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Charged vacuum condensate near a superconducting cosmic string
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A charged superconducting cosmic string produces an extremely large electric field in its vicinity. This leads
to vacuum instability and to the formation of a charged vacuum condensate which screens the electric charge
of the string. We analyze the structure of this condensate using the Thomas-Fermi method.
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I. INTRODUCTION

Cosmic strings are linear defects that could be formed
phase transition in the early universe.~For a review see@1#.!
Witten @2# has shown that strings predicted in some gra
unified models behave as superconducting wires. S
strings moving through magnetized cosmic plasmas can
velop large currents and can give rise to a variety of as
physical effects. In particular, they have been suggeste
possible sources of ultrahigh energy cosmic rays@3#.

Currents developed by oscillating strings in a magne
field are not homogeneous along the strings because diffe
portions of the string cross the magnetic field lines in diff
ent directions. This results in charge accumulation, and p
tions of the string can develop a charge per unit lengthl
comparable to the current,l;J. ~Here and below we use
units in which\5c51.! The electric field near the string i
given by

E5
2l

r
. ~1!

It can become extremely strong in the immediate vicinity
the string, and then quantum effects, such as vaccum p
ization and pair production, must be taken into account. O
can expect that the created particles of charge opposit
that of the string will accumulate in bound states and form
condensate screening the electric field near the string to
low the critical value. It was noted earlier that such screen
would lead to a drastic modification of string electrodyna
ics @4# and would have a significant effect on the propagat
of high-energy particles emitted from the charged portions
the string@5#. The purpose of the present paper is to give
quantitative description of the screening condensate ne
charged superconducting string.

The superconducting current in the strings is carried
charged particles which acquire a massM at the string-
forming phase transition but remain massless inside
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strings. These massless charge carriers move along
strings at the speed of light. The string current is bounded
the critical value

Jc;eM, ~2!

at which the characteristic energy of the charge carriers
comes comparable toM, so that they have enough energy
jump out of the string. The massM is model-dependent bu
is limited by the string symmetry breaking scaleh, M&h.

In a cosmological setting, the string charges and curre
vary on astronomical time and length scales, and for
purposes we can regard them as constant. For a string
ment withJ,l, we can always find a Lorentz frame whe
J50. The electric field close to the string will then be we
approximated by that of an infinite straight string. We sh
consider, therefore, an infinite straight string with a const
charge per unit lengthl and vanishing current,J50. For
sufficiently largel, charged particles~for definiteness elec-
trons! have bound states localized near the string with ne
tive energies smaller than2m, wherem is the electron mass
The vacuum then becomes unstable with respect to pro
tion of electron-positron pairs. For a positively charg
string, positrons are repelled away, while electrons form
vacuum condensate surrounding the string. We shall de
mine the electric field and the charge distribution in th
condensate using the Thomas-Fermi method@6,7# in which
the condensate is approximately treated as an ideal gas o
ing the Fermi-Dirac statistics.

In the next section we shall review the derivation of t
relativistic Thomas-Fermi equation and specify the bound
conditions appropriate for the case of cylindrical symmet
Approximate analytic solutions of this equation are given
Sec. III, and its numerical solutions are presented in Sec.
The conclusions of the paper are summarized and discu
in Sec. V.

II. THOMAS-FERMI EQUATION

The density of electrons in a degenerate Fermi gas is
lated to the Fermi momentumpF by

ne~r !5
pF

3

3p2
. ~3!

The relativistic relation between the Fermi energyeF and
Fermi momentum is
©1999 The American Physical Society05-1
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pF5@„eF2V~r !…22m2#1/2, ~4!

where m is the electron mass,2e is its charge,V(r )5
2ew(r ) andw(r ) is the self-consistent electrostatic potent
for an electron, taking into account both the field of t
string and the average field produced by other electron
the condensate. The condensate is formed of electrons o
pying quantum states in the negative energy continuume
,2m. We therefore set the Fermi energy to beeF52m.
The electron density~3! is then given by

ne~r !5
1

3p2
@V2~r !12mV~r !#3/2. ~5!

Introducing the total charge densityrT which is com-
posed of the electron charge and external string charge,

rT5rs2ene ~6!

and using the Poisson equation

nV~r !54perT~r !, ~7!

we find a self-consistent non-linear differential equation

nV~r !524peF e

3p2
„V2~r !12mV~r !…3/22rs~r !G . ~8!

This equation has been used in@8,9# to study the electron
condensate around supercharged nuclei. In the case
string, the problem has cylindrical symmetry and

nV~r !5V9~r !1
1

r
V8~r !. ~9!

We shall approximate the string charge distribution a
uniform distribution in a cylinder of radiusd,

rs~r !5r0u~d2r !. ~10!

The linear charge density of the string is given byl
5pd2r0. The charge carriers are typically concentrated i
tube of radiusr;M 21; hence, we should haved;M 21.

It is easily seen from Eq.~5! that the density of electrons
ne(r ), is different from zero only in the region of spac
where V(r ),22m. Therefore, the condensate has a fin
radiusr 5Rc . For r .Rc , the solution of Eq.~8! is just the
usual logarithmic potential of a linear charge,

V~r !52el0 ln
r

R*
. ~11!

Here,l0 is the total charge per unit length of string, inclu
ing both the charge carriers in the core and the condens
andR* is the cutoff radius indicating the distance at whi
the approximation of an infinite straight string breaks dow
R* is given by the smallest of the following three leng
scales:~i! the typical distance between the strings in a cosm
string network, ~ii ! the characteristic curvature radius
string, ~iii ! the typical wavelength of the current-charge o
cillations along the string.

The boundary condition for Eq.~8! at r 50 is

V8~0!50, ~12!
08350
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while at r 5Rc we have

V~Rc!522m, V8~Rc!5
2

Rc ln~R* /Rc!
. ~13!

Note that we have three rather than two boundary conditio
as a second-order differential equation would normally
quire. The third condition is needed to determine the cond
sate radiusRc .

We expectRc to be microscopic, whileR* will typically
be astrophysically large. Hence, the logarithm in Eq.~13! is
ln(R* /Rc);102. In numerical calculations below we choos
R* so that ln(R* /Rc)'30; our results are not sensitive to th
choice.

The Thomas-Fermi approximation is adequate when
characteristic scale of variation of the condensate den
ne(r ) is large compared to the electron wavelength 1/p(r ).
The corresponding condition is

U d

dr F 1

p~r !GU!1. ~14!

We shall see that this condition is satisfied in most of
condensate region 0,r ,Rc , provided that the charge den
sity l is sufficiently large.

III. ANALYTIC APPROXIMATIONS

The Thomas-Fermi equation~8! can be solved analyti-
cally in the limit when the magnitude of the potentialV(r ) is
large, uV(r )u@2m. We can then neglect 2mV(r ) compared
to V2(r ), and outside the string core Eq.~8! reduces to

V9~r !1
1

r
V8~r !52

4e2

3p
uV~r !u3. ~15!

This has a solution

V~r !52C/r ~16!

with

C5~3p/4e2!1/2'18. ~17!

The corresponding electric field is

E~r !5C/er2. ~18!

We note that the solutions~16! and~18! do not depend on
the string charge densityl. As r decreases, the electric fiel
~18! grows faster than that of the vacuum solution~1!. It
cannot, therefore, be extended all the way to the string
has to be matched with Eq.~1! at some radiusRs below
which the vacuum solution takes over. The matching rad
at which the two electric fields become comparable is

Rs;C/el;200l21. ~19!

We shall call it the screening radius. Forr !Rs , the screen-
ing is unimportant and the electric field is given by Eq.~1!.
The screening radius is always large compared to the st
thicknessd;M 21, provided thatl is smaller than the criti-
cal value~2!,

l&eM. ~20!
5-2
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The potential corresponding to the vacuum solution~1! at
d,r !Rs is

V~r !522el@ ln~Rs /r !1B#, ~21!

where B;1 is a numerical constant. The potential at t
string core is thus

V~0!'22el ln~Rs /d!. ~22!

The conditionuV(r )u@m implies r !C/m, and thus the
solution ~18! is valid in the rangeC/el!r !C/m. This
range exists only ifl is sufficiently large,l@m/e. Com-
bined with the condition~20! this impliesM@m/e2. In mod-
els of astrophysical interest, the charge carrier massM is

FIG. 1. The electric fieldE in units of the critical fieldEc

5m2/e is shown as a function of the distance from the stringr for
l543103m and d51025m21 ~solid line!. Dotted lines indicate
the analytic approximations~1! and~18! in the appropriate regimes
The core radiusd, the screening radiusRs and the condensate ra
dius Rc are also indicated.

FIG. 2. The condensate radiusRc vs the core radiusd for l
5270m21.
08350
very large~so that the strings can develop large currents a
charges!, and this condition is satisfied with a large margi

At r;C/m, the potentialV(r ) becomes comparable to
2m signalling that we are close to the condensate bound
@see Eq.~13!#. Hence, we can estimate the condensate rad
as

Rc;C/m. ~23!

The condition of validity of the Thomas-Fermi approx
mation ~14!, when applied to the solution~16!, givesC@1.
This is satisfied with a reasonable accuracy@see Eq.~17!#.

IV. NUMERICAL CALCULATION

We obtained numerical solutions to the Thomas-Fe
equation for Eq.~8! for V(r ) with the boundary conditions
~12! and ~13! using the relaxation method. The resultin
electric field is plotted in Fig. 1, together with the analyt
approximations~1! and ~18!. The agreement between th
analytic and numerical solutions is excellent in the approp
ate ranges of the radiusr.

We have verified that the shape ofV(r ) outside the string
core is not sensitive to the value of the core radiusd. In
particular, the condensate radiusRc approaches a constan
value independent ofd ~see Fig. 2!. This is very fortunate,
since a realistic value of the core radius would be too sm
to resolve in our calculations. Figure 2 suggests that i
sufficient to choosed!m21. We usedd51023m21 in most
of the calculations described below.

The condensate radiusRc is plotted in Fig. 3, as a func
tion of the linear charge density of the string,l. We see that
at largel, Rc approaches a constant value,

Rc582m21, ~24!

in agreement with Eq.~23!. The screened linear charge de
sity of the stringl0, which determines the electric field ou
sideRc , is also found to be independent ofl:

l0'5.34em. ~25!

FIG. 3. The condensate radiusRc vs the linear charge density o
the string,l for d50.001m21.
5-3



ld
c

l

e
e

a

te
-

on,
nifi-

at

en-

-

ere
e

the
tric

-
. As
con-

-
n-
ing

s.
ns.
will
ese

An-
ro-
d in
gs.
ica-

fts
p-
e-

al

f

NASCIMENTO, CHO, AND VILENKIN PHYSICAL REVIEW D 60 083505
The electric field at the condensate boundary is

E052l0 /Rc'1021em2. ~26!

Note that this is considerably smaller than the critical fie
Ec5m2/e, which signals the onset of intensive pair produ
tion @10#. In our case,E0'1023Ec . We shall return to this
point later in Sec. V.

The effective linear charge densityle f f(r ) inside the con-
densate can be found as

le f f~r !52pE
0

r

r~r 8!r 8dr85
r

2e

dV

dr
~27!

where we have used Eq.~7!. As r grows,le f f(r ) decreases
and we can define the effective screening radiusRs as the
radius at which half of the string charge is screened,

le f f~Rs!5l/2. ~28!

At the boundary of the condensate we must havele f f(Rc)
5l0. The screening radiusRs is plotted in Fig. 4 for severa
values ofl. We see that, although the condensate radiusRc
is independent ofl, the screening radius gets smaller rath
rapidly asl is increased. A numerical fit to the data in th
Fig. 4 gives

Rs580l21, ~29!

in agreement with the order-of-magnitude estimate~19!.

V. SUMMARY AND DISCUSSION

We have found that a superconducting cosmic string h
ing a sufficiently large charge per unit length,l@m/e, is

FIG. 4. The screening radiusRs vs the linear charge density o
the stringl for d50.001m21.
r
e,
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surrounded by an electron condensate of radiusRc
;100m21, wherem is the electron mass. In the immedia
vicinity of the string, the effect of the condensate is unim
portant and the electric field is given by the vacuum soluti
E'2l/r . Screening due to the condensate becomes sig
cant atr;Rs;100l21, and forRs!r !Rc the electric field
has the formE'(3p)1/2/2e2r 2. Outside the condensate,
r .Rc , the field is given byE'em/r'1022em2(Rc /r ).

As we already mentioned, the electric field at the cond
sate boundary is well below the critical field,E0;1023Ec ,
whereEc5m2/e. The rate of pair production per unit vol
ume in a homogeneous electric field is@10#

dN/dVdt'~eE/p!2 exp~2pEc /E!, ~30!

which indicates that the outer parts of the condensate wh
E!Ec will be filled up very slowly. The characteristic tim
of pair production,t;(eE)21/2exp(pEc /E), is greater than
the age of the universe forE&43102Ec . For astrophysical
strings, we expect the condensate radius to be given by
distance from the string at which such values of the elec
field are reached. From Eq.~16! we find

Rc;
AC

20
m21'0.2m21. ~31!

As the charge density of the stringl is increased, the poten
tial near the string core becomes more and more negative
a result, particles more massive than electrons develop
densates. From Eq.~22!, particles of massm develop states
with e,2m at l;m/e ln(Rs/d);m. The condensates of dif
ferent particle species will have the form of coaxial cyli
ders, with condensates of more massive particles be
closer to the string.

Finally, we would like to mention some open question
In this paper we studied vacuum condensation of fermio
Charged Bose particles, such as Higgs and gauge bosons
also form vacuum condensates, and the properties of th
bosonic condensates may differ from the fermionic case.
other important problem is the nature of modifications int
duced by vacuum screening in string electrodynamics an
the propagation of charged particles emitted by the strin
We hope to return to some of these issues in future publ
tions.
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