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We study the formation of black holes in the Friedmann universe. We present a formulation of the Einstein
equations under the constant mean curvature time-slicing condition. Our formalism not only gives us the
analytic solution of the perturbation equations for nonlinear density and metric fluctuations on superhorizon
scales, but also allows us to carry out a numerical relativity simulation for black hole formation after the scale
of the density fluctuations is well within the Hubble horizon scale. We perform a numerical simulation of
spherically symmetric black hole formation in the radiation-dominated spatially flat background universe for a
realistic initial condition supplied from the analytic solution. It is found that the initial metric perturbation has
to be nonlinear~the maximum value of three-dimensional conformal factorc0 at t50 should be larger than
;1.4) for a black hole to be formed, but the threshold amplitude for black hole formation and the final black
hole mass considerably depend on the initial density~or metric! profile of the perturbation: The threshold value
of c0 at t50 for formation of a black hole is smaller for a high density peak surrounded by a low density
region than for that surrounded by the average density region of the flat universe. This suggests that it is
necessary to take into account the spatial correlation of density fluctuations in the study of primordial black
hole formation.@S0556-2821~99!04916-4#

PACS number~s!: 04.25.Dm, 95.35.1d, 97.60.Lf
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I. INTRODUCTION

The formation of black holes in the early universe and
cosmological implications have been discussed in a var
of contexts for decades@1#. However, it has long been
thought that it would be practically impossible to prove
disprove the existence of these primordial black holes.
cent discoveries of microlensing events by massive com
halo objects~MACHOs! of mass;0.5M ( in the halo of our
galaxy@2# have dramatically changed this situation. By va
ous other means of observation, it may be possible to d
all the other possibilities and hence to identify MACHO
with black holes. Then these MACHO black holes must
primordial since it is impossible to form a black hole of ma
smaller than;M ( as a result of stellar evolution@3#. Fur-
thermore, it has been recently suggested that, if MACH
are in fact primordial black holes, the number of binaries t
are just coalescing today may be large enough to be dire
detected by the upcoming gravitational wave observato
such as the laser Interferometric Gravitational Wave Ob
vatory ~LIGO!, VIRGO, GEO, and TAMA within a few
years @4#. Consequently, it has become an urgent issue
quantify how and when these black holes could be forme
a precise manner.

Among other possibilities, primordial black holes a
most conceivably formed from large curvature perturbatio
generated during an inflationary stage of the very early u
verse@5,6#. The curvature perturbations generated in the
flationary universe are dominated by the so-called grow
adiabatic mode of density perturbations. In the linear theo
0556-2821/99/60~8!/084002~11!/$15.00 60 0840
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the evolution of these perturbations is well studied and th
temporal behavior is known throughout the whole stage fr
the epoch when their wavelengths are much larger than
Hubble horizon scale until their evolution becomes nonlin
on scales much smaller than the Hubble horizon.

However, the amplitude must be already large enough~of
order unity! to form black holes when the characterist
wavelengths of the perturbations were on superhori
scales. Furthermore, the formation of a black hole is itse
fully general relativistic phenomenon. The evolution of no
linear density perturbations on superhorizon scales was
vestigated by several authors and the threshold amplitud
curvature perturbations on superhorizon scales for form
black holes was estimated@7,8#. These previous estimates o
the threshold amplitude were based on approximate ana
cal treatments and/or on rather naive numerical simulatio
hence are admittedly crude. Furthermore, there is a cru
reason that requires us an accurate estimate as follows:
cording to the inflationary scenario, the probability distrib
tion of the curvature perturbations is essentially Gauss
and primordial black holes are produced from the high a
plitude tail of the distribution. Therefore, a small error in th
estimate of the threshold amplitude will result in a large er
in that of the number of produced black holes. Thus thre
old amplitude must be estimated accurately.

As a first step to accomplish this purpose, in this pap
we present a new formalism by which it is possible to follo
the formation of a primordial black hole throughout th
whole stage starting from the very early universe when
perturbation is well outside the Hubble horizon to the fin
©1999 The American Physical Society02-1
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stage when a black hole is formed. More specifically, o
formalism not only gives us the analytic solution of nonli
ear curvature perturbations on superhorizon scales but
allows us to perform a numerical simulation of the bla
hole formation with the initial data given by the analyt
solution, with no need of changing the gauge conditions o
numerical matching. In addition, it may be worthwhile
mention that the constant mean curvature time slicing e
ployed here is equivalent to the so-called constant Hub
slicing in cosmological perturbation theory@9#. And, it has
been pointed out that the constant Hubble slicing is m
appropriate for evaluating nonlinear curvature fluctuatio
generated during inflation@10#. Hence the initial curvature
perturbation spectrum evaluated in models of inflation can
directly used for the initial data of our problem.

Then using our formalism, we carry out a spherica
symmetric simulation of black hole formation in th
radiation-dominated Friedmann universe. We consider
initial data with two parameters; one describes the amplit
and the other the radial profile. We find that both the thre
old amplitude for black hole formation and the final bla
hole mass depend appreciably on the initial profile of
perturbation. We also consider another possible criterion
black hole formation by defining a compaction function
the perturbation profile. Although this function can be d
fined only for a spherically symmetric configuration, we fin
the maximum value of this function gives us a better cri
rion for the formation of black holes.

While this paper was in preparation, a couple of papers
the primordial black hole formation appeared@11#. It seems
that their formalism is powerful for studying the formation
a black hole in a spherical symmetric spacetime. Howeve
does not seem convenient to give a realistic initial condit
which should be supplied just after inflation. Actually, th
give initial conditions at the epoch when the scale of
density fluctuation is as small as the Hubble horizon sc
Since the density fluctuation is already nonlinear at that
och, it is impossible to control the initial date so that it r
duces to the growing adiabatic mode when the evolution
traced back in time to the very early universe. In oth
words, their initial conditions are inevitably contaminated
unrealistic decaying mode perturbations which badly dive
as t→0. As a result, though the criterion for black hole fo
mation they find is new and interesting, it cannot be direc
related to the initial condition at the end of inflation. So th
it is not convenient for a practical study of primordial bla
hole formation. Furthermore, application of their formalis
is restricted to the spherical symmetric case~i.e., very special
case!. In contrast, in ours, it is easy to relate a criterion
black hole formation to an initial condition just after infla
tion, and also it can be applied to general 3D cases. The
restriction of our formalism is that the spacetime be asym
totically spatially flat Friedmann.

The paper is organized as follows. In Sec. II, we pres
the Einstein and hydrodynamic equations in the Friedm
universe using the 311 formalism, which have appropriat
forms for numerical relativity simulations. We then intro
duce the constant mean curvature time-slicing in which
equations for geometric variables have similar forms to th
08400
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in the maximal slice condition in the asymptotically fl
spacetime. In Sec. III, assuming that the length scale o
density fluctuation is always much longer than the Hub
horizon scale, we take the long wavelength limit of the eq
tions derived in Sec. II, and then find the analytic solution
the perturbation equations. In Sec. IV, we perform numeri
simulations of black hole formation in a spherically symm
ric, radiation-dominated universe using initial conditio
given by the analytic solution in Sec. III. Section V is d
voted to summary. Throughout this paper, we use the u
c515G.

II. FORMULATION

We present the Einstein and hydrodynamic equations
the Friedmann universe using the 311 formalism in general
relativity. We write the line element as

ds25gmndxmdxn

5~2a21bkb
k!dt212b idxidt1g i j dxidxj , ~2.1!

where gmn , a, b i (b i5g i j b
j ), and g i j are the four-

dimensional~4D! metric, lapse function, shift vector, and 3
spatial metric, respectively. Since we consider an asymp
cally spatially flat Friedmann universe, we rewriteg i j as

g i j 5c4a~ t !2g̃ i j , ~2.2!

and impose the condition det(g̃ i j )5det(h i j )[h, whereh i j
is a flat spatial metric. Here,a(t) is defined to be the scal
factor in the homogeneous universe, i.e., the scale facto
the asymptotic region, and we determine it from the w
known equations for the scale factor as

ä52
4p

3
a@r0~ t !13P0~ t !#, ~2.3!

ȧ25
8p

3
a2r0~ t !, ~2.4!

wherer0 andP0 are the density and pressure for the hom
geneous universe, andȧ5] ta. As we find below,a0 , r0, and
P0 are automatically determined when an equation of stat
provided.

We also rewrite the extrinsic curvatureKi j as

Ki j 5c4a2Ãi j 1
g i j

3
K, ~2.5!

whereK5Kk
k and henceÃi j is defined to be traceless. Th

indices ofÃi j andÃi j are to be raised or lowered in terms
g̃ i j and g̃ i j . In numerical computation, we will solveg̃ i j ,
Ãi j , c, andK instead ofg i j andKi j . Hereafter, we useDi

and D̃ i as the covariant derivatives with respect tog i j and
g̃ i j , respectively.

As a source of the energy momentum tensor, we cons
a perfect fluid for which the energy momentum tensor
written as
2-2
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Tmn5~r1P!umun1Pgmn , ~2.6!

wherer, P, andum are the energy density, pressure, and fo
velocity, respectively. Hereafter, we assume an equation
state,P5(G21)r, whereG is a constant and we assum
G.1 in the following discussion. For the equation of sta
we get the following relations from Eqs.~2.4!

a5aft
2/3G and r05

1

6pG2t2 , ~2.7!

whereaf is a constant.
The hydrodynamic equations are written in the form

] t~wc6a3r1/G!1
1

h1/2
]k~h1/2wc6a3r1/Gvk!50, ~2.8!

] t$wc6a3~r1P!uj%1
1

h1/2
]k$h

1/2wc6a3~r1P!vkuj%

52ac6a3] j P1wc6a3~r1P!

3H 2au0] ja1uk] jb
k2

ukul

2u0 ] jg
klJ , ~2.9!

wherew[au0, and

vk[
uk

u0 52bk1g̃kl
ul

c4a2u0 . ~2.10!

Evolution equations for geometric variables are written
follows @12#:

~] t2bk]k!g̃ i j 522aÃi j 1g̃ ikb , j
k1g̃ jkb ,i

k2
2

3
g̃ i j (0)Dkb

k,

~2.11!

~] t2bk]k!Ãi j 5
1

a2c4 FaS Ri j 2
g i j

3
RD

2S DiD ja2
g i j

3
DkD

ka D G
1a~KÃi j 22ÃikÃj

k!1b ,i
kÃk j1b , j

kÃki

2
2

3(0)Dkb
kÃi j 2

8pa

a2c4S Si j 2
g i j

3
Sk

kD ,

~2.12!

~] t2bk]k!c1
ȧ

2a
c5

c

6
$2aK1 (0)Dkb

k%, ~2.13!

~] t2bk]k!K5aS Ãi j Ã
i j 1

1

3
K2D2DkD

ka14pa~E1Sk
k!,

~2.14!
08400
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whereRi j is the Ricci tensor with respect tog i j , (0)Dk is the
covariant derivative with respect toh i j , and

Si j 5~r1P!uiuj1Pg i j . ~2.15!

To clarify the meaning of Eq.~2.12!, we rewriteRi j as

Ri j 5R̃i j 1Ri j
c , ~2.16!

whereR̃i j is the Ricci tensor with respect tog̃ i j and

Ri j
c 52

2

c
D̃ i D̃ jc2

2

c
g̃ i j D̃c1

6

c2D̃ icD̃ jc2
2

c2g̃ i j D̃kcD̃kc.

~2.17!

R̃i j is written as

R̃i j 5
1

2
@2 (0)Dg̃ i j 1 (0)D j (0)D

kg̃ki1 (0)Di (0)D
kg̃k j

12(0)Dk~ f klCl ,i j !22Ck j
l Cil

k #, ~2.18!

where (0)D is the Laplacian with respect toh i j , f kl5g̃kl

2hkl, and

Ci j
k 5

g̃kl

2
~ (0)Di g̃ j l 1 (0)D j g̃ i l 2 (0)Dl g̃ i j !. ~2.19!

Note that we use a relationg̃ i j
(0)Dkg̃ i j 5h i j

(0)Dkh i j 50 to
derive Eq.~2.18!. From Eq.~2.18!, it is found that under an
appropriate gauge condition such as a transverse-trac
~TT! gauge,(0)D

kg̃k j50, Eqs.~2.11! and~2.12! are found to
constitute a wave equation for tensorg̃ i j .

Hamiltonian and momentum constraint equations are

Rk
k2Ãi j Ã

i j 1
2

3
K2516pE, ~2.20!

DiÃ j
i 2

2

3
D jK58pJj , ~2.21!

where

E5~r1P!w22P, ~2.22!

Ji5~r1P!wui . ~2.23!

We may write the constraint equations as

D̃c5
R̃k

k

8
c22pc5a2E2

c5a2

8 S Ãi j Ã
i j 2

2

3
K2D ,

~2.24!

D̃ j~c6Ãi j !2
2

3
c6D̃ iK58pJic

6, ~2.25!

whereD̃ is the Laplacian with respect tog̃ i j .
In this paper, we choose a constant mean curvature s

as we chose in a previous paper@13#
2-3
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K5K~ t !52
3ȧ

a
. ~2.26!

This choice can most effectively factor out overall factors
the expansion of the background universe from the dyna
cal variables. In this case, we obtain the equation fora as

Da5a@4p$2~r1P!~w221!1r2r013~P2P0!%

1Ãi j Ã
i j #112p~r01P0!~a21!, ~2.27!

whereD is the Laplacian with respect tog i j . We also note
that Eqs.~2.13! and ~2.24! are, respectively, rewritten as

~] t2bk]k!c5
ȧ

2a
c~a21!1

c

6h1/2
~h1/2bk! ,k ,

~2.28!

D̃c5
R̃k

k

8
c22pc5a2@~r1P!~w221!1r2r0#

2
c5a2

8
Ãi j Ã

i j . ~2.29!

Thus, in the constant mean curvature slice condition,
equations fora andc are similar to those for the maxima
slice conditionK50 in the asymptotically flat spacetime
Hence, we expect that it has a singularity avoidance prop
for the case of black hole formation.

III. LONG WAVELENGTH LIMIT

In this section, we consider the so-called long wavelen
approximation assuming that the characteristic length scaL
of a density fluctuation is always much larger than t
Hubble horizon scaleL@t;a/ȧ. First, we introduce a smal
parametere, and assume thatd[r/r021 is of O(e2) and its
characteristic length scale is ofO(1/e). The latter assump
tion is equivalent to assuming that the magnitude of spa
gradients of the quantities is given by] ic5c3O(e), ] ia
5a3O(e), ] id5d3O(e), and so on. Then, it is found
from the equations presented in Sec. II that the follow
relation should hold:

c215O~e0!,

ui5O~e1!,

Ãi j , hi j ~[g̃ i j 2h i j !, x~[a21!, d5O~e2!,

ui , v i1b i5O~e3!. ~3.1!

Here we have assumed for simplicity that the amplitude
primordial gravitational wave perturbations is negligible. W
note that because the gravitational wave perturbations do
decay with time evolution, the following solution can chan
considerably if their amplitude is not small initially. We hav
also assumed that the vector part is absent for any quan
in other words, we do not consider vorticity.
08400
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It is worth mentioning that these assumptions are na
rally realized in most of successful inflation models. In t
inflationary universe scenario, only the so-called growi
mode perturbations of scalar and tensor types survive
amplitude of the tensor perturbation is generally very sm
We note thatc21 may be larger than unity, i.e., we hav
not used any approximation for treatingc. On the other
hand, other quantities should be small enough and are
garded as small perturbations. Ifc21!1 ~i.e., if the linear
theory applies!, the above corresponds to assuming the ex
tence of only the adiabatic growing mode.

Because we have not yet imposed any condition onbk,
we cannot specify the order of magnitude ofbk andvk. For
example, in the case of the minimum distortion gauge@14#,
they are ofO(e). On the other hand, in thebk50 gauge,
vk5O(e3). In the following discussion, we do not have
specify the gauge condition forbk in order to obtain solu-
tions except forbk andvk.

Substituting the lowest order terms inO(e) of each vari-
ables shown in Eqs.~3.1!, we have the following equations

1

G
ḋ1

6ċ

c
1¹kv

k5O~e4!, ~3.2!

] t$r0a5¹k~vk1bk!%1
6ċ

c
r0a5¹k~vk1bk!

1r0a5¹kH 4ċ

c
~vk1bk!J

52r0a3S ¹2x1
G21

G
¹2d D1O~e4!, ~3.3!

6ċ

c
23

ȧ

a
x5¹kb

k1O~e4!, ~3.4!

(0)Dc522pa2c5r0d1O~e4!, ~3.5!

¹2x54pr0a2$~3G22!d13Gx%1O~e6!, ~3.6!

] thi j 522Ãi j 1d ikb , j
k 1d jkb ,i

k 2
2

3
d i j b ,k

k 1O~e4!,

~3.7!

] tÃi j 13
ȧ

a
Ãi j 5

1

c4a2 F2
2

c S (0)Di (0)D jc2
h i j

3 (0)Dc D
1

6

c2 S (0)Dic (0)D jc2
h i j

3 (0)Dkc (0)D
kc D G

1O~e4!, ~3.8!

where
2-4
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¹k5
1

c6h1/2
]kc

6h1/2,

¹25
1

c6h1/2
]k~c2h1/2hkl] l !. ~3.9!

The first two equations, Eqs.~3.2! and ~3.3!, are derived
from hydrodynamic equations and the other five, Eqs.~3.4!
2~3.8!, are derived from equations for geometric variable

From Eqs.~3.2! and ~3.4!, we find that the following re-
lations have to hold:

ċ5O~e2!, ~3.10!

1

G
ḋ13

ȧ

a
x52¹k~vk1bk!5O~e4!. ~3.11!

Also, we find that the right-hand side of Eq.~3.6! has to be
of O(e4), i.e.,

~3G22!d13Gx5O~e4!. ~3.12!

From these relations and a reasonable assumption thd
→0 for t→0, we finally find the time dependence for ea
variable at the leading order inO(e) as

d52
3G

3G22
x}t224/3G, ~3.13!

¹k~vk1bk!}t328/3G, ~3.14!

uk}t324/3G, ~3.15!

c}t0, ~3.16!

Ãi j }t124/3G. ~3.17!

Time dependence ofv i , b i , O(e2) part ofc, andhi j is found
when we give spatial gauge condition forb i . For example, in
the TT gauge and/or minimum distortion gauge@14#, it is
found that

vk, bk}t124/3G, ~3.18!

hi j }t224/3G, ~3.19!

O~e2! part ofc}t224/3G. ~3.20!

We emphasize again that we do not restrict our atten
to the case wherec21!1. Namely, even when the scala
part of the metric is nonlinear, we can still find the analy
solution as long as the long wavelength approximation ho

The purpose of this paper is to give a framework to
vestigate the primordial black hole formation process, and
standard formation scenario is as follows: In a very ea
phase of the universe, just after inflation, the scalar-type
turbations generated from the quantum fluctuations of an
flaton field have the length scale much larger than
Hubble horizon scale at that time. Some of these pertu
08400
.

n

s.
-
ts
y
r-
-

e
a-

tions may have a large metric perturbation amplitude@5–8#.
As long as its scale is larger than the Hubble horizon scal
never collapses, but once the scale becomes smaller tha
Hubble horizon scale, it collapses to form a black hole.

The advantage of our present formalism is as follow
Once we give a realistic initial condition at the very ear
epoch just after inflation, evolutions of the metric and de
sity fluctuations can be analytically calculated as long as
length scale of the fluctuation is much larger than the Hub
horizon scale. Then we may start a numerical simulat
sufficiently before the scale enters the Hubble horizon a
follow the black hole formation process without changi
the gauge condition or numerical matching of initial da
Hence, we can consistently investigate the evolution of
metric and density fluctuations throughout the whole d
namical range starting from a very early epoch of the u
verse at which analysis can be performed in an analyt
manner up to the formation of a black hole when analy
should be done in numerical relativity.

IV. NUMERICAL STUDY IN THE SPHERICAL
SYMMETRIC CASE

To demonstrate the usefulness and robustness of our
malism, in this section, we perform numerical simulations
primordial black hole formation assuming spherical symm
try.

A. Basic equations

For the spherical case, the line element can be written

ds252~a22c4b2r 2!dt212c4a2brdrdt

1c4a2~dr21r 2dV!, ~4.1!

whereb denotesb r /r . We may say that we choose the min
mum distortion gauge condition in this line element beca
] tg̃ i j 50 @14#. As we mentioned in Sec. II, it is not alway
necessary to take the spatial gauge condition used here
we may use other gauge conditions such asb r50. The spa-
tial gauge condition we choose here is only one exam
@17#.

Since gravitational waves are not generated in the sph
cally symmetric spacetime, we need not solve the evolut
equations for the geometrical variables if we solve the c
straint equations and the equations of the gauge condit
On the other hand, if we solve the evolution equations,
can use the constraint equations in order to check the a
racy of numerical solutions in each time step. Thus, we so
the evolution equation forc instead of the Hamiltonian con
straint equation, but use the latter to check the numer
accuracy. Then, the equations for the geometric variab
solved in numerical computation are as follows:

~] t22by]y!c5
ȧ

2a
c~a21!1

c

6
~3b12y]yb!,

~4.2!
2-5
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(0)Dz5zc4a2F6p~r1P!~w221!12p$r2r0

16~P2P0!%112p~r01P0!1
21

16
A2G

1c5a2F4p$2~r1P!~w221!1r2r0

13~P2P0!%1
3

2
A2G , ~4.3!

y]yb5
3

4
aA, ~4.4!

] r~r 3c6A!58pr 4c6~r1P!wu, ~4.5!

wherey5r 2, u5ur /r , andz5c(a21). We use the relation
2Ãu

u/252Ãw
w/25Ãr

r[A. Equation~4.3! is solved under
the boundary condition atr→` as

z5
C

r
e2r / r̄ 01O~r 22!, ~4.6!

whereC is a constant, andr̄ 051/A12pGr0a2. The Hamil-
tonian constraint equation,

(0)Dc522pc5a2@~r1P!~w221!1r2r0#2
3c5a2

16
A2,

~4.7!

is solved only on the initial time slice with the outer boun
ary conditionc→11Cc/2r 1O(r 23) where Cc is a con-
stant.

The hydrodynamic equations are written in the form

] t~wc6a3r1/G!1r 22] r~r 3wc6a3r1/Gv !50, ~4.8!

] t@wc6a3~r1P!u#1r 23] r@r 4wc6a3~r1P!vu#

522ac6a3]yP1wc6a3~r1P!H 22w]ya

1u~b12y]yb!1
4au2y

c5a2w
]ycJ , ~4.9!

where v5v r /r . Using the relationr0
1/Ga35constant, Eq.

~4.8! may be written as

] t~wc6e!1r 22] r~r 3wc6ev !50, ~4.10!

wheree5(r/r0)1/G. In numerical simulation, we chooseD
[wc6e and S[wc6(r1P)u as variables to be solved
OnceD andS are given,w is obtained by solving the alge
braic equation

r0
2c12G2S D

c6D 2G

~w221!5
S2y

c4a2 w2G22 ~4.11!

andv is then given from
08400
v52b1
au

wc4a252b1
aS

Gw2c10r0a2~D/wc6!G
.

~4.12!

To examine whether a black hole is formed or not, in ea
time step we search for apparent horizon which is defined
the outermost trapped surface@15#. In the spherically sym-
metric case, the outermost zero point,r 5r AH , of the func-
tion

Q~r ![2
ȧ

a
1A1

1

c2aS 2

r
1

4] rc

c D , ~4.13!

corresponds to the outermost trapped surface@13#. Hence, we
only need to calculateQ in each time step and look for th
zero point.

Once the apparent horizon is determined, we also ca
late the mass of the apparent horizon which we define a

MAH5
ac2r

2
at r 5r AH . ~4.14!

MAH is not identical with the gravitational mass of a bla
hole in general. However, if it settles down to a constant
the late epoch after formation of the black hole, it can
regarded as the gravitational mass because in the sphe
and static spaceMAH agrees with the gravitational mass.

In order to check the numerical accuracy ofMAH , we also
calculate the conserved Kodama mass in the spherical sp
time @16#. The Kodama mass within a radiusr is defined as

MK~r !54pE
0

r

r 82dr8a3ac6T m
t Km, ~4.15!

where the components ofKm are

Kt52
1

ac2

]

]r
c2r , ~4.16!

Kr5
1

ac2

]

]t
c2r , ~4.17!

andKu5Kw50. SinceMK at r 5r AH is proved to be equa
to MAH @16#, it can be used to check the accuracy of o
estimation ofMAH . In our simulations, we found that bot
agree well except for the very late epoch after formation o
black hole at which the gradient ofa near the apparent ho
rizon is very steep and it is difficult to keep numerical acc
racy well.

Numerical simulations are performed taking 3000 inh
mogeneous grid points for ther axis. The circumferential
radius of the outer boundary is always kept to be much lar
than the Hubble horizon scale. We also take a suffici
number of grids inside a black hole forming region. Mo
concretely, we take grids asr i5Dr ( f i21)/( f 21), wherei
50,1,2, . . . ,3000, f is a constant slightly larger than 1, an
Dr is the grid spacing at origin which is much smaller th
the circumferential length of a formed black hole.
2-6
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B. Initial conditions

We make use of the analytic solution derived in Sec. III
give a realistic initial condition forr, u, and so on. Thus, the
initial condition is given at an epoch when the length scale
a density fluctuation is much larger than the Hubble horiz
scale.

First, we assume thatd5r/r021 is much smaller than
unity and write it as

d5 f ~r !t224/3G. ~4.18!

From Eq.~3.13!, we soon getx5a21 as

x52
3G22

3G
f ~r !t224/3G. ~4.19!

u is derived from Eq.~4.9! in the long wavelength limit as

u5
2

3G12
]yf ~r !t324/3G. ~4.20!

Thus, if we specify the functionf (r ) on the initial time slice
t5t0, and subsequently solve Eqs.~4.3!2~4.5! and~4.7!, we
obtain the initial data forA, b, v, c, anda.

In this paper, we simply gived as

dc65CdFexpS 2
r 2

r 0
2D 2s23expS 2

r 2

s2r 0
2D G S t

r 0
D 224/3G

,

~4.21!

whereCd , r 0, ands are constants, and we setaf5r 0
22/3G .

Roughly speaking,Cd and s specify the amplitude and
shape of the density fluctuation, respectively.r 0 determines
the length scale of the density fluctuation, and we fix it to
unity in the following. Hence, hereafter, the mass and len
are shown in the unitsr 051.

If we define the spectrum of density fluctuations as

d~k![E
0

`

j 0~kr !dc6r 2dr, ~4.22!

where j 0(kr)[sin(kr)/kr is the spherical Bessel function o
the zeroth order, we get

d~k!5
Apr 0

3

4 S t

r 0
D 224/3G

CdFexpS 2k2r 0
2

4 D
2expS 2k2r 0

2s2

4 D G . ~4.23!

Thus the wavelength of the dominant spectral component
the density fluctuation is larger than;pr 0 in the comoving
scale~or k&2/r 0). Hence, we start all the simulations at a
initial time t which satisfies the conditiont!p(1
22/3G)a(t)r 0. In the following, we always set the initia
time as 1024r 0.

Initial conditions are numerically determined by perform
ing iteration as follows:~a! We solve Eq.~4.7! for c, for the
density profile given by Eq.~4.21!. ~b! From dc6 as well as
08400
f
n

e
h

of

c obtained in~a!, we determinef (r ). ~c! We calculateu, w,
A, andb by using Eqs.~4.20!, w5A11u2r 2c24, ~4.5! and
~4.4!, respectively, and substitute the neww andA into Eq.
~4.7!. We repeat this procedure until sufficient convergen
is achieved.

Hereafter, we pay attention only to theG54/3 case, be-
cause it is most probable that the universe was radia
dominated in the early times. In this case, fort→0, the met-
ric behaves as

x→0, ~4.24!

b→const!1, ~4.25!

c21→const5O~1!. ~4.26!

Apparently, the metric is nonlinear for largeCd at t50 be-
causec215O(1). Note thatd→0 for t→0. Hence, in the
present coordinate condition, a black hole is formed only
the metric is nonlinear even though the density fluctuation
very small. In other words, we may say that the criterion
formation of black holes depends only onc at t50.

C. Numerical results

Numerical simulations were performed for various valu
of Cd and s. Specifically, we surveyed a two-dimension
parameter space withCd.0 ands.1. We note that in the
cases5`, the high density peak is surrounded by a fl
universe, and in other cases, it is surrounded by a regio
which the density is lower than that of the flat universe.

We show the spectrum ofd(k) for the casess51.5, 2, 3,
5, 8, and̀ in Fig. 1. Fors5`, the peak is atk50, while in
the other cases, the peak wavenumber and the width aro
the peak becomes larger and wider, respectively, for sma
s.

In Fig. 2, we showc05c(r 50) at t50 as a function of
Cd for s5`, 2, 3, and 5. Here, we can easily calculatec0 at
t50 by using the analytic solution found in Sec. III. It

FIG. 1. The spectrum shapes of the density fluctuat
@exp(2k2/4)2exp(2k2s2/4)# are shown for severals. The solid
line denotes the case fors5` in which the density peak is sur
rounded by a flat universe, and the dotted lines denote the case
1.5<s<8.
2-7
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found thatc0 at t50 monotonically increases with increa
ing Cd , irrespective ofs.

In Figs. 3 and 4, we show general features of numer
solutions taking the cases5` as an example. The feature
shown in Figs. 3 and 4 are found also in the cases of finites.
In Fig. 3, we showd and 2(12a) at origin as a function of
time t for black hole formation case (Cd515, dotted lines!
and no formation case (Cd513, solid lines!, respectively.
The reason why we plot 2(12a) for a is that it must coin-
cide with d for t→0. Figure 3 clearly shows that fort!r 0,
~a! d anda21 are proportional tot, and ~b! d agrees with
2(12a). Hence, the numerical solution reproduces the a
lytic solution for t!r 0 accurately. It is found that the differ
ence betweend and 2(12a) gradually becomes appreciab
at t/r 0.0.1 and becomes as large as unity whent/r 0;1.
This is reasonable because the density fluctuation ampli
can become nonlinear only after its length scale is sma
than the Hubble horizon scale.

In Fig. 4, we also showc0 as a function oft. As we found
in Sec. III, it does not change so much fort,r 0, but slightly
decreases with time evolution. This is due to the effect of
O(e2) part in c0. In some previous works,c0 at t;r 0 is

FIG. 2. c0 at t50 as a function ofCd for s5`, 2, 3, and 5.

FIG. 3. d and 2(12a) at origin as a function of timet for black
hole formation case (Cd515, dotted lines! and no formation case
(Cd513, solid lines!, respectively.
08400
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assumed to be equal toc0 at t50. But as shown here, th
assumption is strictly speaking not correct.

In Figs. 5, we show the mass of the apparent horiz
(MAH /r 0) as a function of time (t/r 0) in the black hole
formation cases fors52, 3, 5 and̀ . We note that in all the
simulations, computation is terminated when it is difficult
keep the numerical accuracy near the apparent horizon.
though the simulations had to be ended before we co
draw a definite conclusion, our results given in the figu
strongly suggests thatMAH approaches an asymptotic valu
without increasing forever. This is consistent with a previo
result@18,11#. ~We note that by comparing it withMKodama,
it is found thatMAH shown here is accurate to within a fe
percent.!

The formation epoch of a black hole is highly depende
on the initial density profile. In the cases5`, the formation
epoch ist.100r 0, but in the other cases, it is earlier fo
smallers. This is natural because for smallers, the wave
number of the peak in the spectrum is larger. It is found t
MAH can be.8r 0 in the cases5`, but it is at most;1.1r 0
in the cases52. These facts also indicate that the formati
epoch and the maximum mass of black holes are highly
pendent on the initial density profile. We also note that ev
when we pay attention only to a particular spectrum sha
MAH can vary in a large range depending onCd ~or c0 at t
50). Since we do not pursue the simulation in which a bla
hole in the limitMAH50 is formed, we cannot draw a stron
conclusion, but it seems possible to have a black hole wh
mass is much smaller thanr 0 near the threshold of black hol
formation.

In Fig. 6, we plotMAH as a function ofc0 at t50 for the
casess52, 5, and̀ as examples. We find that the thresho
of c0 at t50 for formation of black hole is quite differen
among all the models. In the cases5`, the threshold value
is high @c0(t50);1.79#. On the other hand, it is not s
large in other cases, and smaller for smallers. In Fig. 7, we
plot the threshold line on the@s,c0(t50)# plane. The rea-
son of this property is simple: In the case in which the de
sity peak is surrounded by a high density region, it is forc
to be expanded by the surrounding region more strongly
is prevented from collapsing. As a consequence, the den
peak surrounded by a higher density region is more diffic

FIG. 4. The same as Fig. 3, but forc0 as a function of timet.
2-8
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FIG. 5. MAH /r 0 as a function
of time t/r 0 in black hole forma-
tion cases fors5` ~a!, 2 ~b!, 3
~c!, and 5~d!, respectively.
y
le
r
is
ce
i-

lle

t
th
th
s

be

n

the
to form a black hole, while the density peak surrounded b
lower density region can more easily form a black ho
Probably, the density peak surrounded by a zero density
gion can most easily form a black hole. Motivated by th
observation, we also perform simulations in the flat spa
time from the time symmetric initial condition with the in
tial density fluctuation profile

dc65Cd expS 2
r 2

r 0
2D . ~4.27!

In this case, the threshold value forc0 at t50 is about 1.428.
This value can be approximately regarded as the sma
value ofc0 at t50 for the formation of a black hole.

As another useful criterion, we point out an approxima
measure for determining the formation of black holes in
special case of spherical symmetry. First, by using
Kodama mass, we define an excess mass at each radiut
50 as

dMK~r ![MK2MF54pa3r0E
0

r

r 82dr8d•c6S 11
2r 8

c

dc

dr D ,

~4.28!

whereMF denotes the mass in the case of a non-pertur
universe and we have used the relations which hold att50
08400
a
.
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such asu5O(t2), a511O(t), and ] tc5O(t) to neglect
the terms higher order int. Then, we define a compactio
function at each radius as

C~r !5
dMK

rc~r !2a
. ~4.29!

Here, we note that this compaction can be defined att50,
because it approaches a time-independent function in
limit t→0. In Fig. 8, we show Eq.~4.29! as a function ofr

FIG. 6. MAH /r 0 as a function ofc0 at t50 for s5`, 2, and 5.
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for some of the filled circles on the thick dotted line in Fig.
It is found that the maximum valueC(r )max is about 0.4
irrespective ofs. We note that for eachs, if the maximum
value is larger than the value shown in Fig. 8, a black hol
always formed, while if not, it is not. Thus, the measu
presented here will be helpful as an approximate criterion
know whether a spherical black hole is formed only from t
initial data at t50, and if we useC(r )max as a paramete
instead ofc0(t50), we can approximately neglect the d
pendence ons.

V. SUMMARY

We have presented a formulation for numerical relativ
in the cosmological background by which we can perform
numerical simulation of primordial black hole formatio
with the initial data that can be analytically given. Name
we have formulated the Einstein and hydrodynamic eq
tions in the constant mean curvature time slicing in a w
suitable both for obtaining the analytic solution of a pert
bation while its length scale is well over the Hubble horiz
scale and for performing a numerical simulation until t
formation of a black hole. As a result, it becomes possible
investigate the primordial black hole formation from a ve
early phase of the universe just after inflation up to the f
mation of black holes in a continuous manner, witho
changing the gauge condition or numerical matching of
initial data.

By using our formalism, we have carried out a numeri
simulation of the black hole formation in a spherically sym
metric, radiation-dominated universe, starting from realis
initial data which are given by the analytical solution of
superhorizon scale perturbation. In this paper, we have c
sidered the initial conditions which are specified by two p
rameters; one characterizes the amplitude of the density~or
metric! fluctuation and the other the shape of the dens
profile. It is found that the formation criterion is moderate

FIG. 7. Summary of numerical results on formation of bla
holes in thes2c0(t50) plane. For initial conditions located in th
region above the thick dotted line, we find that a black hole
formed. Note that the solid line reachesc0(t50).1.79 in the limit
s→`.
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dependent on the initial profile of the density fluctuation.
the case when the density peak is surrounded by a flat Fr
mann universe, the threshold value ofc0 at t50 for forming
a black hole is very large;1.8, while when surrounded by
low density region, it may be as small as;1.4. This property
suggests that the formation of primordial black holes m
not be determined by a local criterion: Even when there i
density fluctuation of a high density contrast, it may not
ficiently collapse into a black hole if it is in a high densi
region, but it efficiently collapses if it is in a low densit
region. As we have noted, this moderate variation of
formation criterion is translated to a very large variation
the actual number of primordial black holes. Thus, we co
clude that the spatial correlation of primordial density flu
tuations is crucially important in studying the formation
primordial black holes.

In this paper, we have assumed the spherical symm
and restricted our attention to a model which contains o
two parameters. Even in this case, the formation criter
was not so simple. In reality, a primordial black hole
formed in a spacetime without any spatial symmetries.
such a case, the anisotropic effect will be important in ad
tion to the inhomogeneous effect shown in this paper, an
is expected that the formation criterion will be much mo
complicated than the present case. Apparently, the next
is to carry out nonspherical simulations, and even for suc
simulation, the formalism presented here is perfectly ap
cable.
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FIG. 8. dMK /rc(r )2a as a function ofr at t50 for the critical
cases ofs52, 3, 5, and̀ ~i.e., for the initial condition denoted by
filled circles in Fig. 7!. The maximum value is;0.4 irrespective of
s. If the maximum valueC(r )max is larger than;0.4, a black hole
is formed, but if not, it is not for alls.
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