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I. INTRODUCTION The main idea of the scenario can be formulated as fol-
lows. Suppose the universe is in a state of thermal equilib-

The first models of inflationary cosmologyl,2] were  rium, and the field¢ slowly rolls down to its minimum.
based on an assumption that inflation appears as a result @fhen the universe expands, its temperature tends to decrease
high-temperature phase transitions with supercooling in thasa(t) !, wherea is the scale factor. Therefore one expects
early universd3]. This idea survived less than two years, that the temperature in an inflationary universe falls down
after which it was replaced by chaotic inflation which doesexponentially and immediately becomes irrelevant. How-
not require initial thermal equilibrium and phase transitionsever, if the scalar field interacts with other particles, it may
[4]. There were several reasons why this happened; the fotransfer some of its energy to the thermal bath. This may
lowing is a short lis{5]. keep the temperature from falling to zero. This regime may

(1) The assumption that the universe was hot from thecontinue in a self-consistent way if the amount of particles
very beginning is not necessary in the chaotic inflation sceproduced due to the interaction of the scalar figldvith
nario. Moreover, the assumption that inflation begins onlythermal bath is large enough to keep the field from a rapid
after a long stage of cooling implies that the universe fromfall to the minimum of the effective potential.
the very beginning must be very large and homogeneous. However, we immediately see a problem here. During
This means that such models do not provide a complete s@ach timeH ! the universe expandstimes, and the energy
lution to the homogeneity and flatness problems. density of previously existed ultrarelativistic particles be-

(2) The theories where inflation occurs after supercoolingcomese™# times smaller. Therefore most of the particles
require fine tuned effective potentials satisfying “thermal during warm inflation at any given moment should have been
constraints.” created during the previous time interval0.2H 1. If the

(3) The inflaton field typically has a very weak interaction energy release is going to keep the field from rapidly falling
with other fields, so it may be out of thermal equilibrium in down, then the energy released each timeH0.2 must be
the early universe. very small. Otherwise the field rapidly falls down, and there

(4) Even if the inflaton field is in thermal equilibrium, it is no inflation. But if the energy release is small, then the
takes a lot of time for it to roll to the minimum of the total number of particles in the warm universe must be very
temperature-dependent effective potential. In many cases, ismall, and therefore their interaction with the scalar figld
flation occurs while the field rolls down, so when it arrives atmay be too small to keep it from rapid falling down.
the minimum of the effective potential &=0, the tempera- Despite this problem, the basic idea is rather interesting
ture vanishes. and it should not be discarded without a serious investiga-

(5) Even if the temperature does not completely vanishtion. It would be very interesting to see, in particular,
when the field falls to the minimum of the effective potential, whether this idea could help to realize inflationary universe
it vanishes during supercooling, so the thermal effects bescenario in the context of string theory.
come irrelevant for the description of the tunneling and of The results of investigation of warm inflation indicated, as
the subsequent stage of slow rolling of the inflaton fl@  expected, that this regime is very hard to obtEh How-

For all of these five reasons, the idea that inflation isever, the methods used in this investigation were rather com-
somehow related to high-temperature effects was almogilex and not very intuitive. Therefore the basic mechanism
completely abandoned. Recently, however, there was an adf warm inflation remained obscure, and there remained a
tempt to revive it in the context of the so-called warm infla- hope that one can obtain a good realization of this scenario
tion scenarid7]. by considering slightly more complicated theories of elemen-

tary particles.
In this paper we will try to give a simple and intuitive
*Present address: Department of Earth and Space Science, Gradkplanation of the mechanism of dissipation of the energy of
ate School of Science, Osaka University, Toyonaka 560-0043, Jdhe inflaton field, which will help us to understand the main
pan. problems of the warm inflation scenario. Then we will con-
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firm our expectations using more rigorous methods of non- y y 2 2 1712\ —
v Y + + + =0.
equilibrium quantum statistics. $HIHPTM P+ g7 A(x7)=0 @

Here(x?) gives the average value of thermal fluctuations of
[l INTUITIVE ARGUMENT the fieldy in the system. If the system is in a state of thermal
equilibrium (which is eventually established if the fieltlis

In order to explain the basic idea of warm inflation, asconstan)t one hag3.5]

well as its shortcomings, in this section we will give a simple
and intuitive discussion of this scenario in the theory of a 1 f n°Yp)d3p
X

massive inflaton fieldp interacting with a massless fiejd (X%)ea= 3 , (5)

9 (2m) o,
1 1 m? g°
=5 2+ 5 - — P =P here
L=5(0,0)°+ 50,07~ 5 "= 5 ¢%°. (1) W

1

If one neglects interaction between these two fields, equation nf(q:ﬁ, w,=\p°+ge°. (6)

of motion for the scalar fields has a familiar form exp@, /T)

We will assume thafj »<T, because in the opposite limit

d+3Hp=—m?¢. (2 all thermal effects are exponentially small. In this case
The term 3—|¢ represents energy loss of the fielddue to 5 _T2 39¢
expansion of the universe. This term, which is similar to the (x >eq_1_2 1- T T )
viscosity term in an equation of motion of a pendulum in a
viscous liquid, slows down the motion of the fieldl As a Now suppose the scalar fielg¢ changes byA¢. This

result, the potential energy of the field changes very slowlychanges masses gfparticlesg¢, and the equilibrium value
which under some circumstances may lead to inflafn  of n$%should change correspondingly. However, this change
One could expect that interaction of the fielgsand x  cannot happen instantaneously; it occurs with a time delay
may lead to an additional energy loss of the figldlue to  At~T'*, whererl, is a decay width ofy particles at finite
creation ofy particles(reheating, which can be represented temperature. This means thaj deviates from its equilib-

by adding another friction term to this equatif@10]: rium valuen$®: when the scalar field reaches its valfiethe
Tt 3H ) 2 occupation number remains equarﬁﬁ at earlier time, when
p+1'¢ ¢=—m¢. G the .fleld was equal tap—Ap~¢— pAt, with At~T *
If I'>H, the field ¢ will roll down more slowly than in the [16]
absence of interaction. Therefore one could expect that infla- dned
tion may continue for a longer tim{®], and may occur even An,=n, — n§q~ — d_X ¢1“;1, (8)
in such theories where otherwise it would be impossible ¢
[11] 2\ . . 2 .
Further development of the theory of reheating has shown nerefore(x®) in Eq. (4) slightly differs from (x%)eq:
that the situation is more complicated. Addition of the term 1 n.(p)d3p
I' ¢ effectively describes energy loss due to particle creation (x*)= (2m)3 f . o
only at the stage of oscillations of the scalar figlfi12], and X
only in the case when these oscillations do not lead to para- ) d3p dn®d
metric resonancgl3]. It would be inappropriate to use this =<X2>eq— 2m)? f o d(; F;l. 9
X

equation for the description of energy loss of the figid
during inflation, assuming, as usual, that density of all par- Note thatl' ! depends on momentum, it is small for
X )

ticles during inflation is exponentially small. p<<T. The leading contribution to the last integral is given

However, if the universe is hot, and there are many by particles with typical momenturp~T. In this case, as
particles in the thermal bath, then in a certain approximation yp yp p=t '

the motion of the scalar fielg is indeed described by Eq. we will show in Sec. Il D,

(3). This effect is the basic ingredient of the warm inflation 9T
scenario. The standard description of this effect is very com- r,= 1927 (10
plicated because it involves summation of series of higher d
order diagrams in the nonequilibrium quantum statistic : ; ;
[14,15. We will describe this method later. In this sectionSEvaluatlon of the last integral yields
we would like to give a simple interpretation of this effect Co
which will simultaneously tell us whether this effect can be <X2)=<X2>eq+ T¢
significant enough to give rise to an inflationary regime. T
Let us write equation of motion for the fieldl taking into T2 396\ Co
account interaction between the scalar fiedgdand y in the _ _( _ _) bt (12)
Hartree approximation: 12 T 9T
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whereC=0(10). Case Il.gT>m. If g¢>T, then all thermal effects dis-
With an account taken of this correction, Bd) can be  appear. If{g¢<T, then m?¢2<g?¢p?(x*)eq~9° P> T?<T*.
represented in the following foriri6]: In this case equation of state is determined by ultrarelativistic
matter,p~ p/3, and inflation cannot occur.
. C¢?. ) In conclusion, new viscosity terms in the equation of mo-
1) - d+3HP+m?p+ gzqﬁ()(z)eq tion of the inflaton field appear as a correction to a correction
to the usual high temperature terms sucly?é(x?). These
. C¢2. ) g2T2 terms appear if one wants to write equation of motion of the
~¢p+ - d+3HP+m?p+ T¢=o. scalar field in terms of the thermal equilibrium quantities

such as(X2>eq, which differs only very slightly from its
(12)  out-of-equilibrium value(x?). If the leading thermal effects
i . ) _ cannot result in existence of an inflationary regime of a new
In Sec. Il D we will obtain th_ls equation by a more rigorous, Cype' then the sub-subleading terms cannot do it as well.
but somewhat more complicated method. The simple and ", this investigation we did not really evaluate the viscos-
intuitive approach which we have used in this section aIIowq,[y term (C2/T)é:; we only used our knowledge that this
us to easily understand the nature of the viscosity teMg, anneared as a correction to a correction to the term
(C¢?IT) ¢ and evaluate its possible significance. If this ad-(g?/12)T?, so it should be always much smaller than
ditional term is large, it may slow down the rolling of the (g2/12)T2. It is very instructive to study the same issue by
field ¢ and make inflation longer. It may even lead to infla- solving Eq. (12) directly, without making anya priori as-
tion in the models where it would be impossible otherwise. sumptions about the magnitude of the viscosity term.

The main idea of the warm inflation scenario is to take Suppose one has a stage of warm inflation in the regime
this viscosity term into account and to see whether it can bavhere T>g¢, but m?>g?T?2 (since otherwise one either
large enough to support inflation in a self-consistent Wiy  does not have thermal corrections, or one has a noninflation-
In order to do it one should solve E@.2) for the scalar field, ary radiation dominated universeln this regime, and as-
find out whether it has inflationary solutions, and checksuming thatC¢?/T>H, Eq. (12) acquires the following
whether the corresponding solutions can be self-consistenform:

According to the warm inflation scenario, the fieldshould - C¢?.

move very slowly(inflation), but still fast enough to transfer ot o+ m?¢$=0. (13
sufficiently large amount of energy to thermal fluctuations. If

these fluctuations are large enough, they may be responsible the regime of slow rolling one can neglect the first term

for the existence of the large viscosity terr€¢?/T)$,  and obtain a solution
which is necessary for the self-consistency of this scenario. 2m2Tt
At the first glance, this term could be very large indeed. It ¢?= 5~ < (14)
is not suppressed by any powers of the small coupling con-
stantg, and in certain case<C(»?/T) ¢ may be greater than assuming, for simplicity, that the temperature remains con-

: ; ; 2
the usual viscosity termi3¢. This was the main reason why stant. One can easily verify that fgm<T<Cnvg and ¢

it was expected that this additional viscosity term could pIay>mT/C this solution is compatible with the inequaltids

2 2712 g H
an important role in inflationary theory. >g¢, butm™>g“T*, and the termp could indeed be ne-

However, as we are going to show, this term is actuallyd!ected i|2| th(f)r'] Sincer:t is not a usual _oscillatg_ré/ reg;me,h
very small. Indeed, let us remember the procedure of th(\?vr;\?mcoiﬁﬂa;[iolg rég?r:[n\ge ave an interesting candidate for the
derivation of the term C¢?/T)¢. The leading term in the However, Eq.(14) télls us that the value of the fielg

expression for(x%)eq in Eq. (7)is ¢ independent( x?)eq completely changes (vanishey within the time ot
~T?/12. The term C/g°T)$ appears because theib-  =Cg2/(2m?T). As one can easily verify, in the regime
leadingterm in Eq.(7) depends orp, and because this term which we study now g¢<T and m?>g?T?) this time is
slightly differs from its thermally equilibrium value much smaller than the typical decay time of th@articles:
gpT/4m. Thus the term C %/ T) ¢ appears in Eq(12) as a g*C g2 c

correction to a correction, becaus€ ¢/g°T) < g T/4m r,ét~ Wn?z <ﬂ<

<T%12. In other words, €/ T)p<g®p(x?)eq SO the i i

new viscosity term in Eq(12) is always much smaller than Thus the simple linear approximatio¢—A¢~¢—£;’>At,
the usual thermal correction to the equation of motion of theyjith AtNF;l, which we used for the derivation of E(12)
field ¢. This is an important fact, which will help us to does not work in application to our problem: The typical

1. (15)

evaluate plausibility of warm inflation. duration of the linear change of the fiettlis much shorter
As an example, let us consider two limiting cases. thanl";*. This means that Eq12) is incorrect in the only
Case |. gT<m. In this case m2¢>gz¢<xz>eq regime where warm inflation could appear in this model. In

> (C¢%T) ¢, so the new viscosity term is completely irrel- our previous qualitative analysis of warm inflation in this
evant for the description of the evolution of the figldas is ~ model we avoided this problem because we did not use the
clear from the above intuitive derivation of the equation ofexpression C$?/T) ¢ for the viscosity term, which we ob-
motion. tained using the incorrect assumption that-A¢~ ¢
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_ ¢F;l- Instead of that, we used the fact that the viscosityobtained in Ref[8] for this particular model. However, there
term is always much smaller thag¥/12) T2¢. was a hope that this result is not generic, and several possible
To study motion of the field in the modek1) one should Ways out to increase the number effolds have been pro-
remember that the typical time when a significant change oP0sed8]. In Sec. IV we demonstrate for several other mod-
the scalar field occurésuch as the oscillation time~1) is €IS that the number oé folds of inflation must be much

much shorter thali =1 . Therefore the number of particles smaller than unity. As will be seen there, this conclusion
X H

practically does not change during the oscillations. To study€mains unchanged even when we take the proposals of Ref.

the motion of the fields in this case one should evaluate L8] into account.

{x?) in the regime whera  remains constant, see, e.g., Ref.

[17]. The behavior of the fiel@ in this regime is completely Ill. EFFECTIVE EQUATION OF MOTION
different from what one could expect on the basis of Eq. IN THE THERMAL BATH
(12.

This example shows one of the many obstacles which. As a preparat?on fo quantitative discussion WhiCh con-
make it so hard or perhaps even impossible to implement thlgms the above intuitive argument hgre we Teview a f"?'d
idea of warm inflation. In order to verify our conclusions, Wef[ eoretic approach to derive an effective equathn of motion
performed a more detailed investigation of this issue and" .the'thermal path. The standard quantum field theory,
studied several different models where warm inflation couldVNich is appropriate for evaluating the transition amplitude
occur. Before starting its detailed description we remind thd 0™ an "in” state to an Ot‘)JIt state for some f'elld _operz?tor

reader that the above intuitive derivation of Efj?) is based O, (out Q||n), IS no_t suitable to Fr.ac.e time evo ut]on ofan

on the following two most fundamental assumptions or con£XPectation value in a nonequilibrium system interacting

ditions: (A) ¢ interacts with particles whose effective mass is"ith @ thermal bath. For this purpose we should use the in-in
much smaller than the temperatutB) ¢ should not evolve ormalism, which was introduced by Schwindés] and de-
significantly during the relaxation timét, of such particles, veloped in Refs[19,2. Here, extending Gleiser and Ramos

. . o . . [15] and Yamaguchi and Yokoyami@1], who followed
namely,|¢|_At<¢. (Otherwise the.qua3|stat|onary inflation- Morikawa [14], we derive an effective Langevin-like equa-
ary expansion could not be sustained.

: : . L . tion for a coarse-grained field in the case the scalar field is
A complete discussion of warm inflation is rather in-

. i . interacting with not only other scalars but also fermions.
volved; in addition to these two conditions many other con-
straints have to be satisfied. However, as we will see in order - _
to show that the scenario is not feasible in all models that we A. Nonequilibrium quantum field theory

will consider it is enough to use only the simplest constraints Let us consider the following Lagrangian density of a

based on the above two conditions. In the next section weinglet scalar fieldp interacting with another scalar field
review derivation of the equation of motion of the scalarand a fermiony for illustration.

field in more generic cases in terms of quantum field theory

at finite temperature, where these two conditichsand(B) 1 , 1 5, 1 .,

are also indispensable. It has been advocated in the literature L= 5(%‘10) - qu,so - ﬂ)“P

[8] that this method is quite appropriate for application to

warm inflation where the scalar field presumably moves 1 1 1
slowly. P g +§(‘9MX)2_§m)2( 2_592)(2902
As we have demonstrated above for a particular model of . . .
two scalar fields with interactiongf/2) ¢2x?, however,¢ Ty = mypp—f o, (16)
does evolve significantly during the relaxation time even in
its slow roll-over regime, so that the conditidB) is not In order to follow the time development @f, only the

satisfied. Put it differently, if we attempt to realize warm initial condition is fixed, and so the time contour in a gener-
inflation consistently with the derivation of the equation of ating functional starting from the infinite past must run to the
motion in the form of Eq(12), we inevitably find that the infinite future without fixing the final condition and come
e-folding number of inflation is constrained to be much back to the infinite past again. The generating functional is
smaller than unity. In fact, a similar result has also beerthus given by

Z[J, 7, 7]=Tr

T( ex;{i JC(JQD-F Kx+ 771//%-5@])4

|

xT(ex;H(Jq;+KX+77¢+7Z)DP], 17)

:Tr[T+(ex+J Jio+ Ky x++ 74 ¢++7+Z+)
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where the suffixc represents the closed time contour of in-
tegration andX, a field componeniX on the plus-branch F[d’]:W[J,K,??,m—Jd4XJ(X)¢>(X), (20)
(—o to +o0), X_ that on the minus-branch{e to —©). ¢
The symbolT represents the time ordering according to the

. X ) X where ¢(x) = W[ J,K, 5, 7]/ 8I(X).
closed time contourT , the ordinary time ordering, ant_ . - :
the antitime orderingJ, K, 7, and7 imply the external We give the finite temperature propagator before the per

fields for the scalar and the Dirac fields, respectively. In factturbatlve expansion. For the closed path, the scalar propaga-

each external field, (K, ,7.,7.) andJ_(K_,n_,7_)is tor has four components.
identical, but for technical reason we treat them different and

set), =J_(K,=K_,y.=7_,7,.=mn_) only at the end of (x=x")
calculation.p is the initial density matrix. Strictly speaking, X

we should couple the time development of the expectation

value of the field with that of the density matrix, which is (

(21)

Gl(x—x') GJ(x—x")
G, (x=x") Gf(x—x’)

practically impossible. Accordingly we assume that devia-

T T x(X)x(x")p] Tr[X(X’)X(X)p])
tion from the equilibrium is small and use the density matrix

Trix()x(x")p]l T T_x(x)x(x")p]

corresponding to the finite-temperature state. Then the gen- (22
erating functional is described by the path integral as Similar f | v foro field I Also. f D
. imilar formulas a| orp field as well. Also, for a Dirac
Z[3.K, 5, 7]=exp(iW[J,K, 7,7]) PPy Tok

fermion we find

[ pefrfmef v

xexp(iSLe,x, ¥, ¢,3,K, 7, 7)), (18
where the classical actiof is given by

S x. ¢, 4,3,K, 7,7]= fcd4X{E+ J(x) o(x) + K(x) x(x)

Sh(x—x") S:Z(X—X’))
- (23

Sy (x—x')=
X=X (s;,(x—x'> S (x—x')

T () e(x)p]l  TAT_g(X)h(x")p]
(24)

(Tr[nw(x)ﬁx')p] Tr[—J(x'w(x)p])

+ (X)) + )P} (19

As with the Euclidean-time formulation, the scalar field is
still periodic and the Dirac field antiperiodic along the imagi-  The perturbative loop expansion for the effective acfion
nary direction, now withe(t,x) = ¢(t—i8,Xx), x(t,x)=x(t  can be obtained by transforming— ¢¢+ { where g, is the

B. One-loop finite temperature effective action

—iB,x), andy(t,x)=—(t—iB,X). field configuration which extremizes the classical action
The effective action for the scalar field is defined by theS ¢,J] and ¢ is small perturbation aroung,. Up to one
connected generating functional as loop order and?(\?,g%,?) the effective actiod” becomes

R 2 A 3 3
F[d’c,(ﬁA]—f d X[ a()[—H=M?]e(X) = 77[4ba(X) pc(x) + ¢c(X)¢A(X)]]

1
— [ atx | atxxx)| 600 608200 + 5 600 60 B0

2 f dx f A" Ag(X—X") b (X) elx")

+|§f d4Xf d*X'[B1(X=X") pa(X) ha(X") he(X) he(X') +Ba(X—X") ha(x) a(X")], (29

where d®q 1+2n(q)
2_ A2 2 X
1 MP=m*+g f(2w>3 20,(0)
b=5(d++d-), (26)
N [ d%g 1+2n,(q)
dr=d.—d_, 27 "2) @ 20,0 28
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Al(x—x')=294 Im[G;(X—X’)Z] o(t—t") C. Equation of motion
\2 Applying the variational principle t&., we obtain the
+ 7Im[GfD(x—x’)2] o(t—t'), (29)  equation of motion forp. .
58 ff[¢ 1¢A 151152]
Ag(x—x")=F2Im[ S, y(x—x")SE*(x = x)]6(t—"), = °5¢ 0. (36)
(30) : ¢4=0
By(x—x')=2g* Rd:G;(X_Xr)Z] From Egs.(34) and(25), it reads
A2 (O+M?)¢e(x)
+ 7Re[cag(x—x')Z], (31
A t
#6200+ 6:00 | @ [ at o) g
Ba(x—x")=— 2R S 5(x—Xx)SE* (X" = X)]. : -
(32) .
The last term of Eq(25) gives the imaginary contribution to +2f d*’ medt/AZ(X_X/)qsc(X’)
the effective actionl’. We can attribute these imaginary
terms to the functional integrals over real auxiliary fields = b (X)E(X) + Ea(X 3
&1(x) and &5(x) [14] to rewrite Eq.(25) as Pelx)&1(x)+ £2() 37
and
eXF(iF[QSc,(f)A]):f Dflf DgP4[£1]Po[ &2] (E()E(X))=Bi(x—X"). (38)

X expiSerl dc.da 1,621}, (33 ThoughA, andB, has two contributions frony and ¢ fields,
they have the same properties except for the values of coef-
where ficients and masses. For the moment, we consider only the
Se borbar106s] contribution frome field for simplicity and omit the suffix.
effl e r a5 1,52 The right hand side of Eq37) are the noise terms, while the
last two terms of the left hand side are combination of dis-
EReFJrf d*X[£1(X) e(X) pa(X) + E(X)a(X)]. sipation term and one-loop correction to the classical equa-
tion of motion which would reduce to a part of the derivative
(34 of the effective potentiaV/ () if we restrictedg(x’) to be
Here &,(x) and &,(x) are random Gaussian fields with the & constant in space and time. _ ,
probability distribution functional Thg above equatio(87) is an extension _of equatidi3.2)
of Gleiser and Ramogl5] in that we have incorporated not
1 only self-interaction but also interactions with a bogpand
PiL&I=N ex;{ - Ef dAXf d*x' &(x) a fermion . It is nonlocal in space and time. The spatial
nonlocality does not bring any difficulty here since the scalar
] field is presumably nearly homogeneous during inflation. So
(i=12), B9  we only need to consider contributions with zero external
momentum, that is, we can pdi.(x',t")= ¢.(x,t") in the
where V] is a normalization factor. They induce random integrand.
noise terms in the effective equation of motion #fas a With this approximation the correlation function of the
result of the interactions with the thermal bath. bosonic nois€31) with g=0, for example, becomes

X B Y (x—x")& (X))

A2 d*k , d3
'“H)f T REG (G t-1)Gh(g- k-]

<§1(X)§1(X')>:"? 2m)3° (27)3 k=0

A2 dd
=7a€(x—x')f (ZTq)?,Re[G';(q,t—t’)]z. (39

We thus obtain spatially uncorrelated noise. For the scalar field averaged over a Wluh@amplitude of noise reduces in
proportion toV~ Y2, which implies that noise term should be omitted in the equation of motion of spatially averaged homo-
geneous field. On the other hand, the temporal nonlocality is very important in deriving the dissipation term as seen below.
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D. Dissipation term

The equation of motioi37) derived above has contributions representing the dissipative effect in the last two terms of the

left hand side. Since these terms are nonlocal in time, in order to extract local terms proportipraiecshould assume that
the field changes adiabaticall§4,15, or put

(X' 1) =@"(X', )+ n(t' =) p" X 1) p(X' 1) (40)

in the integrand of Eq(37). Then these terms will read
d)f d3x’£ dt’Al(x—x’)¢2(x’)+2f d3x’£ dt’ Ay(x—x") p(X")
=¢3(t)f d?’x’ft dt’Al(x—x’)+2¢(t)f d3x’J’t dt’Az(x—x’)+2¢2(t)¢(t)f d?’x’ft dt’(t' —t)A(x—x")

. t
+2¢(t)f d3x’ J:oodt’(t’ —t)Ay(x—x"). (41)

The last two terms are dissipation terms. They would vanistin the high temperature limit and in the cage f=0. Note

if we used bare propagators, as a manifestation of the fathat the above expression was first obtained by Hosoya and

that the dissipative effect is intrinsically a nonperturbativeSakagami[16] by a different method which is intuitively

phenomenon and cannot be investigated from the perturbanore appealing as discussed in Sec. Il.

tion theory[22,23. In order to obtain a finite result we The contribution from the interaction with can be ob-

should use full “dressed” propagators instefdd!,15,8. tained similarly. Assuming has no self-interaction its width
The viscosity from scalar interactions have been fully in-is given by

vestigated in Refs[15] and[8], so we simply quote their

results here. The full propagator gfreads g*T

U= Toom

(45)
F YA d3k ikKx—x"YRF /v _ v’
Gikt=t)= | e IG5 x—x)

in the high-temperature limit and the relevant part of the
i _ _ ) viscosity terms is given by
=5 {1+ Ne(w,—iT 4)]e (sl
¢

. t
T N0y +iT ,)el@s TPl 42) 4g4¢2(t)¢(t)f d3x’fﬁwdt’(t’—t)Im[G)F((x—x’)z]
whereng(w,) = (e#*¢—1)"* andw 4= Vk*+ mz(/,T with mr 48 [ T
being the finite-temperature effective mass¢ofHerel , is ~ —In(—) b2 .
the decay width related with the imaginary part of the self- mT My
energy>, as

In both cases the viscosity terms due to scalar interactions
CIm3, NPT 43 areofthe formgp2/T [8].
(43 On the other hand, the dissipation due to Yukawa inter-
action is calculated in the Appendix. In the high temperature
in the limit T>m,r. We find the contribution of the self- limit T>myr, myr we find
interaction to the viscosity

¢ 20, 1536m0,’

. . 2f2¢f d3x’ft dt’(t" —t)Im[ S 5(x—x")SE* (X" = X)]
)\2¢2(t)¢(t)fd3x’fi dt’(t' —t)Im[ Gl (x—x")?] o

288 . .
A2 d3k ng(1+ng) =—3{(3)Tp=11T¢. (46)
=5 908 | e = ™

In both cases the viscosity coefficients would be exponen-

)¢2¢, (44) tially suppressed and would not play any important role if

96 ( T
n
the high-temperature conditions were not satisfied.

T AT\ myr
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IV. FEASIBILITY OF WARM INFLATION must be fulfilled so that the viscosity term is proportional to

In this section we study if the warm inflation driven by ¢- The inequalities(50) and (51) are essential to realize
the viscosity term is possible in the case the viscosity term ifluasistationary state of inflationary expansion. Finally, but
the effective equation of motion is most effective, namely, inMost importantly, the high-temperature conditidrs myr,
the high-temperature limit when the viscosity coefficient isMyt» Myr Must also be satisfied, otherwise the viscosity
given either by Eq(44) or (47) depending on the interaction. {€rm would be exponentially small and our entire discussion

We consider these cases separately for both f@wand Would break down. _ S
chaotic[4] inflation scenarios. Since the failure of case Il in Sec. Il is evident, we here

Before analyzing specific models we formulate ger1ericconsider the case |, where finite-temperature correction to the
conditions to satisfy. We are interested in the new pOSSibiIit)FffeCtlve p_otentlal |s'sub-dom|na.1nt but stlll'the viscosity term
that the slow-rollover inflation is realized due to the thermal@PpPears sizable at first glanaentil we convince ourselves it

viscosity (44) or (47), so the effective equation of motion IS not, through the intuitive argument in Sec) [Thus we
should read can make the following list of the inequalities to be satisfied

to realize the desired scenario.
. (i) C,>3H,
Codm VI @i Vgl 1an

(ii) V[ ¢1>p;,

that is, we requireC,>3H. The inflaton’s energy released (V) T,>H, T >H, or [ ,>H
) X ) [ )

through this viscosity term presumably goes to radiation,

whose energy density, , satisfies V) T'y>|¢l o], T ,>|pl¢], or T' >l ¢,
(Vi) T>myr,
dp _ (vit) T>m, 1 or T>m,;,
d_tr =—4Hp,+C, ¢°. (48 (viii) Finite-temperature correction to the effective poten-

tial being subdominant.

Inequalities(v) are nothing but the conditio(B) in Sec. Il,
SinceC, strongly depends on the radiation temperatgre, and(vi) and(vii) stand for the conditiofA). As will be seen
should not change too rapidly in time in order to sustainbelow, we can essentially rule out all the models we consider
quasi-stationary inflation. So the creation term in E4B) only in terms of these two conditions.

should balance the redshift term. As a result we find In addition to the constraints listed above, there is a con-
straint following from the investigation of density perturba-

> "2 tions produced during warm inflation. The standard expres-
Ty C,é

pr= ~ , (49) sion for density perturbations produced during inflation in
30 4H the cold-matter dominated universe[§
which gives the radiation temperature as a functiorbofn dp _6HIP

contrast to Ref[8], where the temperature has been fixed to (52)

its initial value, we perform a consistent analysis by using
the value ofT calculated from Eq(49), which would help to
increase the viscosity from bosonic interacti¢p@s Hereg,
is the total effective number of relativistic degrees of free-
dom. We normalize it by 150 and denaig/150=g, \ be- 5
low. In order that the universe is inflating the potential en- @: E H
ergy density should dominate over and the kinetic energy p b5 27T<.b.
density.

Finally a number of conditions must be satisfied to justify  The first of these two equations holds for the warm infla-
the derivation of the effective equation of motion. In Ordertion as well. However, the second one should be modified
that the radiation created from the inflaton thermalizes suffihecause the amplitude of fluctuations during warm inflation

p 5 ¢

If one uses the standard estimate for inflationary perturba-
tions ¢~ H/27, one gets

(53

ciently rapidly, we need is greater tharH/27 for two different reasons.
First of all, the wavelength of perturbations of a field with
\2T 9T m f2miy mass m*<H? which freeze during inflation usually is
Iy= >H, I'= >H, Ty=z—=">H,  O(H"1) because of the friction termt8¢. This allows one
1536w X 1927 64 T

(50 to make the standard estimaie~ H/27 by calculating the
amplitude of vacuum fluctuations with the wavelength

depending on the nature of interaction. In addition, the adia®(H ™ *). However, during warm inflation the amplitude of
batic conditions perturbations of scalar fields with momenka<T is en-

hanced by the factor\/T/k because of the additional con-
tribution of thermal fluctuations. This leads to an estimate

¢
g’ ; (5D s~ J3AT/aw [24].

083509-8
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But this is not the only effect which should be taken into We can then convert the inequalitiég—(viii) to the con-
account. Indeed, during warm inflation the friction term is straints on the range @b and on other model parameters as
(C,+3H) ¢, and it is assumed th&,>3H. As a result, it follows.

i i (i) $<3.4x10%g% c2\ %M
may happen that the fluctuations of the scalar field freeze not 9.«NCy Pl

when their wavelength approachkls®, but much earlier, (i) ¢>2.9x10" Mg, {c, N *Mpy,
when their amplitude can be much greater. This may lead to (jji) ¢>1.3x 10—3g;§/4cfl)\3/4|\/| ol

an additional increase of the magnitude of perturbations of (iva) p<1.2x 10" g, Y Y432\,

scalar fields produced during inflation. (ivb) h<5.5% 104 *,?,40?1,4 3 ’
We will not perform here a detailed evaluation of density ) 9un € G Mepr

perturbations in warm inflation because we did not find any (va) A>26c,,,

model where this scenario can be realized. Indeed, we will be (vb) Ag~4<0.3C,,

able to rule out warm inflation in all models which we will (Vi) $<<1.2<10°g, i, Mpy,

consider even without using the theory of density perturba- (vii) ¢<4.3x 10*69310(;1)\3/29*3“%',

tions. However, one should keep in mind the necessity to (i) \=3.8x 10 2¢,49°.

study constraints based on the theory of density perturbarpe |ast condition is from the requirement that radiative cor-

tions, because usually these constraints lead to the strongegttion due toy does not change. Thee-folding number of
restrictions on the structure of inflationary models. warm inflation, if any, is calculated as

A. Chaotic inflation with viscosity from bosonic interaction

¢ d

Here we consider chaotic-type inflation with a potentiaINEJ H.—¢=5-1>< 10g R ey N M (¢ — ¢7),
V[¢]= (\/4!) ¢* and the viscosity arising from self- P
interaction or other bosonic interactions proportionakg (58)
such astg?¢?x2. In the usual chaotic inflation slow-roll of
the inflaton is realized due to the Hubble friction and it is Where ¢; and ¢ are upper and lower bounds gfthat sat-
effective only whenp=0.3Mp,, but if thermal viscosity dis- 1Sfy all the above inequalities. .
cussed above is effective, we might have inflation with much  Using (vii) and(vb) in Eq. (58) we find
smaller ¢.

In this case the viscosity coefficient and the Hubble pa- N<3.6x10 *g,\\g *<1.1x10 “g,cs. (59
rameter are given, respectively, by

96¢ Ny Sinceyx’s glsp contribute tg, , g;,ﬁcqs cannot be larger thgn
Cv:_¢¢21 H=—— ¢2. (54) 150 and it is apparent thad cannot even exceed unity.
mT 3Mp, Hence we cannot realize warm inflation in this model. This
conclusion is independent of the simplification Tifr(, )
Herec ;= In(T/my;) if ¢ has self-interaction only. But, can =2, for the above constraint oN is primarily due to the
be increased if it interacts with additional scalar fiejgs  condition(vii) or T>m,r, and the fact that this condition is
through the interaction hardly satisfied implies we have overestimated the duration

of warm inflation.
1 Next for completeness we consider the potentigts]
1242 N 44 i 25 2 ;
ﬁim:_z —gj2¢2Xj2- (55) M=+ ()\'/4.)'¢ with m*>\¢“/12. In this case the
2 temperature is given by

ThenC, is given by T=4.3x10 g, {*c, "> mMEZ 12, (60)
96 A2 T 1 T and the inequalities read as follows
=— | +2, =1 2 . o 14— '
R P ”<m¢T 23 ”( mXiT) " (i) ¢>2.8x10 %g, ', "'m* Mg/,
(56) (i) $>6.0x10 2g, c, " m" My,
(i) ¢>9.1x10 2g, {*%, %" m**M3?,
wherem, +<T is the finite-temperature effective massof (iva) ¢p<9.5x 10 °g, y"c, " N32Mp,
field [8]. For simplicity, we identifyc,(>1) with the num-  (ivb) $<4.5x10 g, {*c,g°Mp),
ber of x; fields, which corresponds to the caseTing, 1) (va) ¢>13c, "\ "'m,
=2. We also assume all the coupling constagjtdake the (vb) ¢>4.4C(;1/2972m,
same valuey;=g. (Vi) $<8.0x10 °g; yC; Mpy,
From Eqgs.(47) and (49) the temperature is given by (vii) $=<9.4x 10 ?g, {"c, g~ m* MY,
o (viii) p< 12\~ H2m,
T=1.6x10 g, i ¢, ">\ "2MpPp?=, (57 The number of folds of inflation is formally given by
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H —1/6.2/3y, —1/6
¢ do o (i) $<<0.789, § €y "N~ "Mpy,
N=f H——=4.410m Mg (4] - 67", (i) <629, {°CIN Mg,
(O (iii) ¢>0.159¥5c, A\ M,
(iv) $<0.63yCy TN Mpy,
(v) f4>0.31c, "\,
(Vi) $p=<1.4x10 *g;xc, "N Mp,
(vii) $p<2.5x10 °g, ic,fON¥Mp,
*N“¥
(viii) ¢>1.6x10 °g, Nc N Mp.
The last inequality comes from the condition that the finite-

. ) ] _ temperature correction to the effective potential is small, that
Thus no matter how many scalar fields are interacting withg, C¢f2T2/6<)\¢2/2_

the inflaton we cannot find warm inflation solution. Note that  The number of folds of inflation is expressed by
the above constraint on the-folding number primarily

(61)

From (vb) and (vii) we find m<2.1x10 g, xC4g°Mp).
Then inequality(vii) reads$<9.2x 10" 'g, \C5°0°Mpy. Us-
ing these inequalities in Eq61) we find

N<7.3x10 °g, {%c, . (62

comes from the conditiofvii) or T>m, . This means that _ (¢ do A5 A5 —1San 45, 145 45
if we had used the correct value of Tin,;) instead of put- N= L)_ H——=589,n"Cy N "Mp (9" = 7).
ting it to be 2, the viscosity term would have been smaller ¢

and warm inflation would have been even more unlikely. So (65)

we can justify our simplification. Therefore the conclusionUsing (v) in (vii) we find ¢<1.1x 10 *g; yci '\ M. In-

that the number o folds of warm inflation with chaotic- serting this limit tog; in Eq. (65) we obtain an upper bound

type potentials is constrained to be much smaller than unitpyn N asN<3.9x 10‘3g;,ﬁc¢,. Sinceg;,{]% cannot be larger

[8] remains unchanged even when we use the consistefiian 300/7 we can conclude warm inflation is impossible

value of the cosmic temperature obtained from E4P),  here. In fact, we can explicitly show that there is no open

rather than fixing it to its initial valugg]. parameter region that satisfy all the inequalities even in the
Note that these considerations look different from the aftaseg;,ﬁc(,, is maximal.

guments used in the Sec. II, but they lead to the same final Next we analyze inflation driven by the mass teviing]

conclusion. Now let us see how one can reach the same 1m242 iy which the temperature is given by

conclusions directly, using the arguments of Sec. Il. We will

assume for simplicity that the field interacts with one field

x, and\<g?. In this theory Eq(12) looks as follows:

TZO.I%;,{]ISCLZUS m3/5M ]'5/|5¢l/5. (66)

The following inequalities must be satisfied for successful
warm inflation.

$+Cydp+3HP+mM2p+ N3+ g%p(x})eq=0. (63 (i) $<0.263; Yc,m- VM2,

Let us consider two limiting cases.

Case |. g°T?<maXn?\¢?. In this casem?¢p+\¢°
>0g%¢(x*)ec>Cy b, SO the new viscosity term is completely
irrelevant for the description of the evolution of the fief

(i) ¢>0.025y, \C,, ‘m?Mp/*,
(iii) ¢>0.17g; Rc, 2m*MEP,
(|V) ¢>1%;,{"/4Cl;1/4f_5m2|v|;|1,
(V) ¢>1.4c, "% "2m,

(Vi) ¢>4.2xX10%g, yc,m*Mp !,

(V||) ¢< 01@;']\.‘/4(:; l/4f — 5/4],~n3/4M ]P./|4,
Case I.g>T?>maxnm? A ¢?. If g¢>T, then all thermal (viii) ¢<3.6x10°g, nc, 2% ~SmPM L.

effects disappear. If gp<T, then m’*¢*2+N¢*4  The last inequality is from the

<0%¢X(xP)eq— 9?4’ T><T*. In this case equation of state is > (c,/6) 2T2.

determined by ultrarelativistic mattep~p/3, and inflation It is not impossible to find the values of model parameters

cannot occur. that satisfy all the above inequalities. This does not imply,

however, that warm inflation is feasible in this model be-

cause thee-folding number of inflation,

as is clear from the intuitive derivation of the equation of
motion in Sec. Il.

requirementn?

B. Chaotic inflation with viscosity from Yukawa interaction

We next study the case the dominant contribution of vis- ¢ deo
cosity arises from Yukawa interaction, so that we fi@ig NEJ H—=3.60, 1" cj°>m 2*M5* (¢ — $¢),
=11c,T wherec,=1 in the casep has a Yukawa coupling )
to one species of Dirac fermion, but it can be largerpif (67)

interacts with more fermions. We identiy, with the num-  ,ins out to be smaller than unity as seen below, whire

ber of fermion species interacting with with the universal 54 & are upper and lower bounds satisfying all the in-
coupling strengttf. I _equalities(i)—(viii) as before.
First we consider the case inflation is driven by a quartic Inserting the upper boungii) to ¢; in Eg. (67), we find
potential V[ ¢]= (A/4!) ¢*. The temperature is given by
N<0.31g} 5 ¢ f ¥ 2mY2m g 2 . (68)

From the consistency betwedm) and (vii) we find m<
The following inequalities must be simultaneously satisfied.7.4x 10*59;,§c¢f3M p1» Which, together with Eq(68), im-
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plies N<2.7x10 %g, {c,. Since g, yc, cannot exceed

PHYSICAL REVIEW D60 083509

Next we move on to the case viscosity is dominated by

300/7 we can conclude warm inflation is impossible in thisYukawa interaction, when the temperature is given by

model, too.

C. New inflation

Next we consider new inflation driven by the potential
2

A m?\?2
Viél=7 >~ T) - (69
Inflation is possible only for
d<N"’m. (70)

First we analyze the case viscosity is dominated by
bosonic interaction. The temperature is constant in this case:

T=4.8x102g, {°c, " \omP MR, (71)
We find the following inequalities.

(|) ¢> 8.3 10*2g;’1.l/60*2/3)\ - l/6m4/3M };|1/3|
(i) p>2.2<1073g, 3N mPIME?,
(i) m=>6.0x10"3g, ¥c, ]\ Mp,,

(iva) m<1.3x10 *g; ", "N2Mpy,
(ivb) m<6.4x10 *c, g, "N\ 9*Mp,

(va) ¢>13c, VA "tm,
(Vb) ¢p>4.4c,Y 9 2m,
(Vi) m<1.1x10 *g, ic, N Moy,

(V||) ¢< 4.8x10° 2g;’1.|/3cgl/3)\ l/Gg*lmZ/SM ]|5/|31
(viiia) m>1.4x10"5g, i, N2 Mpy,

(viiib) m>2.7x 10" °g, {ci?g*Mpy.

Here the conditiongviii) are required to ensure the symme-

try remains broken and warrant the use of the zero-

temperature potential, that igjiiia) comes from the condi-
tion m?>\T2/4 and(viiib) from m?>c,g?T?/12.
The number ot folds of inflation is expressed as

N=4.6X 10291:/§ C‘(;/3A*1/6m*2/3|v| I;|4/3 (d)?_ ¢|2)1 ( )
72

where ¢; and ¢; are now the lower and upper bounds
of ¢ which satisfy all the above inequalities, respect-

ively. Inserting (vii) to Eq. (72 we find N
<1.1g, eI\ %9~ 2m?*M?®. The consistency between

(vb) and (vii) sets an upper bound om as m<1.3
X107 5g, ¢, 'N?g®Mp. These two inequalities implies
N<1.3x10 g, i\Y2 thus warm inflation is not feasible.

So far we have used only inequalitiég) and (vii) as
promised, apart from the generic conditiof0) for new in-
flation. If we use other inequalities in addition, we can com-
pletely close the allowed region of the parameter space
follows. The consistency between E@.0) and (ii) sets a
lower bound orm as

m>1.1x10 8g_ %

U, NCHN M. (73

From (vi) and Eq.(73) we find )\<220;1. On the other
hand, from Eq(70) and(v) we find \>1.7x10%c;*. Thus
there is no allowed region fox to realize warm inflation

consistently.

TIO.zw;,{.‘/SC;l/S )\lll%2/5¢2/5M ]|5/|5 (74)

The following inequalities must be satisfied.
1/2

(|) ¢>5\L__g* NC;Z)\_S/Zm‘lM ;|3’
(i) o< 2.1g;,%l/3c‘12/3)\—2/3m2/3M 1/|3'

(iii) p=< 2_19;'%/8#2)\77/%3/2“/' iy
(iv) ¢>3.0g; &‘/8% 118\ 114 —5/213/2)\ l;|1/2’
(v) p>1.4c, " ~2m,
(VI) ¢> 5691/131‘311///2)\ - 1/4m3/2M l;ll/2,
(V”) ¢< 6.8X 10~ Zg;lj\]/3c¢_/ l/3f —5/3)\ l/6m2/3M ]|5/|31
(viiia) p<3.2x 10°g2ct2\ ~32m32m 12,
(viiilb) ¢<5.3x 107g;Fc,, ¥4 ~ 5 Him32m 12,
(viiia) comes from the conditiom?s>\T?/4 and(viiib) from
m?>c,f2T2/6.

In this case, contrary to the case the viscosity arises from
bosonic interactions, there exists some allowed region in the

parameter space, but the numberedblds of inflation,
f¢
&
(79

turns out to be much smaller than unity as seen below. Here
¢; and ¢; are lower and upper bounds @hobtained from
the inequalitiegi) through(viiib) and Eq.(70) as before.

From (vii) we find

N ),

t H _ B -
gdd): 8.09, ,%1/5 C;l,ls)\ 2525\ PI4/5 (d)?/s _

—1/3 .2/3

—1/3¢—2/3 1213\ g —2/3
#N Cy AT TEET MM T

N<2.7g (76)
Consistency betweetv) and (vii) imposes an upper bound
onm asm<1.2x10"“g, {ci/ A Y4 Mp. Inserting it into Eq.
(76) we find N<6.6X 10*39;,{,%. ThusN is much smaller
than unity no matter how many fermions are interacting with

the inflaton.

D. Shifted field model

So far we have studied the possibilities of chaotic infla-
tion and new inflation models driven by thermal viscosity
term. As a result we have shown that none of the above
models can accommodate inflationary expansion which lasts
more than one fold. In fact, we have been able to rule out
them simply from the high-temperature conditioni) and
the adiabatic conditior{v). To cure this problem another
model has been suggested in R] in which the scalar

&eld y has the interaction term

1
Lin==2 592 (¢=M)*x]. (77)

]

We are not aware of any particle physics motivation for this
kind of interaction. Nevertheless it may be worthwhile to

study this model because it helps to reduce the effective
mass ofy when ¢ is large and close tdM. Thus one could
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hope that one may relax a constraint from the high-

temperature conditiorfvii) and find a sensible solution for
warm inflation[8].

PHYSICAL REVIEW D 60 083509

d¢—M|

[p—M]¢
NEJ H ~AX 1PCY3qY3 m—2M 243 ¢~ 13
ool ¢ 6 Jxnm p b

The situation, however, is not that simple, as one imme-

diately recognizes once he writes down the effective equa-

tion of motion in this model. Indeed instead of Eg2), with
C=96c,/m, we find

b+ %(qﬁ— M)2¢+3H ¢+ mie
T
+92<¢—M>§ (X2)eq=0, (78)

Thus the viscosity term vanishes@t M, which makes the
dissipation inefficient in the regiogp~M.

Nevertheless one may still want to consider the possmlht

of warm inflation in the vicinity of¢=M, where the high
temperature conditiomn, =g|¢—M|<T, is satisfied but the
slight deviation from¢=M makes the viscosity nonvanish-
ing. Below we consider this possibility in chaotic inflation

driven by the mass term for illustration and work out in-

equalities to be satisfied as we did above.
In this model the effective potential @b is given by

Vel 1= —m2¢2 T2(¢ M)Z+ (79

in the high-temperature limit. We must treat the cases with

¢49°T?<m? and withc,g°T?>m? separately.

1. The case gg°T?<m?

First we consider the case,g”T?<m?. Since we are
interested in the regimeé>|4— M|, the second term in Eq.
(79 is entirely negligible in the inflaton’s dynamics. The

X(|¢=M[ITE=]g—MI{15), (82
where the integration has been done nesar M| assuming
¢~M. Inserting(vii) to |¢—M|; into Eq.(82) one finds

N<O4C; 2/59;'\?/5ml/5¢2/5,v| F:| 3/5. (83)

From the consistency betweéw) and (vii) it follows that

m<8.8x 10—403/4 - 1/2 5¢1/2M 1/2 (84)
Using it in Eq.(83) one finds that
N<9X 10— Cf 1/4 - 1/2 ¢l/2M - 1/2 (85)

This means that unless~ M= >Mp| one cannot obtain suffi-
C|ently long period of warm inflation. But then it is not in-
teresting because f@b> M p, we can realize chaotic inflation
without the help of thermal viscosity. This conclusion fol-
lows from (v) and (vii).

But if we consider other inequalities the situation be-
comes even worse. From the consistency betwigemd (iv)
we find

m¢?<1.3x10 5c; g, (?g®M}, (86)
Inserting it into Eq.(83) we obtain

Thus warm inflation is ruled out for perturbatively meaning-
ful values of the coupling constant.

2. The case gg°T?>m?

Next we consider the opposite limit,g?T?>m?. If

effective equation of motion in the slow-roll regime is given g|¢—M|>T, then all thermal effects disappear. ¢f ¢

by

. 96c .
Cyp= (= M)*p=—m?g, (80

and the radiation temperature is calculated from #§) as

g '\le/3m¢l/3(¢_ M)* 2/3M ]|5/|3

(81)

T=4.3x10"2c, '?

Apparently it is divergent atp)=M. However, sincep=M
is out of the slow-roll regime and will be automatically ex-

cluded using the inequalities below, this does not cause an

problem.

Now we list the required inequalities relevant yo

(i) | ¢_ M | >0.17C(;1/89; l/8m3/4¢1/2M - 1/4

(“) |¢)—M|>85X 10” C(151/29—1/8 3/4¢1/8M 1/8
(|||) |¢_ M|>50X 10” g* 1/8, 3/4¢ 1/4M 1/2,
(iv) |¢p—M[<2.1x 10 "c; g, *g%p M3,
(V) |¢—M|>2.59~ c;l’zm
(Vll) |¢_ M|<0.13:¢1/5g—1/5m3/5¢1/5M ]F.’/|5
The number of-folds of inflation is given by

—M|<T, one may still neglect contribution of the second
term in Eq.(79) to the total energy density of the universe,
because otherwise the universe would be dominated by ra-
diation and there will be no inflation. This does not mean,
however, that this term does not affect the motionfofOn

the contrary, the potential force is dominated by its deriva-
tive. As a result the minimum of the potential is shifted from
the origin to the vicinity of¢p=M:

B M 12m*M -
PO T e, g7z =M o e 89

One may encounter two possible regimes by comparing
t¥1e time scale of the frictionr;=C,, laT(p—M) 72, with
that of ¢'s oscillation, 7,= \/1_2/(01/ng) If the deviation
from ¢=M is sufficiently large to Warrant-f< 7o, the field

is in the slow roll-over regime toward the minimui®8) and
warm inflation might be possiblelf 7,>7,, on the other

ISince we are interested in the feasibility of viscosity-driven warm
inflation we assumé€,>3H and hence the only relevant time scale
of friction is 7;=C,*
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hand, ¢ sits in the minimum(88) which is time-dependent (V) T<O.2&;ﬁ’7c;1’7g4’7m3’7M UV
Itrr:rt?ﬁgh the temperature. Let us consider these two regimes (vii) T>2.3c;1/3g‘1’3m2’3M 13

First, if ¢ is rolling toward the minimum, we find the
following effective equation of motion

In addition, consistency of the assumption thedtays in the
time-dependent minimur(88) requires7;> 15, namely,

96(:¢ . c¢ T 5@; 1/497 5/6m2/3M 1/3' (94)
—T(¢—M)2¢=—m2¢— 1—292T2(¢—M)- (89 S o
™ The number ofe folds in this regime is expressed by an
The second term in the right-hand-sid®HS) dominates the integral over the temperature as

potential force except in the close vicinity g¢f=M, and we

neglect the first term in RHS. In the regime where the first | _ ijH d_T:25g* 12 312~ am9iz Sizy - 12
term dominates over the second term we would come to the T *N ~é Pl
same conclusion as in Sec. IVD 1.
From Eq.(49) one can find the temperature X (Ty 13217192 (95)
T=1.8x10°g, nC; moM L. 90
GunCy MOMp %0 whereT; and T; are the upper and the lower bounds on the
We write down the required inequalities relevantyto temperature satisfying all the above inequalities, and we
(i) |¢—M[>6.0x 10Pg; e, ' mpMp, have set¢~M. Using Egs.(94) and (95 we obtain N
(if) | p— M| 1.6x 10932 \c; *g?m2p2M 52, <7.2% 10—4g;§’2c},)’891_7’1%_n1’6|v| M52, Now the consizs-
(i) ¢p<3.1x 10*149;,‘?,’2c§,m*1M,2:,|, tency betweerti) and(iv) imposes an upper bound omM

. N M?<5.3x 10 "c,%g®M3,. From these two inequali-
453.3x 10 %c,g L, as mivi= ¢ P! o
V) g e . ties we find N<6.5x 105, ¥2cX244312 \which is much
(V) |p—M|>5.3x 1092 \ ¢, M2 pM 2 - *N o o
' *N“¢ Pl s smaller than unity. Thus we do not see any possibility to

(vii) |¢p—M|<1.8x10Pg,nC4 g 'MPMp". implement the idea of warm inflation even in this model.
The number ot folds of inflation is calculated as

l6—M]| d| _ M| V. CONCLUSION
NEJ WM ax 10 g 33 m 202

l6—M]; b ' *N¥é In the present paper we have examined feasibility of the
warm inflation scenari¢7] from various view points. First
XM2(|p—M|?=|p—M|?), we discussed how the viscosity term arises in the equation of

motion of a scalar field in a thermal bath following Hosoya

o1 and Sakaganiil6]. Indeed such a term &, ¢ appears be-
where the integration has been done ojgr M| assum- cause it takes finite time for number density of particles in-
ing ¢~M. Inserting (vii) into Eg. (91) we find N< teracting with¢ to relax to its thermally equilibrium value
2.1x10 “g, Nc,. Hence this regime does not lead to infla- while ¢ is in motion.
tion. The viscosity term thus obtained could be very large at

Next we suppose thap has fallen to the minimung88).  first glance, because it is not suppressed by any small cou-
Since the temperature is presumably gradually decreasingfing constants. As is evident in its derivation, however, this
during the warm inflationg changes with time according to term appears as a result of a small correction to a subleading

DAmEM thermal correction term in the equation of motion. Since we
b= T (920  know that even the leading thermal correction term does not
Cy9°T lead to inflation, such a subleading viscosity term is not ex-

We would like to see whether this time-variation ¢fmay pected to play an important role and to yield an inflationary

create a sufficient amount of radiation by the energy releas@glifme ofa nlew typhe_. wund . 4 sol o
through the viscosity term to support quasistationary stage of ' On€ neglects this fundamental feature and solves the

warm inflation. overdamped equation of motion including the teEgp, one
If such a stage exists at all, we find from E¢49) and  may find solutions indicating a possible emergence of warm
(92) inflation. However, we have found that such solutions violate
. the adiabatic condition that the scalar field should not change
T=—1.3x10 %g;3 c3g*m™ 72M ~ 32Mmp, V2 TI52, significantly in the relaxation time of the particles interacting

(93)  with it. This condition is necessary for the derivation of the

In this case it is convenient to express the required condiViSCOSIty termC, ¢. Thus, the equation of motion incorpo-

tions in terms of the inequalities on the temperature. rating the viscosity ternC, ¢ fails in the regime where it
QT <3.70;1/523—4/5m:<:/5,\,| 15\ é/|5. could describe warm inflation. _ _ _
. If, on the other hand, we attempt to realize warm inflation
(“) T<1 wl/gcllg 4/9m5/9M 1/3M 1/9 . k - . . .
: *N—ﬁzguz 1 Pl in a manner fully consistent with the field theoretic deriva-
(i) T<0.32y, y MM, tion of the equation of motion, we inevitably find that the
(iv) T>1.2x10°g *“mMM, !, number ofe folds of inflation is constrained to be much
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smaller than unity, mainly due to the difficulty to satisfy the

high-temperature condition and the adiabatic condition si-

multaneously. Even the shifted field model, which has been

proposed to relax the high-temperature condifi®h turned

out to be no exception. Thus, our results as a whole show _ _

that it is extremely difficult to realize the idea of warm in- Inserting them to Eq(Al) and applying the Fourier trans-

flation in realistic models of elementary particles. form we find the self-energy in Matsubara representation
Note addedAfter we submitted this paper for publication,

we learned that the authors of R¢R25] proposed the first B

possible implementation of the warm inflation scenario. 2 (i ,p)=f dre''"% ,(7,p)

They did not study the issue of density perturbations in their 0

1 1
(w+ie)2—q2—m§5_ (w—ie)z—qz—mi '
(AS5)

plw,q)=i

model and investigated only the possibility to achievee60 d3k do, dw,
folds of inflation. They assumed that the fiedfl interacts =—f2f 2m?) 27 27

with  scalar fields x;, as follows: EJEK(gfk/Z)(qﬁ

- Mj)z)(jzk. As we have shown in Sec. IV D, the number of
e folds of inflation in this type of model with one shift pa-
rameterM is much smaller than unity. In order to have €0
folds of inflation, the authors of Ref25] were forced to
introduce 10 different fields x;, with 10° specifically ad-
justed parameterdl;. We believe that this can serve as awith ;= (2I+1)nT. The above expression can be analyti-
good illustration to our conclusion. cally continued to the retarded self-energy,(po+ie,p),
and the imaginary part of the self-energy is given by the
discontinuity

1+ng(wy) —Ne(wy)
i — (w1t wy)

Xo(wy,K)p(wz,p—k)

(A6)
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1
Im3 ,(p)= §[E¢(po+ie,p)—Ew(po—ie,p)]- (A7)

do, dw,

d3k
WJ ﬁﬁff(m,k)ﬂ(wz,p— k)

X[1+ng(w;) —Ne(w1) [6(Po— w1~ wy)

APPENDIX Im3,(p)=mf?

In this appendix we derive the viscosity coefficient arising
from Yukawa interaction. First we calculate the fermion self-

energy2 ,, which is expressed as 5 d3k
=qf f 27 f dwdwy(w1yo—ky+my)

d3k
7T)3 S( T2 Tl1k)G(72_ T1,P— k)! X [1"!‘ nB(wz) - n,:(a)l)]sgnwl

E¢(p,72—71)=f2f 2
(A1)

X 8(w]—k?—m3)sgnw, 8 w3~ (p—k)?—m3].

in terms of temperature Green functionfafS(7,k) and that (A8)
of ¢, G(7,0q). We use the following spectral representation
of Green functions: Puttingp=(po,0,0p3), [k|=km, and|p|=pm(=ps), and in

the limit m, andm,, are negligible compared with,,, we

d .
S(T,k)zfz—:a(w,k)e*m find
2T2 f2T2 .
X{[1-ne(@)]60(7) —Ne(w) O(— 1)}, (A2) |m2¢(p):am(yo—y3):&p_gpzrp,
il _CYoTkytmy @y kytm, (A9)
ol = T =M (w—ie K-
(A3) for pp=po=T. _
Then the dressed retarded Green function reads
G(7,9) f 90 e
0= | s—p(w,qQe “" 1
2 S(po.p) = —— —  (AL0)
X{—[1+ng(®)]8(7)—ng(w)8(—7)}, (A4) (1=il)((potie)y —py)—myr
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in momentum representation, wherg=m,+ReX, is the finite-temperature effective mass. The dressed spectral function
is therefore given by

o(p) =i (p)— S(p)) =1 A (1=iD)p+myr - A (L+iD)p+myr
L (1=iD)?[(potie)?—p?]l-miy  (1+i1)2[(po—ie)®~p]—mj;
_-(1—if)|b+mw( 1 1 (1+il)p+myr [ 1 1 )
:| — — —_ ,
| 20,(1—i1)2 \Pomwp Potwp) 2% (1+il)2 \Po~ @  Potwp

(A11)

with wpzpm+im_§ﬂf“/pm. The final expression applies in the linftj=pp>myr. _ .
In terms of this spectral function the real-time finite-temperature Green function reads in momentum representation

d .
S (LR =1 [ Goe PoH[1= (o) 108~ Ne(Po) K~} r(p)

(1+il)(wf —py)+m,
20,(1+i1)?

:i{(l_ir)(_wp_p’/)+m¢Tnp(wp)ei“)pt+

T * —iw*
20,(1-i1)? [1-ng(wp)]e ptl (1)

. (1+iD) (ol —py)+myr
20} (1+iT)?

0(—1). (Al12)

_i{<1—ir><wp—pw+mwnF(wp)eiwpt

20,(1-il)?

L%
[1-ne(w})]eis!

Therefore the reading term to the viscosity due to Yukawa coupling is given by

.t d3p . d3p t 4m2 eBPm
2 . F Y F r_ ~ 2 It —2T(t' —t) YT
2f ¢Lodt (t t)f(zw)zlmsw(t DS, (1 —t,p)=2f ¢f (Zw)zﬁmdt (t'—t)e 7 BT (172

_64. fwd 3 eBPm _288 )T b=11 7T+
=3¢ . Dmpmm—?é( )Tp=11.2T ¢,
(A13)
where
mey .  wfT?m?
r=-"ir=— 3" (A14)

~ 64p3,
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