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Charged vacuum condensate near a superconducting cosmic string
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A charged superconducting cosmic string produces an extremely large electric field in its vicinity. This leads
to vacuum instability and to the formation of a charged vacuum condensate which screens the electric charge
of the string. We analyze the structure of this condensate using the Thomas-Fermi method.
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PACS numbes): 98.80.Cq

[. INTRODUCTION strings. These massless charge carriers move along the
strings at the speed of light. The string current is bounded by
Cosmic strings are linear defects that could be formed at ¢he critical value
phase transition in the early univergEor a review se¢l].) J~eM @)
Witten [2] has shown that strings predicted in some grand ¢ '
unified models behave as superconducting wires. Sucht which the characteristic energy of the charge carriers be-
strings moving through magnetized cosmic plasmas can deomes comparable t@l, so that they have enough energy to
velop large currents and can give rise to a variety of astrojump out of the string. The madd is model-dependent but
physical effects. In particular, they have been suggested ds limited by the string symmetry breaking scaje M < 7.
possible sources of ultrahigh energy cosmic ri8js In a cosmological setting, the string charges and currents
Currents developed by oscillating strings in a magnetiocvary on astronomical time and length scales, and for our
field are not homogeneous along the strings because differeptirposes we can regard them as constant. For a string seg-
portions of the string cross the magnetic field lines in differ-ment withJ<\, we can always find a Lorentz frame where
ent directions. This results in charge accumulation, and pord=0. The electric field close to the string will then be well
tions of the string can develop a charge per unit length approximated by that of an infinite straight string. We shall
comparable to the currenk,~J. (Here and below we use consider, therefore, an infinite straight string with a constant
units in whichi=c=1.) The electric field near the string is charge per unit lengthh and vanishing current]=0. For
given by sufficiently large\, charged particlegfor definiteness elec-
trons have bound states localized near the string with nega-
2\ tive energies smaller thanm, wheremis the electron mass.
E=—. (1 The vacuum then becomes unstable with respect to produc-
tion of electron-positron pairs. For a positively charged
It can become extremely strong in the immediate vicinity Ofstrlng, positrons are repelled away, Wh".e electrons form a
the string, and then quantum effects, such as vaccum polavgcuum conden_satg surrounding the stnnlg. We_shalll det_er—
’ ' Fine the electric field and the charge distribution in this

ization and pair production, must be taken into account. On%ondensate using the Thomas-Fermi metf@d] in which

can expect that th_e created parpcles of charge opposite tt?le condensate is approximately treated as an ideal gas obey-
that of the string will accumulate in bound states and form dng the Fermi-Dirac statistics

condensate screening the electric field near the string to be- In the next section we shall review the derivation of the

low the critical value. It was noted earlier that such screening,, . itic Thomas-Fermi equation and specify the boundary

:’Zglfélg ;%dv\t,gu? ddrr]ZigCargiOdr:ﬂfgﬁnegfe(s:ttnor:]gtﬁéec:goiyn;g;]conditions appropriate for the case of cylindrical symmetry.
9 propag pproximate analytic solutions of this equation are given in

of high-energy particles emitted from the charged portions o ec. lll, and its numerical solutions are presented in Sec. IV.

the st_rlng[S]. The purpose of the pres_ent paperis to give 8The conclusions of the paper are summarized and discussed
guantitative description of the screening condensate neariﬁ Sec. V

charged superconducting string.

The superconducting current in the strings is carried by
charged particles which acquire a magsat the string-
forming phase transition but remain massless inside the The density of electrons in a degenerate Fermi gas is re-

lated to the Fermi momentum:- by

Il. THOMAS-FERMI EQUATION

*On leave from Departamento déska, Universidade Federal da pﬁ
Paraba, Caixa Postal 5008, 58051-970' dd2essoa, Pailza, Bra- (=273 )
zil. Electronic address: jroberto@cosmos2.phy.tufts.edu
"Electronic address: cho@cosmos2.phy.tufts.edu The relativistic relation between the Fermi energy and
*Electronic address: vilenkin@cosmos2.phy.tufts.edu Fermi momentum is

0556-2821/99/6(8)/08350%5)/$15.00 60 083505-1 ©1999 The American Physical Society



NASCIMENTO, CHO, AND VILENKIN

Pe=[(er—V(r))*~m?]*2 4
where m is the electron mass;-e is its charge,V(r)=

—ep(r) ande(r) is the self-consistent electrostatic potential
for an electron, taking into account both the field of the
string and the average field produced by other electrons
the condensate. The condensate is formed of electrons occ
pying quantum states in the negative energy continuem

<—m. We therefore set the Fermi energy to §e=—m.
The electron density3) is then given by

e() = = [V2(1r) + 2mVU(1) P2 (5)
37

Introducing the total charge densigy; which is com-
posed of the electron charge and external string charge,

PT=ps—€Ne (6)
and using the Poisson equation
AV(r)=4mep1(r), (7)

we find a self-consistent non-linear differential equation

e
AV(r)=—4me| — (VA(r)+2mV(r))¥=py(r)|. (8
37

This equation has been used[i,9] to study the electron

Q
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while atr =R, we have

V(R))=—-2m, V'(Ry)= (13

R.IN(R, /Ry)
gote that we have three rather than two boundary conditions,
s a second-order differential equation would normally re-
Hﬁire. The third condition is needed to determine the conden-

' sate radiuRR. .

We expectR. to be microscopic, whil&R, will typically
be astrophysically large. Hence, the logarithm in Ecp) is
In(R, /R)~10%. In numerical calculations below we choose
R, so that InR, /R.)~30; our results are not sensitive to this
choice.

The Thomas-Fermi approximation is adequate when the
characteristic scale of variation of the condensate density
ne(r) is large compared to the electron wavelength(f).

The corresponding condition is

d

— <1.
dr s

(14)

5
p(r)
We shall see that this condition is satisfied in most of the

condensate region<0r <R., provided that the charge den-
sity A is sufficiently large.

IIl. ANALYTIC APPROXIMATIONS

condensate around supercharged nuclei. In the case of a The Thomas-Fermi equatiof8) can be solved analyti-

string, the problem has cylindrical symmetry and

AV(r)=V"(r)+%V’(r). 9

We shall approximate the string charge distribution as a

uniform distribution in a cylinder of radius,
ps(r)=pof(5—r). (10
The linear charge density of the string is given hy

=m&%p,. The charge carriers are typically concentrated in V!

tube of radiug ~M ~1; hence, we should havé~M ~1.

It is easily seen from E(5) that the density of electrons,

cally in the limit when the magnitude of the potentigr) is
large, |V(r)|>2m. We can then neglectr2V(r) compared
to V2(r), and outside the string core E@) reduces to

2

ne(r), is different from zero only in the region of space The corresponding electric field is

where V(r)<—2m. Therefore, the condensate has a finite

radiusr =R.. Forr>R., the solution of Eq(8) is just the
usual logarithmic potential of a linear charge,

r
V(r)=2e\qIn=—. (11
Ry

V”(r)+EV’(r)=—Ai|V(r)|3- (15
r 37
This has a solution
V(r)=—Clr (16)
ith
C=(3ml4e?)1?~18. (17
E(r)=Cler?. (18

We note that the solutiond6) and(18) do not depend on
the string charge density. Asr decreases, the electric field
(18) grows faster than that of the vacuum solutic). It
cannot, therefore, be extended all the way to the string but

Here,\, is the total charge per unit length of string, includ- has to be matched with Eql) at some radiuRs below
ing both the charge carriers in the core and the condensat@hich the vacuum solution takes over. The matching radius
andR, is the cutoff radius indicating the distance at which at which the two electric fields become comparable is

the approximation of an infinite straight string breaks down.
R, is given by the smallest of the following three length

Rs~C/en~200n 1. (19

scalesii) the typical distance between the strings in a cosmidVe shall call it the screening radius. FokRg, the screen-
string network, (ii) the characteristic curvature radius of ing is unimportant and the electric field is given by Ed).
string, (i ) the typical wavelength of the current-charge os-The screening radius is always large compared to the string

cillations along the string.
The boundary condition for Eq8) atr=0 is

V'(0)=0, (12

thicknessé~M 1, provided thaix is smaller than the criti-

cal value(2),

A=eM. (20)
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FIG. 1. The electric fieldE in units of the critical fieldE,
=m?/e is shown as a function of the distance from the strirfgr
A=4X10°m and §=10"°m™! (solid line). Dotted lines indicate
the analytic approximationd) and(18) in the appropriate regimes.
The core radius, the screening radiuBg and the condensate ra-
dius R, are also indicated.

The potential corresponding to the vacuum solutibnat
6<r<Rgis

V(r)=—2e\[In(Rs/r)+B], (21

where B~1 is a numerical constant. The potential at the

string core is thus

V(0)~—2e\ In(Rs/6). (22
The condition|V(r)|>m implies r<C/m, and thus the
solution (18) is valid in the rangeC/ex<r<C/m. This
range exists only ifx is sufficiently large,A>m/e. Com-
bined with the conditiori20) this impliesM>m/e?. In mod-
els of astrophysical interest, the charge carrier méss
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FIG. 2. The condensate radil&, vs the core radiusgs for A

=270m~ L.
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FIG. 3. The condensate radiRs vs the linear charge density of
the string,\ for 6=0.00Im™ 1,

very large(so that the strings can develop large currents and
charge§ and this condition is satisfied with a large margin.

At r~C/m, the potentialV(r) becomes comparable to
—m signalling that we are close to the condensate boundary
[see Eq(13)]. Hence, we can estimate the condensate radius
as

R.~C/m. (23)

The condition of validity of the Thomas-Fermi approxi-
mation (14), when applied to the solutiofl6), givesC>1.
This is satisfied with a reasonable accurgsge Eq.(17)].

IV. NUMERICAL CALCULATION

We obtained numerical solutions to the Thomas-Fermi
equation for Eq(8) for V(r) with the boundary conditions
(12) and (13) using the relaxation method. The resulting
electric field is plotted in Fig. 1, together with the analytic
approximations(1) and (18). The agreement between the
analytic and numerical solutions is excellent in the appropri-
ate ranges of the radius

We have verified that the shape\ér) outside the string
core is not sensitive to the value of the core radfusin
particular, the condensate radiBs approaches a constant
value independent of (see Fig. 2 This is very fortunate,
since a realistic value of the core radius would be too small
to resolve in our calculations. Figure 2 suggests that it is
sufficient to choos&<m™*. We usedd=103m™! in most
of the calculations described below.

The condensate radilg, is plotted in Fig. 3, as a func-
tion of the linear charge density of the string, We see that
at large\, R, approaches a constant value,

R.=82m™ 1, (24)

in agreement with E¢(23). The screened linear charge den-
sity of the string\ o, which determines the electric field out-
sideR., is also found to be independent »f

No~5.3%em (25)
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FIG. 4. The screening radiu’ vs the linear charge density of

the string\ for §=0.001m™ 2.

The electric field at the condensate boundary is

Eo=2\o/R.,~10 len?.

point later in Sec. V.

The effective linear charge density¢:(r) inside the con-

densate can be found as

10*

r dv

r
)\eff(r)ZZﬂ'JOP(r rdr'=ooar

where we have used E{7). Asr grows,\¢s(r) decreases
and we can define the effective screening radiysas the
radius at which half of the string charge is screened,

(28)

At the boundary of the condensate we must hayg(R.)
=\o. The screening radiug; is plotted in Fig. 4 for several
values ofA. We see that, although the condensate raBius

Neff(Rs) =N/2.

10

5

(26)

Note that this is considerably smaller than the critical field,
E.=m?/e, which signals the onset of intensive pair produc-
tion [10]. In our caseF,~10 3E.. We shall return to this

(27)
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surrounded by an electron condensate of radRs
~100m~ 1, wherem is the electron mass. In the immediate
vicinity of the string, the effect of the condensate is unim-
portant and the electric field is given by the vacuum solution,
E~2\/r. Screening due to the condensate becomes signifi-
cant atr ~Rg~ 100\ "1, and forRs<r <R, the electric field
has the formE~(3)Y%2e?r?. Outside the condensate, at
r>R., the field is given byE~em/r~10 2enm?(R./r).

As we already mentioned, the electric field at the conden-
sate boundary is well below the critical fielH,~10 °E,,
where E,=m?/e. The rate of pair production per unit vol-
ume in a homogeneous electric field[ 0]

dN/dVdt=(eE/m)? exp — wE./E), (30)

which indicates that the outer parts of the condensate where
E<E. will be filled up very slowly. The characteristic time

of pair production, 7~ (eE) " *2exp(rE./E), is greater than

the age of the universe f@=<4x 10°E,. For astrophysical
strings, we expect the condensate radius to be given by the
distance from the string at which such values of the electric
field are reached. From E¢L6) we find

R Vc “i~0.2m7!
C~Em ~U. .
As the charge density of the stringis increased, the poten-
tial near the string core becomes more and more negative. As
a result, particles more massive than electrons develop con-
densates. From E@22), particles of massg develop states
with e<—u atA~ u/eln(Ry/8)~u. The condensates of dif-
ferent particle species will have the form of coaxial cylin-
ders, with condensates of more massive particles being
closer to the string.
Finally, we would like to mention some open questions.
In this paper we studied vacuum condensation of fermions.
Charged Bose particles, such as Higgs and gauge bosons will
also form vacuum condensates, and the properties of these
bosonic condensates may differ from the fermionic case. An-
other important problem is the nature of modifications intro-
duced by vacuum screening in string electrodynamics and in
the propagation of charged particles emitted by the strings.

(31)

is independent ok, the screening radius gets smaller ratherye hope to return to some of these issues in future publica-
rapidly as\ is increased. A numerical fit to the data in the tjgns.

Fig. 4 gives
Rs=80\ "1,

in agreement with the order-of-magnitude estim@i®.

V. SUMMARY AND DISCUSSION

(29
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