retarded Green'’s
It would be good to stress at the outset that the solutiofunCtion Grei(x,x"), satisfying
for a plane mirror cannot be derived from ours by a straight- N ,
forward limiting process. The single paramekemwhose re- OGrei(x,x") == &' (x.x"), 22
ciprocal gives the unperturbed acceleration, also gives thge expression
minimum radius attained by the mirror as seen from its cen-
ter. Thus, the plane limib—< is inseparable from small 1 b2
acceleration[There are reasons to expect the planar case t&,e(X,X’) = > 0(t—t’)[ 5[(xx’)2]—(—’) S (xxX")?]¢.
be considerably more complicated. Formally, the Wightman ™
Green’s function is now an infinite sum of McDonald 23
(Bessel functions. Geomgtrically, any light ray reflegted Here @ is the unit step(Heaviside function, ¢ is the Dirac
ngn-orthogonally off a .unlformlly acpelerated pIane m'rr.ordistribution, x')? is the squared Minkowski interval
will re-encounter the mirror an infinite number of times; in
the spherical case there is just one encouter. (XX')2= 7, (XF=X"#) (X" = X'"), (2.4)
Also, we concern ourselves only with calculating the out-
ward flux, which we expect to be the most interesting stressand the image source is located at
energy component. In fact, it turns out to be somewhat more
interesting than one might expect. We find that it has a re-
markable property. Although it could, in principle, depend
on the entire retarded history of the mirror, to first order in
the mirror perturbation it depends only on the behavior of the Similarly,
mirror at the most recent retarded time; i.e., it is local.
This article is organized as follows: in Sec. Il we review W(x,x")=(0]@(X)p(X")|0) (2.6)
the Frolov-Serebriany result for a mirror expanding with uni-
form acceleration. In Sec. Il we present our Green’s funcfor a massless scalar field takes the form
tion perturbation scheme, and in Sec. IV we use it to evaluate
the corrections to the Frolov-Serebriany Green’s function, , 1 1
with some of the more cumbersome details relegated to Ap- W(x,x") = 4_772| (xx')2+i(t—t')e
pendix A. Section V is concerned with calculating the quan-
tum flux from these perturbations, with details again left to ( b )2 1 }
- . (@7

2

X"+ = X', (2.5

R/

the Wightman function

Appendixes B and C. Finally, in Sec. VI we offer some

. ’ N2 ) i (t 4l
concluding remarks. R (xxX")“+i(t—t")e

with e— +0.

II. UNIFORMLY ACCELERATING SPHERICAL MIRROR
III. NEARLY UNIFORM ACCELERATION:

In the case where the mirror’s acceleration is uniform, the PERTURBING THE BOUNDARY

Green'’s functions for the massless fields can be obtained in

simple closed form by the method of images, as noted by The corresponding Green'’s functions for a spherical mir-

Frolov and Serebrianj22]. In this section we shall briefly ror whose acceleration is slightly non-uniform can be de-

review these results. rived from the preceding results by superposing the effect of
Consider first the static potential due to a point chagfe a small perturbation on the history of the mirror, i.e. the

in Euclidean 4-space at a distanRé from the center of an time-like 3-space. on which Dirichlet boundary conditions

earthed conducting 3-sphere of radibbls The Dirichlet are imposed.
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Consider generally the problem of solving R=b[1+f(1)], [f(t)|<1 4.9
O¢=0, =0 on X. (3-)  in terms of this observer's time wheref(t) is arbitrary but
small. The corresponding advanced and retarded times are

Suppose that is a small perturbation of a simpler time-like
3-spaceX,, obtained by displacing:, a distancesn(x)
along its outward normah, and that we know the solution
® of the problem

written

v=t+r, u=t—r, r=\x2+y2+22 (4.2)

Od,=0, ®=0 on 3, (3.2 The radial energy flux measured by a stationary observer
outside the mirror is

with the same initial boundary conditions.
Then Eq.(3.1) can be reformulated as a problem with F=Tuu—Tw. (4.3

boundary conditions specified on the unperturbed boundarE ) o
So: ach of these terms can be dealt with by a similar procedure.

Let us considerT,,; it is evident from Eq.(2.6) that its

D expectation value at an evepi outside the mirror is
Od =0, <I>=—W5n(x) on 20. 3.3

<Tuu(p1)>:[5u15u2W(p1,p2)]p2:p1 (4-4)
The causal solution for the perturbatio®=® — &, fol-
lows from Green'’s identity: for a minimally coupled massless scalar field, and a similar
but more complicated expression for conformal coupling
IGyer(X',X) J [see Eq.(5.4) below]. Note that regularization and symme-

5(13(x’)=L ds an(x) - o(x),
0

trization are not needed to evaluate this component of the
(3.4)  stress-energy tensor.

We can now present the results féW. The spherical
where G, is the retarded Green’s function for the unper- symmetry of Eq(4.1) allows us to take both,; andp, in the
turbed boundary value problef8.2) andxis in %,. Equation  z-t plane k=y=0). Calculation showgsee Appendix A
(3.4) defines a linear operation applieddg,, which we shall  that the first term of Eq(3.7) contributes
write for brevity as

OP(x")=Lsn(x") Po(-). (3.5

an

87T2§2
(RZ—b?)(R3—b?)

Lsn(P1)W(-,p2)

To obtain the effect of the perturbation on the Wightman .
function (2.6), we note that it can be written as a mode sum _azy [y f(1) )77 @5

L )oe (t—19)®  (RE—D)(tf—to)?

d3k -
Wix.x ):f (2m)3 O, 3.6 where{ andt, are defined by

where {f (x)} is a complete set of initially positive fre- _ 1 2 2 2
quencj solut}ions of E¢(3.1) and the overbar denotes com- &~ 2tz 221, {l0=3 (217 2) (212~ D) (2115~ 2513),
plex conjugation. Applying Eq(3.5 to each mode sepa- (4.6
rately and summing the results yields
and pi* (with coordinatesx; ,t{') is the event nearest to
OW(X,X") =L sn(X)Wo( -, X") +Lsn(X")Wo(X,-), (3.7)  p, (i=1,2) at which the past light cone @ intersects the

) ) ~ (unperturbe@imirror (see Fig. L
whereW, denotes the unperturbed Wightman function given  The contribution of the second term in E@.7) is ob-

by Eq.(2.7). tained by interchanging; andp, in Eq. (4.5). Becaus€ is
an odd function op4, p, (g is even, the term involving the
IV. WIGHTMAN FUNCTION FOR NEARLY UNIFORM integral changes sign. Thus, the sum of the two contribu-
ACCELERATION tions,
Evaluation of the expressiofB8.7) for SW in the case 5.0
H 4} H H 1 877- g
where the mirror's acceleration departs slightly from unifor- _ SW(py,p,)
mity is somewhat lengthy but straightforward. Here, we out-  (RZ—b?)(R5—b?) .
line the results of this calculation reserving the technical de-
tails for Appendix A. _uz f(t) 7z .
It will be assumed that the mirror remains spherical as e . 3 Z _ f(ti )
. ; S : ¢ o A R
viewed by an observer at its cente=y=z=0. Then its
history is 4.7
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by Eq. (4.7). The unperturbed part becomes singular in the
limit X" —X, but is easily regularized by subtracting the value
of W, in free space without the mirror, i.e. the first term of
Eqg. (2.7), leaving the secondimage term as the sole con-
tribution to (Wo),eq- The perturbationsW is regular in the
coincidence limit.

For a massless scalar field, two different stress tensors are
commonly considereda) the minimal stress-energy tensor,
given classically by

1
" ! (T,uv)min:(P,M(P,v_zg,uv(VQD)z (51)

FIG. 1. Thez-t plane. The mirror profile is the hyperbolp;
andp, are the two events at which the Wightman function is to beand quantum mechanically by
evaluated and is their common advanced timgi andp3 are the

intersections of their past light cones with the mirror in the 1

plane. <T,u,y(x)>min: (O’),u.é’v’_ Eg,u.vgaaa'>wreg(xax,) ,
symx’ =x

depends only on the mirror’'s history between the retarded 5.2)

timesty andt; . Particle and anti-particle modes interfere _ o o _
destructively in the case of a spherical mirror to eliminate thén which sym indicates symmetrization ix,k’) and in the
effects of the past history and produgehen we take the Partial derivatives;(b) the conformal (trace-fre¢ stress-
coincidence limitp,— p;) a purely local expression for the energy tensor, defined classically by
flux.

To perform the partial derivativeaJl and Ay, in the ex- 2 1

1 2

pression(4.4) for T,,, we require mutual independence of (Tudeont=3¢.u®™ 3L g9u(Ve)™ (53
the u coordinates of the events, andp,. But these are the
only coordinates which need be independent. To evaluatg,q quantum mechanically by
Tuu, it suffices to considesW(p4,p,) in a partial pre-
coincidence limitv,=v,, as in Fig. 1. 1

These remarks in principle applyputatis mutandisalso (T (X)) coni=5
to the evaluation off,,, but there is a complication. In the 3
pre-coincidence limiti,—u4, the pointsp; andp3 tend to 1
coincidence with each other and with the point on the mirror
having coordinatéd,, so that the integrand in E¢4.7) be- symx’ =x
comes infinite while the interval of integration shrinks to (5.4)
zero. The evaluation of, is discussed further in Appendix
C. Here, we merely note that, makes no radiative contri-
bution (proportional tor ~2) to the flux(4.4). This follows at
once from the identity

Z&Mz?,,r - &Mravr

- Eg,u,v&a&a')wreg(x!x,)

We begin by reviewing the Frolov-Serebriaf2] results
for uniformacceleration. Differentiating the regularized form
of Eqg. (2.7), we easily find

Au(r?au(r?T )= dy(r?a,(r*Tuy), (4.9 2 .

which is a consequence of the conservatiorTgf and the (T2 min= _m(xﬂxt §9WR2)'

vanishing of the trac&?, for a conformal scalar field in flat (5.5

space. In Eq(4.8), the derivatived, increases the falloff

with distance, but this does not hold féy, which can op-
: _ (TO(%))¢on=0. (5.6

erate on the retarded displaceméga) in Eq. (4.1). Thus, uvi?//conf

T, falls off more strongly tharT,,,. The detailed calcula-

tion (Appendix Q shows thaﬂ'\,\,~r’6 asr—oo, This last result is quite remarkable, because the conformal

stress is not likely to vanish for a spherical mirror at rgist
V. FLUX FROM A NON-UNIFORMLY ACCELERATING certainly does not for eIectromagnetic fielﬁﬁ_‘;,lo,z@. It

MIRROR appears that the effects of uniform acceleration exactly can-

cel the static Casimir stresses.

The expectation value of the stress-energy tensor is deriv- The effects of non-uniform acceleration are more compli-
able from the partial derivatives of the Wightman function cated. We shall simply quote the result for the conformal
W(x,Xx")=Wy+ 8W in the coincidence limit, with the unper- radial out-flux{T, )conf @t @ point ¢,t) outside the mirror,
turbed partW, given by Eq.(2.7) and the perturbatiodW  leaving to Appendix B an outline of the derivation:
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The limit b— corresponds to a slowly accelerating,
nearly plane mirror. This was the case studied by Ford and
Vilenkin [23]. It is straightforward to show that in this limit
our result(5.7) for the conformal fluxand also our result for
the minimally coupled fluxreduces to the expressions they
give.

To obtain a more intuitive grasp of the physical meaning
of the complex expressiofb.7), we can evaluate the fluk
radiated at retarded time= —b—i.e. when the mirror is
near its minimum radius,,~b—as measured by a station-
ary observer at radius>b and the same retarded time. Us-
ing Eq. (4.3), taking the appropriate limit of Eq5.7), and
noting thatT,, does not contribute to the flux to leading

FIG. 2. Intersection of the history of a uniformly accelerating order (as discussed at the end of Sec) e find
spherelhyperboloidal cylinderand the past null cone of an exterior

2 2
point p. The intersection(which lies entirely within the shaded _ h Ro d°A 3 A 1
. . = — | VA——+2A° A——| ¢,
plang is represented by the bold curve. The nearest retarded point 72072\ 1 d+? Ro
to p on the mirror's world sheefp*, is the only point whose per- (5.11)
turbation contributes to the flux @ This figure has been dimen- . . .
sionally reduced; each point represents a circle. whereR,=b[1+f(0)] is the proper radius of the mirror at

the time of emissiony=0, and we have restored Planck’s

1 1 42 constant to display the correct dimensionality. We recall that
(Tout,Meon=— ——— — 9 % this perturbative result is correct to linear order in deviations
w 144072 TV | m®n dy? from uniform accelerationA—1/R), dA/dr, d?A/d7?, but
the acceleratiom\ itself is arbitrary.
4 ( 2)doz N 2s?
TS (npr=q°)g—t+—— VI. CONCLUDING REMARK
ey PTG TS CONCLUDING S

. Our chief interest in this paper has been in the quantum
ar flux radiated by the mirror and we have explicitly computed
x q(a+f)+de ] 5.7 only those components of the stress-energy tensor from

which it arises. However, the remaining components can be
The notation is as follows: the advanced and retarded timeslerived straightforwardlythough with some labgifrom our
v andu, are defined as in Eq4.2), and we write expression4.7) with the methods of Appendix B. It would
be useful to have these to round out the picture.

The relevant Green’s functions for an unperturbed, uni-
formly accelerating spherical mirror have a simple closed
form, and this has enormously simplified our perturbative

1 calculation. This simplification is bought at a price: we are
p= §(U2— b%), q= g(u2+ b?), limited to spherical mirrors whose acceleratidrand proper
radius R are nearly reciprocals. We cannot decouple the
1 plane limit R— from the limit of small acceleration, and
s=——(v+b?v); (5.8 cannot disentangle curvatut€asimip effects from the ef-
2 fects of acceleration.

It is evident that much remains to be done before we can
claim anything approaching a comprehensive understanding
of the quantum dynamics of three-dimensional mirrors.

m=—-5, n= i(Rz—b2)= - 1(u+ b2/v)
2’ 2v 2 '

x is the pseudo-angle along tienperturbey mirror trajec-
tory (i.e., 7=by is the mirror’s proper timg Equation(4.1),
giving the trajectory of the perturbed mirror, is now written
R=b[1+f(x)], and ACKNOWLEDGMENTS

a=1"(x)—f(x) (5.9 We are indebted to Valeri Frolov and Tom Roman for
discussions and to the latter for calling our attention to the
prior work of Ford and Vilenkif 23] on slowly accelerating
plane mirrors. This research was supported by the Canadian
Institute for Advanced Research, by NSERC of Canada, and
in part by NSF grant PHY-9507740.

is a measure of the non-uniformity of the acceleratfn
which is given by

A=(1+a)lb. (5.10

In Eq. (5.7), x refers to the pseudo-angle at the pajrit,
which is the nearest retarded point(tgt), as in Fig. 2. The
corresponding expression for the minimally coupled flux is
too long to reproduce here, and is also deferred to Appendix To verify Eq. (4.7, one needs to evaluate
B. L sn(P1)Wo(-,p2), where the integral operatary, is defined

APPENDIX A: EVALUATION OF THE INTEGRAL (3.7
FOR oW

084003-5
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by Eq. (3.5 andW, by Eq. (2.7). Because of the spherical
symmetry of the mirror, there is no loss of generality in
takingp, to be in thez-t plane. Then the integration over the
azimuthal cylindrical coordinateé is trivial.

The problem is essentially solved by the following
lemma. LetF(p)=F(p,z,t) be any axisymmetric function.
Then we have the identity

d
LOF(p)%Gret(pl,p)dE

R

2

= —sgrR*—b? iF )4l
gn )5 F(p1)+ 5s0rzy)—
1 7]

(A1)

* J
X ftl dt{EF(p= b2 2= 2 2,1)

z=27,(1)

wherep is defined as in Sec. IV and the linear functipn
=Z4(t) is the solution ofé(p,,p)=0 where

1
£(p1.p)=tit=2,1z+ 5 (R{+b?). (A2)
Geometrically,z=Z4(t) represents the line in thet plane
throughp? and orthogonal to the radius vector joinipg to
the originz=t=0.

To prove Eq.(Al), let us note that the presence @fe;
will effectively confine the integration to a 2-spa§eformed
by the intersection of the unperturbed mirror’s history

1
20: o(0p)= Ebz (A3)
with the past light cone op,, given by
o(p1,p)=0, (A4)

where o(p1,p,)=3%(p1p,)? is the usual geodesic biscalar
[c.f. Eq.(2.4) and see Fig. R Taking the difference between
Egs. (A3) and (A4), we see thatS can equivalently be re-
garded as the intersection of the mirdg with the 3-plane
&(p1,p)=0, where

1
£(p1,p)=0o(py,p) —o(0p) + b (A5)

is the same as E@A2).
G,et In the integral(Al) is a (distributiona) function of

a(p1,p) anda(py,p) [see Eq(2.3)], wherep is the image
point of p. To obtain its normal derivative on the mirr&
=Db, it is convenient to introduce four dimensional polar co-
ordinates fom,
p=Rcoshy sindg,

z=Rcoshy cosd, t=Rsinhy,

(AB)

so that the normal derivativ¢outward” from 3, as viewed
from the pointp outsideX ;) corresponds to-d/dR. We
easily find

PHYSICAL REVIEW [B0 084003

20(p;,p)=R*+2R(t; sinhy —z, coshy cosé) +RZ,
(A7)

9 1 1,
ﬁa(plvp)lR:bZE §(p1,p)—§(R1—b) . (A8)

A similar calculation for the image contribution yields values

for 20(p;,p) and @/JR)a(p1,p) numerically equal to Eq.
(A7) and (A8) on the mirror, but for the normal derivative
the sign is opposite.
The element of 3-ared2 on the mirror

Soi  p=vb?+t2—22 (A9)
employing ,z,¢) as intrinsic coordinates, isdX
=b d¢ dz dt Hence the integral of an axisymmetric func-
tion H(p,z,t) takes the explicit form

fdz H(p,z,t)=27TbJ f dt dzo(b2+12—22)
20 — o0 — 00

XH(p=Vb?+1t2—7?,z,1)

in which the step functio takes into account that, for fixed
t, the range ofz over is restricted by Eq(A9).

The distributional  factors &6'[20(p;,p)] and
8[2a(p1,p)], which arise fromiG,¢(p1,p)/dn in the inte-
gral over, are handled as follows. For poinsrestricted
to X, Egs. (A3) and (A5) show thato(p,p)=&(p1,p),
given explicitly in Eq.(A2) in terms of the intrinsic coordi-
nates {,z,¢) of X,. Taking the partial derivatives with re-
spect toz tangentially alon@ (i.e. holding¢ andt fixed in
£), we immediately find

(A10)

1%
57 9120(p1,p)]=~2226'[20(p1,p)].  (ALD)

Thus, 8’ can be eliminated in favor of the tangential deriva-
tive 96/9z, which can be converted through integration by
parts in Eq.(A10) to

(z—Z4(1)),
(A12)

1
0[20(p1,p)]=68[2£(p1.P)]= 2121

by virtue of Eq.(A2).
Putting all this together leads straightforwardly to the
quoted resultAl).

APPENDIX B: DERIVATION OF EQ.
CONFORMAL FLUX

(5.7) FOR THE

We briefly outline how the formulés.7) for (T,y)cons IS
derived from Eq.4.7) via Eq. (5.4).
S6W involves the integral

f(t*)

&
Z17Z —dt*.
' th; (t* —tg)°

(B1)
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Because of the prefactagz,, it is convenient to change the Taking coincidence limitz,—z; gives
variable of integration front (the coordinate of a poir on

. . . 2
the profile of%, in the z-t plané to z (the coordinate of a I (4) " "
point p on the linev=v joining p; andp,, and having the (721(922 (Z P+ 10287+ 2087), (B1D
same retarded timey=u*). Sincet* =3(u* +v*)=3(u
—b?/u) for a pointp* on3, andz=2%(v,—u), the formal EX 1
transformation is —|=—=(z°F"+8zF'+ 12F"), (B12)
Jz 24
t*—t =—i(b2+uv ), t =i(v2—b2) (B2) 1
7 v, 0 T0T gy, 0 ' [J]=— 1—2[22F”+6(2F)’], (B13)
We thus find —
#J| 3] 42 (14
1 d * —|= = .
2 1) G s AR A= )]3 (), 92| 210miz;
° (B3) A fairly long calculation then leads to the res#t7) for
the conformal flux. For the minimally coupled flux, we find
wherem, q ands are defined in Eq(5.8), and herev=vj,,.
Writing, for any functionF(z), (T o) 1 q d?a da
in=———s— — ta;— +taa
1 I o a0m2vr [ min dy?  dx
:E{F(Zl)"":(zz)}, AF=F(z)—F(zy), (B4 1 df
+tag—|f—— +a4mf] (B15)
the expressioti4.7) for SW now reduces to m dx

mVo(AZ)? 212, as the perturbation of the uniform acceleration regbilb).
@959 OW(p1,p2)= f A(2)dz—2%A(2). Here,
(B5) 1 1 r (7., , 5
It is now straightforward, though tedious, to carry out the = 2mn mr m3n?2 <§m L Emn), (B16)
operations in Eq(5.4). The following general identities are
of help in this regard. Define, for an arbitraf(z), 1 31 31 1 16r 16 1
1 (2 _ T mn 2 20 2 e e mr
€= Ele F(z)dz—F. (B6) (B17)
Then 1 3m m 1 m 3m m? 2m?
TR T A A A
L (Az)2F<4)+ (B7)
(Az)? 127 120 | 16(m—n) 45m(m-n)r 618
n® nt
AF — = =6l
3z 2(AZ) P 120(AZ) A 2 1 60(m—n)r
(BS) a4—ﬁ ﬁ ﬁ T (Blg)
where primes and subscripts in parentheses denote deriva-
tives with respect ta. If APPENDIX C: EVALUATION OF T,,

For arbitrary pointg, andp, in thez-t plane, the expres-

J= L @J'Zzp(z)dz—ﬁ , (B9)  sion(4.7) for 6W can be recast in the form
(Az)?[ Az )y
27% — .3
then ~ Ay (VAUTUAV)TSW(py,p2)
e € 62,2 2 z
- Sl =+ == — (R~ b?)(R2—b?)| 2 zf H(z)dz—zH
92,7, (Az) (Az) (Az) Az
A(zF) — 1A(ZF) 81 0 b A (221
2y F 33| (B10) T3 v{(usuv +b u)A(z°H)
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—(uluzAv—bzAu)ﬁ}, (cy ~ mathematically well definediBoth of the component3,,
and T,, can thus be found from the corresponding direc-
which generalizes EqB5) to the case wherdv=v,—v; tional derivatives.
#0. The integral ofH(z) is to be taken along the straight-  We calculatedT,, with the aid of the computer algebra

line segment joiningy; andp,, and we have defined packagemaAPLE. Even so, the calculation is not straightfor-
ward. The main obstacle is the evaluation of the integral term
u(u>+b% in Eq. (C1). After taking the appropriate; andv, deriva-
H(z)= m (). (€2 ives of Eqg.(C1), and then the partial coincidence limib

—V1, we express the integrand of the first term in a Laurent
The denominator involves a quadratic function of retardedseries in (i—u;) and U—uy), both to fifth order. The re-
time, having the explicit form sult is expressed in ratios of powers ai<{u;) and (U,

—u,), with coefficients of these ratios being functionsugf

1 andv, alone. The integration is then trivially performed. The
V= (12— a1 — b2 1
u(t* —to) = 2(u cu—b%, o) first two terms in the integrated Laurent series diverge in the
coincidence limitu,—u4. However, these are exactly can-
where celled by terms arising from the derivatives of the second
term of Eq.(C1). Taking the(trivial) coincidence limit of the
(V2—b2)Au—(U2—b?)Av— %AuAvAz remaining terms we find the following expression Tqy, :
c= — . (CY
VAu—UAv 1 q° ( (@tf) df 5
Tw=—""—— ="\ q(a+f)+p—|, C5
By assigning different values to the ratiov/Au asAu 4572 ven®r®m dx

—0, we approach the coincidence ling=p, in all pos-

sible directions in thez-t plane.[This is subject to the re- where our notation is defined in E(.8). We have verified
striction thatty, given by Eq.(4.6), should be kept outside that the expression€5) for T,,, and(5.7) for T, satisfy the
the interval €7 ,t3) to keep the integral of in Eq. (C1) conservation identity4.8).
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