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Cosmic microwave background anisotropy from wiggly strings
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We investigate the effect of wiggly cosmic strings on the cosmic microwave background radiation anisot-
ropy and matter power spectrum by modifying the string network model used by AlteeehtWe employ
the wiggly equation of state for strings and the one-scale model for the cosmological evolution of certain
network characteristics. For the same choice of simulation parameters we compare the results with and without
including wiggliness in the model and find that wiggliness together with the accompanying low string veloci-
ties leads to a significant peak in the microwave background anisotropy and to an enhancement in the matter
power spectrum. For the cosmologies we have investigatieshdard CDM and CDM plus a cosmological
constant, and within the limitations of our modeling of the string network, the anisotropy is in reasonable
agreement with current observations but the COBE normalized amplitude of density perturbations is lower than
what the data suggest. In the case of a cosmological constant and CDM model, a bias factor of about 2 is
required.[S0556-282(99)05518-9

PACS numbd(s): 98.80.Cq

I. INTRODUCTION numerical attempt is that the dynamic range of the simula-
tions cannot yet extend to cover a cosmic expansion factor of
The origin of the large-scale structure of the Universe hasit least 1. It appears that some network modeling is essen-
been a focus of active research for the last few decades andtigl as was first attempted ifiL1]. In recent work[4] the
still one of the major unresolved problems in cosmology.CMBR anisotropy was calculated using the results of a lat-
Measurements of the anisotropy in the cosmic microwavdice simulation of a string network in a flat spacetime back-
background radiatiofiCMBR) have inspired hope that dif- ground. Another approach, first suggestefilia] and further
ferent theories of structure formation can be tested observ&leveloped in[2,3], approximates the string network by a
tionally. Quantum fluctuations in inflationary models and to-collection of randomly oriented straight string segments,
pological defects are two important sources of densitynoving with random velocities. This model has the merit of
inhomogeneities that would have different imprints on thebeing relatively simple and amenable to modifications that
CMBR and which one could hope to distinguish. seem to be indicated by direct simulations. Hence, we have
Cosmic strings are a special variety of topological defectédopted this model and, for the first time, included small-
that have been studied in the context of seeding large-scaf€ale structure on the string segments. Furthermore, we have
structure. Rapid progress on both observational and theorefodeled the parameters of the segmeliesgth, velocity,
ical issues has resulted in more accurate estimates of théggliness by using the “one-scale model” of cosmic string
CMBR anisotropy due to stringkl—6]. The existence of networks[13,14] and some reasonable expectations of how
publicly available computer cod¢g] that can determine the the strings would behave in an inflating background.
anisotropy for given matter energy-momentum tensors has The most important feature that we have taken into ac-
greatly facilitated the study of mechanisms that can sourcéount in modeling the string network is the presence of
the CMBR anisotropy. small-scale structure on the strings. The scale of the wiggles

The major hurdle in calculating the effect of strings on theis much smaller than the characteristic length of the string. In
CMBR is that there is no simple way to characterize thefact, a distant observer will not be able to resolve the details
network of strings. Large scale computer simulations hav®f the wiggly structure. Instead, she would see a smooth
provided insight into some of the properties of the networkstring, but the string would possess somewhat different char-
[8] within some choice of background cosmologies. How-acteristics. For a string with no wiggles, the equation of state
ever, there are still unknown characteristics that could bdS #=T= o, Whereu is the effective mass per unit length
important for predictions of the CMBR anisotropy and theandT is the tension of the string. A wiggly string, however,
large-scale power spectrum. As a result, certain extrapoldias a different effective equation of staf,16:
tions have to be made to characterize the string network in

the regime where details are not yet available. This “network mT= MS, u=>T.
modeling” is the crucial aspect of analyzing the observable
signatures of cosmic strings. The wiggly string is heavier and slower than a Nambu-Goto

Over the last decade or so, a number of approaches hawing.
been taken to determine the detailed imprint of cosmic The perturbation in the metric produced by a wiggly
strings on the CMBR. The first attempt in this direction string is similar to that of a smooth string. As was shown in
worked directly with the network of strings found in com- [17], in both cases, the space in the vicinity of a straight
puter simulationg9]. Recently, this numerical analysis has segment of a string is conical with a deficit angle
been refined and extendétio]. The drawback in any such =8wGu. The deficit angle is larger for wiggly strings, since
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they have a larger effective mass per unit length. However, ahere 7 is the conformal time. The string equations of mo-
new important feature of the wiggly string metric is a non-tion are invariant under reparametrization of the string world
zero Newtonian potentiapo(u—T). (So the wiggly string  sheet. A convenient choice of the parametrizatigauge is
behaves as a superposition of a massive rod and a string with

a conical deficit As a result, massive particles will experi- PO=r X x=0,

ence a new attractive fordeo(u—T)/vg, wherevg is the
string velocity[17]. At the same time, the propagation of w
photons in a plane perpendicular to the string is unaffecte%
by the rod-like feature of the wiggly string metric and is only
affected by the conical deficit. This fact—that the effect of

wiggliness on massive particles is qualitatively different Tav(y) = s fdzg(e)-(ﬂky_ e I B Sy —x(2),
V=g

here the prime denotes a derivative with respeci*oln
is gauge the energy-momentum tensor of a string is

from the effect on radiation—seems especially relevant when

calculating CMBR anisotropy and the power spectrum. It 1)
may be hoped that this feature could help alleviate the cur-

rent difficulties in reconciling the Cosmic Background EX- whereo=¢* and

plorer (COBE) normalized matter power spectrum with the

observational data in the cosmic string model. 2
It should be pointed out that the model we have adopted e= X _ )
cannot be the final word since a number of factors have still 1-x?

not been taken into account. In the network itself, the infinite

strings will produce loops which will then decay by emitting  Following Carter{15] we can define the string tensidn
gravitational radiation. The effect of the loops is only in- and the string mass-energy per unit lengttby
cluded insofar that they can be treated as segments of strings.
In other words, large loops are included in our analysis but
small loops have been missed. Also, the decay of loops intm—gT’”(Y)=f d20y— y(Uuru’—TvAv?) 84y —x(0)),
gravitational radiation has been missed. The back reaction of @)
gravitational radiation on the string segments is completely
neglected. We hope to rectify some of these omissions b%hereuﬂ andv* are such that
further modeling of the network in subsequent work.

In the following sections we use the model developed in

Ref. [2] to calculate the CMBR anisotropy and the matter UuUt=—vevi=1, uvt=0, “)
power spectrum due to cosmic strings in a few cosmologies.
The energy-momentum tensor that we use is that of wiggly (UAvP=vHUP) (U, v, =V, U,) =7, 5)
strings, as we describe in the next section. In addition, the
characteristics of the string netwofkelocity and correlation 7= yPOxEXY (6)

length are computed using the one-scale model described in
Sec. lll. There are some further assumptions that we h_ave .tgnd 4% is the world sheet metric. One can check that
make about the string network that we also describe in this

section. Our results for the CMBR anisotropy and the power )
spectrum in density inhomogeneities for a few different cos- U= Vex “_ )
mologies are given in Sec. IV. Here we also discuss the _(_7)1/4’ v _\/;(_7)1/4

model dependence of our results. Our conclusions are sum-

marized in Sec. V. satisfy the condition$4)—(6). Substituting Eqs(7) into Eq.
(1) and comparing with E¢(3) one obtains

x'#

Il. WIGGLY STRINGS
, | U=T=p, ®)
The world history of a string can be represented by a
two-dimensional surface in spacetime, which is the equation of state for an ordindtyntrinsically
isotropic” [15]) Nambu-Goto string18].
XF=x*({?), a=0,1, Lattice simulations of string formation and evolution sug-
gest that strings are not straight but have wigdles A
. distant observer, however, would not be able to resolve the
called the string world sheet, whe{@ and¢* are the coor-  small-scale structure. Instead, he would see a smooth string

dinates on the world sheet. , _ with the effective mass per unit length and the tensiof .
We consider strings that reside in an expanding universgne equation of state for a wiggly string averaged over the
described by the metric small-scale structure has been shdiB,16] to be
ds?’=a?(7)(dr?—dx?), UT=u? 9)
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or T
D=a,u, 7|'=y,/a, (10
wherea= a(o,7) is, in general, some function of time and
the coordinate along the length of the smoothed string. The 4
energy-momentum tensor of a wiggly string viewed by an
observer who cannot resolve the wiggly structure is then ob- 3
tained by substituting Eq$10) into Eq. (3): 2
1
Ty f (Uu“u —Tviv”) 68y —x(2)) J J H
VT 0 XX ° * 00 —

m
, o Ty v string segments
d{| eaxtx’—

o
=—j }5(4)(y—x(0,7)).
\/—_g FIG. 1. A schematic picture of the string network model. All
string segmentgdepicted by solid circlesare born at an early ep-
Next, we use this expression to calculate the stress-ener@yh and then decay at various later times. The segments are labeled
of a string network. by the indexm and the decay times are shown as numbers along the
7 axis. In certain cosmologies, it is possible that some string seg-

lll. STRING NETWORK ments never decay.

A. Parameters of the network where we takec,=0.23, ¢,,=0.18, k,=0.17, k,,=0.49, g

The string network at any time can be characterized by a-300 anda(r) is normalized so thaa=1 today’
single length scale, the correlation lendgthdefined by

M (11) B. Model of the network
P L2’ Here we closely follow the model described[®3].

The basic picture is that the string network is represented
wherep is the energy density in the string network. It will be by a collection of uncorrelated, straight string segments mov-
convenient to work with the comoving correlation lendgth ing with random, uncorrelated velocities. All the segments
=L/a. are assumed to be produced at some early epoch. At every

The expansion stretches the strings, thus increasing th&ubsequent epoch, a certain fraction of the number of seg-
energy density. At the same time, long strings reconnneatnents decay in a way that maintains network scaling. This
and chop off loops which later decay. The evolutionlof picture of the network is depicted in Fig. 1.
including only these two competing processefli, 14,19 The comoving lengthl, of each segment at any time is

taken to be equal to the correlation length of the network
defined below Eq(11). The positions of the segments are
dl a 1. drawn from a uniform distribution in space and their orien-
d_T:EIVZ+ v (12 tations are chosen from a uniform distribution on a two
sphere. The segment speeds are fixed to be given by the
solution of Eq.(13) while the direction of the velocity is
~ : taken to be uniformly distributed in the plane perpendicular
dv 2 (k a ) to the string orientatiof.In principle, this constraint on the
—=(1-v9)| +—2=v (13 . ; . ; .
d I a velocity does not remain valid when the strings are wiggly
since the wiggles can impart a longitudinal velocity to the
wherev is the rms string velocity¢ is the loop chopping segments. However, as explained below, the longitudinal ve-
efficiency andk is the effective curvature of the strings. The locities are expected to be much smaller than the transverse

velocities and hence will be neglected.
values ofc andk in radiation and matter eras are suggested

in [19]. We use the same scheme as in R&f1to interpolate
between these values through the radiation-matter transition:
1This choice of the value af along with our normalization foa
~ c,tgac, leads to the same time dependence aihdl as in[3]. Normalizing
(o 1—|——ga a so thata=1 at equality would require a much smaller value, e.g.
g~0.1, as reported in3].
2We have also performed a few simulations where we drew the
Tl — kr + gakn velocities from a Gaussian distribution as in R&¥], but these did
l+ga '’ not lead to significantly different results.
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The decay of segments of the string network is accom- T
plished by “turning off” the energy-momentum of a fraction
of the existing segments at every epoch. Each segment is
assigned a certain decay time,, where the indexn labels
the individual segments. So the Fourier transform of the total
stress-energy of the network is the sum over the stress-
energies of all segments:

No
0,,(k 7)= 21 O (KN TM(7,7y), (14)

[SS T SR N

—_

whereN, is the initial number of segments, afd'( 7, 7,,) is J
a smooth function that turns off tha™" string segment by
time 7,,.% The functional form is taken to be]

® ® —
i
consolidated string segments

1 o<l FIG. 2. The modified model of the string network. All strings
off 11,03 that decay at the sanidiscretized time in Fig. 1 are consolidated
T )= 2t2(=3%) ...Lop<7<7y, into one string segment and assigned a weight that is the square root
0 T T, of the number of segments that the consolidated segment represents.
(15) This works for all segments that decay by the end of the simulation
but will miss those segments that do not decay. In the present

where scheme, the segments that will not have decayed by the end of the
simulation are consolidated into one string. The contribution of this
In(L7y,/7) surviving segment is the remainder term in the expression for the
X= W - (16) energy-momentum tensor in E@O0).
andL<1 is a parameter that controls how fast the segment§ay at the same epoch. Since the number of segments that
decay. decay at thediscretized conformal timer; is
The total energy of the string network in a volurdeat
any time is Ng(7i)=V[n(7i-1)—n(7)] (19
., MV wheren(7) is the number density of strings at tinte the
Nul=Vp= L2 (17 «consolidated string” decaying at; is taken to have weight:

VNg(7). (The assumption is that string segments that decay

whereN=N(7) is the total number of string segments at that@t the same time act randomly, leading to the square root in
time, V=V,a3 a=1 at the present epoch aMj is a con- the weight. The number of consolidated strings is of the

stant simulation volume. From E¢L7) it follows that order of a few hundred and can be dealt with
computationally* This modified picture of the string network
VARRVA is shown in Fig. 2.
N= == (18 Now we can choose,, to be equally spaced on a loga-
L ' rithmic scale between,,, and 7,5 and write the energy-

. . . . momentum tensor as
The comoving length is approximately proportional to

the conformal timer and implies that the number of strings K

N(7) within the simulation volume&/, falls as7 3. To cal- 0,,(k,7)=> [Ng(m)]1¥0! (k,nTM(7,7)+7T,
culate the CMB anisotropy we need to evolve the string net- = | ' pri o g
work over at least four orders of magnitude in cosmic expan- (20

sion. Hence we would have to start with=10" string

segments in order to have one segment left at the presemthereK is the number of consolidated segments @pglis a

time. This is the main problem in directly dealing with the remainder that we have included and that we now explain.

expression for the energy-momentum tensor in @4). The sum in Eq(20) misses any string segments that have
A way around this difficulty was suggested in REZ].  not decayed byr,,.. The remaindef,,, is supposed to rep-

The suggestion is to consolidate all string segments that deesent the contribution of these segments of strings. As in the

3In addition, Albrechtet al. introduce a functionT®" which turns “4In addition to consolidating the string segments decaying at a
on the segments at a very early time. This function is not a featurgiven time into a single “consolidated string” we have also tried
of the model but only introduced to speed up the code. We have natonsolidating them into two, three and four strings. This did not
includedT°" in our simulations. lead to any difference in the final results.
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case of the decaying Strings, we will consolidate these sur- The random location Vectorx-)o, appear 0n|y in the dot
\Wg?heenrfforlgto one segment with the weight, .y ,ct5 ¢ Instead of generating, at random, Albrecht
Tma): et al. generatezowz for each segment as a random number

— N Y @ from [0,27]. We have also followed this scheme.

L= WVN(Tma) Ok, 7) @D As mentioned earlier, we will be ignoring the longitudinal
where the superscript o means that it is the energy- velocities of the segments. This is the constraint X=0
momentum tensor for one string segment. that we have imposed. The justification is that there are on

For certain cosmologies—those without a cosmologicakhe order of 16 left- and right-moving wiggles on a segment
constant—the remainder term can be made arbitrarily smabf string, each traveling with a velocity of about the speed of
by choosing a large enough,... This is becausen(7) light. The average momentum of this “gas” of wiggles will
x| (1)~ 3, wherel (7)~ 7 is the comoving correlation length, be zero but there can be fluctuations which will lead to a
and hencen(r)—0 asT—o. However, if the cosmological velocity ~1/\/10%. Such longitudinal velocities are insignifi-
constant is non-zero, the universe enters an inflationary egant compared to the transverse velocity expected to be

och and the range of the conformal time is finite, ~0Q.1.
€[0,7.], and given by The differential equations which describe the metric
. = dt perturbati0n§ produced @MV(IZ, 7) do not depened on the
Tow= jo dr= fo %. direction ofk. Therefore, without any loss of generality we

will assumek=ksk in Eq. (22).

In this model, the number density of string segments is Substituting Eqs(23) into Eq. (22), integrating overo
assumed to only depend on the correlation lengtm@g  and taking the real part gives
«|(7) 3. However, the decay of string segments as de-

scribed by the functiom® prevents this relationship from pa sin(kf(él/Z) L. -
being exact. Instead we have 0 0= - cogK-Xo+kXgvr), (24)
1-v?  kXj/2
C(7)
RETERS co 1=V

_ _ _ B 0ij=| VX Xj————X/ X | . (25)
The functionC(7) is determined by requiring that the total ed
number of strings at any time be still given b/1(7)3.
Therefore 0, can be found from the covariant conservation equations

v#® ,,=0. Here we have assumed that the entire string en-

1 _2 off ergy is in long strings. The conservation is violated if one

(3 & [n(7i-2) =n(m) IT(7, 7) + (T, includes the energy in loops and the gravitational radiation.
A detailed discussion of this issue can be foundi4h

K

andl(7) is determined from the one-scale mo@gg. (12)].
[Note thatC( ) is contained im(7)]. It is reassuring to see C. Evolution of parameters
that the functiorC(r) that we obtain from our code is nearly
constant and of order unity throughout the simulation.

The Fourier transform of the energy-momentum tensor o
an individual string segment is

The evolution of the velocityy, with time is found by
golving Egs.(12) and (13) with a range of possible initial
conditions. In Fig. 3 we show the evolution of the string
velocity for the initial conditions: I (7in)=0.13mmin,

R s s Vo(7min)=0.65 for two different cosmological models. Simi-
w(k'T):f d°xe*70 ,, larly we show the behavior df(7)/r as a function ofr in
Fig. 4.
_ 172 doekX The values of the “wiggliness” parameter have been
el P estimated 8] in the radiation and matter eras to be=1.9

and a,,=1.5 respectively. In the case of a non-zero cosmo-

Sl 1 logical constant, the exponential expansion of the Universe
AV VA N AV 7 ’
X| €aXiXT= o XTEX (22 \yill stretch and smooth out the wiggles, so that-1 in the
A-dominated epoch. A function that fits the expected evolu-
whereX#(o, 1) are the coordinates of the segment: tion of « is (Fig. 5
X0=r7, )Z=)ZO+0')A('+VT).A(, (23

- . ~ 5In ongoing work, one improvement of the model that we are
whereX, is the random location of the center of maXs, . R . : - - .
investigating is a scheme in which we chodgg X,k at random in

and X are randomly oriented unit vectors satisfyi¥d-X  the interval[0,2] and then multiply byk/k,, wherek,,, is the
=0 andv is the velocity of the string. smallest wave vector considered in the simulation.
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FIG. 3. The velocity of strings as a function of the conformal FIG. 5. The wigglinesg as a function of the conformal time for
time for Qparyons=0.05, Qcpm=0.95, 2, =0 (dotted ling and ~ Qparyons=0.05, Qcpy=0.95, 2, =0 (dotted ling and Qy,ryons
Qbaryons=0.05, QCDM: 025, Q/\: 07 (Solld ||ne) = 005, QCDM: 025, Q/\ = 07 (SOlId Iine).

. (a,—1)a i IV. RESULTS
a(r)=1+ - (26 We calculate the CMB anisotropy using the line of sight

integration approach7] implemented in the publicly avail-
able codecmBrAsT. Given® ,, for eachk and 7, CMBFAST
We shall assume this behavior afin the next section. integrates the Einstein equations simultaneously with the
Next, we use the expression for the string stress-energy tBoltzmann equations for all radiation and matter particles
calculate the radiation and matter perturbation spectra giresent in the model. Two factors that have not been in-
present time. cluded in our analysis ar€l) compensation of string inho-
mogeneities by perturbations in the matter fluids 48ad
] ] A small loops of string. The first factor was considered in Ref.
[2] which we are closely following. However, it was found
; there that the effects of compensation do not significantly
i alter the predictions of anisotropy and power spectrum. It is
possible that the second factor is important. At the moment,
we do not have a good model for including loops in our
analysis as there is not much information available in the
literature on which to build such a model. The inclusion of
loops in the model is a problem that we postpone for the
future, though the slow decay of string segments described
below may mimic the presence of loops to some extent.
The CMBR anisotropy as seen by an observer can be

described byA(x,n, 70)=|T(x,n,70) — T|/T, wherex is the
position of the observen is the line of sight directionry is

1 the conformal time today anflis the average temperature of
- CMBR. At x=0 one can decomposk into spherical har-

r)/7

monics
| s nnl ol ol
1 10 100 1000 1o0* ~ ~
y A(R) =25 aymYim(M). 27
FIG. 4. The length of string segmentg), divided by 7 as a
function of 7 for Qparyons=0.05, Qcpm=0.95, 2, =0 (dotted
line) and Qparyons=0.05, Qcpm=0.25, 2, =0.7 (solid line). The angular power spectru@ is defined by
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Cr=57 2 (aham), (28)

where () denotes an ensemble average. A self-consisten
treatment of the line of sight method and the complete set of
the equations are given j20]. The output ofcMBFAST is the

COBE normalized angular power spectrum of temperatures

‘oup MK

B

<

anisotropy and the power spectra of each of the matter spe
cies that is present.

In its current versionCMBFAST calculates perturbations
from scalar and tensor sources. Since strings may generate

11+1)C,/2m

=

significant vector component, we had to add the vector part
to the codé.

Our results for the anisotropy and power spectrum are
averages oveM different realizations of a random network
of strings. In the limit of largeM, each quantity that we
calculate will have an associated probability distribution. For
example, for eachthe distribution ofC, will approach some

probability function with mearnC, and standard deviation

o,. For the averaged resuIE,, the standard deviation is
a/JM. Performing a large number of experiments on Ayit

100

80

60

20

PHYSICAL REVIEW B0 083504

10 100
|

1000

FIG. 6. The total angular power spectrum wigolid line) and

hout (dashed ling including the wiggliness wherpryons

computer allows us to fin@_, and o quite accurately. How- =0.05, Q¢py=0.95, Q,=0 andv,=0.65. The compiled obser-

ever, an observee.g. COBE trying to determineC; would
only be able to average overl(21) causally disconnected

vational data are plotted for comparison.

patches on the sky. Therefore, the accuracy in determining=1.1x 108 for wiggly strings andGu,=1.5x10"8 for

C, observationally iso;/y2l+1. We take this limitation
(known as “cosmic variance)’into account when plotting
the lo-error bars on our graphs.

Our results were found by averaging owr= 300 string

smooth strings.
Allowing for a non-zero cosmological constant improves

the agreement with the data. In Fig. 8 and Fig. 9 we plot the

results of the simulation wit),=0.7. The peak in the

network realizations; however, 100 runs would be enough t6MBR anisotropy is now higher compared to thie, =0
reproduce most of our results. The simulation with 100 rungase. The power spectrum in Fig. 9 includes the factor of

took about 10 h to run on a single processor IBM 590 work-
station and abdus h on 10processors of the J90 cluster of
the National Energy Research Scientific Computing Center.

We work only with a flat universe with and without a
cosmological constant. We consider two cas€k,(yons
=0.05,Qcpw=0.95,0,=0) and Qparyons=0.05, Qcpm
=0.25,0,=0.7). The first case is what until recently was
known as the standard CDM model. The second is motivatec
by the recent supernova data that sugdkest=0.7 and a flat
universe. The value of the Hubble constant in both cases wa
taken to beH,=50 kmsec!Mpc 2.

In Fig. 6 we show the effect that wiggliness has ©ys
for the case whenf) , =0 along with the compiled experi-
mental datd21]. The matter power spectrum for the same
set of paramters is shown in Fig. 7 together with the data
from surveys of galaxies and clusters of galafi22]. Add-
ing wiggliness results in a higher peak at400. However, it
does not improve the shape or the magnitude of the matte
power spectrum which appears to be in disagreement witt
data. The COBE normalization allows us to determine the
string mass per unit length. We obtain thaug

4nP(k) (h Mpc™')°

1000

100 [

0.1
k/h Mpe™!

FIG. 7. The matter power spectrum for the same choice of pa-

50ur code can be downloaded from the website http:/rameters as in Fig. 6. The data extracted from surveys of galaxies
theory4.phys.cwru.edw/levon. and clusters of galaxies are plotted for comparison.
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(10+1)C,/27 ) Top uK
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|

FIG. 8. The total angular power spectrum for wiggéplid line)
and smooth(dashed ling strings whenQparyons=0.05, Qcpu

=0.25,0,=0.7 andvy=0.65.

10 100 1000
|

FIG. 10. The total angular power spectrum for wigdgholid
line) and smooth(dashed ling strings when Qp,ryons=0.05,

Qcpm=0.25 andQ, =0.7 and using small values for the string
velocities:v=0.12 in the radiation era and 0.1 in the matter era.

Q23 . necessary for correct comparison with dg2d]. Al-
though the magnitude is significantly lower than the data, thé. Also, wiggly strings must be heavier and slower than
shape of the matter power spectrum is improved. The wigsmooth strings because of the different equation of state. We
gliness results in a higher peak @)’s and a slight increase have modified the parameters, ¢y, k, andk, of the one-
in the magnitude of matter power spectrum at smaller lengtiscale model in such a way that the rms velocity is 0.12 in the
scales. The string mass per unit length obtained from COBHadiation era and 0.1 in the matter era. In Fig. 10 and Fig. 11
we plot the results of using smaller velocities. We see a
There is evidence from simulatiof8] that the large scale significant increase in the magnitude of the matter power
string velocities are much smaller than those plotted in Figspectrum. Including the wiggliness results in a slight shift of

normalization is practically the same as(), =0 case.
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FIG. 9. The matter power spectrum for the same choice of pa-

rameters as in Fig. 8.
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FIG. 11. The

0.1
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matter power spectrum for the same choice of

parameters as in Fig. 10.
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FIG. 12. The total angular power spectrum for the network of  FIG. 14. The total angular power spectrum for the network of
wiggly strings withL =0.1 (dotted ling, L=0.5 (long dashed line  wiggly strings withL=0.1. The solid line corresponds to the modi-
andL =0.92(short dashed line All other parameters are the same fiedI(7). The dotted line is the same as in Fig. 13. Other parameters
as in Fig. 10. are the same as in Fig. 10.

power to smaller scales and an overall increase in magnitudéhe networkl (7) . The parametek appears in the function
The scale-dependent bias, required to fit the data, varies bg°f Eq.(15), and controls how early and how fast the string
tweenb~1.6 on smaller length scales abe-2.4 on larger segments decay. Smaller valued aforrespond to an earlier
scales. COBE normalization give€u,~2.3x10°° for  and slower decay. We have uskd-0.5 for most of our
smooth strings an@ uq~1.9x 10~ ° for wiggly strings. calculations(Figs. 6-11,14,16 In Fig. 12 and Fig. 13 we

In addition, we have tested the dependence on two othefompare the results of usirig=0.1, 0.5 and 0.92. Lower
parameters of the model that may have physical significance:alues ofL tend to raise the matter power spectrum. When
These are the string decay ratand the correlation length of - string segments start to decay earlier the effective string den-

1000 T —— T —— 1000 T ——

4nP(k) (h Mpc™')°

\

AY

\

/

7/

/
4nP(k) (h Mpc™')°

0.01

FIG. 13. The matter power spectrum for the same choice of

parameters as in Fig. 12.
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parameters as in Fig. 14.
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sity at all times(and especially at later timesvill decrease in [3] which was obtained by introducing an additional time
and a larger COBE normalization factor is required to fit thedependence of. designed to reproduce the shape of the
angular power spectrum on large scales. This, of course, irmatter power spectrum. The present work has the advantage
creases the value @ u,. We obtainGu,~4x10  when  of not altering the physics of the model.
usingL=0.1. The one-scale model, Eq4.2) and(13), is a very coarse
The evolution of the correlation lengtiir) [Eq. (12)]is  approximation of the evolution of wiggly strings. The small-
completely determined by the parameters of the one-scalgcale structure is included only through the value of the ef-
model,c,, ¢y, k; andky,. To obtain the results shown in fective curvaturek, the rest of the equations being exactly
Figs. 6—13 we have chosen these parameters so that the e¥Re same as for the smooth strings. We expect that a more
lution of I(7) is not altered and is the same as in Fig. 4. Inprecise analytical model would improve the agreement with
Fig. 14 and Fig. 15 we plot the results of the simulation inthe data. Also, work on improving the model of the string
which the cosmological parameters and the string velocitysetwork is in progress as reported[#] and this should help
were taken to be those in Fig. 10 but the parameters of thg eliminate some of the assumptions we have had to make in
one-scale model were set to giMer)/ 7 equal to 0.24 in the  the present analysis. In addition we are presently investigat-
radiation- and 0.3 in the matter-dominated eras. This choicghg ways to relax some of the assumptions of the model
of parameters is largely arbitrary; however, it shows thatdescribed in the paper that will help shed light on the robust-
there is a freedom in the model that may be used to changgess of the predictions.
the shape of the matter power spectrum.
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