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We study the formation of black holes in the Friedmann universe. We present a formulation of the Einstein
equations under the constant mean curvature time-slicing condition. Our formalism not only gives us the
analytic solution of the perturbation equations for nonlinear density and metric fluctuations on superhorizon
scales, but also allows us to carry out a numerical relativity simulation for black hole formation after the scale
of the density fluctuations is well within the Hubble horizon scale. We perform a numerical simulation of
spherically symmetric black hole formation in the radiation-dominated spatially flat background universe for a
realistic initial condition supplied from the analytic solution. It is found that the initial metric perturbation has
to be nonlineathe maximum value of three-dimensional conformal fagtgratt=0 should be larger than
~1.4) for a black hole to be formed, but the threshold amplitude for black hole formation and the final black
hole mass considerably depend on the initial der(sitynetrig profile of the perturbation: The threshold value
of ¢, att=0 for formation of a black hole is smaller for a high density peak surrounded by a low density
region than for that surrounded by the average density region of the flat universe. This suggests that it is
necessary to take into account the spatial correlation of density fluctuations in the study of primordial black
hole formation[S0556-282(99)04916-4

PACS numbgs): 04.25.Dm, 95.35t-d, 97.60.Lf

[. INTRODUCTION the evolution of these perturbations is well studied and their
temporal behavior is known throughout the whole stage from
The formation of black holes in the early universe and itsthe epoch when their wavelengths are much larger than the
cosmological implications have been discussed in a varietiHubble horizon scale until their evolution becomes nonlinear
of contexts for decadefl]. However, it has long been on scales much smaller than the Hubble horizon.
thought that it would be practically impossible to prove or However, the amplitude must be already large enaagh
disprove the existence of these primordial black holes. Reerder unity to form black holes when the characteristic
cent discoveries of microlensing events by massive compaetavelengths of the perturbations were on superhorizon
halo object{MACHOSs) of mass~0.5M, in the halo of our  scales. Furthermore, the formation of a black hole is itself a
galaxy[2] have dramatically changed this situation. By vari- fully general relativistic phenomenon. The evolution of non-
ous other means of observation, it may be possible to denlnear density perturbations on superhorizon scales was in-
all the other possibilities and hence to identify MACHOs vestigated by several authors and the threshold amplitude of
with black holes. Then these MACHO black holes must becurvature perturbations on superhorizon scales for forming
primordial since it is impossible to form a black hole of massblack holes was estimatgd,8]. These previous estimates of
smaller than~M as a result of stellar evolutiof8]. Fur-  the threshold amplitude were based on approximate analyti-
thermore, it has been recently suggested that, if MACHOsal treatments and/or on rather naive numerical simulations,
are in fact primordial black holes, the number of binaries thahence are admittedly crude. Furthermore, there is a crucial
are just coalescing today may be large enough to be directljeason that requires us an accurate estimate as follows: Ac-
detected by the upcoming gravitational wave observatoriesording to the inflationary scenario, the probability distribu-
such as the laser Interferometric Gravitational Wave Obsertion of the curvature perturbations is essentially Gaussian
vatory (LIGO), VIRGO, GEO, and TAMA within a few and primordial black holes are produced from the high am-
years[4]. Consequently, it has become an urgent issue t@litude tail of the distribution. Therefore, a small error in the
quantify how and when these black holes could be formed irestimate of the threshold amplitude will result in a large error
a precise manner. in that of the number of produced black holes. Thus thresh-
Among other possibilities, primordial black holes are old amplitude must be estimated accurately.
most conceivably formed from large curvature perturbations As a first step to accomplish this purpose, in this paper,
generated during an inflationary stage of the very early uniwe present a new formalism by which it is possible to follow
verse[5,6]. The curvature perturbations generated in the inthe formation of a primordial black hole throughout the
flationary universe are dominated by the so-called growingvhole stage starting from the very early universe when the
adiabatic mode of density perturbations. In the linear theoryperturbation is well outside the Hubble horizon to the final
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stage when a black hole is formed. More specifically, ourin the maximal slice condition in the asymptotically flat
formalism not only gives us the analytic solution of nonlin- spacetime. In Sec. Ill, assuming that the length scale of a
ear curvature perturbations on superhorizon scales but alstensity fluctuation is always much longer than the Hubble
allows us to perform a numerical simulation of the blackhorizon scale, we take the long wavelength limit of the equa-
hole formation with the initial data given by the analytic tions derived in Sec. II, and then find the analytic solution for
solution, with no need of changing the gauge conditions or ofhe perturbation equations. In Sec. IV, we perform numerical
numerical matching. In addition, it may be worthwhile to Simulations of black hole formation in a spherically symmet-
mention that the constant mean curvature time slicing emtiC, radiation-dominated universe using initial conditions
ployed here is equivalent to the so-called constant Hubbl@iVen by the analytic solution in Sec. Ill. Section V is de-
slicing in cosmological perturbation theof9]. And, it has voted to summary. Throughout this paper, we use the units
been pointed out that the constant Hubble slicing is mosE=1=G.

appropriate for evaluating nonlinear curvature fluctuations

generated during inflatiofl0]. Hence the initial curvature Il. FORMULATION

perturbation spectrum evaluated in models of inflation can be
directly used for the initial data of our problem.

Then using our formalism, we carry out a spherically
symmetric simulation of black hole formation in the
radiation-dominated Friedmann universe. We consider the ds?=g,,dx“dx”
initial data with two parameters; one describes the amplitude , o
and the other the radial profile. We find that both the thresh- =(—a®+ B BN dtP+2B,dX dt+ y;dXdX, (2.1)
old amplitude for black hole formation and the final black i j
hole mass depend appreciably on the initial profile of theVNere g,,, a, B (Bi=v;B'), and y; are the four-
perturbation. We also consider another possible criterion fofimensional4Db) metric, lapse function, shift vector, and 3D
black hole formation by defining a compaction function of SPatial metric, respectively. Since we consider an asymptoti-
the perturbation profile. Although this function can be de-Cally spatially flat Friedmann universe, we rewriig as
fined only for a spherically symmetric configuration, we find Ao
the maximum value of this function gives us a better crite- vii=¥rat) i, (2.2
rion for the formation of black holes.

While this paper was in preparation, a couple of papers o

We present the Einstein and hydrodynamic equations in
the Friedmann universe using the-3 formalism in general
relativity. We write the line element as

and impose the condition datf)=det(r;;) =5, where »;

the primordial black hole formation appeargd.]. It seems IS a fla_t spatial metric. Herez(t) is defi_ned to be the scale .
factor in the homogeneous universe, i.e., the scale factor in

that their formalism is powerful for studying the formation of . 4 C
a black hole in a spherical symmetric spacetime. However,l_i}&he asymptotic region, and we determine it from the well
does not seem convenient to give a realistic initial condition"OWN équations for the scale factor as

which should be supplied just after inflation. Actually, they ) -

give initial conditions at the epoch when the scale of the a=——a[po(t)+3Py(1)], (2.3
density fluctuation is as small as the Hubble horizon scale. 3
Since the density fluctuation is already nonlinear at that ep-

och, it is impossible to control the initial date so that it re- a2=
duces to the growing adiabatic mode when the evolution is 3
traced back in time to the very early universe. In other )
words, their initial conditions are inevitably contaminated by Wherepo andPq are the density and pressure for the homo-
unrealistic decaying mode perturbations which badly diverg@€neous universe, ard- d;a. As we find beloway, po, and
ast—0. As a result, though the criterion for black hole for- Po are automatically determined when an equation of state is
mation they find is new and interesting, it cannot be directlyprovided.

related to the initial condition at the end of inflation. So that We also rewrite the extrinsic curvatulg; as

it is not convenient for a practical study of primordial black

hole fo.rmation. Furthermore, applicartion.of their formarlism K, =y a%A; + EK, 2.5

is restricted to the spherical symmetric céise., very special 4 "3

casg. In contrast, in ours, it is easy to relate a criterion of _

black hole formation to an initial condition just after infla- whereK =K, * and hence\;; is defined to be traceless. The

tion, and also it can be applied to general 3D cases. The onlydices ofA;; andA'l are to be raised or lowered in terms of
restriction of our formalism is that the spacetime be asymp=

: . . ¥ andy;; . In numerical computation, we will solve;; ,
totically spatially flat Friedmann. < e J

The paper is organized as follows. In Sec. II, we presentA‘iJ ’j”’ andK instead ofy;; andK;; . Hereafter, we us®;
the Einstein and hydrodynamic equations in the Friedman@ndD; as the covariant derivatives with respectytg and
universe using the -81 formalism, which have appropriate 3/” , respectively.
forms for numerical relativity simulations. We then intro-  As a source of the energy momentum tensor, we consider
duce the constant mean curvature time-slicing in which thex perfect fluid for which the energy momentum tensor is
equations for geometric variables have similar forms to thosevritten as

8

apy(t), (2.9
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=(p+P)u,u,+Pg,,, (2.6

wherep, P, andu* are the energy density, pressure, and four
velocity, respectively. Hereafter, we assume an equation of
state,P=(I"—1)p, wherel" is a constant and we assume
I'>1 in the following discussion. For the equation of state,

we get the following relations from Eq€2.4)

1
a=a;t¥¥ and Po=g T2 2.7

wherea; is a constant.
The hydrodynamic equations are written in the form

1
o wytapttvi) =0, (2.9

a(wyta®pt) + —
n

1
awyai(p+P)uj}+ nl,zﬁk{nl’zww a’(p+P)vku;}
= —ay®adsP+wylad(p+P)
uiu
X —auoaja-i- ukajﬁk—ﬁ&j ’ykl y (29)

wherew= «u®, and

LUk uy
V=TT B+ s (2.10
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whereR;; is the Ricci tensor with respect tg; , (o)Dy is the
covariant derivative with respect tg; , and

(2.15

To clarify the meaning of Eq2.12, we rewriteR;; as

Sj=(p+P)ujuj+Pyj;.

Rij=R;+RY, (2.16

where~Rij is the Ricci tensor with respect qu and

b 22 B 20
Rij:_JDiDj'Jf—ZVijAl/"’_ FDilﬂDjw— Fyi,-Dkz,bD .
(2.17)
R;; is written as
~ 1 - o~ -
Rij:i[_(O)AYij+(0)Dj(0)D Yiit (0)Di0)D ¥k
+2(0)Dk(fklcl,ij)_ZCLjCh]; (2.18

where o)A is the Laplacian with respect tg; fil ="K

— ¢, and

K
Y ~ ~ ~

Cikj:7((0)Di7j|+(0)Dj7i|—(0)D|7ij)- (2.19

Note that we use a relatio'&ij(o)Dk;ij: ﬂIJ(O)Dkﬂ” =0 to

derive Eq.(2.18. From Eq.(2.18), it is found that under an

appropriate gauge condition such as a transverse-traceless

(TT) gauge,o)D*¥¥;=0, Egs.(2.11) and(2.12) are found to

Evolution equations for geometric variables are written agonstitute a wave equation for tensgy .

follows [12]:
Ko\ XS kT ok 2 K

(0t= B ) vij= = 2aAij T YikB ;" + VB, _§7ij(0)Dk/8 :

2.11)
~ 1 Yii
((9t_,3k<9k)Aij:a2¢/4 a(R”—— %R>
i
—(DiDja—%Dkaa)

+ a(K’A” - 2’A|k’A] k) + B,ik’Akj_i_B,jknAki

'Y|]

zs)
(2.12

2 o
~ 30 DkB A~ a2

- B o Ut — —f—K+ DB, (2.1

(0= B )¢ Zaw_G{ aK+ DB}, (2.13
- 1

((9t_ﬂk(9k)K=a’<AijA”+§K2)—Dkaa’+47Ta’(E+S(k)

(2.19

Hamiltonian and momentum constraint equations are

kK_ A RAij 2 2
Ry —AijAJ+§K =16wE, (2.20
~i 2
where
E=(p+P)w?—P, (2.22
Ji=(p+P)wy;. (2.23
We may write the constraint equations as
- Rk poad (. .. 2
—_ " 5,2 _ A w2
Ay 3 Y—2mpa’E 8 AijA 3K ,
(2.29
N 6 2 61 6
DI(¢ Aij)_gl/f DiK=87J;¢”, (2.29

whereA is the Laplacian with respect tg; .
In this paper, we choose a constant mean curvature slice
as we chose in a previous papés|
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33 It is worth mentioning that these assumptions are natu-
K=K(t)=—-—. (2.26  rally realized in most of successful inflation models. In the
inflationary universe scenario, only the so-called growing
mode perturbations of scalar and tensor types survive and
amplitude of the tensor perturbation is generally very small.
We note thatyy/— 1 may be larger than unity, i.e., we have
not used any approximation for treatingg On the other

This choice can most effectively factor out overall factors of
the expansion of the background universe from the dynami
cal variables. In this case, we obtain the equationdfas

Aa=a[47{2(p+P)(WP—1)+p—po+3(P—Py)} hand, other quantities should be small enough and are re-
garded as small perturbations.if-1<1 (i.e., if the linear
+Z”—"A”]+ 127 (po+Pg)(a—1), (2.27  theory applies the above corresponds to assuming the exis-
tence of only the adiabatic growing mode.
whereA is the Laplacian with respect tg; . We also note Because we have not yet imposed any condition8én

that Egs.(2.13 and(2.29 are, respectively, rewritten as  we cannot specify the order of magnitudef andv¥. For
example, in the case of the minimum distortion gafité),
a ¥ they are ofO(e€). On the other hand, in thgX=0 gauge
_ pk - _ " .12k ) )
(=B o= 55 ¢la=1)+ 6171’2(77 B ks vk=0(€%. In the following discussion, we do not have to
(2.29 specify the gauge condition fg8® in order to obtain solu-
tions except for3* and v,

~ “Rkk Substituting the lowest order terms @ €) of each vari-
Ay= ?¢—27T¢5a2[(p+ P)(W?—1)+ p—po] ables shown in Eqg3.1), we have the following equations:
¢5a2~ - .
— Al 1. 6
g MiAl (229 Lo+ 2 v k= o(e, (3.2
I 4
Thus, in the constant mean curvature slice condition, the
equations fora and ¢ are similar to those for the maximal -
i iti =0 i i i 5 ko pk 64 ¢ ko ok
slice conditionK=0 |n_the asyr_nptotlc_ally flqt spacetime. I oV (V¥ + B+ — pa®V  (VK+ BY)
Hence, we expect that it has a singularity avoidance property ¥

for the case of black hole formation. 4y
+POaSVk{7(Vk+ Bk)]
Ill. LONG WAVELENGTH LIMIT
In this section, we consider the so-called long wavelength
approximation assuming that the characteristic length dcale
of a density fluctuation is always much larger than the
Hubble horizon scalé>t~a/a. First, we introduce a small

= ppa® +0(eh, (33

r-1
Vz)(-i- T v2s

parametek, and assume tha=p/po— 1 is of O(€?) and its L4 _3EX:VkBk+ O(€%), (3.4)
characteristic length scale is @f(1/e). The latter assump- v a
tion is equivalent to assuming that the magnitude of spatial
gradients of the quantities is given yy= ¢ X O(e), dia A= —27a2uP pad+ O( 3
=aX0(€), d;6=5X0(€), and so on. Then, it is found @AY Tty po (€9, 39
from the equations presented in Sec. Il that the following
relation should hold: V2x=4mpea®{(3r —2)6+3Ty} +0(), (3.6
y—1=0(€%), )
ui=0(el), dihij=— 2R + 8BS + S B — 3 8B+ 0(e"),
_ B (3.7
A, hi(=vii—mj), x(=a—1), 6=0(¢),
. i i: 3 ~ 'a._. l 2 77”
Ui, VA =0(). @9 O+ 3AG= gz | T Z((O)Di(O)Di‘r/’_ 3 ©AY

Here we have assumed for simplicity that the amplitude of 5 .

primordial gravitational wave perturbations is negligible. We el _ L j k
note that because the gravitational wave perturbations do not " s ( ©PivoP¥ 3 ©PoD l//”
decay with time evolution, the following solution can change +O(eh 3.9
considerably if their amplitude is not small initially. We have ' :
also assumed that the vector part is absent for any quantity;

in other words, we do not consider vorticity. where
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tions may have a large metric perturbation amplit{fste8].
69172, As long as its scale is larger than the Hubble horizon scale, it
never collapses, but once the scale becomes smaller than the
Hubble horizon scale, it collapses to form a black hole.
The advantage of our present formalism is as follows:
VZ:lr//S—nl/Zak( En' e, 39 once we give a realistic initial condition at the very early
epoch just after inflation, evolutions of the metric and den-
The first two equations, Eqg3.2) and (3.3), are derived Sity fluctuations can be analytically calculated as long as the
from hydrodynamic equations and the other five, H§s4) length scale of the fluctuation is much larger than the Hubble
—(3.8), are derived from equations for geometric variables.horizon scale. Then we may start a numerical simulation
From Egs.(3.2) and (3.4), we find that the following re- sufficiently before the scale enters the Hubble horizon and
lations have to hold: follow the black hole formation process without changing
the gauge condition or numerical matching of initial data.
Py=0(€?), (3.10  Hence, we can consistently investigate the evolution of the
metric and density fluctuations throughout the whole dy-
1. a namical range starting from a very early epoch of the uni-
F5+ 35X=—Vk(vk+,8k)=0(e4). (3.1)  verse at which analysis can be performed in an analytical
manner up to the formation of a black hole when analysis
Also, we find that the right-hand side of E®.6) has to be should be done in numerical relativity.
of O(e%), i.e.,

Vie——5 ¥
¢67]1/2

(37 —2) 5+ 3F)(=O(e4). (3.12 IV. NUMERICAL STUDY IN THE SPHERICAL
SYMMETRIC CASE
From these relations and a reasonable assumption &hat
—0 fort—0, we finally find the time dependence for each
variable at the leading order @(¢) as

To demonstrate the usefulness and robustness of our for-
malism, in this section, we perform numerical simulations of
primordial black hole formation assuming spherical symme-

try.

3r

o= - 37— xoct2 AR (3.13

A. Basic equations
ViV et 8, (3.14 For the spherical case, the line element can be written as
Uyt~ 430, (3.19 d?= —(a2— 4 BAr2)d 2+ 2y*a2Brdrdt
poct®, (3.16 +y*a’(dri+r2dQ), (4.2

Ajjoctt 4, (3.17  wherep denotess’/r. We may say that we choose the mini-

mum distortion gauge condition in this line element because

(95/”- =0 [14]. As we mentioned in Sec. Il, it is not always
necessary to take the spatial gauge condition used here, and

Time dependence of, ', O(€?) part of , andhy; is found
when we give spatial gauge condition 8. For example, in
the TT gauge and/or minimum distortion gaudet], it is

we may use other gauge conditions suchBas 0. The spa-
found that . o :

tial gauge condition we choose here is only one example
vk, BRoctl—4dr 318 [17]. o _ _
Since gravitational waves are not generated in the spheri-
hijxt2*4/3F, (3.19 cally symmetric spacetime, we need not solve the evolution
equations for the geometrical variables if we solve the con-
O(€?) part of oct?~ 43, (3.20 straint equations and the equations of the gauge condition.

On the other hand, if we solve the evolution equations, we
We emphasize again that we do not restrict our attentioman use the constraint equations in order to check the accu-
to the case wher¢g—1<1. Namely, even when the scalar racy of numerical solutions in each time step. Thus, we solve
part of the metric is nonlinear, we can still find the analytic the evolution equation fog instead of the Hamiltonian con-
solution as long as the long wavelength approximation holdsstraint equation, but use the latter to check the numerical
The purpose of this paper is to give a framework to in-accuracy. Then, the equations for the geometric variables
vestigate the primordial black hole formation process, and itsolved in numerical computation are as follows:
standard formation scenario is as follows: In a very early
phase of the universe, just after inflation, the scalar-type per- 4 ’
turbations generated from the quantum fluctuations of an in- _ _ 4 _ y
flaton field have the length scale much larger than the (0= 2Bydy) = 2a pla=1)+ 6 (3B+2y9yB),
Hubble horizon scale at that time. Some of these perturba- 4.2
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u aS
A¢={yta? 6m(p+P)(WP—1)+27{p—p L NP
(0) 0 \% .
B wyta® B TwW2y1%0a2(DIw )"
6(P—Pg)}+ 127 (po+ Po) ZlAZ} (.12
+ - +127(po+Po)+ —=
° ool 16 To examine whether a black hole is formed or not, in each

time step we search for apparent horizon which is defined as

+ y°a? 4m{2(p+ P)(W?—1)+p—po the outermost trapped surfaf&5]. In the spherically sym-
metric case, the outermost zero poinsr 4y, of the func-
3 tion
+3(P—Py)}+ EAZ}, (4.3
O(r)= 2 +A+ —— 2+4a d/) (4.13
3 yra ¢ ) '
yoyB= g ahA, (4.4
corresponds to the outermost trapped surfa8@ Hence, we
3 6nn 4.6 only need to calculat® in each time step and look for the
A (r>y°A)=8mr*y°(p+ P)wu, (4.5

zero point.
Once the apparent horizon is determined, we also calcu-

= 2 = = —_— i
wherey=r", u=u,/r, andf=y(a-1). We use the relation late the mass of the apparent horizon which we define as

—A,’12=—A f12=A,"=A. Equation(4.3) is solved under
the boundary condition at—« as aylr
MAH:T at r=I’AH. (414)
C _
{=—e"+0(r7?), (4.6 . o o
r M an is not identical with the gravitational mass of a black

_ — . hole in general. However, if it settles down to a constant in
whereC is a constant, andy=1/y127T'ppa. The Hamil-  the late epoch after formation of the black hole, it can be

tonian constraint equation, regarded as the gravitational mass because in the spherical
3uSal and static spach 5 agrees with the gravitational mass.
@AY= —2myPa[(p+P)(W2—1)+p—po] - e A2, In order to check the numerical accuracyMf; , we also
16 calculate the conserved Kodama mass in the spherical space-

(4.7 time[16]. The Kodama mass within a radiuss defined as

is solved only on the initial time slice with the outer bound- r
ary condition ¢—1+C,/2r +O(r %) whereC, is a con- MK(r)=4wf r'2dr'adayT' K*, (4.15
stant. 0

The hydrodynami ions are written in the form
e hydrodynamic equations are writte the fo where the components &f* are

F(wybalp™y+r 29, (r3wybapTv)=0, (4.9

1
Ki=— — — 4.1
afwytad(p+Pyul+r 39, [riwylad(p+ P)vu] ay? or ‘// r (4.19
= —2ayfas, P+wytad(p+P)| —2wa, 1 9
y y K'= P é]tlﬂ r, (4.17
4au?
+u(B+ 2yz9y,8)+%ryay¢], (4.9 andK?=K®=0. SinceM atr=r ,y is proved to be equal
yra‘w to My [16], it can be used to check the accuracy of our

estimation ofM 5. In our simulations, we found that both
agree well except for the very late epoch after formation of a
black hole at which the gradient af near the apparent ho-

where v=v'/r. Using the relationpé’ra3=constant, Eq.
(4.8) may be written as

g(wybe)+r 23, (rwybev) =0 (4.10 rizon is very steep and it is difficult to keep numerical accu-
racy well.
wheree=(p/po)*". In numerical simulation, we choos2 Numerical simulations are performed taking 3000 inho-

=wybe and S=wy®(p+P)u as variables to be solved. mogeneous grid points for the axis. The circumferential

OnceD andS are given,w is obtained by solving the alge- radius of the outer boundary is always kept to be much larger

braic equation than the Hubble horizon scale. We also take a sufficient
number of grids inside a black hole forming region. More

2r 2 . i .
Sy concretely, we take grids as=Ar(f'—1)/(f—1), wherei
1212 2_ — 2I'—2 ’ ’
poY' T (,pﬁ) (wo-1)= a2 (41D _p12...,3000fis a constant slightly larger than 1, and
Ar is the grid spacing at origin which is much smaller than
andv is then given from the circumferential length of a formed black hole.
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B. Initial conditions

We make use of the analytic solution derived in Sec. Il to
give a realistic initial condition fop, u, and so on. Thus, the
initial condition is given at an epoch when the length scale of
a density fluctuation is much larger than the Hubble horizon

0.8

scale.
First, we assume thai=p/py—1 is much smaller than
unity and write it as

S5=f(r)t2=43, (4.18
From Eq.(3.13, we soon gely=a—1 as
3r-2
X=-— f(r)t2— 44, (4.19

3r

u is derived from Eq(4.9) in the long wavelength limit as

u ayf (343,

2
“3r+2 (4.20

Thus, if we specify the functiofi(r) on the initial time slice
t=ty, and subsequently solve Edq4.3)— (4.5 and(4.7), we

obtain the initial data foA, B, v, ¢, anda.
In this paper, we simply givé as

F{ r2) . F{ r2 )}( t )24/3F
(4.21

whereCj, 1o, ando are constants, and we set=r, 2" .

Roughly speakingCs; and o specify the amplitude and
shape of the density fluctuation, respectively.determines

8yY°=Cs

the length scale of the density fluctuation, and we fix it to be

0.6

0.4

Spectrum shape

0.2

vl v by Ly g 3
0 1 2 3 4
k

)]

FIG. 1. The spectrum shapes of the density fluctuation
[exp(—Kk3/4)—exp(—k?c?/4)] are shown for severalr. The solid
line denotes the case far=« in which the density peak is sur-
rounded by a flat universe, and the dotted lines denote the cases for
1.5<0<8.

iy obtained in(a), we determing (r). (c) We calculateu, w,

A, and B by using Eqs(4.20, w=1+u??y %, (4.5 and
(4.4), respectively, and substitute the newand A into Eq.
(4.7). We repeat this procedure until sufficient convergence
is achieved.

Hereafter, we pay attention only to th&=4/3 case, be-
cause it is most probable that the universe was radiation
dominated in the early times. In this case, fes0, the met-
ric behaves as

unity in the following. Hence, hereafter, the mass and length

are shown in the unitsy=1.
If we define the spectrum of density fluctuations as

(k)= f:jo(kr)&/ﬁrzdr, (4.22

wherejq(kr)=sin(kr)/kr is the spherical Bessel function of
the zeroth order, we get
—k2r2
ex 7

\/;rg( t )24/31“

4 \rg

—kzréa'2
—ex T .

8(k) =

Cy

(4.23

x—0, (4.249
B—const<1, (4.29
y—1—const=0(1). (4.26

Apparently, the metric is nonlinear for large; att=0 be-
causeyy—1=0(1). Note thaté—0 for t—0. Hence, in the
present coordinate condition, a black hole is formed only if
the metric is nonlinear even though the density fluctuation is
very small. In other words, we may say that the criterion of
formation of black holes depends only gnatt=0.

C. Numerical results

Numerical simulations were performed for various values
of Cs and o. Specifically, we surveyed a two-dimensional
parameter space wit ;>0 ando>1. We note that in the
caseo=», the high density peak is surrounded by a flat
universe, and in other cases, it is surrounded by a region in

Thus the wavelength of the dominant spectral components afhich the density is lower than that of the flat universe.

the density fluctuation is larger thanwr in the comoving

We show the spectrum af(k) for the cases=1.5, 2, 3,

scale(or k=<2/ry). Hence, we start all the simulations at an 5, 8, and= in Fig. 1. Foro=, the peak is ak=0, while in

initial time t which satisfies the conditiont<a(1
—2/3N)a(t)ry. In the following, we always set the initial
time as 10%r,,.

Initial conditions are numerically determined by perform-

ing iteration as follows(a) We solve Eq(4.7) for ¢, for the
density profile given by Eq4.21). (b) From 5¢° as well as

the other cases, the peak wavenumber and the width around
the peak becomes larger and wider, respectively, for smaller
ag.
In Fig. 2, we showyy=¢(r=0) att=0 as a function of
Csforo==, 2, 3, and 5. Here, we can easily calculgtgat
t=0 by using the analytic solution found in Sec. lll. It is
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2.4

2.2

Yo

1.8

1.6

14 .

15 25

FIG. 2. ¢ att=0 as a function ofC; for o=, 2, 3, and 5.

found thaty, att=0 monotonically increases with increas-
ing Cg, irrespective ofo.

In Figs. 3 and 4, we show general features of numericat

solutions taking the case=« as an example. The features
shown in Figs. 3 and 4 are found also in the cases of finite
In Fig. 3, we shows and 2(1- «) at origin as a function of
time t for black hole formation caseQ;=15, dotted linep
and no formation caseQj;= 13, solid line$, respectively.
The reason why we plot 2(1 «) for « is that it must coin-
cide with § for t—0. Figure 3 clearly shows that farr g,
(@ 8 anda—1 are proportional td, and(b) § agrees with
2(1— «). Hence, the numerical solution reproduces the an
lytic solution fort<<r, accurately. It is found that the differ-
ence betweed and 2(1- «) gradually becomes appreciable
at t/rp=0.1 and becomes as large as unity whén~1.
This is reasonable because the density fluctuation amplitu
can become nonlinear only after its length scale is small
than the Hubble horizon scale.

In Fig. 4, we also show), as a function of. As we found
in Sec. lll, it does not change so much tetr, but slightly
decreases with time evolution. This is due to the effect of th
O(€?) part in . In some previous worksy, at t~rg is

10*

1000
100
10

1

0.1
0.01

0.001

L B L AL L N L L

0.1 1 10 100
t/r,

0.0001
0.001 0.01

FIG. 3. § and 2(1- «) at origin as a function of timefor black
hole formation case(s= 15, dotted linesand no formation case
(Cs=13, solid lineg, respectively.
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0.001 0.01 0.1 1 16 100
t/r,

FIG. 4. The same as Fig. 3, but fgg as a function of time.

assumed to be equal i, att=0. But as shown here, the
assumption is strictly speaking not correct.

In Figs. 5, we show the mass of the apparent horizon
Man/ro) as a function of time t(ry) in the black hole
formation cases foor=2, 3, 5 ande. We note that in all the
simulations, computation is terminated when it is difficult to
keep the numerical accuracy near the apparent horizon. Al-
though the simulations had to be ended before we could
draw a definite conclusion, our results given in the figures
strongly suggests thad\il ,; approaches an asymptotic value
without increasing forever. This is consistent with a previous
result[18,11. (We note that by comparing it witM xoqama

&t is found thatM an Shown here is accurate to within a few

percent).
The formation epoch of a black hole is highly dependent
on the initial density profile. In the cage=«, the formation

dgpoch ist>100rq, but in the other cases, it is earlier for
€ maller o. This is natural because for smaller the wave

number of the peak in the spectrum is larger. It is found that
M py can be>8r in the caser=o, but it is at most-1.1r,
in the caser=2. These facts also indicate that the formation

E‘epoch and the maximum mass of black holes are highly de-

pendent on the initial density profile. We also note that even
when we pay attention only to a particular spectrum shape,
M an Ccan vary in a large range depending ©p (or ¢, att

=0). Since we do not pursue the simulation in which a black
hole in the limitM 4= 0 is formed, we cannot draw a strong
conclusion, but it seems possible to have a black hole whose
mass is much smaller thaig near the threshold of black hole
formation.

In Fig. 6, we plotM 4 as a function ofj, att=0 for the
casesr=2, 5, and» as examples. We find that the threshold
of ¢y att=0 for formation of black hole is quite different
among all the models. In the case=«, the threshold value
is high [¢o(t=0)~1.79]. On the other hand, it is not so
large in other cases, and smaller for smattein Fig. 7, we
plot the threshold line on theo, o(t=0)] plane. The rea-
son of this property is simple: In the case in which the den-
sity peak is surrounded by a high density region, it is forced
to be expanded by the surrounding region more strongly and
is prevented from collapsing. As a consequence, the density
peak surrounded by a higher density region is more difficult
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of time t/ry in black hole forma-
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to form a black hole, while the density peak surrounded by @uch asu=0(t?), a=1+0(t), and d,y=0O(t) to neglect
lower density region can more easily form a black hole.the terms higher order ih Then, we define a compaction
Probably, the density peak surrounded by a zero density rdunction at each radius as
gion can most easily form a black hole. Motivated by this
observation, we also perform simulations in the flat space-
time from the time symmetric initial condition with the ini-
tial density fluctuation profile

r2

rg)”

In this case, the threshold value fgg att=0 is about 1.428. L i
This value can be approximately regarded as the smallest
value of ¢y att=0 for the formation of a black hole.

As another useful criterion, we point out an approximate
measure for determining the formation of black holes in the
special case of spherical symmetry. First, by using the
Kodama mass, we define an excess mass at each radius at
=0 as

Mg
rN=——.
ry(r)’a
Here, we note that this compaction can be definet=a,

because it approaches a time-independent function in the
limit t—0. In Fig. 8, we show Eq(4.29 as a function of

(4.29

oyf=C; exp( (4.27

r
6MK(r)EMK_MF:47Ta3pof I”Zdl"ﬁ- l[/e
0

where Mg denotes the mass in the case of a non-perturbed

universe and we have used the relations which holid=di FIG. 6. My /1 as a function of, att=0 for o=, 2, and 5.
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FIG. 7. Summary of numerical results on formation of black  FIG. 8. SMy/ry(r)%a as a function of att=0 for the critical
holes in theo— yo(t=0) plane. For initial conditions located in the cases obr=2, 3, 5, andx (i.e., for the initial condition denoted by
region above the thick dotted line, we find that a black hole isfilled circles in Fig. 7. The maximum value is-0.4 irrespective of

formed. Note that the solid line reachgg(t=0)=1.79 in the limit o If the maximum valueC(r) nais larger than~0.4, a black hole
o—00. is formed, but if not, it is not for alb-.

for some of the filled circles on the thick dotted line in Fig. 7. dependent on the initial profile of the density fluctuation. In
It is found that the maximum valu€(r) . is about 0.4 the case when the density peak is surrounded by a flat Fried-
irrespective ofc. We note that for eachr, if the maximum ~ mann universe, the threshold valuegf att=0 for forming
value is larger than the value shown in Fig. 8, a black hole it black hole is very large- 1.8, while when surrounded by a
always formed, while if not, it is not. Thus, the measurelow density region, it may be as small a<l.4. This property
presented here will be helpful as an approximate criterion téuggests that the formation of primordial black holes may
know whether a spherical black hole is formed only from thenot be determined by a local criterion: Even when there is a
initial data att=0, and if we USeC(I)m. @S a parameter density fluctuation of a high density contrast, it may not ef-
instead Ofl,bo(t:O), we can approximate|y neg|ect the de- f|C|ent|y COIIapse into a black hole if it is in a hlgh denSity
pendence omw. region, but it efficiently collapses if it is in a low density
region. As we have noted, this moderate variation of the
formation criterion is translated to a very large variation in
the actual number of primordial black holes. Thus, we con-
clude that the spatial correlation of primordial density fluc-

We have presented a formulation for numerical relativitytuations is crucially important in studying the formation of
in the cosmological background by which we can perform aprimordial black holes.
numerical simulation of primordial black hole formation In this paper, we have assumed the spherical symmetry
with the initial data that can be analytically given. Namely, and restricted our attention to a model which contains only
we have formulated the Einstein and hydrodynamic equatwo parameters. Even in this case, the formation criterion
tions in the constant mean curvature time slicing in a waywas not so simple. In reality, a primordial black hole is
suitable both for obtaining the analytic solution of a pertur-formed in a spacetime without any spatial symmetries. In
bation while its length scale is well over the Hubble horizonsuch a case, the anisotropic effect will be important in addi-
scale and for performing a numerical simulation until thetion to the inhomogeneous effect shown in this paper, and it
formation of a black hole. As a result, it becomes possible tds expected that the formation criterion will be much more
investigate the primordial black hole formation from a very complicated than the present case. Apparently, the next step
early phase of the universe just after inflation up to the fords to carry out nonspherical simulations, and even for such a
mation of black holes in a continuous manner, withoutsimulation, the formalism presented here is perfectly appli-
changing the gauge condition or numerical matching of thecable.
initial data.

By using our formalism, we have carried out a numerical
simulation of the black hole formation in a spherically sym-
metric, radiation-dominated universe, starting from realistic We thank K. Nakao for useful discussion and for giving
initial data which are given by the analytical solution of aus a note in which Kodama’s mass is concisely described.
superhorizon scale perturbation. In this paper, we have corM.S. thanks Stu Shapiro for helpful comments. This work
sidered the initial conditions which are specified by two pa-was supported in part by the Monbusho Grant-in-Aid for
rameters; one characterizes the amplitude of the defwity scientific research Nos. 08NP0801, 09640355, and
metrio fluctuation and the other the shape of the density09740336. The work of M.S. was also supported in part by
profile. It is found that the formation criterion is moderately the JSPS.
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