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Quantum flux from a moving spherical mirror
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We calculate the flux from a spherical mirror which is expanding or contracting with nearly uniform
acceleration. The flux at an exterior point~which could in principle be a functional of the mirror’s past history!
is actually found to be a local function, depending on the first and second time derivatives of acceleration at the
retarded time.@S0556-2821~99!02718-6#

PACS number~s!: 04.62.1v, 03.65.Pm, 03.70.1k
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I. INTRODUCTION

Some of the most remarkable predictions of quantum fi
theory arise from zero point fluctuations of quantum sta
One of the best known examples of this is the Unruh eff
@1–3#, in which an accelerating detector measures the z
point fluctuations of the inertial~Minkowski! vacuum state
and finds they have a thermal spectrum. Another is the
simir effect @4#, in which the walls~or boundaries! of a box
experience a net force due to the difference between the
point fluctuations of the states inside the box and out.

It seems reasonable, then, to expect accelerating bo
aries to produce interesting effects, and indeed they do.
lowing studies of the Casimir effect between moving mirro
in 111 dimensions by Moore@5#, DeWitt pointed out that
the single moving mirror problem would be interesting a
could be solved exactly in~111!D @6#. Fulling @1# and De-
Witt @7# have shown that auniformlyaccelerating mirror will
indeed alter the quantum state in the vicinity of the mirr
However, a far more interesting result was obtained
Davies and Fulling@8,9# for a mirror experiencingnon-
uniformacceleration in~111!D. Such a mirror actually emits
fluxes of quantum radiation, as though the mirror we
knocking zero point quanta out of the vacuum and off
infinity. More precisely, they found that a mirror wit
2-velocity um5dxm/dt (u•u521) and accelerationam

emits a flux

dE

dt
52^Tmn&u

mnn52
\

12p

d

dt
~a•n!, ~1.1!

in the direction of a unit spatial vectornn orthogonal toum.
This holds for either choice~‘‘left’’ or ‘‘right’’ ! of nm. Thus,
a mirror whose acceleration is increasing~algebraically! to-
ward the right will emit a stream of negative energy to t
right and a numerically equal positive stream to the left.

The implications of this result are intriguing. Davies@10#
and Ford@11# first raised the possibility that the negativ
energy flux from a moving mirror could be used to cool a h
body and thus violate the second law of thermodynamics
quantum context, and this paradox was further discusse
Deutsch, Ottewill and Sciama@12#. Limitations on the extent
0556-2821/99/60~8!/084003~8!/$15.00 60 0840
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of such violations in flat spacetime~‘‘quantum interest’’!
have been formulated by Ford and Roman@13# and others
~ @14#, @15#, etc.!.

More recently, Anderson@16# has used this result in th
context of the Geroch gedankenexperiment@17#. In this ex-
periment, a box with mirrored walls is filled with radiatio
and lowered adiabatically toward a black hole. Unruh a
Wald @18# have shown that such a box is subject to a bu
ancy force and will eventually reach a floating point abo
the black hole. Anderson has examined this further a
shown that the ground state inside the box is the Boulw
state, whose energy~which becomes increasingly negative
the box descends! is fed by Davies-Fulling fluxes from the
reflecting walls. This accounts for the buoyancy felt by t
box.

The volume of literature on moving mirrors is impressiv
but it bears noting that all the results mentioned above
obtained in 111 dimensions. Indeed, if one includes the r
sult for moving mirrors in curved space-times obtained
Ottewill and Takagi@19# with those reviewed above, the~1
11!D theory of moving mirrors can be considered ess
tially complete. This is due largely to the conformal prope
ties of quantum field equations in~111!D, which allow
boundaries, and even space-time itself, to be flatten
thereby enabling one to obtain results for complicated geo
etries from those for much simpler geometries.

This is not the case in 311 dimensions, where only partia
results are available. The case of constant acceleration
been solved for both plane@20,21# and spherical@22# mirror
geometries. Ford and Vilenkin@23# have extended the plan
mirror result to include non-constant acceleration for the c
when the acceleration and its derivatives are small. M
recently, Hadaszet al. @24# have considered arbitrary~radial!
motion of a spherical mirror, but have restricted their atte
tion to the ‘‘S-wave approximation’’ where only spherical
symmetric modes are considered. Because of this restric
their result can be related to the 111 dimensional results o
Davies and Fulling@8,9#.

Consideration of quasi-stationary processes~e.g. slow de-
scent of a mirror in a strong gravitational field! requires
knowledge of the flux emitted by a mirror whose accele
tion is changing slowly, though it may be large. Our obje
©1999 The American Physical Society03-1
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WARREN G. ANDERSON AND WERNER ISRAEL PHYSICAL REVIEW D60 084003
tive in this paper is to derive an interesting and relativ
simple result of this type in 311 dimensions. The centra
tool is the use of a Green’s function perturbation techniq
Evaluating the perturbation is much more manageable if
Green’s functions for the unperturbed problem are availa
in closed form. This is actually the case for a uniform
accelerated spherical mirror, as shown by Frolov and S
briany @22#. The mirror’s history is then a three-dimension
pseudo-sphere of radiusb, say, and the unperturbed proble
is just the Minkowski-signature analogue of finding the fou
dimensional electrostatic potential of a point charge in
presence of an earthed conducting 3-sphere of radiusb. This
is easily solved by the method of images.

Our objective in this paper is to solve the perturb
Frolov-Serebriany problem, i.e. to examine the effect
small spherically symmetric non-uniformities of the acc
eration of a spherical mirror.

It would be good to stress at the outset that the solu
for a plane mirror cannot be derived from ours by a straig
forward limiting process. The single parameterb, whose re-
ciprocal gives the unperturbed acceleration, also gives
minimum radius attained by the mirror as seen from its c
ter. Thus, the plane limitb→` is inseparable from smal
acceleration.@There are reasons to expect the planar cas
be considerably more complicated. Formally, the Wightm
Green’s function is now an infinite sum of McDona
~Bessel! functions. Geometrically, any light ray reflecte
non-orthogonally off a uniformly accelerated plane mirr
will re-encounter the mirror an infinite number of times;
the spherical case there is just one encounter.#

Also, we concern ourselves only with calculating the o
ward flux, which we expect to be the most interesting stre
energy component. In fact, it turns out to be somewhat m
interesting than one might expect. We find that it has a
markable property. Although it could, in principle, depe
on the entire retarded history of the mirror, to first order
the mirror perturbation it depends only on the behavior of
mirror at the most recent retarded time; i.e., it is local.

This article is organized as follows: in Sec. II we revie
the Frolov-Serebriany result for a mirror expanding with u
form acceleration. In Sec. III we present our Green’s fu
tion perturbation scheme, and in Sec. IV we use it to evalu
the corrections to the Frolov-Serebriany Green’s functi
with some of the more cumbersome details relegated to
pendix A. Section V is concerned with calculating the qua
tum flux from these perturbations, with details again left
Appendixes B and C. Finally, in Sec. VI we offer som
concluding remarks.

II. UNIFORMLY ACCELERATING SPHERICAL MIRROR

In the case where the mirror’s acceleration is uniform,
Green’s functions for the massless fields can be obtaine
simple closed form by the method of images, as noted
Frolov and Serebriany@22#. In this section we shall briefly
review these results.

Consider first the static potential due to a point chargeq8
in Euclidean 4-space at a distanceR8 from the center of an
earthed conducting 3-sphere of radiusb. The Dirichlet
08400
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boundary condition can be reproduced by introducing a
radial image chargeq952(b/R8)2q8 at radiusR95b2/R8.

In the Lorentzian analogue of this problem, we are co
cerned with Green’s functions for the wave equationhw
50 in Minkowski space-time, with Dirichlet boundary con
ditions on the pseudo-sphere~i.e. the time-like hyperboloid
of one sheet! R5b, where now

R2[hmnxmxn5x21y21z22t25r21z22t2, ~2.1!

in a self-evident notation.
The pseudo-sphereR5b represents the history of

spherical mirror of radiusb ~constant as measured in its in
stantaneous rest frame!, whose center is fixed at the spati
origin x5y5z50 and which moves with uniform accelera
tion a5b21.

The image construction gives for the retarded Gree
function Gret(x,x8), satisfying

hGret~x,x8!52d4~x,x8!, ~2.2!

the expression

Gret~x,x8!5
1

2p
u~ t2t8!H d@~xx8!2#2S b

R8
D 2

d@~xx9!2#J .

~2.3!

Here u is the unit step~Heaviside! function, d is the Dirac
distribution, (xx8)2 is the squared Minkowski interval

~xx8!2[hmn~xm2x8m!~xn2x8n!, ~2.4!

and the image source is located at

x9m5S b

R8
D 2

x8m. ~2.5!

Similarly, the Wightman function

W~x,x8!5^0uw~x!w~x8!u0& ~2.6!

for a massless scalar field takes the form

W~x,x8!5
1

4p2 H 1

~xx8!21 i ~ t2t8!e

2S b

R8
D 2

1

~xx9!21 i ~ t2t9!e
J , ~2.7!

with e→10.

III. NEARLY UNIFORM ACCELERATION:
PERTURBING THE BOUNDARY

The corresponding Green’s functions for a spherical m
ror whose acceleration is slightly non-uniform can be d
rived from the preceding results by superposing the effec
a small perturbation on the history of the mirror, i.e. t
time-like 3-spaceS on which Dirichlet boundary conditions
are imposed.
3-2
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Consider generally the problem of solving

hF50, F50 on S. ~3.1!

Suppose thatS is a small perturbation of a simpler time-lik
3-spaceS0, obtained by displacingS0 a distancedn(x)
along its outward normaln, and that we know the solution
F0 of the problem

hF050, F50 on S0 , ~3.2!

with the same initial boundary conditions.
Then Eq. ~3.1! can be reformulated as a problem wi

boundary conditions specified on the unperturbed bound
S0:

hF50, F52
]F0

]n
dn~x! on S0 . ~3.3!

The causal solution for the perturbationdF[F2F0 fol-
lows from Green’s identity:

dF~x8!5E
S0

dS
]Gret~x8,x!

]n
dn~x!

]

]n
F0~x!,

~3.4!

whereGret is the retarded Green’s function for the unpe
turbed boundary value problem~3.2! andx is in S0. Equation
~3.4! defines a linear operation applied toF0, which we shall
write for brevity as

dF~x8!5Ldn~x8! F0~• !. ~3.5!

To obtain the effect of the perturbation on the Wightm
function ~2.6!, we note that it can be written as a mode su

W~x,x8!5E d3k

~2p!3
f k~x! f k̄~x8!, ~3.6!

where $ f k(x)% is a complete set of initially positive fre
quency solutions of Eq.~3.1! and the overbar denotes com
plex conjugation. Applying Eq.~3.5! to each mode sepa
rately and summing the results yields

dW~x,x8!5Ldn~x!W0~•,x8!1Ldn~x8!W0~x,• !, ~3.7!

whereW0 denotes the unperturbed Wightman function giv
by Eq. ~2.7!.

IV. WIGHTMAN FUNCTION FOR NEARLY UNIFORM
ACCELERATION

Evaluation of the expression~3.7! for dW in the case
where the mirror’s acceleration departs slightly from unifo
mity is somewhat lengthy but straightforward. Here, we o
line the results of this calculation reserving the technical
tails for Appendix A.

It will be assumed that the mirror remains spherical
viewed by an observer at its centerx5y5z50. Then its
history is
08400
ry

-
-
-

s

R5b@11 f ~ t !#, u f ~ t !u!1 ~4.1!

in terms of this observer’s timet, wheref (t) is arbitrary but
small. The corresponding advanced and retarded times
written

v5t1r , u5t2r , r 5Ax21y21z2. ~4.2!

The radial energy flux measured by a stationary obse
outside the mirror is

F5Tuu2Tvv . ~4.3!

Each of these terms can be dealt with by a similar proced
Let us considerTuu ; it is evident from Eq.~2.6! that its
expectation value at an eventp1 outside the mirror is

^Tuu~p1!&5@]u1
]u2

W~p1 ,p2!#p25p1
~4.4!

for a minimally coupled massless scalar field, and a sim
but more complicated expression for conformal coupli
@see Eq.~5.4! below#. Note that regularization and symme
trization are not needed to evaluate this component of
stress-energy tensor.

We can now present the results fordW. The spherical
symmetry of Eq.~4.1! allows us to take bothp1 andp2 in the
z-t plane (x5y50). Calculation shows~see Appendix A!
that the first term of Eq.~3.7! contributes

8p2z2

~R1
22b2!~R2

22b2!
Ldn~p1!W~•,p2!

5
z1z2

z E
2`

t1* dt
f ~ t !

~ t2t0!3
2

z1z1*

~R1
22b2!~ t1* 2t0!2

~4.5!

wherez and t0 are defined by

z5z1t22z2t1 , zt05
1

2
~z12z2!~z1z22b2!1~z1t2

22z2t1
2!,

~4.6!

and pi* ~with coordinatesxi* ,t i* ) is the event nearest to
pi ( i 51,2) at which the past light cone ofpi intersects the
~unperturbed! mirror ~see Fig. 1!.

The contribution of the second term in Eq.~3.7! is ob-
tained by interchangingp1 andp2 in Eq. ~4.5!. Becausez is
an odd function ofp1 , p2 (t0 is even!, the term involving the
integral changes sign. Thus, the sum of the two contri
tions,

2
8p2z2

~R1
22b2!~R2

22b2!
dW~p1 ,p2!

5
z1z2

z E
t1*

t2* dt
f ~ t !

~ t2t0!3
1(

i 51

2 zizi*

~Ri
22b2!~ t i* 2t0!2

f ~ t i* !

~4.7!
3-3
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WARREN G. ANDERSON AND WERNER ISRAEL PHYSICAL REVIEW D60 084003
depends only on the mirror’s history between the retar
times t1* and t2* . Particle and anti-particle modes interfe
destructively in the case of a spherical mirror to eliminate
effects of the past history and produce~when we take the
coincidence limitp2→p1) a purely local expression for th
flux.

To perform the partial derivatives]u1
and ]u2

in the ex-

pression~4.4! for Tuu , we require mutual independence
the u coordinates of the eventsp1 andp2. But these are the
only coordinates which need be independent. To evalu
Tuu , it suffices to considerdW(p1 ,p2) in a partial pre-
coincidence limitv15v2, as in Fig. 1.

These remarks in principle apply,mutatis mutandis, also
to the evaluation ofTvv , but there is a complication. In th
pre-coincidence limitu2→u1, the pointsp1* andp2* tend to
coincidence with each other and with the point on the mir
having coordinatet0, so that the integrand in Eq.~4.7! be-
comes infinite while the interval of integration shrinks
zero. The evaluation ofTvv is discussed further in Appendi
C. Here, we merely note thatTvv makes no radiative contri
bution ~proportional tor 22) to the flux~4.4!. This follows at
once from the identity

]u„r
2]u~r 2Tvv!…5]v„r

2]v~r 2Tuu!…, ~4.8!

which is a consequence of the conservation ofTmn and the
vanishing of the traceTa

a for a conformal scalar field in fla
space. In Eq.~4.8!, the derivative]v increases the falloff
with distance, but this does not hold for]u , which can op-
erate on the retarded displacementf (u) in Eq. ~4.1!. Thus,
Tvv falls off more strongly thanTuu . The detailed calcula-
tion ~Appendix C! shows thatTvv;r 26 as r→`.

V. FLUX FROM A NON-UNIFORMLY ACCELERATING
MIRROR

The expectation value of the stress-energy tensor is de
able from the partial derivatives of the Wightman functi
W(x,x8)5W01dW in the coincidence limit, with the unper
turbed partW0 given by Eq.~2.7! and the perturbationdW

FIG. 1. Thez-t plane. The mirror profile is the hyperbola.p1

andp2 are the two events at which the Wightman function is to
evaluated andv0 is their common advanced time.p1* andp2* are the
intersections of their past light cones with the mirror in thez-t
plane.
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by Eq. ~4.7!. The unperturbed part becomes singular in t
limit x8→x, but is easily regularized by subtracting the val
of W0 in free space without the mirror, i.e. the first term
Eq. ~2.7!, leaving the second~image! term as the sole con
tribution to (W0) reg . The perturbationdW is regular in the
coincidence limit.

For a massless scalar field, two different stress tensors
commonly considered:~a! the minimal stress-energy tenso
given classically by

~Tmn!min5w ,mw ,n2
1

2
gmn~¹w!2 ~5.1!

and quantum mechanically by

^Tmn~x!&min5F S ]m]n82
1

2
gmn]a]a8DWreg~x,x8!G

sym;x85x

,

~5.2!

in which sym indicates symmetrization in (x,x8) and in the
partial derivatives;~b! the conformal ~trace-free! stress-
energy tensor, defined classically by

~Tmn!con f5
2

3
w ,mw ,n2

1

3
ww ,mn2

1

6
gmn~¹w!2 ~5.3!

and quantum mechanically by

^Tmn~x!&con f5
1

3 F S 2]m]n822]m8]n8

2
1

2
gmn]a]a8DWreg~x,x8!G

sym;x85x

.

~5.4!

We begin by reviewing the Frolov-Serebriany@22# results
for uniformacceleration. Differentiating the regularized for
of Eq. ~2.7!, we easily find

^Tmn
(0)~x!&min52

b2

p2~R22b2!4 S xmxn2
1

2
gmnR2D ,

~5.5!

^Tmn
(0)~x!&con f50. ~5.6!

This last result is quite remarkable, because the confor
stress is not likely to vanish for a spherical mirror at rest~it
certainly does not for electromagnetic fields@25,10,26#!. It
appears that the effects of uniform acceleration exactly c
cel the static Casimir stresses.

The effects of non-uniform acceleration are more comp
cated. We shall simply quote the result for the conform
radial out-flux^Tuu&con f at a point (r ,t) outside the mirror,
leaving to Appendix B an outline of the derivation:
3-4
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QUANTUM FLUX FROM A MOVING SPHERICAL MIRROR PHYSICAL REVIEW D60 084003
^Tuu~ t,r !&con f52
1

1440p2

1

rv H q

m3n

d2a

dx2

2
4

m3n2r
~npr2q2!

da

dx
1

2s2

mn3r 2

3Fq~a1 f !1p
d f

dxG J . ~5.7!

The notation is as follows: the advanced and retarded tim
v andu, are defined as in Eq.~4.2!, and we write

m52
u

2
, n5

1

2v
~R22b2!52

1

2
~u1b2/v !,

p5
1

8
~u22b2!, q5

1

8
~u21b2!,

s52
1

2
~v1b2/v !; ~5.8!

x is the pseudo-angle along the~unperturbed! mirror trajec-
tory ~i.e., t5bx is the mirror’s proper time!. Equation~4.1!,
giving the trajectory of the perturbed mirror, is now writte
R5b@11 f (x)#, and

a5 f 9~x!2 f ~x! ~5.9!

is a measure of the non-uniformity of the accelerationA,
which is given by

A5~11a!/b. ~5.10!

In Eq. ~5.7!, x refers to the pseudo-angle at the pointp* ,
which is the nearest retarded point to~r,t!, as in Fig. 2. The
corresponding expression for the minimally coupled flux
too long to reproduce here, and is also deferred to Appen
B.

FIG. 2. Intersection of the history of a uniformly accelerati
sphere~hyperboloidal cylinder! and the past null cone of an exterio
point p. The intersection~which lies entirely within the shaded
plane! is represented by the bold curve. The nearest retarded p
to p on the mirror’s world sheet,p* , is the only point whose per
turbation contributes to the flux atp. This figure has been dimen
sionally reduced; each point represents a circle.
08400
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The limit b→` corresponds to a slowly acceleratin
nearly plane mirror. This was the case studied by Ford
Vilenkin @23#. It is straightforward to show that in this limi
our result~5.7! for the conformal flux~and also our result for
the minimally coupled flux! reduces to the expressions the
give.

To obtain a more intuitive grasp of the physical meani
of the complex expression~5.7!, we can evaluate the fluxF
radiated at retarded timeu52b—i.e. when the mirror is
near its minimum radiusr M'b—as measured by a station
ary observer at radiusr @b and the same retarded time. U
ing Eq. ~4.3!, taking the appropriate limit of Eq.~5.7!, and
noting thatTvv does not contribute to the flux to leadin
order ~as discussed at the end of Sec. IV! we find

F52
\

720p2 S R0

r D 2H A
d2A

dt2
12A3S A2

1

R0
D J ,

~5.11!

whereR05b@11 f (0)# is the proper radius of the mirror a
the time of emissionx50, and we have restored Planck
constant to display the correct dimensionality. We recall t
this perturbative result is correct to linear order in deviatio
from uniform acceleration (A21/R), dA/dt, d2A/dt2, but
the accelerationA itself is arbitrary.

VI. CONCLUDING REMARKS

Our chief interest in this paper has been in the quant
flux radiated by the mirror and we have explicitly comput
only those components of the stress-energy tensor f
which it arises. However, the remaining components can
derived straightforwardly~though with some labor! from our
expression~4.7! with the methods of Appendix B. It would
be useful to have these to round out the picture.

The relevant Green’s functions for an unperturbed, u
formly accelerating spherical mirror have a simple clos
form, and this has enormously simplified our perturbat
calculation. This simplification is bought at a price: we a
limited to spherical mirrors whose accelerationA and proper
radius R are nearly reciprocals. We cannot decouple
plane limit R→` from the limit of small acceleration, and
cannot disentangle curvature~Casimir! effects from the ef-
fects of acceleration.

It is evident that much remains to be done before we
claim anything approaching a comprehensive understan
of the quantum dynamics of three-dimensional mirrors.
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APPENDIX A: EVALUATION OF THE INTEGRAL „3.7…
FOR dW

To verify Eq. ~4.7!, one needs to evaluat
Ldn(p1)W0(•,p2), where the integral operatorLdn is defined

int
3-5
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by Eq. ~3.5! and W0 by Eq. ~2.7!. Because of the spherica
symmetry of the mirror, there is no loss of generality
takingp1 to be in thez-t plane. Then the integration over th
azimuthal cylindrical coordinatef is trivial.

The problem is essentially solved by the followin
lemma. LetF(p)5F(r,z,t) be any axisymmetric function
Then we have the identity

E
S0

F~p!
]

]n
Gret~p1 ,p!dS

52sgn~R22b2!
z1*

z1
F~p1* !1

1

2
sgn~z1!

R1
22b2

z1
2

3E
2`

t1* dtF ]

]z
F~r5Ab21t22z2,z,t !G

z5Z1(t)

~A1!

wherep1* is defined as in Sec. IV and the linear functionz
5Z1(t) is the solution ofj(p1 ,p)50 where

j~p1 ,p![t1t2z1z1
1

2
~R1

21b2!. ~A2!

Geometrically,z5Z1(t) represents the line in thez-t plane
throughp1* and orthogonal to the radius vector joiningp1 to
the originz5t50.

To prove Eq.~A1!, let us note that the presence ofGret
will effectively confine the integration to a 2-spaceS, formed
by the intersection of the unperturbed mirror’s history

S0 : s~0,p!5
1

2
b2 ~A3!

with the past light cone ofp1, given by

s~p1 ,p!50, ~A4!

where s(p1 ,p2)5 1
2 (p1p2)2 is the usual geodesic biscala

@c.f. Eq.~2.4! and see Fig. 2#. Taking the difference betwee
Eqs. ~A3! and ~A4!, we see thatS can equivalently be re
garded as the intersection of the mirrorS0 with the 3-plane
j(p1 ,p)50, where

j~p1 ,p!5s~p1 ,p!2s~0,p!1
1

2
b2 ~A5!

is the same as Eq.~A2!.
Gret in the integral~A1! is a ~distributional! function of

s(p1 ,p) ands(p1 ,p̃) @see Eq.~2.3!#, wherep̃ is the image
point of p. To obtain its normal derivative on the mirrorR
5b, it is convenient to introduce four dimensional polar c
ordinates forp,

r5R coshx sinu, z5R coshx cosu, t5R sinhx,
~A6!

so that the normal derivative~‘‘outward’’ from S0 as viewed
from the pointp outsideS0) corresponds to2]/]R. We
easily find
08400
-

2s~p1 ,p!5R212R~ t1 sinhx2z1 coshx cosu!1R1
2 ,

~A7!

]

]R
s~p1 ,p!uR5b5

1

b Fj~p1 ,p!2
1

2
~R1

22b2!G . ~A8!

A similar calculation for the image contribution yields valu
for 2s(p1 ,p̃) and (]/]R)s(p1 ,p̃) numerically equal to Eq.
~A7! and ~A8! on the mirror, but for the normal derivativ
the sign is opposite.

The element of 3-areadS on the mirror

S0 : r5Ab21t22z2, ~A9!

employing (t,z,f) as intrinsic coordinates, isdS
5b df dz dt. Hence the integral of an axisymmetric fun
tion H(r,z,t) takes the explicit form

E
S0

dS H~r,z,t !52pbE
2`

` E
2`

`

dt dzu~b21t22z2!

3H~r5Ab21t22z2,z,t ! ~A10!

in which the step functionu takes into account that, for fixed
t, the range ofz over S0 is restricted by Eq.~A9!.

The distributional factors d8@2s(p1 ,p)# and
d@2s(p1 ,p)#, which arise from]Gret(p1 ,p)/]n in the inte-
gral overS0, are handled as follows. For pointsp restricted
to S0, Eqs. ~A3! and ~A5! show thats(p1 ,p)5j(p1 ,p),
given explicitly in Eq.~A2! in terms of the intrinsic coordi-
nates (t,z,f) of S0. Taking the partial derivatives with re
spect toz tangentially alongS0 ~i.e. holdingf andt fixed in
j), we immediately find

]

]z
d@2s~p1 ,p!#522zz1d8@2s~p1 ,p!#. ~A11!

Thus,d8 can be eliminated in favor of the tangential deriv
tive ]d/]z, which can be converted through integration
parts in Eq.~A10! to

d@2s~p1 ,p!#5d@2j~p1 ,p!#5
1

2uz1u
d„z2Z1~ t !…,

~A12!

by virtue of Eq.~A2!.
Putting all this together leads straightforwardly to t

quoted result~A1!.

APPENDIX B: DERIVATION OF EQ. „5.7… FOR THE
CONFORMAL FLUX

We briefly outline how the formula~5.7! for ^Tuu&con f is
derived from Eq.~4.7! via Eq. ~5.4!.

dW involves the integral

z1z2E
t1*

t2* f ~ t* !

~ t* 2t0!3
dt* . ~B1!
3-6
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Because of the prefactorz1z2, it is convenient to change th
variable of integration fromt ~the coordinate of a pointp on
the profile ofS0 in the z-t plane! to z ~the coordinate of a
point p on the linev5v0 joining p1 andp2, and having the
same retarded time,u5u* ). Since t* 5 1

2 (u* 1v* )5 1
2 (u

2b2/u) for a point p* on S0 andz5 1
2 (v02u), the formal

transformation is

t* 2t052
z

uv0
~b21uv0!, t05

1

2v0
~v0

22b2!. ~B2!

We thus find

1

2
f ~ t* !

dt*

~ t* 2t0!3
5A~z!dz, A~z!5

mq

@z~z1s!#3
f ~ t* !,

~B3!

wherem, q ands are defined in Eq.~5.8!, and herev5v0.
Writing, for any functionF(z),

F̄5
1

2
$F~z1!1F~z2!%, DF5F~z2!2F~z1!, ~B4!

the expression~4.7! for dW now reduces to

p2v0~Dz!2

~z11s!~z21s!
dW~p1 ,p2!5

z1z2

Dz Ez1

z2
A~z!dz2z2A~z!.

~B5!

It is now straightforward, though tedious, to carry out t
operations in Eq.~5.4!. The following general identities ar
of help in this regard. Define, for an arbitraryF(z),

e5
1

DzEz1

z2
F~z!dz2F̄. ~B6!

Then

e

~Dz!2
52

1

12
F91

1

120
~Dz!2F (4)1 . . . ~B7!

DF

Dz
5F82

1

12
~Dz!2F-1

1

120
~Dz!4F (5)1 . . .

~B8!

where primes and subscripts in parentheses denote de
tives with respect toz. If

J5
1

~Dz!2 H z1z2

Dz Ez1

z2
F~z!dz2z2FJ , ~B9!

then

]2J

]z1z2
522

e

~Dz!2 S 11
6z1z2

~Dz!2D 1
2

~Dz!2

1S D~zF!

Dz
2F̄2

1

2

D~z2F8!

Dz D . ~B10!
08400
va-

Taking coincidence limitsz2→z1 gives

F ]2J

]z1]z2
G52

1

60
~z2F (4)110zF-120F9!, ~B11!

F ] J̄

]z
G52

1

24
~z2F-18zF9112F8!, ~B12!

@J#52
1

12
@z2F916~zF!8#, ~B13!

F ]2J

]z2G5
3

2 F ]2J

]z1]z2
G . ~B14!

A fairly long calculation then leads to the result~5.7! for
the conformal flux. For the minimally coupled flux, we fin

d^Tuu&min5
1

240p2vr
H q

m3n

d2a

dx2
1a1

da

dx
1a2a

1a3

1

m S f 2
d f

dx D1a4m fJ ~B15!

as the perturbation of the uniform acceleration result~5.5!.
Here,

a15
1

2mn
1

1

mr
1

r

m3n2 S 7

2
m22n22

5

2
mnD , ~B16!

a252
1

2mn
1

3

2

1

n2
1

3

2

1

nr
1

1

r 2
1

16r

n3
2

16r

mn2
2

1

mr
,

~B17!

a352
1

2n
1

3

2

m

nr
22

m2

nr2
2

1

r
1

m

r 2
1

3

2

m

n2
2

m2

n2r
2

2m2

n3

1
16r ~m2n!

n3
2

45m~m2n!r

n4
, ~B18!

a45
2

n3
1

1

n2r
1

2

nr2
1

60~m2n!r

n5
. ~B19!

APPENDIX C: EVALUATION OF Tvv

For arbitrary pointsp1 andp2 in thez-t plane, the expres-
sion ~4.7! for dW can be recast in the form

2
2p2

Du
~ v̄Du2ūDv !3dW~p1 ,p2!

5~R1
22b2!~R2

22b2!H z1z2

Dz Ez1

z2
H~z!dz2z2HJ

1
1

2
Dv$~u1u2v̄1b2ū!D~z2H !
3-7
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2~u1u2Dv2b2Du!z2H%, ~C1!

which generalizes Eq.~B5! to the case whereDv5v22v1
Þ0. The integral ofH(z) is to be taken along the straigh
line segment joiningp1 andp2, and we have defined

H~z!5
u~u21b2!

@u~ t* 2t0!#3
f ~ t* !. ~C2!

The denominator involves a quadratic function of retard
time, having the explicit form

u~ t* 2t0!5
1

2
~u22cu2b2!, ~C3!

where

c5

~ v̄22b2!Du2~ ū22b2!Dv2
1

2
DuDvDz

v̄Du2ūDv
. ~C4!

By assigning different values to the ratioDv/Du as Du
→0, we approach the coincidence limitp15p2 in all pos-
sible directions in thez-t plane.@This is subject to the re
striction thatt0, given by Eq.~4.6!, should be kept outside
the interval (t1* ,t2* ) to keep the integral ofH in Eq. ~C1!
,

on

on

tt.

08400
d

mathematically well defined.# Both of the componentsTuu
and Tvv can thus be found from the corresponding dire
tional derivatives.

We calculatedTvv with the aid of the computer algebr
packageMAPLE. Even so, the calculation is not straightfo
ward. The main obstacle is the evaluation of the integral te
in Eq. ~C1!. After taking the appropriatev1 and v2 deriva-
tives of Eq.~C1!, and then the partial coincidence limitv2
→v1, we express the integrand of the first term in a Laur
series in (u22u1) and (u2u1), both to fifth order. The re-
sult is expressed in ratios of powers of (u2u1) and (u2
2u1), with coefficients of these ratios being functions ofu1
andv1 alone. The integration is then trivially performed. Th
first two terms in the integrated Laurent series diverge in
coincidence limitu2→u1. However, these are exactly can
celled by terms arising from thev derivatives of the second
term of Eq.~C1!. Taking the~trivial! coincidence limit of the
remaining terms we find the following expression forTvv :

Tvv52
1

45p2

q2

v3n3r 3m
S q~a1 f !1p

d f

dx D , ~C5!

where our notation is defined in Eq.~5.8!. We have verified
that the expressions~C5! for Tvv and~5.7! for Tuu satisfy the
conservation identity~4.8!.
ki
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