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Cosmic microwave background anisotropy from wiggly strings

Levon Pogosian and Tanmay Vachaspati
Physics Department, Case Western Reserve University, Cleveland, Ohio 44106-7079

~Received 25 March 1999; published 8 September 1999!

We investigate the effect of wiggly cosmic strings on the cosmic microwave background radiation anisot-
ropy and matter power spectrum by modifying the string network model used by Albrechtet al. We employ
the wiggly equation of state for strings and the one-scale model for the cosmological evolution of certain
network characteristics. For the same choice of simulation parameters we compare the results with and without
including wiggliness in the model and find that wiggliness together with the accompanying low string veloci-
ties leads to a significant peak in the microwave background anisotropy and to an enhancement in the matter
power spectrum. For the cosmologies we have investigated~standard CDM and CDM plus a cosmological
constant!, and within the limitations of our modeling of the string network, the anisotropy is in reasonable
agreement with current observations but the COBE normalized amplitude of density perturbations is lower than
what the data suggest. In the case of a cosmological constant and CDM model, a bias factor of about 2 is
required.@S0556-2821~99!05518-6#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

The origin of the large-scale structure of the Universe
been a focus of active research for the last few decades a
still one of the major unresolved problems in cosmolog
Measurements of the anisotropy in the cosmic microw
background radiation~CMBR! have inspired hope that dif
ferent theories of structure formation can be tested obse
tionally. Quantum fluctuations in inflationary models and
pological defects are two important sources of dens
inhomogeneities that would have different imprints on t
CMBR and which one could hope to distinguish.

Cosmic strings are a special variety of topological defe
that have been studied in the context of seeding large-s
structure. Rapid progress on both observational and theo
ical issues has resulted in more accurate estimates of
CMBR anisotropy due to strings@1–6#. The existence of
publicly available computer codes@7# that can determine the
anisotropy for given matter energy-momentum tensors
greatly facilitated the study of mechanisms that can sou
the CMBR anisotropy.

The major hurdle in calculating the effect of strings on t
CMBR is that there is no simple way to characterize
network of strings. Large scale computer simulations h
provided insight into some of the properties of the netwo
@8# within some choice of background cosmologies. Ho
ever, there are still unknown characteristics that could
important for predictions of the CMBR anisotropy and t
large-scale power spectrum. As a result, certain extrap
tions have to be made to characterize the string networ
the regime where details are not yet available. This ‘‘netw
modeling’’ is the crucial aspect of analyzing the observa
signatures of cosmic strings.

Over the last decade or so, a number of approaches
been taken to determine the detailed imprint of cosm
strings on the CMBR. The first attempt in this directio
worked directly with the network of strings found in com
puter simulations@9#. Recently, this numerical analysis ha
been refined and extended@10#. The drawback in any such
0556-2821/99/60~8!/083504~10!/$15.00 60 0835
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numerical attempt is that the dynamic range of the simu
tions cannot yet extend to cover a cosmic expansion facto
at least 104. It appears that some network modeling is ess
tial as was first attempted in@11#. In recent work@4# the
CMBR anisotropy was calculated using the results of a
tice simulation of a string network in a flat spacetime bac
ground. Another approach, first suggested in@12# and further
developed in@2,3#, approximates the string network by
collection of randomly oriented straight string segmen
moving with random velocities. This model has the merit
being relatively simple and amenable to modifications t
seem to be indicated by direct simulations. Hence, we h
adopted this model and, for the first time, included sma
scale structure on the string segments. Furthermore, we
modeled the parameters of the segments~length, velocity,
wiggliness! by using the ‘‘one-scale model’’ of cosmic strin
networks@13,14# and some reasonable expectations of h
the strings would behave in an inflating background.

The most important feature that we have taken into
count in modeling the string network is the presence
small-scale structure on the strings. The scale of the wigg
is much smaller than the characteristic length of the string
fact, a distant observer will not be able to resolve the det
of the wiggly structure. Instead, she would see a smo
string, but the string would possess somewhat different ch
acteristics. For a string with no wiggles, the equation of st
is m5T5m0, wherem is the effective mass per unit lengt
andT is the tension of the string. A wiggly string, howeve
has a different effective equation of state@15,16#:

mT5m0
2 , m.T.

The wiggly string is heavier and slower than a Nambu-G
string.

The perturbation in the metric produced by a wigg
string is similar to that of a smooth string. As was shown
@17#, in both cases, the space in the vicinity of a straig
segment of a string is conical with a deficit angleD
58pGm. The deficit angle is larger for wiggly strings, sinc
©1999 The American Physical Society04-1
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LEVON POGOSIAN AND TANMAY VACHASPATI PHYSICAL REVIEW D 60 083504
they have a larger effective mass per unit length. Howeve
new important feature of the wiggly string metric is a no
zero Newtonian potentialf}(m2T). ~So the wiggly string
behaves as a superposition of a massive rod and a string
a conical deficit!. As a result, massive particles will exper
ence a new attractive forceF}(m2T)/vs , wherevs is the
string velocity @17#. At the same time, the propagation
photons in a plane perpendicular to the string is unaffec
by the rod-like feature of the wiggly string metric and is on
affected by the conical deficit. This fact—that the effect
wiggliness on massive particles is qualitatively differe
from the effect on radiation—seems especially relevant w
calculating CMBR anisotropy and the power spectrum
may be hoped that this feature could help alleviate the c
rent difficulties in reconciling the Cosmic Background E
plorer ~COBE! normalized matter power spectrum with th
observational data in the cosmic string model.

It should be pointed out that the model we have adop
cannot be the final word since a number of factors have
not been taken into account. In the network itself, the infin
strings will produce loops which will then decay by emittin
gravitational radiation. The effect of the loops is only i
cluded insofar that they can be treated as segments of str
In other words, large loops are included in our analysis
small loops have been missed. Also, the decay of loops
gravitational radiation has been missed. The back reactio
gravitational radiation on the string segments is comple
neglected. We hope to rectify some of these omissions
further modeling of the network in subsequent work.

In the following sections we use the model developed
Ref. @2# to calculate the CMBR anisotropy and the mat
power spectrum due to cosmic strings in a few cosmolog
The energy-momentum tensor that we use is that of wig
strings, as we describe in the next section. In addition,
characteristics of the string network~velocity and correlation
length! are computed using the one-scale model describe
Sec. III. There are some further assumptions that we hav
make about the string network that we also describe in
section. Our results for the CMBR anisotropy and the pow
spectrum in density inhomogeneities for a few different c
mologies are given in Sec. IV. Here we also discuss
model dependence of our results. Our conclusions are s
marized in Sec. V.

II. WIGGLY STRINGS

The world history of a string can be represented by
two-dimensional surface in spacetime,

xm5xm~za!, a50,1,

called the string world sheet, wherez0 andz1 are the coor-
dinates on the world sheet.

We consider strings that reside in an expanding unive
described by the metric

ds25a2~t!~dt22dx2!,
08350
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wheret is the conformal time. The string equations of m
tion are invariant under reparametrization of the string wo
sheet. A convenient choice of the parametrization~gauge! is

z05t, x8• ẋ50,

where the prime denotes a derivative with respect toz1. In
this gauge the energy-momentum tensor of a string is

Tmn~y!5
m

A2g
E d2z~e ẋmẋn2e21x8mx8n!d (4)

„y2x~z!…,

~1!

wheres5z1 and

e5A x82

12 ẋ2
. ~2!

Following Carter@15# we can define the string tensionT
and the string mass-energy per unit lengthU by

A2gTmn~y!5E d2zA2g~Uumun2Tvmvn!d (4)
„y2x~z!…,

~3!

whereum andvm are such that

umum52vmvm51, umvm50, ~4!

~umvr2vmur!~urvn2vrun!5hn
m , ~5!

hmn5gabx,a
m x,b

n , ~6!

andgab is the world sheet metric. One can check that

um5
Ae ẋm

~2g!1/4
, vm5

x8m

Ae~2g!1/4
~7!

satisfy the conditions~4!–~6!. Substituting Eqs.~7! into Eq.
~1! and comparing with Eq.~3! one obtains

U5T5m, ~8!

which is the equation of state for an ordinary~‘‘intrinsically
isotropic’’ @15#! Nambu-Goto string@18#.

Lattice simulations of string formation and evolution su
gest that strings are not straight but have wiggles@8#. A
distant observer, however, would not be able to resolve
small-scale structure. Instead, he would see a smooth s
with the effective mass per unit lengthŨ and the tensionT̃.
The equation of state for a wiggly string averaged over
small-scale structure has been shown@15,16# to be

ŨT̃5m2 ~9!
4-2
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or

Ũ5am, T̃5m/a, ~10!

wherea5a(s,t) is, in general, some function of time an
the coordinate along the length of the smoothed string.
energy-momentum tensor of a wiggly string viewed by
observer who cannot resolve the wiggly structure is then
tained by substituting Eqs.~10! into Eq. ~3!:

T̃mn~y!5
1

A2g
E d2z

A2g
~Ũumun2T̃vmvn!d (4)

„y2x~z!…

5
m

A2g
E d2zF ea ẋmẋn2

x8mx8n

ea
Gd (4)

„y2x~s,t!….

Next, we use this expression to calculate the stress-en
of a string network.

III. STRING NETWORK

A. Parameters of the network

The string network at any time can be characterized b
single length scale, the correlation lengthL, defined by

r5
m

L2
, ~11!

wherer is the energy density in the string network. It will b
convenient to work with the comoving correlation lengthl
5L/a.

The expansion stretches the strings, thus increasing
energy density. At the same time, long strings reconnn
and chop off loops which later decay. The evolution ol
including only these two competing processes is@13,14,19#

dl

dt
5

ȧ

a
lv21

1

2
c̃v ~12!

dv
dt

5~12v2!S k̃

l
22

ȧ

a
v D , ~13!

wherev is the rms string velocity,c̃ is the loop chopping
efficiency andk̃ is the effective curvature of the strings. Th
values ofc̃ and k̃ in radiation and matter eras are sugges
in @19#. We use the same scheme as in Ref.@3# to interpolate
between these values through the radiation-matter transi

c̃~t!5
cr1gacm

11ga

k̃~t!5
kr1gakm

11ga
,
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where we takecr50.23, cm50.18, kr50.17, km50.49, g
5300 anda(t) is normalized so thata51 today.1

B. Model of the network

Here we closely follow the model described in@2,3#.
The basic picture is that the string network is represen

by a collection of uncorrelated, straight string segments m
ing with random, uncorrelated velocities. All the segme
are assumed to be produced at some early epoch. At e
subsequent epoch, a certain fraction of the number of s
ments decay in a way that maintains network scaling. T
picture of the network is depicted in Fig. 1.

The comoving length,l, of each segment at any time
taken to be equal to the correlation length of the netw
defined below Eq.~11!. The positions of the segments a
drawn from a uniform distribution in space and their orie
tations are chosen from a uniform distribution on a tw
sphere. The segment speeds are fixed to be given by
solution of Eq.~13! while the direction of the velocity is
taken to be uniformly distributed in the plane perpendicu
to the string orientation.2 In principle, this constraint on the
velocity does not remain valid when the strings are wigg
since the wiggles can impart a longitudinal velocity to t
segments. However, as explained below, the longitudinal
locities are expected to be much smaller than the transv
velocities and hence will be neglected.

1This choice of the value ofg along with our normalization fora
leads to the same time dependence ofv andl as in@3#. Normalizing
a so thata51 at equality would require a much smaller value, e
g;0.1, as reported in@3#.

2We have also performed a few simulations where we drew
velocities from a Gaussian distribution as in Ref.@2#, but these did
not lead to significantly different results.

FIG. 1. A schematic picture of the string network model. A
string segments~depicted by solid circles! are born at an early ep
och and then decay at various later times. The segments are la
by the indexm and the decay times are shown as numbers along
t axis. In certain cosmologies, it is possible that some string s
ments never decay.
4-3
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LEVON POGOSIAN AND TANMAY VACHASPATI PHYSICAL REVIEW D 60 083504
The decay of segments of the string network is acco
plished by ‘‘turning off’’ the energy-momentum of a fractio
of the existing segments at every epoch. Each segme
assigned a certain decay time,tm , where the indexm labels
the individual segments. So the Fourier transform of the to
stress-energy of the network is the sum over the str
energies of all segments:

Qmn~kW ,t!5 (
m51

N0

Qmn
m ~kW ,t!Toff~t,tm!, ~14!

whereN0 is the initial number of segments, andToff(t,tm) is
a smooth function that turns off themth string segment by
time tm .3 The functional form is taken to be@2#

Toff~t,tm!5H 1 . . .t,Ltm ,

1
2 1 1

4 ~x323x! . . . Ltm,t,tm ,

0 . . .t.tm ,
~15!

where

x52
ln~Ltm /t!

ln~L !
21 ~16!

andL,1 is a parameter that controls how fast the segme
decay.

The total energy of the string network in a volumeV at
any time is

NmL5Vr5
mV

L2
~17!

whereN5N(t) is the total number of string segments at th
time, V5V0a3, a51 at the present epoch andV0 is a con-
stant simulation volume. From Eq.~17! it follows that

N5
V

L3
5

V0

l 3
. ~18!

The comoving lengthl is approximately proportional to
the conformal timet and implies that the number of string
N(t) within the simulation volumeV0 falls ast23. To cal-
culate the CMB anisotropy we need to evolve the string n
work over at least four orders of magnitude in cosmic exp
sion. Hence we would have to start withN*1012 string
segments in order to have one segment left at the pre
time. This is the main problem in directly dealing with th
expression for the energy-momentum tensor in Eq.~14!.

A way around this difficulty was suggested in Ref.@2#.
The suggestion is to consolidate all string segments that

3In addition, Albrechtet al. introduce a functionTon which turns
on the segments at a very early time. This function is not a fea
of the model but only introduced to speed up the code. We have
includedTon in our simulations.
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cay at the same epoch. Since the number of segments
decay at the~discretized! conformal timet i is

Nd~t i !5V@n~t i 21!2n~t i !# ~19!

wheren(t) is the number density of strings at timet, the
‘‘consolidated string’’ decaying att i is taken to have weight
ANd(t i). ~The assumption is that string segments that de
at the same time act randomly, leading to the square roo
the weight!. The number of consolidated strings is of th
order of a few hundred and can be dealt w
computationally.4 This modified picture of the string networ
is shown in Fig. 2.

Now we can choosetn to be equally spaced on a loga
rithmic scale betweentmin and tmax and write the energy-
momentum tensor as

Qmn~kW ,t!5(
i 51

K

@Nd~t i !#
1/2Qmn

i ~kW ,t!Toff~t,t i !1Tmn

~20!

whereK is the number of consolidated segments andTmn is a
remainder that we have included and that we now expla

The sum in Eq.~20! misses any string segments that ha
not decayed bytmax. The remainderTmn is supposed to rep
resent the contribution of these segments of strings. As in

re
ot

4In addition to consolidating the string segments decaying a
given time into a single ‘‘consolidated string’’ we have also trie
consolidating them into two, three and four strings. This did n
lead to any difference in the final results.

FIG. 2. The modified model of the string network. All string
that decay at the same~discretized! time in Fig. 1 are consolidated
into one string segment and assigned a weight that is the square
of the number of segments that the consolidated segment repres
This works for all segments that decay by the end of the simula
but will miss those segments that do not decay. In the pres
scheme, the segments that will not have decayed by the end o
simulation are consolidated into one string. The contribution of t
surviving segment is the remainder term in the expression for
energy-momentum tensor in Eq.~20!.
4-4
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COSMIC MICROWAVE BACKGROUND ANISOTROPY FROM . . . PHYSICAL REVIEW D60 083504
case of the decaying strings, we will consolidate these
viving segments into one segment with the weig
AVn(tmax). Therefore

Tmn5AVn~tmax! Qmn
(1)~kW ,t! ~21!

where the superscript onQ means that it is the energy
momentum tensor for one string segment.

For certain cosmologies—those without a cosmologi
constant—the remainder term can be made arbitrarily sm
by choosing a large enoughtmax. This is becausen(t)
} l (t)23, wherel (t);t is the comoving correlation length
and hencen(t)→0 ast→`. However, if the cosmologica
constant is non-zero, the universe enters an inflationary
och and the range of the conformal time is finite,t
P@0,t`#, and given by

t`5E
0

t`
dt5E

0

` dt

a~ t !
.

In this model, the number density of string segments
assumed to only depend on the correlation length asn(t)
} l (t)23. However, the decay of string segments as
scribed by the functionToff prevents this relationship from
being exact. Instead we have

n~t!5
C~t!

l ~t!3 .

The functionC(t) is determined by requiring that the tot
number of strings at any time be still given byV/ l (t)3.
Therefore

1

l ~t!3 5(
i 51

K

@n~t i 21!2n~t i !#T
off~t,t i !1n~tmax!,

and l (t) is determined from the one-scale model@Eq. ~12!#.
@Note thatC(t) is contained inn(t)]. It is reassuring to see
that the functionC(t) that we obtain from our code is near
constant and of order unity throughout the simulation.

The Fourier transform of the energy-momentum tenso
an individual string segment is

Qmn~kW ,t!5E d3xeikW•xWQmn

5mE
2 l /2

l /2

dseikW•XW

3S eaẊmẊn2
1

ea
X8mX8nD ~22!

whereXm(s,t) are the coordinates of the segment:

X05t, XW 5xW01sX̂81vt X̂̇, ~23!

wherexW0 is the random location of the center of mass,X̂8

and X̂̇ are randomly oriented unit vectors satisfyingX̂8• X̂̇
50 andv is the velocity of the string.
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The random location vectors,xW0, appear only in the dot
productxW0•kW . Instead of generatingxW0 at random, Albrecht
et al. generatexW0•kW for each segment as a random numb
from @0,2p#. We have also followed this scheme.5

As mentioned earlier, we will be ignoring the longitudin

velocities of the segments. This is the constraintX̂8• X̂̇50
that we have imposed. The justification is that there are
the order of 104 left- and right-moving wiggles on a segme
of string, each traveling with a velocity of about the speed
light. The average momentum of this ‘‘gas’’ of wiggles wi
be zero but there can be fluctuations which will lead to
velocity ;1/A104. Such longitudinal velocities are insignifi
cant compared to the transverse velocity expected to
;0.1.

The differential equations which describe the met
perturbations produced byQmn(kW ,t) do not depened on the
direction ofkW . Therefore, without any loss of generality w
will assumekW5 k̂3k in Eq. ~22!.

Substituting Eqs.~23! into Eq. ~22!, integrating overs
and taking the real part gives

Q005
ma

A12v2

sin~kX̂38l /2!

kX̂38/2
cos~kW•xW01kX̂̇3vt!, ~24!

Q i j 5Fv2X̂̇i X̂̇ j2
~12v2!

a2
X̂i8X̂j8GQ00. ~25!

Q0i can be found from the covariant conservation equati
¹mQmn50. Here we have assumed that the entire string
ergy is in long strings. The conservation is violated if o
includes the energy in loops and the gravitational radiati
A detailed discussion of this issue can be found in@4#.

C. Evolution of parameters

The evolution of the velocity,v, with time is found by
solving Eqs.~12! and ~13! with a range of possible initia
conditions. In Fig. 3 we show the evolution of the strin
velocity for the initial conditions: l (tmin)50.13tmin ,
v0(tmin)50.65 for two different cosmological models. Sim
larly we show the behavior ofl (t)/t as a function oft in
Fig. 4.

The values of the ‘‘wiggliness’’ parametera have been
estimated@8# in the radiation and matter eras to bea r.1.9
andam.1.5 respectively. In the case of a non-zero cosm
logical constant, the exponential expansion of the Unive
will stretch and smooth out the wiggles, so thata→1 in the
L-dominated epoch. A function that fits the expected evo
tion of a is ~Fig. 5!

5In ongoing work, one improvement of the model that we a

investigating is a scheme in which we choosekminxW0•k̂ at random in
the interval@0,2p# and then multiply byk/kmin wherekmin is the
smallest wave vector considered in the simulation.
4-5
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a~t!511
~a r21!a

tȧ
. ~26!

We shall assume this behavior ofa in the next section.
Next, we use the expression for the string stress-energ

calculate the radiation and matter perturbation spectra
present time.

FIG. 3. The velocity of stringsv as a function of the conforma
time for Vbaryons50.05, VCDM50.95, VL50 ~dotted line! and
Vbaryons50.05, VCDM50.25, VL50.7 ~solid line!.

FIG. 4. The length of string segments,l (t), divided byt as a
function of t for Vbaryons50.05, VCDM50.95, VL50 ~dotted
line! andVbaryons50.05, VCDM50.25, VL50.7 ~solid line!.
08350
to
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IV. RESULTS

We calculate the CMB anisotropy using the line of sig
integration approach@7# implemented in the publicly avail-
able codeCMBFAST. Given Qmn for eachk andt, CMBFAST

integrates the Einstein equations simultaneously with
Boltzmann equations for all radiation and matter partic
present in the model. Two factors that have not been
cluded in our analysis are~1! compensation of string inho
mogeneities by perturbations in the matter fluids and~2!
small loops of string. The first factor was considered in R
@2# which we are closely following. However, it was foun
there that the effects of compensation do not significan
alter the predictions of anisotropy and power spectrum. I
possible that the second factor is important. At the mome
we do not have a good model for including loops in o
analysis as there is not much information available in
literature on which to build such a model. The inclusion
loops in the model is a problem that we postpone for
future, though the slow decay of string segments descri
below may mimic the presence of loops to some extent.

The CMBR anisotropy as seen by an observer can
described byD(x,n̂,t0)[uT(x,n̂,t0)2T̄u/T̄, wherex is the
position of the observer,n̂ is the line of sight direction,t0 is
the conformal time today andT̄ is the average temperature o
CMBR. At x50 one can decomposeD into spherical har-
monics

D~ n̂!5(
lm

almYlm~ n̂!. ~27!

The angular power spectrumCl is defined by

FIG. 5. The wigglinessa as a function of the conformal time fo
Vbaryons50.05, VCDM50.95, VL50 ~dotted line! and Vbaryons

50.05, VCDM50.25, VL50.7 ~solid line!.
4-6
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Cl[
1

2l 11 (
m52 l

l

^alm* alm&, ~28!

where ^& denotes an ensemble average. A self-consis
treatment of the line of sight method and the complete se
the equations are given in@20#. The output ofCMBFAST is the
COBE normalized angular power spectrum of temperat
anisotropy and the power spectra of each of the matter
cies that is present.

In its current versionCMBFAST calculates perturbation
from scalar and tensor sources. Since strings may gener
significant vector component, we had to add the vector p
to the code.6

Our results for the anisotropy and power spectrum
averages overM different realizations of a random networ
of strings. In the limit of largeM, each quantity that we
calculate will have an associated probability distribution. F
example, for eachl the distribution ofCl will approach some
probability function with meanC̄l and standard deviation
s l . For the averaged result,C̄l , the standard deviation i
s l /AM . Performing a large number of experiments on
computer allows us to findC̄l ands l quite accurately. How-
ever, an observer~e.g. COBE! trying to determineC̄l would
only be able to average over (2l 11) causally disconnecte
patches on the sky. Therefore, the accuracy in determin
C̄l observationally iss l /A2l 11. We take this limitation
~known as ‘‘cosmic variance’’! into account when plotting
the 1s-error bars on our graphs.

Our results were found by averaging overM5300 string
network realizations; however, 100 runs would be enough
reproduce most of our results. The simulation with 100 ru
took about 10 h to run on a single processor IBM 590 wo
station and about 5 h on 10processors of the J90 cluster
the National Energy Research Scientific Computing Cen

We work only with a flat universe with and without
cosmological constant. We consider two cases (Vbaryons
50.05, VCDM50.95, VL50) and (Vbaryons50.05, VCDM
50.25, VL50.7). The first case is what until recently wa
known as the standard CDM model. The second is motiva
by the recent supernova data that suggestVL50.7 and a flat
universe. The value of the Hubble constant in both cases
taken to beH0550 km sec21 Mpc21.

In Fig. 6 we show the effect that wiggliness has onCl ’s
for the case whenVL50 along with the compiled experi
mental data@21#. The matter power spectrum for the sam
set of paramters is shown in Fig. 7 together with the d
from surveys of galaxies and clusters of galaxies@22#. Add-
ing wiggliness results in a higher peak atl'400. However, it
does not improve the shape or the magnitude of the ma
power spectrum which appears to be in disagreement
data. The COBE normalization allows us to determine
string mass per unit length. We obtain thatGm0

6Our code can be downloaded from the website htt
theory4.phys.cwru.edu/; levon.
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51.131026 for wiggly strings andGm051.531026 for
smooth strings.

Allowing for a non-zero cosmological constant improv
the agreement with the data. In Fig. 8 and Fig. 9 we plot
results of the simulation withVL50.7. The peak in the
CMBR anisotropy is now higher compared to theVL50
case. The power spectrum in Fig. 9 includes the factor

/

FIG. 6. The total angular power spectrum with~solid line! and
without ~dashed line! including the wiggliness whenVbaryons

50.05, VCDM50.95, VL50 andv050.65. The compiled obser
vational data are plotted for comparison.

FIG. 7. The matter power spectrum for the same choice of
rameters as in Fig. 6. The data extracted from surveys of gala
and clusters of galaxies are plotted for comparison.
4-7
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Vmatter
0.3 necessary for correct comparison with data@22#. Al-

though the magnitude is significantly lower than the data,
shape of the matter power spectrum is improved. The w
gliness results in a higher peak inCl ’s and a slight increase
in the magnitude of matter power spectrum at smaller len
scales. The string mass per unit length obtained from CO
normalization is practically the same as inVL50 case.

There is evidence from simulations@8# that the large scale
string velocities are much smaller than those plotted in F

FIG. 8. The total angular power spectrum for wiggly~solid line!
and smooth~dashed line! strings whenVbaryons50.05, VCDM

50.25, VL50.7 andv050.65.

FIG. 9. The matter power spectrum for the same choice of
rameters as in Fig. 8.
08350
e
-

th
E

.

3. Also, wiggly strings must be heavier and slower th
smooth strings because of the different equation of state.
have modified the parameterscr , cm , kr andkm of the one-
scale model in such a way that the rms velocity is 0.12 in
radiation era and 0.1 in the matter era. In Fig. 10 and Fig.
we plot the results of using smaller velocities. We see
significant increase in the magnitude of the matter pow
spectrum. Including the wiggliness results in a slight shift

-

FIG. 10. The total angular power spectrum for wiggly~solid
line! and smooth ~dashed line! strings when Vbaryons50.05,
VCDM50.25 andVL50.7 and using small values for the strin
velocities:v50.12 in the radiation era and 0.1 in the matter era

FIG. 11. The matter power spectrum for the same choice
parameters as in Fig. 10.
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power to smaller scales and an overall increase in magnit
The scale-dependent bias, required to fit the data, varies
tweenb'1.6 on smaller length scales andb'2.4 on larger
scales. COBE normalization givesGm0'2.331026 for
smooth strings andGm0'1.931026 for wiggly strings.

In addition, we have tested the dependence on two o
parameters of the model that may have physical significa
These are the string decay rateL and the correlation length o

FIG. 12. The total angular power spectrum for the network
wiggly strings withL50.1 ~dotted line!, L50.5 ~long dashed line!
andL50.92 ~short dashed line!. All other parameters are the sam
as in Fig. 10.

FIG. 13. The matter power spectrum for the same choice
parameters as in Fig. 12.
08350
e.
e-

er
e.

the networkl (t) . The parameterL appears in the function
Toff, Eq. ~15!, and controls how early and how fast the strin
segments decay. Smaller values ofL correspond to an earlie
and slower decay. We have usedL50.5 for most of our
calculations~Figs. 6–11,14,15!. In Fig. 12 and Fig. 13 we
compare the results of usingL50.1, 0.5 and 0.92. Lower
values ofL tend to raise the matter power spectrum. Wh
string segments start to decay earlier the effective string d

f

f

FIG. 14. The total angular power spectrum for the network
wiggly strings withL50.1. The solid line corresponds to the mod
fied l (t). The dotted line is the same as in Fig. 13. Other parame
are the same as in Fig. 10.

FIG. 15. The matter power spectrum for the same choice
parameters as in Fig. 14.
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sity at all times~and especially at later times! will decrease
and a larger COBE normalization factor is required to fit t
angular power spectrum on large scales. This, of course
creases the value ofGm0. We obtainGm0'431026 when
usingL50.1.

The evolution of the correlation lengthl (t) @Eq. ~12!# is
completely determined by the parameters of the one-s
model,cr , cm , kr and km . To obtain the results shown i
Figs. 6–13 we have chosen these parameters so that the
lution of l (t) is not altered and is the same as in Fig. 4.
Fig. 14 and Fig. 15 we plot the results of the simulation
which the cosmological parameters and the string velo
were taken to be those in Fig. 10 but the parameters of
one-scale model were set to givel (t)/t equal to 0.24 in the
radiation- and 0.3 in the matter-dominated eras. This cho
of parameters is largely arbitrary; however, it shows t
there is a freedom in the model that may be used to cha
the shape of the matter power spectrum.

V. CONCLUSIONS

We have seen that including the effects of small-sc
structure in the string stress-energy improves the agreem
with the observational data. UsingVL50.7 and reducing the
average string velocities gives us a scale-dependent bias
tor between 1.6 and 2.4. Allowing for a slower decay rate
strings and larger correlation length of the string netwo
makes the bias factor nearly scale invariant with an aver
value of 1.9. The scale invariant bias factor of 2 was repor
tt

7
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d
n-

l-

08350
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ge
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in @3# which was obtained by introducing an additional tim
dependence ofm designed to reproduce the shape of t
matter power spectrum. The present work has the advan
of not altering the physics of the model.

The one-scale model, Eqs.~12! and~13!, is a very coarse
approximation of the evolution of wiggly strings. The sma
scale structure is included only through the value of the
fective curvaturek̃, the rest of the equations being exact
the same as for the smooth strings. We expect that a m
precise analytical model would improve the agreement w
the data. Also, work on improving the model of the strin
network is in progress as reported in@4# and this should help
to eliminate some of the assumptions we have had to mak
the present analysis. In addition we are presently investi
ing ways to relax some of the assumptions of the mo
described in the paper that will help shed light on the robu
ness of the predictions.
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