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Is warm inflation possible?
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We show that it is extremely difficult and perhaps even impossible to have inflation supported by thermal
effects.@S0556-2821~99!00916-9#
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I. INTRODUCTION

The first models of inflationary cosmology@1,2# were
based on an assumption that inflation appears as a resu
high-temperature phase transitions with supercooling in
early universe@3#. This idea survived less than two year
after which it was replaced by chaotic inflation which do
not require initial thermal equilibrium and phase transitio
@4#. There were several reasons why this happened; the
lowing is a short list@5#.

~1! The assumption that the universe was hot from
very beginning is not necessary in the chaotic inflation s
nario. Moreover, the assumption that inflation begins o
after a long stage of cooling implies that the universe fr
the very beginning must be very large and homogeneo
This means that such models do not provide a complete
lution to the homogeneity and flatness problems.

~2! The theories where inflation occurs after supercool
require fine tuned effective potentials satisfying ‘‘therm
constraints.’’

~3! The inflaton field typically has a very weak interactio
with other fields, so it may be out of thermal equilibrium
the early universe.

~4! Even if the inflaton field is in thermal equilibrium, i
takes a lot of time for it to roll to the minimum of th
temperature-dependent effective potential. In many cases
flation occurs while the field rolls down, so when it arrives
the minimum of the effective potential atf50, the tempera-
ture vanishes.

~5! Even if the temperature does not completely van
when the field falls to the minimum of the effective potenti
it vanishes during supercooling, so the thermal effects
come irrelevant for the description of the tunneling and
the subsequent stage of slow rolling of the inflaton field@6#.

For all of these five reasons, the idea that inflation
somehow related to high-temperature effects was alm
completely abandoned. Recently, however, there was an
tempt to revive it in the context of the so-called warm infl
tion scenario@7#.
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The main idea of the scenario can be formulated as
lows. Suppose the universe is in a state of thermal equ
rium, and the fieldf slowly rolls down to its minimum.
When the universe expands, its temperature tends to decr
asa(t)21, wherea is the scale factor. Therefore one expec
that the temperature in an inflationary universe falls do
exponentially and immediately becomes irrelevant. Ho
ever, if the scalar field interacts with other particles, it m
transfer some of its energy to the thermal bath. This m
keep the temperature from falling to zero. This regime m
continue in a self-consistent way if the amount of partic
produced due to the interaction of the scalar fieldf with
thermal bath is large enough to keep the field from a ra
fall to the minimum of the effective potential.

However, we immediately see a problem here. Dur
each timeH21 the universe expandse times, and the energy
density of previously existed ultrarelativistic particles b
comese24 times smaller. Therefore most of the particl
during warm inflation at any given moment should have be
created during the previous time interval;0.2H21. If the
energy release is going to keep the field from rapidly falli
down, then the energy released each time 0.2H21 must be
very small. Otherwise the field rapidly falls down, and the
is no inflation. But if the energy release is small, then t
total number of particles in the warm universe must be v
small, and therefore their interaction with the scalar fieldf
may be too small to keep it from rapid falling down.

Despite this problem, the basic idea is rather interest
and it should not be discarded without a serious investi
tion. It would be very interesting to see, in particula
whether this idea could help to realize inflationary unive
scenario in the context of string theory.

The results of investigation of warm inflation indicated,
expected, that this regime is very hard to obtain@8#. How-
ever, the methods used in this investigation were rather c
plex and not very intuitive. Therefore the basic mechani
of warm inflation remained obscure, and there remaine
hope that one can obtain a good realization of this scen
by considering slightly more complicated theories of elem
tary particles.

In this paper we will try to give a simple and intuitiv
explanation of the mechanism of dissipation of the energy
the inflaton field, which will help us to understand the ma
problems of the warm inflation scenario. Then we will co
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JUN’ICHI YOKOYAMA AND ANDREI LINDE PHYSICAL REVIEW D 60 083509
firm our expectations using more rigorous methods of n
equilibrium quantum statistics.

II. INTUITIVE ARGUMENT

In order to explain the basic idea of warm inflation,
well as its shortcomings, in this section we will give a simp
and intuitive discussion of this scenario in the theory o
massive inflaton fieldf interacting with a massless fieldx:

L5
1

2
~]mf!21

1

2
~]mx!22

m2

2
f22

g2

2
f2x2. ~1!

If one neglects interaction between these two fields, equa
of motion for the scalar fieldf has a familiar form

f̈13Hḟ52m2f. ~2!

The term 3Hḟ represents energy loss of the fieldf due to
expansion of the universe. This term, which is similar to
viscosity term in an equation of motion of a pendulum in
viscous liquid, slows down the motion of the fieldf. As a
result, the potential energy of the field changes very slow
which under some circumstances may lead to inflation@5#.

One could expect that interaction of the fieldsf and x
may lead to an additional energy loss of the fieldf due to
creation ofx particles~reheating!, which can be represente
by adding another friction term to this equation@9,10#:

f̈1Gḟ13Hḟ52m2f. ~3!

If G@H, the fieldf will roll down more slowly than in the
absence of interaction. Therefore one could expect that in
tion may continue for a longer time@9#, and may occur even
in such theories where otherwise it would be impossi
@11#.

Further development of the theory of reheating has sho
that the situation is more complicated. Addition of the te
Gḟ effectively describes energy loss due to particle crea
only at the stage of oscillations of the scalar fieldf @12#, and
only in the case when these oscillations do not lead to p
metric resonance@13#. It would be inappropriate to use thi
equation for the description of energy loss of the fieldf
during inflation, assuming, as usual, that density of all p
ticles during inflation is exponentially small.

However, if the universe is hot, and there are manyx
particles in the thermal bath, then in a certain approximat
the motion of the scalar fieldf is indeed described by Eq
~3!. This effect is the basic ingredient of the warm inflatio
scenario. The standard description of this effect is very co
plicated because it involves summation of series of hig
order diagrams in the nonequilibrium quantum statist
@14,15#. We will describe this method later. In this sectio
we would like to give a simple interpretation of this effe
which will simultaneously tell us whether this effect can
significant enough to give rise to an inflationary regime.

Let us write equation of motion for the fieldf taking into
account interaction between the scalar fieldsf andx in the
Hartree approximation:
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f̈13Hḟ1m2f1g2f^x2&50. ~4!

Here^x2& gives the average value of thermal fluctuations
the fieldx in the system. If the system is in a state of therm
equilibrium ~which is eventually established if the fieldf is
constant! one has@3,5#

^x2&eq5
1

~2p!3 E nx
eq~p!d3p

vx
, ~5!

where

nx
eq5

1

exp~vx /T! 21
, vx5Ap21g2f2. ~6!

We will assume thatgf!T, because in the opposite lim
all thermal effects are exponentially small. In this case

^x2&eq5
T2

12S 12
3gf

pT D1¯ . ~7!

Now suppose the scalar fieldf changes byDf. This
changes masses ofx particlesgf, and the equilibrium value
of nx

eq should change correspondingly. However, this chan
cannot happen instantaneously; it occurs with a time de
Dt;Gx

21 , whereGx is a decay width ofx particles at finite
temperature. This means thatnx deviates from its equilib-
rium valuenx

eq: when the scalar field reaches its valuef, the
occupation number remains equal tonx

eq at earlier time, when

the field was equal tof2Df;f2ḟDt, with Dt;Gx
21

@16#:

Dnx5nx2nx
eq;2

dnx
eq

df
ḟGx

21 . ~8!

Therefore^x2& in Eq. ~4! slightly differs from ^x2&eq:

^x2&5
1

~2p!3 E nx~p!d3p

vx

5^x2&eq2
ḟ

~2p!3 E d3p

vx

dnx
eq

df
Gx

21 . ~9!

Note thatGx
21 depends on momentump, it is small for

p!T. The leading contribution to the last integral is give
by particles with typical momentump;T. In this case, as
we will show in Sec. III D,

Gx.
g4T

192p
. ~10!

Evaluation of the last integral yields

^x2&5^x2&eq1
Cf

g2T
ḟ

5
T2

12
S 12

3gf

pT
D 1

Cf

g2T
ḟ1¯ , ~11!
9-2
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whereC5O(10).
With an account taken of this correction, Eq.~4! can be

represented in the following form@16#:

f̈1
Cf2

T
ḟ13Hḟ1m2f1g2f^x2&eq

'f̈1
Cf2

T
ḟ13Hḟ1m2f1

g2T2

12
f50.

~12!

In Sec. III D we will obtain this equation by a more rigorou
but somewhat more complicated method. The simple
intuitive approach which we have used in this section allo
us to easily understand the nature of the viscosity te
(Cf2/T)ḟ and evaluate its possible significance. If this a
ditional term is large, it may slow down the rolling of th
field f and make inflation longer. It may even lead to infl
tion in the models where it would be impossible otherwis

The main idea of the warm inflation scenario is to ta
this viscosity term into account and to see whether it can
large enough to support inflation in a self-consistent way@7#.
In order to do it one should solve Eq.~12! for the scalar field,
find out whether it has inflationary solutions, and che
whether the corresponding solutions can be self-consis
According to the warm inflation scenario, the fieldf should
move very slowly~inflation!, but still fast enough to transfe
sufficiently large amount of energy to thermal fluctuations
these fluctuations are large enough, they may be respon
for the existence of the large viscosity term (Cf2/T)ḟ,
which is necessary for the self-consistency of this scena

At the first glance, this term could be very large indeed
is not suppressed by any powers of the small coupling c
stantg, and in certain cases (Cf2/T)ḟ may be greater than
the usual viscosity term 3Hḟ. This was the main reason wh
it was expected that this additional viscosity term could p
an important role in inflationary theory.

However, as we are going to show, this term is actua
very small. Indeed, let us remember the procedure of
derivation of the term (Cf2/T)ḟ. The leading term in the
expression for̂ x2&eq in Eq. ~7! is f independent:̂ x2&eq

'T2/12. The term (Cf/g2T)ḟ appears because thesub-
leadingterm in Eq.~7! depends onf, and because this term
slightly differs from its thermally equilibrium value
gfT/4p. Thus the term (Cf2/T)ḟ appears in Eq.~12! as a
correction to a correction, because (Cf/g2T)ḟ! gfT/4p

! T2/12. In other words, (Cf2/T)ḟ!g2f^x2&eq, so the
new viscosity term in Eq.~12! is always much smaller tha
the usual thermal correction to the equation of motion of
field f. This is an important fact, which will help us t
evaluate plausibility of warm inflation.

As an example, let us consider two limiting cases.
Case I. gT!m. In this case m2f@g2f^x2&eq

@ (Cf2/T)ḟ, so the new viscosity term is completely irre
evant for the description of the evolution of the fieldf, as is
clear from the above intuitive derivation of the equation
motion.
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Case II.gT@m. If gf@T, then all thermal effects dis
appear. Ifgf!T, then m2f2!g2f2^x2&eq;g2f2T2!T4.
In this case equation of state is determined by ultrarelativi
matter,p'r/3, and inflation cannot occur.

In conclusion, new viscosity terms in the equation of m
tion of the inflaton field appear as a correction to a correct
to the usual high temperature terms such asg2f^x2&. These
terms appear if one wants to write equation of motion of
scalar field in terms of the thermal equilibrium quantiti
such as^x2&eq, which differs only very slightly from its
out-of-equilibrium valuê x2&. If the leading thermal effects
cannot result in existence of an inflationary regime of a n
type, then the sub-subleading terms cannot do it as well

In this investigation we did not really evaluate the visco
ity term (Cf2/T)ḟ; we only used our knowledge that th
term appeared as a correction to a correction to the t
(g2/12)T2, so it should be always much smaller tha
(g2/12)T2. It is very instructive to study the same issue
solving Eq. ~12! directly, without making anya priori as-
sumptions about the magnitude of the viscosity term.

Suppose one has a stage of warm inflation in the reg
where T.gf, but m2@g2T2 ~since otherwise one eithe
does not have thermal corrections, or one has a noninflat
ary radiation dominated universe!. In this regime, and as
suming thatCf2/T @H, Eq. ~12! acquires the following
form:

f̈1
Cf2

T
ḟ1m2f50. ~13!

In the regime of slow rolling one can neglect the first te
and obtain a solution

f25f0
22

2m2Tt

C
, ~14!

assuming, for simplicity, that the temperature remains c
stant. One can easily verify that forgm,T,Cm/g andf2

.mT/C this solution is compatible with the inequalitiesT

.gf, but m2@g2T2, and the termf̈ could indeed be ne-
glected in Eq.~13!. Since it is not a usual oscillatory regime
one could think that we have an interesting candidate for
warm inflation regime.

However, Eq.~14! tells us that the value of the fieldf
completely changes ~vanishes! within the time dt
5Cf0

2/(2m2T). As one can easily verify, in the regim
which we study now (gf!T and m2@g2T2) this time is
much smaller than the typical decay time of thex particles:

Gxdt;
g4Cf0

2

384pm2 !
C

384p
!1. ~15!

Thus the simple linear approximationf2Df;f2ḟDt,
with Dt;Gx

21 , which we used for the derivation of Eq.~12!
does not work in application to our problem: The typic
duration of the linear change of the fieldf is much shorter
thanGx

21 . This means that Eq.~12! is incorrect in the only
regime where warm inflation could appear in this model.
our previous qualitative analysis of warm inflation in th
model we avoided this problem because we did not use
expression (Cf2/T)ḟ for the viscosity term, which we ob
tained using the incorrect assumption thatf2Df;f
9-3
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JUN’ICHI YOKOYAMA AND ANDREI LINDE PHYSICAL REVIEW D 60 083509
2ḟGx
21 . Instead of that, we used the fact that the viscos

term is always much smaller than (g2/12)T2f.
To study motion of the fieldf in the model~1! one should

remember that the typical time when a significant change
the scalar field occurs~such as the oscillation timem21) is
much shorter thanGx

21 . Therefore the number ofx particles
practically does not change during the oscillations. To stu
the motion of the fieldf in this case one should evalua
^x2& in the regime wherenx remains constant, see, e.g., R
@17#. The behavior of the fieldf in this regime is completely
different from what one could expect on the basis of E
~12!.

This example shows one of the many obstacles wh
make it so hard or perhaps even impossible to implement
idea of warm inflation. In order to verify our conclusions, w
performed a more detailed investigation of this issue a
studied several different models where warm inflation co
occur. Before starting its detailed description we remind
reader that the above intuitive derivation of Eq.~12! is based
on the following two most fundamental assumptions or c
ditions:~A! f interacts with particles whose effective mass
much smaller than the temperature;~B! f should not evolve
significantly during the relaxation time,Dt, of such particles,
namely,uḟuDt!f. ~Otherwise the quasistationary inflation
ary expansion could not be sustained.!

A complete discussion of warm inflation is rather i
volved; in addition to these two conditions many other co
straints have to be satisfied. However, as we will see in o
to show that the scenario is not feasible in all models that
will consider it is enough to use only the simplest constrai
based on the above two conditions. In the next section
review derivation of the equation of motion of the sca
field in more generic cases in terms of quantum field the
at finite temperature, where these two conditions~A! and~B!
are also indispensable. It has been advocated in the litera
@8# that this method is quite appropriate for application
warm inflation where the scalar field presumably mov
slowly.

As we have demonstrated above for a particular mode
two scalar fields with interaction (g2/2) f2x2, however,f
does evolve significantly during the relaxation time even
its slow roll-over regime, so that the condition~B! is not
satisfied. Put it differently, if we attempt to realize war
inflation consistently with the derivation of the equation
motion in the form of Eq.~12!, we inevitably find that the
e-folding number of inflation is constrained to be mu
smaller than unity. In fact, a similar result has also be
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obtained in Ref.@8# for this particular model. However, ther
was a hope that this result is not generic, and several pos
ways out to increase the number ofe folds have been pro-
posed@8#. In Sec. IV we demonstrate for several other mo
els that the number ofe folds of inflation must be much
smaller than unity. As will be seen there, this conclusi
remains unchanged even when we take the proposals of
@8# into account.

III. EFFECTIVE EQUATION OF MOTION
IN THE THERMAL BATH

As a preparation to quantitative discussion which co
firms the above intuitive argument here we review a fie
theoretic approach to derive an effective equation of mot
in the thermal bath. The standard quantum field theo
which is appropriate for evaluating the transition amplitu
from an ‘‘in’’ state to an ‘‘out’’ state for some field operato
O, ^outuOu in&, is not suitable to trace time evolution of a
expectation value in a nonequilibrium system interact
with a thermal bath. For this purpose we should use the in
formalism, which was introduced by Schwinger@18# and de-
veloped in Refs.@19,20#. Here, extending Gleiser and Ramo
@15# and Yamaguchi and Yokoyama@21#, who followed
Morikawa @14#, we derive an effective Langevin-like equa
tion for a coarse-grained field in the case the scalar field
interacting with not only other scalars but also fermions.

A. Nonequilibrium quantum field theory

Let us consider the following Lagrangian density of
singlet scalar fieldw interacting with another scalar fieldx
and a fermionc for illustration.

L5
1

2
~]mw!22

1

2
mw

2w22
1

4!
lw4

1
1

2
~]mx!22

1

2
mx

2x22
1

2
g2x2w2

1 i c̄gm]mc2mcc̄c2 f wc̄c. ~16!

In order to follow the time development ofw, only the
initial condition is fixed, and so the time contour in a gene
ating functional starting from the infinite past must run to t
infinite future without fixing the final condition and com
back to the infinite past again. The generating functiona
thus given by
Z@J,h,h̄#[TrFTS expF i E
c
~Jw1Kx1hc1h̄c̄# D rG

5TrHT1S expF i E ~J1w11K1x11h1c11h̄1c̄1!G D
3T2S expF i E ~J2w21K2x21h2c21h̄2c̄2!G D rJ , ~17!
9-4
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where the suffixc represents the closed time contour of i
tegration andX1 a field componentX on the plus-branch
~2` to 1`), X2 that on the minus-branch (1` to 2`).
The symbolT represents the time ordering according to t
closed time contour,T1 the ordinary time ordering, andT2

the antitime ordering.J, K, h, and h̄ imply the external
fields for the scalar and the Dirac fields, respectively. In fa
each external fieldJ1(K1 ,h1 ,h̄1) andJ2(K2 ,h2 ,h̄2) is
identical, but for technical reason we treat them different a
setJ15J2(K15K2 ,h15h2 ,h̄15h̄2) only at the end of
calculation.r is the initial density matrix. Strictly speaking
we should couple the time development of the expecta
value of the field with that of the density matrix, which
practically impossible. Accordingly we assume that dev
tion from the equilibrium is small and use the density mat
corresponding to the finite-temperature state. Then the g
erating functional is described by the path integral as

Z@J,K,h,h̄#5exp~ iW@J,K,h,h̄# !

5E
c
DwE

c
DxE

c
DcE

c
Dc*

3exp~ iS@w,x,c,c̄,J,K,h,h̄# !, ~18!

where the classical actionS is given by

S@w,x,c,c̄,J,K,h,h̄#5E
c
d4x$L1J~x!w~x!1K~x!x~x!

1h~x!c~x!1h̄~x!c̄~x!%. ~19!

As with the Euclidean-time formulation, the scalar field
still periodic and the Dirac field antiperiodic along the imag
nary direction, now withw(t,x)5w(t2 ib,x), x(t,x)5x(t
2 ib,x), andc(t,x)52c(t2 ib,x).

The effective action for the scalar field is defined by t
connected generating functional as
08350
t,

d

n

-

n-

G@f#5W@J,K,h,h̄#2E
c
d4xJ~x!f~x!, ~20!

wheref(x)5dW@J,K,h,h̄#/dJ(x).
We give the finite temperature propagator before the p

turbative expansion. For the closed path, the scalar prop
tor has four components.

Gx~x2x8!5S Gx
F~x2x8! Gx

1~x2x8!

Gx
2~x2x8! Gx

F̄~x2x8!
D ~21!

[S Tr@T1x~x!x~x8!r# Tr@x~x8!x~x!r#

Tr@x~x!x~x8!r# Tr@T2x~x!x~x8!r#
D
~22!

Similar formulas apply forw field as well. Also, for a Dirac
fermion we find

Sc~x2x8!5S Sc
F~x2x8! Sc

1~x2x8!

Sc
2~x2x8! Sc

F̃~x2x8!
D ~23!

[S Tr@T1c~x!c̄~x8!r# Tr@2c̄~x8!c~x!r#

Tr@c~x!c̄~x8!r# Tr@T2c~x!c̄~x8!r#
D
~24!

B. One-loop finite temperature effective action

The perturbative loop expansion for the effective actionG
can be obtained by transformingw→w01z wherew0 is the
field configuration which extremizes the classical acti
S@w,J# and z is small perturbation aroundw0 . Up to one
loop order andO(l2,g4, f 2) the effective actionG becomes
G@fc ,fD#5E d4xH fD~x!@2h2M2#fc~x!2
l

4!
@4fD~x!fc

3~x!1fc~x!fD
3 ~x!#J

2E d4xE d4xA1~x2x8!FfD~x!fc~x!fc
2~x8!1

1

4
fD~x!fc~x!fD

2 ~x8!G
22E d4xE d4x8A2~x2x8!fD~x!fc~x8!

1
i

2 E d4xE d4x8@B1~x2x8!fD~x!fD~x8!fc~x!fc~x8!1B2~x2x8!fD~x!fD~x8!#, ~25!
where

fc[
1

2
~f11f2!, ~26!

fD[f12f2 , ~27!
M25m21g2E d3q

~2p!3

112nx~q!

2vx~q!

1
l

2 E d3q

~2p!3

112nw~q!

2vw~q!
, ~28!
9-5
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A1~x2x8!52g4 Im@Gx
F~x2x8!2#u~ t2t8!

1
l2

2
Im@Gw

F~x2x8!2#u~ t2t8!, ~29!

A2~x2x8!5 f 2 Im@Sab
F ~x2x8!SF

ba~x82x!#u~ t2t8!,
~30!

B1~x2x8!52g4 Re@Gx
F~x2x8!2#

1
l2

2
Re@Gw

F~x2x8!2#, ~31!

B2~x2x8!52 f 2 Re@Sab
F ~x2x8!SF

ba~x82x!#.
~32!

The last term of Eq.~25! gives the imaginary contribution to
the effective actionG. We can attribute these imaginar
terms to the functional integrals over real auxiliary fiel
j1(x) andj2(x) @14# to rewrite Eq.~25! as

exp~ iG@fc ,fD#!5E Dj1E Dj2P1@j1#P2@j2#

3exp$ iSeff@fc ,fD ,j1 ,j2#%, ~33!

where

Seff@fc ,fD ,j1 ,j2#

[ReG1E d4x@j1~x!fc~x!fD~x!1j2~x!fD~x!#.

~34!

Here j1(x) and j2(x) are random Gaussian fields with th
probability distribution functional

Pi@j i #5Ni expF 2
1

2 E d4xE d4x8j i~x!

3Bi
21~x2x8!j i~x8!G ~ i 51,2!, ~35!

where Ni is a normalization factor. They induce rando
noise terms in the effective equation of motion off as a
result of the interactions with the thermal bath.
08350
C. Equation of motion

Applying the variational principle toSeff , we obtain the
equation of motion forfc .

dSeff@fc ,fD ,j1 ,j2#

dfD
U

fD50

50. ~36!

From Eqs.~34! and ~25!, it reads

~h1M2!fc~x!

1
l

3!
fc

3~x!1fc~x!E d3x8E
2`

t

dt8A1~x2x8!fc
2~x8!

12E d3x8E
2`

t

dt8A2~x2x8!fc~x8!

5fc~x!j1~x!1j2~x! ~37!

and

^j i~x!j i~x8!&5Bi~x2x8!. ~38!

ThoughA1 andB1 has two contributions fromx andw fields,
they have the same properties except for the values of c
ficients and masses. For the moment, we consider only
contribution fromw field for simplicity and omit the suffixc.
The right hand side of Eq.~37! are the noise terms, while th
last two terms of the left hand side are combination of d
sipation term and one-loop correction to the classical eq
tion of motion which would reduce to a part of the derivati
of the effective potentialVeff8 (f) if we restrictedf(x8) to be
a constant in space and time.

The above equation~37! is an extension of equation~3.2!
of Gleiser and Ramos@15# in that we have incorporated no
only self-interaction but also interactions with a bosonx and
a fermion c. It is nonlocal in space and time. The spat
nonlocality does not bring any difficulty here since the sca
field is presumably nearly homogeneous during inflation.
we only need to consider contributions with zero exter
momentum, that is, we can putfc(x8,t8)5fc(x,t8) in the
integrand.

With this approximation the correlation function of th
bosonic noise~31! with g50, for example, becomes
n
omo-
below.
^j1~x!j1~x8!&⇒ l2

2 E d3k

~2p!3 eik•(x2x8)E d3q

~2p!3 Re@Gf
F~q,t2t8!Gf

F~q2k,t2t8!#U
k50

5
l2

2
d3~x2x8!E d3q

~2p!3 Re@Gf
F~q,t2t8!#2. ~39!

We thus obtain spatially uncorrelated noise. For the scalar field averaged over a volumeV, the amplitude of noise reduces i
proportion toV21/2, which implies that noise term should be omitted in the equation of motion of spatially averaged h
geneous field. On the other hand, the temporal nonlocality is very important in deriving the dissipation term as seen
9-6
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D. Dissipation term

The equation of motion~37! derived above has contributions representing the dissipative effect in the last two terms
left hand side. Since these terms are nonlocal in time, in order to extract local terms proportional toḟ one should assume tha
the field changes adiabatically@14,15#, or put

fn~x8,t8!.fn~x8,t !1n~ t82t !fn21~x8,t !ḟ~x8,t ! ~40!

in the integrand of Eq.~37!. Then these terms will read

fE d3x8E
2`

t

dt8A1~x2x8!f2~x8!12E d3x8E
2`

t

dt8A2~x2x8!f~x8!

5f3~ t !E d3x8E
2`

t

dt8A1~x2x8!12f~ t !E d3x8E
2`

t

dt8A2~x2x8!12f2~ t !ḟ~ t !E d3x8E
2`

t

dt8~ t82t !A1~x2x8!

12ḟ~ t !E d3x8E
2`

t

dt8~ t82t !A2~x2x8!. ~41!
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The last two terms are dissipation terms. They would van
if we used bare propagators, as a manifestation of the
that the dissipative effect is intrinsically a nonperturbat
phenomenon and cannot be investigated from the pertu
tion theory @22,23#. In order to obtain a finite result we
should use full ‘‘dressed’’ propagators instead@14,15,8#.

The viscosity from scalar interactions have been fully
vestigated in Refs.@15# and @8#, so we simply quote their
results here. The full propagator off reads

Gf
F~k,t2t8!5E d3k

~2p!3 eik(x2x8)Gf
F~x2x8!

5
i

2vf
$@11nB~vf2 iGf!#e2 i (vf2 iGf)ut2t8u

1nB~vf1 iGf!ei (vf1 iGf)ut2t8u%, ~42!

wherenB(vf)5(ebvf21)21 andvf5Ak21mfT
2 with mfT

being the finite-temperature effective mass off. HereGf is
the decay width related with the imaginary part of the se
energyS as

Gf52
Im Sf

2vf
.

l2T2

1536pvf
, ~43!

in the limit T@mfT . We find the contribution of the self
interaction to the viscosity

l2f2~ t !ḟ~ t !E d3x8E
2`

t

dt8~ t82t !Im@Gf
F~x2x8!2#

.
l2

8
f2ḟbE d3k

~2p!3

nB~11nB!

vf
2 Gf

.
96

pT
lnS T

mfT
Df2ḟ, ~44!
08350
h
ct
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in the high temperature limit and in the caseg5 f 50. Note
that the above expression was first obtained by Hosoya
Sakagami@16# by a different method which is intuitively
more appealing as discussed in Sec. II.

The contribution from the interaction withx can be ob-
tained similarly. Assumingx has no self-interaction its width
is given by

Gx.
g4T

192p
~45!

in the high-temperature limit and the relevant part of t
viscosity terms is given by

4g4f2~ t !ḟ~ t !E d3x8E
2`

t

dt8~ t82t !Im@Gx
F~x2x8!2#

.
48

pT
lnS T

mxT
Df2ḟ.

In both cases the viscosity terms due to scalar interact
are of the formf2ḟ/T @8#.

On the other hand, the dissipation due to Yukawa int
action is calculated in the Appendix. In the high temperat
limit T@mcT , mfT we find

2 f 2ḟE d3x8E
2`

t

dt8~ t82t !Im@Sab
F ~x2x8!SF

ba~x82x!#

.
288

p3 z~3!Tḟ.11Tḟ. ~46!

In both cases the viscosity coefficients would be expon
tially suppressed and would not play any important role
the high-temperature conditions were not satisfied.
9-7
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IV. FEASIBILITY OF WARM INFLATION

In this section we study if the warm inflation driven b
the viscosity term is possible in the case the viscosity term
the effective equation of motion is most effective, namely,
the high-temperature limit when the viscosity coefficient
given either by Eq.~44! or ~47! depending on the interaction
We consider these cases separately for both new@2# and
chaotic@4# inflation scenarios.

Before analyzing specific models we formulate gene
conditions to satisfy. We are interested in the new possib
that the slow-rollover inflation is realized due to the therm
viscosity ~44! or ~47!, so the effective equation of motio
should read

Cvḟ52V8@f#, ~47!

that is, we requireCv@3H. The inflaton’s energy release
through this viscosity term presumably goes to radiati
whose energy density,r r , satisfies

dr r

dt
524Hr r1Cvḟ2. ~48!

SinceCv strongly depends on the radiation temperature,r r
should not change too rapidly in time in order to sust
quasi-stationary inflation. So the creation term in Eq.~48!
should balance the redshift term. As a result we find

r r5
p2g*

30
T4.

Cvḟ2

4H
, ~49!

which gives the radiation temperature as a function off. In
contrast to Ref.@8#, where the temperature has been fixed
its initial value, we perform a consistent analysis by us
the value ofT calculated from Eq.~49!, which would help to
increase the viscosity from bosonic interactions@8#. Hereg*
is the total effective number of relativistic degrees of fre
dom. We normalize it by 150 and denoteg* /150[g* N be-
low. In order that the universe is inflating the potential e
ergy density should dominate overr r and the kinetic energy
density.

Finally a number of conditions must be satisfied to just
the derivation of the effective equation of motion. In ord
that the radiation created from the inflaton thermalizes su
ciently rapidly, we need

Gf.
l2T

1536p
@H, Gx.

g4T

192p
@H, Gc.

p

64

f 2mcT
2

T
@H,

~50!

depending on the nature of interaction. In addition, the ad
batic conditions

Gf ,Gx ,Gc@Uḟ
f
U, ~51!
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must be fulfilled so that the viscosity term is proportional
ḟ. The inequalities~50! and ~51! are essential to realize
quasistationary state of inflationary expansion. Finally,
most importantly, the high-temperature conditionsT@mfT ,
mxT , mcT must also be satisfied, otherwise the viscos
term would be exponentially small and our entire discuss
would break down.

Since the failure of case II in Sec. II is evident, we he
consider the case I, where finite-temperature correction to
effective potential is sub-dominant but still the viscosity te
appears sizable at first glance~until we convince ourselves i
is not, through the intuitive argument in Sec. II.! Thus we
can make the following list of the inequalities to be satisfi
to realize the desired scenario.

~i! Cv@3H,

~ii ! V@f#@ 1
2 ḟ2,

~iii ! V@f#@r r ,
~iv! Gf@H, Gx@H, or Gc@H,

~v! Gf@uḟ/fu, Gx@uḟ/fu, or Gc@uḟ/fu,
~vi! T@mfT ,
~vii ! T@mxT or T@mcT ,
~viii ! Finite-temperature correction to the effective pote

tial being subdominant.
Inequalities~v! are nothing but the condition~B! in Sec. II,
and~vi! and~vii ! stand for the condition~A!. As will be seen
below, we can essentially rule out all the models we consi
only in terms of these two conditions.

In addition to the constraints listed above, there is a c
straint following from the investigation of density perturb
tions produced during warm inflation. The standard expr
sion for density perturbations produced during inflation
the cold-matter dominated universe is@5#

dr

r
5

6

5

Hdf

ḟ
. ~52!

If one uses the standard estimate for inflationary pertur
tions df; H/2p, one gets

dr

r
5

6

5

H2

2pḟ
. ~53!

The first of these two equations holds for the warm infl
tion as well. However, the second one should be modifi
because the amplitude of fluctuations during warm inflat
is greater thanH/2p for two different reasons.

First of all, the wavelength of perturbations of a field wi
mass m2!H2 which freeze during inflation usually is
O(H21) because of the friction term 3Hḟ. This allows one
to make the standard estimatedf; H/2p by calculating the
amplitude of vacuum fluctuations with the waveleng
O(H21). However, during warm inflation the amplitude o
perturbations of scalar fields with momentak!T is en-
hanced by the factor;AT/k because of the additional con
tribution of thermal fluctuations. This leads to an estima
df;A3HT/4p @24#.
9-8
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But this is not the only effect which should be taken in
account. Indeed, during warm inflation the friction term
(Cv13H)ḟ, and it is assumed thatCv@3H. As a result, it
may happen that the fluctuations of the scalar field freeze
when their wavelength approachesH21, but much earlier,
when their amplitude can be much greater. This may lea
an additional increase of the magnitude of perturbations
scalar fields produced during inflation.

We will not perform here a detailed evaluation of dens
perturbations in warm inflation because we did not find a
model where this scenario can be realized. Indeed, we wil
able to rule out warm inflation in all models which we w
consider even without using the theory of density pertur
tions. However, one should keep in mind the necessity
study constraints based on the theory of density pertu
tions, because usually these constraints lead to the stron
restrictions on the structure of inflationary models.

A. Chaotic inflation with viscosity from bosonic interaction

Here we consider chaotic-type inflation with a potent
V@f#5 (l/4!) f4 and the viscosity arising from self
interaction or other bosonic interactions proportional tof2,
such as1

2 g2f2x2. In the usual chaotic inflation slow-roll o
the inflaton is realized due to the Hubble friction and it
effective only whenf*0.3M Pl , but if thermal viscosity dis-
cussed above is effective, we might have inflation with mu
smallerf.

In this case the viscosity coefficient and the Hubble
rameter are given, respectively, by

Cv5
96cf

pT
f2, H5

Apl

3M Pl
f2. ~54!

Herecf5 ln(T/mfT) if f has self-interaction only. Butcf can
be increased if it interacts with additional scalar fieldsx i ’s
through the interaction

Lint52(
j

1

2
gj

2f2x j
2 . ~55!

ThenCv is given by

Cv5
96

pT F l2

l21( jgj
4 lnS T

mfT
D1(

j

1

2
lnS T

mx j T
D Gf2,

~56!

wheremx j T
!T is the finite-temperature effective mass ofx j

field @8#. For simplicity, we identifycf(@1) with the num-
ber of x j fields, which corresponds to the case ln(T/mxjT

)

52. We also assume all the coupling constantsgj take the
same valuegj[g.

From Eqs.~47! and ~49! the temperature is given by

T51.631022g
* N
21/3 cf

21/3l1/2MPl
1/3f2/3. ~57!
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We can then convert the inequalities~i!–~viii ! to the con-
straints on the range off and on other model parameters
follows.

~i! f!3.43104g
* N
2 cf

2 l23/2MPl ,
~ii ! f@2.9310211g

* N
21cf

24l3MPl ,
~iii ! f@1.331023g

* N
21/4cf

21l3/4MPl ,
~iva! f!1.231024g

* N
21/4cf

21/4l3/2MPl ,
~ivb! f!5.531024g

* N
21/4cf

21/4g3MPl ,
~va! l@26cf

21 ,
~vb! lg24!0.30cf ,
~vi! f!1.231025g

* N
21cf

21MPl ,
~vii ! f!4.331026g

* N
21cf

21l3/2g23MPl ,
~viii ! l*3.831022cfg4.

The last condition is from the requirement that radiative c
rection due tox does not changel. Thee-folding number of
warm inflation, if any, is calculated as

N[E
f i

f f
H

df

ḟ
55.13103g

* N
1/3 cf

4/3l21MPl
24/3~f i

4/32f f
4/3!,

~58!

wheref i andf f are upper and lower bounds off that sat-
isfy all the above inequalities.

Using ~vii ! and ~vb! in Eq. ~58! we find

N!3.631024g
* N
21lg24!1.131024g

* N
21cf . ~59!

Sincex’s also contribute tog* , g
* N
21cf cannot be larger than

150 and it is apparent thatN cannot even exceed unity
Hence we cannot realize warm inflation in this model. Th
conclusion is independent of the simplification ln(T/mxT)
52, for the above constraint onN is primarily due to the
condition~vii ! or T@mxT , and the fact that this condition i
hardly satisfied implies we have overestimated the dura
of warm inflation.

Next for completeness we consider the potentialV@f#
5 1

2 m2f21 (l/4!) f4 with m2@lf2/12. In this case the
temperature is given by

T54.331022g
* N
21/3cf

21/3 mMPl
1/3f21/3, ~60!

and the inequalities read as follows.
~i! f@2.831022g

* N
21/4cf

21m3/4MPl
1/4,

~ii ! f@6.031022g
* N
21/7cf

24/7m6/7MPl
1/7,

~iii ! f@9.131022g
* N
21/10cf

22/5m3/5MPl
2/5,

~iva! f!9.531025g
* N
21/4cf

21/4l3/2MPl ,
~ivb! f!4.531024g

* N
21/4cf

21/4g3MPl ,
~va! f@13cf

21/2l21m,
~vb! f@4.4cf

21/2g22m,
~vi! f!8.031025g

* N
21cf

21MPl ,
~vii ! f!9.431022g

* N
21/4cf

21/4g23/4m3/4MPl
1/4,

~viii ! f,A12l21/2m.
The number ofe folds of inflation is formally given by
9-9
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N5E
f i

f f
H

df

ḟ
54.43102m22MPl

24/3 ~f i
10/32f f

10/3!.

~61!

From ~vb! and ~vii ! we find m!2.131027g
* N
21cfg5MPl .

Then inequality~vii ! readsf!9.231027g
* N
21cf

1/2g3MPl . Us-
ing these inequalities in Eq.~61! we find

N!7.331025g
* N
24/3 cf

21/3 . ~62!

Thus no matter how many scalar fields are interacting w
the inflaton we cannot find warm inflation solution. Note th
the above constraint on thee-folding number primarily
comes from the condition~vii ! or T@mxT . This means that
if we had used the correct value of ln(T/mxT) instead of put-
ting it to be 2, the viscosity term would have been sma
and warm inflation would have been even more unlikely.
we can justify our simplification. Therefore the conclusi
that the number ofe folds of warm inflation with chaotic-
type potentials is constrained to be much smaller than u
@8# remains unchanged even when we use the consis
value of the cosmic temperature obtained from Eq.~49!,
rather than fixing it to its initial value@8#.

Note that these considerations look different from the
guments used in the Sec. II, but they lead to the same
conclusion. Now let us see how one can reach the s
conclusions directly, using the arguments of Sec. II. We w
assume for simplicity that the fieldf interacts with one field
x, andl!g2. In this theory Eq.~12! looks as follows:

f̈1Cvḟ13Hḟ1m2f1lf31g2f^x2&eq50. ~63!

Let us consider two limiting cases.
Case I. g2T2!max$m2,lf2%. In this casem2f1lf3

@g2f^x2&eq@Cvḟ, so the new viscosity term is complete
irrelevant for the description of the evolution of the fieldf,
as is clear from the intuitive derivation of the equation
motion in Sec. II.

Case II.g2T2@max$m2,lf2%. If gf@T, then all thermal
effects disappear. If gf!T, then m2f2/21lf4/4
!g2f2^x2&eq;g2f2T2!T4. In this case equation of state
determined by ultrarelativistic matter,p'r/3, and inflation
cannot occur.

B. Chaotic inflation with viscosity from Yukawa interaction

We next study the case the dominant contribution of v
cosity arises from Yukawa interaction, so that we findCv
.11ccT wherecc51 in the casef has a Yukawa coupling
to one species of Dirac fermion, but it can be larger iff
interacts with more fermions. We identifycc with the num-
ber of fermion species interacting withf with the universal
coupling strengthf .

First we consider the case inflation is driven by a qua
potentialV@f#5 (l/4!) f4. The temperature is given by

T50.12g
* N
21/5 cc

21/5l3/10f4/5MPl
1/5. ~64!

The following inequalities must be simultaneously satisfie
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~i! f!0.78g
* N
21/6cc

2/3l21/6MPl ,
~ii ! f!62g

* N
21/5cc

4l21MPl ,
~iii ! f@0.15g

* N
1/4 cc

21l1/4MPl ,
~iv! f!0.63g

* N
1/4 cc

1/4f 5l21MPl ,
~v! f 4@0.31cc

21l,
~vi! f!1.431024g

* N
21cc

21l21MPl ,
~vii ! f!2.531025g

* N
21cc

21f 25l3/2MPl ,
~viii ! f@1.631026g

* N
21cc

3/2f 5l21MPl .
The last inequality comes from the condition that the fini
temperature correction to the effective potential is small, t
is, cc f 2T2/6!lf2/2.

The number ofe folds of inflation is expressed by

N[E
f i

f f
H

df

ḟ
55.8g

* N
21/5 cc

4/5l21/5MPl
24/5~f i

4/52f f
4/5!.

~65!

Using ~v! in ~vii ! we findf!1.131024g
* N
21cc

1/4l1/4MPl . In-
serting this limit tof i in Eq. ~65! we obtain an upper bound
on N asN!3.931023g

* N
21cc . Sinceg

* N
21cc cannot be larger

than 300/7 we can conclude warm inflation is impossi
here. In fact, we can explicitly show that there is no op
parameter region that satisfy all the inequalities even in
caseg

* N
21cc is maximal.

Next we analyze inflation driven by the mass termV@f#
5 1

2 m2f2, in which the temperature is given by

T50.19g
* N
21/5cc

21/5 m3/5MPl
1/5f1/5. ~66!

The following inequalities must be satisfied for success
warm inflation.

~i! f!0.26g
* N
21/4ccm21/2MPl

3/2,
~ii ! f@0.025g* Ncc

24m2MPl
21 ,

~iii ! f@0.17g
* N
1/6 cc

22/3m1/3MPl
2/3,

~iv! f@13g
* N
21/4cc

21/4f 25m2MPl
21 ,

~v! f@1.4cc
21/2f 22m,

~vi! f@4.23103g* Nccm2MPl
21 ,

~vii ! f!0.13g
* N
21/4cc

21/4f 25/4m3/4MPl
1/4,

~viii ! f,3.63105g* Ncc
23/2f 25m2MPl

21 .
The last inequality is from the requirementm2

@ (cc/6) f 2T2.
It is not impossible to find the values of model paramet

that satisfy all the above inequalities. This does not imp
however, that warm inflation is feasible in this model b
cause thee-folding number of inflation,

N[E
f i

f f
H

df

ḟ
53.6g

* N
21/5 cc

4/5m22/5MPl
24/5~f i

6/52f f
6/5!,

~67!

turns out to be smaller than unity as seen below, wheref i
and f f are upper and lower bounds satisfying all the
equalities~i!–~viii ! as before.

Inserting the upper bound~vii ! to f i in Eq. ~67!, we find

N!0.31g
* N
1/2 cc

1/2 f 23/2m1/2MPl
21/2 . ~68!

From the consistency between~v! and ~vii ! we find m!
7.431025g N

21cc f 3MPl , which, together with Eq.~68!, im-

*
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plies N!2.731023g
* N
21cc . Since g

* N
21cc cannot exceed

300/7 we can conclude warm inflation is impossible in t
model, too.

C. New inflation

Next we consider new inflation driven by the potential

V@f#5
l

4 S f22
m2

l D 2

. ~69!

Inflation is possible only for

f!l21/2m. ~70!

First we analyze the case viscosity is dominated
bosonic interaction. The temperature is constant in this c

T54.831022g
* N
21/3cf

21/3 l1/6m2/3MPl
1/3. ~71!

We find the following inequalities.
~i! f@8.331022g

* N
21/6cf

22/3l21/6m4/3MPl
21/3,

~ii ! f@2.231023g
* N
21/3cf

2/3l2/3m2/3MPl
1/3,

~iii ! m@6.031023g
* N
21/4cf

21l1/2MPl ,
~iva! m!1.331024g

* N
21/4cf

21/4l2MPl ,
~ivb! m!6.431024cf

21/4g
* N
21/4l1/2g3MPl ,

~va! f@13cf
21/2l21m,

~vb! f@4.4cf
21/2g22m,

~vi! m!1.131024g
* N
21cf

21l1/2MPl ,

~vii ! f!4.831022g
* N
21/3cf

21/3l1/6g21m2/3MPl
1/3,

~viiia! m@1.431025g
* N
21cf

21l2MPl ,

~viiib ! m@2.731026g
* N
21cf

1/2g3MPl .
Here the conditions~viii ! are required to ensure the symm
try remains broken and warrant the use of the ze
temperature potential, that is,~viiia! comes from the condi-
tion m2@lT2/4 and~viiib ! from m2@cfg2T2/12.

The number ofe folds of inflation is expressed as

N54.63102g
* N
1/3 cf

4/3l21/6m22/3MPl
24/3 ~f f

22f i
2!,

~72!

where f i and f f are now the lower and upper bound
of f which satisfy all the above inequalities, respe
ively. Inserting ~vii ! to Eq. ~72! we find N
!1.1g

* N
21/3cf

2/3l1/6g22m2/3MPl
22/3. The consistency betwee

~vb! and ~vii ! sets an upper bound onm as m!1.3
31026g

* N
21cf

21l1/2g3MPl . These two inequalities implie
N!1.331024g

* N
21l1/2; thus warm inflation is not feasible.

So far we have used only inequalities~v! and ~vii ! as
promised, apart from the generic condition~70! for new in-
flation. If we use other inequalities in addition, we can co
pletely close the allowed region of the parameter space
follows. The consistency between Eq.~70! and ~ii ! sets a
lower bound onm as

m@1.131028g
* N
21cf

2 l7/2MPl . ~73!

From ~vi! and Eq. ~73! we find l!22cf
21 . On the other

hand, from Eq.~70! and ~v! we find l@1.73102cf
21 . Thus

there is no allowed region forl to realize warm inflation
consistently.
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Next we move on to the case viscosity is dominated
Yukawa interaction, when the temperature is given by

T50.20g
* N
21/5cc

21/5 l1/10m2/5f2/5MPl
1/5. ~74!

The following inequalities must be satisfied.
~i! f@5.5g

* N
1/2 cc

22l23/2m4MPl
23 ,

~ii ! f!2.1g
* N
21/3cc

4/3l22/3m2/3MPl
1/3,

~iii ! f!2.1g
* N
21/8cc

1/2l27/8m3/2MPl
21/2,

~iv! f@3.0g
* N
21/8cc

21/8l21/4f 25/2m3/2MPl
21/2,

~v! f@1.4cc
21/2f 22m,

~vi! f@56g
* N
1/2 cc

1/2l21/4m3/2MPl
21/2,

~vii ! f!6.831022g
* N
21/3cc

21/3f 25/3l1/6m2/3MPl
1/3,

~viiia! f!3.23102g
* N
1/2 cc

1/2l23/2m3/2MPl
21/2,

~viiib ! f!5.33102g
* N
1/2 cc

23/4f 25/2l21/4m3/2MPl
21/2.

~viiia! comes from the conditionm2@lT2/4 and~viiib ! from
m2@cc f 2T2/6.

In this case, contrary to the case the viscosity arises fr
bosonic interactions, there exists some allowed region in
parameter space, but the number ofe folds of inflation,

N[E
f i

f f H

ḟ
df58.0g

* N
21/5 cc

4/5l22/5m2/5MPl
24/5 ~f f

2/52f i
2/5!,

~75!

turns out to be much smaller than unity as seen below. H
f i andf f are lower and upper bounds onf obtained from
the inequalities~i! through~viiib ! and Eq.~70! as before.

From ~vii ! we find

N!2.7g
* N
21/3 cc

2/3l21/3 f 22/3m2/3MPl
22/3 . ~76!

Consistency between~v! and ~vii ! imposes an upper boun
on m asm!1.231024g

* N
21cc

1/2l1/2f MPl . Inserting it into Eq.
~76! we find N!6.631023g

* N
21cc . ThusN is much smaller

than unity no matter how many fermions are interacting w
the inflaton.

D. Shifted field model

So far we have studied the possibilities of chaotic infl
tion and new inflation models driven by thermal viscos
term. As a result we have shown that none of the ab
models can accommodate inflationary expansion which l
more than onee fold. In fact, we have been able to rule o
them simply from the high-temperature condition~vii ! and
the adiabatic condition~v!. To cure this problem anothe
model has been suggested in Ref.@8# in which the scalar
field x has the interaction term

Lint52(
j

1

2
g2~f2M !2x j

2 . ~77!

We are not aware of any particle physics motivation for t
kind of interaction. Nevertheless it may be worthwhile
study this model because it helps to reduce the effec
mass ofx whenf is large and close toM . Thus one could
9-11
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hope that one may relax a constraint from the hig
temperature condition~vii ! and find a sensible solution fo
warm inflation@8#.

The situation, however, is not that simple, as one imm
diately recognizes once he writes down the effective eq
tion of motion in this model. Indeed instead of Eq.~12!, with
C596cf /p, we find

f̈1
96cf

pT
~f2M !2ḟ13Hḟ1m2f

1g2~f2M !(
j

^x j
2&eq50, ~78!

Thus the viscosity term vanishes atf5M , which makes the
dissipation inefficient in the regionf'M .

Nevertheless one may still want to consider the possib
of warm inflation in the vicinity off5M , where the high
temperature condition,mx5guf2M u!T, is satisfied but the
slight deviation fromf5M makes the viscosity nonvanish
ing. Below we consider this possibility in chaotic inflatio
driven by the mass term for illustration and work out i
equalities to be satisfied as we did above.

In this model the effective potential off is given by

Veff@f#5
1

2
m2f21

cfg2

24
T2~f2M !21¯ ~79!

in the high-temperature limit. We must treat the cases w
cfg2T2!m2 and withcfg2T2@m2 separately.

1. The case cfg2T2!m2

First we consider the casecfg2T2!m2. Since we are
interested in the regimef.uf2M u, the second term in Eq
~79! is entirely negligible in the inflaton’s dynamics. Th
effective equation of motion in the slow-roll regime is give
by

Cvḟ5
96cf

pT
~f2M !2ḟ52m2f, ~80!

and the radiation temperature is calculated from Eq.~49! as

T54.331022cf
2 1/3g

* N
2 1/3mf1/3~f2M !2 2/3MPl

1/3.
~81!

Apparently it is divergent atf5M . However, sincef5M
is out of the slow-roll regime and will be automatically e
cluded using the inequalities below, this does not cause
problem.

Now we list the required inequalities relevant tox.
~i! uf2M u@0.17cf

21/8g
* N
21/8m3/4f1/2MPl

21/4,

~ii ! uf2M u@8.531022cf
21/2g

* N
21/8m3/4f1/8MPl

1/8,

~iii ! uf2M u@5.031022g
* N
21/8m3/4f21/4MPl

1/2,

~iv! uf2M u!2.131027cf
21/2g

* N
21/2g6f21MPl

2 ,

~v! uf2M u@2.5g22cf
21/2m,

~vii ! uf2M u!0.15cf
21/5g

* N
21/5m3/5f1/5MPl

1/5.
The number ofe-folds of inflation is given by
08350
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N[E
uf2M u i

uf2M u f
H

duf2M u

ḟ
.43102cf

1/3g
* N
1/3 m22MPl

24/3f2 1/3

3~ uf2M u i
11/32uf2M u f

11/3!, ~82!
where the integration has been done nearuf2M u assuming
f;M . Inserting~vii ! to uf2M u i into Eq. ~82! one finds

N!0.4cf
2 2/5g

* N
2 2/5m1/5f2/5MPl

2 3/5. ~83!

From the consistency between~v! and ~vii ! it follows that

m!8.831024cf
3/4g

* N
2 1/2g5f1/2MPl

1/2. ~84!

Using it in Eq.~83! one finds that

N!931022cf
2 1/4g

* N
2 1/2gf1/2MPl

2 1/2. ~85!

This means that unlessf;M@MPl one cannot obtain suffi-
ciently long period of warm inflation. But then it is not in
teresting because forf@MPl we can realize chaotic inflation
without the help of thermal viscosity. This conclusion fo
lows from ~v! and ~vii !.

But if we consider other inequalities the situation b
comes even worse. From the consistency between~i! and~iv!
we find

mf2!1.331028cf
2 1/2g

* N
2 1/2g8MPl

3 . ~86!

Inserting it into Eq.~83! we obtain

N!0.01cf
2 1/2g

* N
2 1/2g8/5. ~87!

Thus warm inflation is ruled out for perturbatively meanin
ful values of the coupling constant.

2. The case cfg2T2@m2

Next we consider the opposite limit,cfg2T2@m2. If
guf2M u@T, then all thermal effects disappear. Ifguf
2M u!T, one may still neglect contribution of the secon
term in Eq.~79! to the total energy density of the univers
because otherwise the universe would be dominated by
diation and there will be no inflation. This does not mea
however, that this term does not affect the motion off. On
the contrary, the potential force is dominated by its deriv
tive. As a result the minimum of the potential is shifted fro
the origin to the vicinity off5M :

f~ t !5
M

11 12m2/cfg2T2 >M2
12m2M

cfg2T2 . ~88!

One may encounter two possible regimes by compar
the time scale of the friction,t f[Cv

21}T(f2M )22, with
that of f’s oscillation, t0[A12/(cf

1/2gT). If the deviation
from f5M is sufficiently large to warrantt f,t0 , the field
is in the slow roll-over regime toward the minimum~88! and
warm inflation might be possible.1 If t f.t0 , on the other

1Since we are interested in the feasibility of viscosity-driven wa
inflation we assumeCv.3H and hence the only relevant time sca
of friction is t f5Cv

21 .
9-12



t
m

rs
th

a-

si
o

a
e

nd

n

he
we

to

the

n of
ya

in-

at
ou-

his
ding
we
not
ex-
ry

the

rm
ate
nge
ng
e
-

on
a-
e
h

IS WARM INFLATION POSSIBLE? PHYSICAL REVIEW D60 083509
hand,f sits in the minimum~88! which is time-dependen
through the temperature. Let us consider these two regi
in turn.

First, if f is rolling toward the minimum, we find the
following effective equation of motion

96cf

pT
~f2M !2ḟ52m2f2

cf

12
g2T2~f2M !. ~89!

The second term in the right-hand-side~RHS! dominates the
potential force except in the close vicinity off5M , and we
neglect the first term in RHS. In the regime where the fi
term dominates over the second term we would come to
same conclusion as in Sec. IV D 1.

From Eq.~49! one can find the temperature

T51.83106g* Ncf
21mfMPl

21 . ~90!

We write down the required inequalities relevant tox.
~i! uf2M u@6.03102g

* N
1/2 cf

21mfMPl
21 ,

~ii ! uf2M u@1.631016g
* N
3 cf

23g2m2f2MPl
23 ,

~iii ! f!3.1310214g
* N
25/2cf

2 m21MPl
2 ,

~iv! g4@3.331024cfg
* N
21 ,

~v! uf2M u@5.331012g
* N
2 cf

22m2fMPl
22 ,

~vii ! uf2M u!1.83106g* Ncf
21g21mfMPl

21 .
The number ofe folds of inflation is calculated as

N[E
uf2M u i

uf2M u f
H

duf2M u

ḟ
56.4310217g

* N
23cf

3 m22f22

3MPl
2 ~ uf2M u i

22uf2M u f
2!,

~91!

where the integration has been done overuf2M u assum-
ing f;M . Inserting ~vii ! into Eq. ~91! we find N!
2.131024g

* N
21cf . Hence this regime does not lead to infl

tion.
Next we suppose thatf has fallen to the minimum~88!.

Since the temperature is presumably gradually decrea
during the warm inflation,f changes with time according t

ḟ>
24m2M

cfg2T3 Ṫ. ~92!

We would like to see whether this time-variation off may
create a sufficient amount of radiation by the energy rele
through the viscosity term to support quasistationary stag
warm inflation.

If such a stage exists at all, we find from Eqs.~49! and
~92!

Ṫ521.331022g
* N
1/2 cf

3/2g4m2 7/2M 2 3/2MPl
2 1/2T15/2.

~93!

In this case it is convenient to express the required co
tions in terms of the inequalities on the temperature.

~i! T!3.7cf
21/5g24/5m3/5M1/5MPl

1/5,

~ii ! T!1.3g
* N
1/9 cf

1/9g4/9m5/9M1/3MPl
1/9,

~iii ! T!0.32g
* N
21/2m1/2M1/2,

~iv! T@1.23103g24mMMPl
21 ,
08350
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~v! T!0.22g
* N
21/7cf

21/7g4/7m3/7M3/7MPl
1/7,

~vii ! T@2.3cf
21/3g21/3m2/3M1/3.

In addition, consistency of the assumption thatf stays in the
time-dependent minimum~88! requirest f.t0 , namely,

T.5.0cf
2 1/4g2 5/6m2/3M1/3. ~94!

The number ofe folds in this regime is expressed by a
integral over the temperature as

N[E
Ti

Tf
H

dT

Ṫ
525g

* N
2 1/2cf

2 3/2g24m9/2M5/2MPl
2 1/2

3~Tf
2 13/22Ti

2 13/2!, ~95!

whereTi andTf are the upper and the lower bounds on t
temperature satisfying all the above inequalities, and
have setf;M . Using Eqs.~94! and ~95! we obtain N
!7.231024g

* N
21/2cf

1/8g17/12m1/6M1/3MPl
21/2. Now the consis-

tency between~i! and~iv! imposes an upper bound onmM2

as mM2!5.331027cf
21/2g8MPl

3 . From these two inequali-
ties we find N!6.531025g

* N
21/2cf

1/24g33/12, which is much
smaller than unity. Thus we do not see any possibility
implement the idea of warm inflation even in this model.

V. CONCLUSION

In the present paper we have examined feasibility of
warm inflation scenario@7# from various view points. First
we discussed how the viscosity term arises in the equatio
motion of a scalar field in a thermal bath following Hoso
and Sakagami@16#. Indeed such a term asCvḟ appears be-
cause it takes finite time for number density of particles
teracting withf to relax to its thermally equilibrium value
while f is in motion.

The viscosity term thus obtained could be very large
first glance, because it is not suppressed by any small c
pling constants. As is evident in its derivation, however, t
term appears as a result of a small correction to a sublea
thermal correction term in the equation of motion. Since
know that even the leading thermal correction term does
lead to inflation, such a subleading viscosity term is not
pected to play an important role and to yield an inflationa
regime of a new type.

If one neglects this fundamental feature and solves
overdamped equation of motion including the termCvḟ, one
may find solutions indicating a possible emergence of wa
inflation. However, we have found that such solutions viol
the adiabatic condition that the scalar field should not cha
significantly in the relaxation time of the particles interacti
with it. This condition is necessary for the derivation of th
viscosity termCvḟ. Thus, the equation of motion incorpo
rating the viscosity termCvḟ fails in the regime where it
could describe warm inflation.

If, on the other hand, we attempt to realize warm inflati
in a manner fully consistent with the field theoretic deriv
tion of the equation of motion, we inevitably find that th
number of e folds of inflation is constrained to be muc
9-13
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smaller than unity, mainly due to the difficulty to satisfy th
high-temperature condition and the adiabatic condition
multaneously. Even the shifted field model, which has b
proposed to relax the high-temperature condition@8#, turned
out to be no exception. Thus, our results as a whole sh
that it is extremely difficult to realize the idea of warm in
flation in realistic models of elementary particles.

Note added.After we submitted this paper for publication
we learned that the authors of Ref.@25# proposed the first
possible implementation of the warm inflation scenar
They did not study the issue of density perturbations in th
model and investigated only the possibility to achieve 60e
folds of inflation. They assumed that the fieldf interacts
with scalar fields x jk as follows: ( j (k(gjk

2 /2)(f
2M j )

2x jk
2 . As we have shown in Sec. IV D, the number

e folds of inflation in this type of model with one shift pa
rameterM is much smaller than unity. In order to have 60e
folds of inflation, the authors of Ref.@25# were forced to
introduce 104 different fieldsx jk with 103 specifically ad-
justed parametersM j . We believe that this can serve as
good illustration to our conclusion.
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APPENDIX

In this appendix we derive the viscosity coefficient arisi
from Yukawa interaction. First we calculate the fermion se
energySc , which is expressed as

Sc~p,t22t1!5 f 2E d3k

~2p!3 S~t22t1 ,k!G~t22t1 ,p2k!,

~A1!

in terms of temperature Green function ofc, S(t,k) and that
of f, G(t,q). We use the following spectral representati
of Green functions:

S~t,k!5E dv

2p
s~v,k!e2vt

3$@12nF~v!#u~t!2nF~v!u~2t!%, ~A2!

s~v,k!5 i F vg02kg1mc

~v1 i e!22k22mc
2 2

vg02kg1mc

~v2 i e!22k22mc
2 G ,
~A3!

G~t,q!5E dv

2p
r~v,q!e2vt

3$2@11nB~v!#u~t!2nB~v!u~2t!%, ~A4!
08350
i-
n

w

.
ir

f
l

r

-

r~v,q!5 i F 1

~v1 i e!22q22mf
2 2

1

~v2 i e!22q22mf
2 G .
~A5!

Inserting them to Eq.~A1! and applying the Fourier trans
form we find the self-energy in Matsubara representation

Sc~ iv l ,p!5E
0

b

dteiv ltSc~t,p!

52 f 2E d3k

~2p!3 E dv1

2p

dv2

2p

3s~v1 ,k!r~v2 ,p2k!
11nB~v2!2nF~v1!

iv l2~v11v2!
,

~A6!

with v l5(2l 11)pT. The above expression can be analy
cally continued to the retarded self-energySc(p01 i e,p),
and the imaginary part of the self-energy is given by t
discontinuity

Im Sc~p!5
1

2i
@Sc~p01 i e,p!2Sc~p02 i e,p!#. ~A7!

Explicitly, we find

Im Sc~p!5p f 2E d3k

~2p!3 E dv1

2p

dv2

2p
s~v1 ,k!r~v2 ,p2k!

3@11nB~v2!2nF~v1!#d~p02v12v2!

5p f 2E d3k

~2p!3 E dv1dv2~v1g02kg1mc!

3@11nB~v2!2nF~v1!#sgnv1

3d~v1
22k22mc

2 !sgnv2d@v2
22~p2k!22mf

2 #.

~A8!

Puttingp5(p0,0,0,p3), uku[km , andupu[pm(5p3), and in
the limit mc and mf are negligible compared withpm , we
find

Im Sc~p!.
p

64

f 2T2

pm
~g02g3!5

p

64

f 2T2

p0
2 p”[Ĝp” ,

~A9!

for pm5p0&T.
Then the dressed retarded Green function reads

SR~p0 ,p!5
1

~12 i Ĝ !„~p01 i e!g02pg…2mcT

, ~A10!
9-14
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in momentum representation, wheremcT[mc1ReSc is the finite-temperature effective mass. The dressed spectral fun
is therefore given by

s~p!5 i „SR~p!2SR†~p!…5 iF ~12 i Ĝ !p”1mcT

~12 i Ĝ !2@~p01 i e!22p2#2mcT
2

2
~11 i Ĝ !p”1mcT

~11 i Ĝ !2@~p02 i e!22p2#2mcT
2 G

5 iF ~12 i Ĝ !p”1mcT

2vp~12 i Ĝ !2
S 1

p02vp

2
1

p01vp
D 2

~11 i Ĝ !p”1mcT

2vp* ~11 i Ĝ !2
S 1

p02vp*
2

1

p01vp*
D G ,

~A11!

with vp[pm1 imcT
2 Ĝ/pm . The final expression applies in the limitupu[pm@mcT .

In terms of this spectral function the real-time finite-temperature Green function reads in momentum representatio

SF~ t,p!52 i E dp0

2p
e2 ip0t$@12nF~p0!#u~ t !2nF~p0!u~2t !%s~p!

5 i F ~12 i Ĝ !~2vp2pg!1mcT

2vp~12 i Ĝ !2
nF~vp!eivpt1

~11 i Ĝ !~vp* 2pg!1mcT

2vp~11 i Ĝ !2
@12nF~vp* !#e2 ivp* tGu~ t !

2 i F ~12 i Ĝ !~vp2pg!1mcT

2vp~12 i Ĝ !2
nF~vp!e2 ivpt1

~11 i Ĝ !~2vp* 2pg!1mcT

2vp* ~11 i Ĝ !2
@12nF~vp* !#eivp* tGu~2t !. ~A12!

Therefore the reading term to the viscosity due to Yukawa coupling is given by

2 f 2ḟE
2`

t

dt8~ t82t !E d3p

~2p!2Im Smn
F ~ t2t8,p!Snm

F ~ t82t,p!.2 f 2ḟE d3p

~2p!2E
2`

t

dt8~ t82t !e22G(t82t)
4mcT

2

pm
2 bG

ebpm

~ebpm11!2

5
64

p3 ḟE
0

`

dpmpm
3 ebpm

~ebpm11!2T35
288

p3 z~3!Tḟ.11.2Tḟ,

~A13!

where

Gc[
mcT

2

pm
Ĝ5

p f 2T2mcT
2

64pm
3 . ~A14!
y
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