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Kaluza-Klein monopole andi-monopole solutions, which ar€ dual to each other, are the well-known
solutions of string theory compactified 8. Since string theory in this case has ®duality symmetry, we
explicitly construct the corresponding dyonic solutions by expressingothel string effective action in a
manifestlySL(2,R) invariant form with anSL(2,R) invariant constraint. The Schwarz-Sen charge spectrum,
the Bogomol'nyi-Prasad-Sommerfield saturated mass formula as well as the stability of these states are dis-
cussed briefly[S0556-282(99)08118-7

PACS numbsdis): 11.25~w

[. INTRODUCTION explicitly construct the dyonic solutions starting from the
known monopole solutions of type Il string theory in a sim-

It is well known that the five dimensional pure Einstein plified setting. We first express the four dimensional string
gravity admits a solitonic solution known as the Kaluza-effective action in a manifesthSL(2,R) invariant form
Klein (KK) monopole solution first obtained by Gross, Perry,alongwith an SL(2,R) invariant constraint on the field-
and Sorkin(GPS [1,2]. Since in this construction one of the strengths. Then we use this symmetry to rotate the monopole
spatial coordinates is compactified, this solution can also beolutions and obtain the corresponding dyonic solutions. A
viewed as a four-dimensional black hole with a magneticdifferent kind of dyonic solutions of both the KK and
charge. TheJ(1) gauge field corresponding to the magneticmonopoles have been discussed in R¢R0,21], but the
charge originates in this case from the isometry of the comelectric and the magnetic charges considered there corre-
pact dimension. As the five-dimensional pure gravity is con-spond to different gauge fields instead of the same gauge
tained as a special case of dimensionally reduced strinfield. We also obtain the Schwarz-Sen electric-magnetic
theory, obviously, string theory in four or five dimensions charge spectruni22] as well as the Bogomol'nyi-Prasad-
also admits a KK monopole solution. String theory in four Sommerfield (BPS saturated Arnowitt-Deser-Misner
dimensions admits another kind of monopole solution knowrfADM) masses for these dyonic solutions. We then discuss
as theH-monopole solution3,4]. TheU(1) gauge field cor- how the stability of these states can be understood from the
responding to the magnetic charge in this case arises fromass formula. Unlike the dyonic solutions discussed in Ref.
the dimensional reduction of the second rank antisymmetri€21], the dyonic black hole we obtain has finite Hawking
tensorB,,\ contained in the string theory spectrum. Thesetemperature but zero entropy.
two solutions are in fac dual [5] to each other. In the This paper is organized as follows. In Sec. I, we briefly
original ten-dimensional theory they represent the five-brangiscuss the KK monopole solution of GPS and mention how
solutions compactified on a circle and tfieduality [6] re- it can be regarded as a string theory solutionDr=4.
lates the type IIA(IIB) KK monopole to the type IIRIIA)  H-monopole solution is also discussed in brief. In Sec. Il
Neveu-Schwarz five-branes. Many interesting dynamicaive construct the dyonic solutions by applyir§L(2,R)
properties of KK monopoles as well as the world volumetransformation on the monopole solutions. The Schwarz-Sen
theory have been studied in Reffg—14]. The world volume charge spectrum and the BPS saturated mass formula are
theories of KK monopole are related to various supersymobtained. We also discuss the stability of the dyonic states.
metric gauge theories in451 dimensions and can be used to Finally, our conclusions are presented in Sec. IV.
study their properties.

Any string theory in four dimensions has been conjec-
tured[15] to possess an exa8t(2,Z) symmetry also known
as theS-duality symmetry as a part of the complete nonper-
turbative U duality{16] symmetry. Many evidences in favor ~ The KK monopole was originally obtained by Gross,
of this conjecture have been given in REL7]. One such  Perry, and Sorkiii1,2] as a solution of pure Einstein gravity
evidence is the prediction of the existence of dyonic soluin five dimensiongwith one of the spatial dimensions com-
tions corresponding to both the KK monopole and thepactified where the action has the form
H-monopole solutions of string theory. The proof of exis-
tence of these dyonic excitatiofi® both heterotic and type
I string theory has been given in Ref§18,19 by arguing Sszf d®x\/-GR. (1)
that the degeneracies of the dyonic states match precisely
with those of the elementary string states. In this paper, we

If we denote the compact dimension =% then the five-
dimensional metric can be decomposed in terms of four-
*Electronic mail address: roy@tnp.saha.ernet.in dimensional metric as usual by the following KK ansatz:

Il. KK- AND H-MONOPOLE SOLUTIONS
IN STRING THEORY
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whereM,N=0,1, ... ,4 andu,»=0,1,2,3. Also all the four- - l<-:f2"F§}3F<1W
dimensional fields here are independenkbfNow the five- 4
dimensional actior(1) reduces to the four-dimensional ac-
tion as follows:

1~ o~ 1
s4:f d4xx/—€{R—Eaﬂqﬁa“qﬁ—ze_‘s‘ﬁFWF“”

: )

where the four-dimensional dilatoppi=® + o and the sca-
lar o is given by G,,=e 2°. We have also renamed the
gauge fieldA , asAiLl) for later convenience. Thus we notice
that the four-dimensional string action contains two scalars
¢ and o instead of oneg, as in pure gravity case). The

3 solution of the equations of motion following from E@) is
also given in terms of two scalars as folloy&5]:

where the metric G,,=G;7G,,, the scalar ¢= e
—(V3/2)10gGys, andF ,,=d,A,—3d,A,. ds?= —dt*+e?** 7[dr?+r2dQ3],
The equations of motion obtained from acti8) has a

magnetically charged black hole solution which in the ex- 26_go—| 1+ p(b) 12 8

tremal limit takes the fornj23—25 er=e= o ®

-12 112 , where we have renamed the KK monopole chdpges P(%).
ds?=—{1+ T dt?+| 1+ T [dr?+r2dQ3], Note that the solutiods? is written in terms of string metric
G, In terms of canonical metriG,,=e 2’G,,,, the so-

P\ 3 P lution reduces to
2¢_ o 2413 _ Tt
e (” F]oore 14 7]=Cu- @ A= — e 2¢d 2+ eTdr2+r2d02). 9)

We find that the solutiori8) and (9) are precisely identical

with Egs. (5) and (4) since o= (1/y/3)¢. Note further that
since =10 is the solution, the five dimensional dilatdn
is trivial (but the four-dimensional dilaton is noas ex-

Hereds? is written in terms of the canonical metlﬁ_e\w and
in terms ofG,,,, it is given by

ds?=—dt2+| 1+ P [dr2+r2dQ?2] pected. Thus we note that although we started out with dif-
r ferent actions namely, Eq€3) and(7), we end up with the
=—dt2+G;41[dr2+r2dQ§], 5) same KK monopole solutions and this clarifies how KK

monopole arises as a solution in string theory. We now dis-
cuss theH-monopole solution in string theory. Note from Eq.
wheredQ=d¢’+ sir’ éd¢” and P is the magnetic charge (g) that if instead of settingH,yp to zero, we keep the
of the black hole. The solution here is written in terms OfcomponentBM:A(z), the reduced action would take the
spherical polar coordinates 0, ¢ denoted as 1,2,3, respec- form with A®=0. as

tively. ThusF =P siné. This is the KK monopole solution oo

of GPS in four dimensions. Since th#(1) gauge field in (st . _2
this case has the forfiz;=P(1— cosé), the above solution S Zf d*x\—-Ge 2’| R+4d,¢d*¢
can be written in terms of Taub-NUT metric in five dimen-
sions as in Ref[2]. Let us now try to understand how the 2o (D) (2)ur
above solution arises in string theory. The low energy effec- —du0dto— 7R LS. (10
tive action of any string theory iD=5 has the following
form in common: The equations of motion following from Eq10) has the
solution

1

Sﬁ-ft)=f d°x\=Ge**| R+ 40y @ " d — HyneH"P). d?= — dt2+e2~[dr2+r2d02],
©®) p(2)| 112
2¢p _ n—0 — -

. . e e 7=|1+ 11

Here Gyn, ® and Byy are, respectively, the five- ( r ) (1)

dimensional metric, dilaton, and Kalb-Ramond antisymmet-

ric tensor field, with the field strengtiHyyp=dyByp Here P is the magnetic charge associated with tHe
+9\Bpy+dpByn . The rest of the fields which arise from monopole, i.e.F53=P®@ sin¢. In the canonical metric the
the dimensional reduction are set to zero. If we now furthesolution can be written as

setHynp=0, then with the same KK ansaf2) of the met-

ric, we can write the reduced action in the form ds’=—e 2¢dt>+e "[dr?+r?d03]. (12
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Note that since here @=—o is the solution, the five- Note thatH? term is invariant under the transformatiaiis)

dimensional dilatond is not trivial and therefore this solu- and(16) by itself. The transformation&l3) and(16) consti-
tion is strictly a string theory solution which can not be ob-tute the completeT-duality or O(1,1) symmetry of the
tained from pure gravity. This can also be understood sincéheory. WhenH ,,, =0 the equations of motidrfollowing

the gauge fieldAEf) originates in this case from the dimen- from Eqg.(14) are as given below:

sional reduction oB,,\ which is a field contained only in

string theory spectrum. It should be mentioned here thatthe _, 1 . . . . o,
solution (11) can be obtained from Eq8) by the following Vig+ge e 2(FW)2+ e (F?)?%)=0, (17)
transformations:
1
Gu—Guy, o——0, ¢—¢, V20+Ze’”’[e’z"(F(l))z—ez"(F(z))z]:O, (18
AD—AD - ph_p@) (13
V, (e 24720y =0, (19

Although neither the action&’) nor (10) possess this sym-

metry, the full string theory action indeed has this symmetry, V#(e*2¢+2UF(2)MV)=O7 (20)
the T-duality symmetry[which is O(1,1) symmetry in this

casd. Thus the string theory admits both the KK- and 1

H-monopole solutions which are related to each other by the R, ,=20,¢d,¢+d,00,0+ Ee—Zz/)(e—Z(rFELlp)stl)P
T-duality transformations.

1_
2)=(2 - -
lIl. DYONIC SOLUTIONS +e2 FQF(r) gGue e ?7(F)?

Starting from the monopole solutions discussed in the pre- +e27(F@)2). (21)
vious section, we, in this section, will construct the corre-
sponding dyonic solutions having both magnetic and electri
charges. In order to obtain these solutions we will use th
SL(2,R) symmetry of the four-dimensional string effective
action. The relevant four dimensional string action contain
ing both the gauge fields) and A? as well as the anti-

The equations of motiol7)—(21) can be easily solved by
%ssuming the form of the metric to be static, spherically sym-
metric which becomes flat asymptotically. In fact, the super-
‘symmetric BPS saturated solution of the above equations of
motion has already been obtained by Cvetic and Y¢R2ij

symmetric tensor fiel®,, has the form which has the following form:
S0 = f X~ Ge 24| R+ 40,04 dp—d,00"c ds?=— (f1f,) VAt + (f1f) A dr?+ r2dQ3),

1 1 f2 1/2

T a 2o (VD)E(Mpv_ — Q20 (2)E(2)ur 2¢ — 12 —o—| _Z
e FRMe e FOF @ e~’=(ffp)" e fl) , (22

_ iH A (14  Wherefi=(1+ PO/r) with i=1,2. HereP(")’s are the mag-

JIA2N . . . . . i

12 netic charges associated with the gauge f|@l§j§. The so-

lution is indeed invariant under thieduality transformations
Note that when both the gauge field§" andA{”) are non-  (13) and(16). Note from Eq.(22) that P®=0 corresponds
zero, the reduced form of the field strengith,, Is given as,  to KK monopole solution8) whereasP®=0 corresponds
to H-monopole solution(11) as discussed in the previous
section.
We would like to point out that foH ,,, #0 the action
(15  (14) as well as the equations of motion following from it has
) o ) ) a larger symmetry than what has already been noted in Egs.
So, _the action(14) is invariant under th&-duality transfor- (13) and (16). In fact, apart from thd-duality symmetry, it
mation (13) along with also has ars-duality symmetry and we will use this symme-
try to obtain the dyonic solutions.
We first note that the actiol4) can be written in an
0O(1,1) invariant form[27] as follows:

1
H;LV)\ = aMBV}\_ E(AELl)stz)\)‘l'AEE)FS/])'\)) +cyc. In,l,L V\.

A,ELZ)_)AELI)’ B;w_)Bp,w

PR, pA), (16)

1 . . . 5 . .pe

The antisymmetric tensor fieB,,, here is a modified form of the (st) _ 4y [T a-2¢

dimensionally reduce8,, [26]. S d'xy—-Ge
’Here the equations of motion are obtained after rewriting the

. . . . . . . 1 1
action in the Einstein metric, where Einstein metr{® T “1lruv_ YN
29 4 4.7-'WM F 12H#,,)\H
e G, .

1
R+40,40" ¢+ gtrg Mo*M

, (23
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where

e2(r 0
M=
0 e~ 20

is anO(1,1) matrix satisfyingV "M = %, with

0 1
\1 o
and
|:(1)
— it
fﬂv‘(Ffz)'

The action(23) is invariant under a globaD(1,1) transfor-
mation

M—aoma',  7,,—Q0F,,, G,—G

nv mv

¢—¢, and B,,—B,,, (29
where () is an O(1,1) matrix. Note that in this particular
case()= 5. By writing Eq. (23) in Einstein metric,

_ 1

s<st>:f d4xx/—§{R—2&M¢a"¢+ glrd.Ma*M !

1 1
_ e 26T M-lruv_
e }'WM F P

a e *H,,,\H*"™ |,

(29

we find that the equations of motion derived from E25)
can also be obtained from an alternative acfi2&,17

1 — 1
S(a“):f d4X\/—€[R——2&M)\(9“)\+—traMM&"M1
2)\3 8

l T 1 T v
— _)\ f M 1f,llvV_ _)\ f nf,u- , (:26)
I I,U,V — 4¢ MV
)\— e € A &pa (2;’

-G

with a, a pseudoscalar called an axion. Equati@n in fact
follows from the equation of motion ofi ,,\ in Eq. (25).
Also, A is a complex scalar defined as

A=at+ie 2?=)\;+i\, (28)
and ,,= 3V —Ge,,,,F*. The equations of motion fol-
lowing from Eq.(26) are
1 w i m 1 T _Tuv I T —1rupv
Fvﬂﬁ AN+ F&M)\ﬁ )\—Z}-MV?]]‘— _Z}—’“’M FHrY=0,
2 2
(29)
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1 _ _ 1
_ T -1
Ruv="—5 (9NN + N0, N) + 5N F ) MTIFY
42

! G, F' M~1Fro ! Ma,M~1, (30
—g)\z #,,fpa. F —gtro'?# a, , (30

V,(NoMTLFR 4N pFEY) =0 (31

and theo equation is as given in Eq18). It can now be
checked that the above equations of motion are invariant
under the globalSL(2,R) transformations as given below
[29,28,17%:

\ an+b
T eatd’

M—M,

uv 7 P

.7:“,,—>(C)\1+ d)f’uv_c)\zM 77?

s (32)
where the globaBEL(2,R) transformation matrix

a b
c d

with ad—bc=1. However, we note that the actig@6) is
not SL(2,R) invariant. Let us next rewrite the action in an
SL(2,R) invariant[16,3( fashion® In order to do this we
define

e 2?+a%? ae??
and
]-'W)
H,,= , 34
) (gw a
where
Gy=F,,—aF,,. (35)

Hereﬁ‘w is a pair of new fields we introduce which will be
related to the known fields through a constraint as we will
see below. The actiof26) can now be written in a mani-
festly SL(2,R) invariant form as follows:

1
S= f d%/—#m gl duMa M

1 1 1 T 1
+2tra, MM 1= SH ] MM A (36)

4 4 "

where theSL(2,R) transformations are given as

G, —G

wv

M—M,

v

3An SL(2,R) invariant four dimensional string effective action
has also been constructed[®i] using a different method.
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M—=AMAT, H,,—~ (A H,,, (37) 77[;“}: M 7S MH,,,, (43

where A is anSL(2,R) matrix. In order to see the equiva-

lence between Eq$26) and (36), we note that the Bianchi where
identities and the equations of motion of the field strengths
and the gauge fields following from E¢36) are

v, FHr=0, (39) 2:( 0 1)
B -1 0
V.G =0=V (P —aF*") =0, (39
and is the SL(2,R) metric satisfyingASAT=ATSA=3. We
2n g —1 G would like to point out that the actiori36) contains an
V(7M7) =0, (40 sy2R) doublet of field strengthsF,, and G,,, which

makes it manifesthSL(2,R) invariant. On the other hand,
action (26) does not contain th&L(2,R) doublet of field
strengths, but the equations of motion following from it con-

X _ tains theSL(2,R) doublet,, ande 2*M %, which can
Frr=ge 29M pFrv (420  be seen from42). That is why the equations of motion of

] ~ Eq.(26) areSL(2,R) invariant even though the action itself
then Eqgs.(39) and (41) reduce to the equations of motion g not.

(31) derived from Eq(26), whereas, Eq40) reduces to the
Bianchi identity(38). All other equations of motion can also
be shown to remain unaffected. Thus, we conclude that th
action (26) is equivalent to actior{36) subject to the con-
straint(42). Now the constrain(42) can also be written in an
SL(2,R) invariant form as

V(e 2*M 1Fr Lag?tM ) =0, (4D)

Now it can be checked that if we impose the constraint

The SL(2,R) transformation matrix which takes the
asymptotic value(the subscript 0 will always denote the
symptotic valugof the complex modulh =i (correspond-
ing to ag=¢y=0) to an arbitrary value\, has the form

[32,33

e %0cosa+aysinae? — sinae” %0+ a,cosaeo

= . 44
e?osina e%o cosa (44)

Herea is an arbitrary parameter and will be fixed Iater._ The sina=(q;+ aopl)e¢oAl—1/2:(q2+ aopz)e¢0A2_1/2,
transformation of the field strengths from E@7) then is (48)
given as
where (;,q;) are integers measuring the number of units of
(45) magnetic and “electric” charges of the dyonic solution.
Note that the “electric” charge mentioned here is an auxil-
iary electric charge corresponding ¢o,,. The true electric
charge of the theory is given later in EG9) which is non-
+(e" %o cosa+age®sine)g,,. (46) integral. Thus the dyonic solution is characterized by two
pairs of integers corresponding to the magnetic and “elec-
Note that the initial configuration, i.e., the monopole solutiontric” charges associated witlt,, andg,, . Equations(47)
(22) has onlyF,, whereF$)=P® sing, for i=1,2. So, the ~and(48) determines the value df, andA, as
magnetic charge®®,p(? a(rle)z integers m(e;z)isured in some )
basic units. In other word®'*'=mP andP'“=nP, where o2 2 2 i
m,n are integers an is the charge unit which is set to 1 Ai=e*opi+ e+ aopy)*= (p 'qi)MO< %)l
from now on. Now as we make tH&L(2,R) transformations (49
(45), (46), they will no longer remain integers. So, we
modify P(Y) and P® by AY2 andA}? and demand that the As is clear, is not summed over in the right-hand side of Eq.
charges remain integers after the transformatibpnandA,  (49). Since the charges transform as
will be fixed soon. Thus from Eq$45) and(46) we obtain
Pi Pi
—(AT l( ),
q_) (A7)

i di

F ,—e?ocosaF,,—e%sinag,,,

G.,— (e %0sina—age® cosa)f,,

cosa =e~ YA p,=e" %A, Y7p,, (47

082003-5
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we find that Eq.(49) is SL(2,Z2) invariant. Note from Eq. We note from above that the mass formula in &) can be
(49 that in order to maintain the charge vector to be integefvritten in a manifesthSL(2,2) andO(1,1Z) invariant form
valued theSL(2,R) transformation would have to be re- as[17,27]
stricted to SL(2,Z) i.e. integer valued, but then the
asymptotic value of the dilaton#) and the axion &) can

not be maintained to a fixed value. We here construct the

dyonic solution for a fixed but arbitrary asymptotic value of

the background fields. The transformed value of the compleM in Eq. (58) is actually an identity matrix since”—1

1
M2:1_6(pi 0i) Mo(Mo+ 7);

Pj
. 8
q-) 59

J

moduli and the field strengths are given as

NE agA A+ pigre 2%(A—1)+iA,AV%e 2%

- (50
pie 2%+ Ae?%o(agp;+d;)°
@A A+ g *P(A—1) +iA AR 2%
pre 270+ Ae*?0(agpy+ap)?
(51
and
/ (pl sing )
F' 3= D,sing/’ (52
, (ql sing &3
G'29= q,sing)” (53
In Egs.(50) and(51) the functionA is defined as
1/2 Al/Z —-1/2
1 2
A=||1+ T 1+T (54

Note that asymptoticallA— 1 and therefore, from Eq$50)

and(51) we havex — )\ as expected. Finally, the canonical

metric for the dyonic solution is given as

Al/Z Al/2 —-1/2
ds=—|| 1+ — 1+TZ dt?
Al/Z 1/2\ 11/2
+ “Tl 1+72} [dr2+r2dQ2] (55)
and
[1+a¥ar)® -
1+AY2r

Thus starting from the magnetic monopole soluti@g) we

asymptotically as can be seen from E§6). This is the
Schwarz-Sen mass formula in this case. The electric, mag-
netic charge spectrum for the dyonic solutions can also be
obtained from Eqgs(35) and(42) as

(Q{Ma9) QM) =[p; ,€2?(Mo7);;(a;+aop))]. (59

This charge spectrum has been obtained by Schwarz and Sen
in Ref. [22] and they satisfy the Dirac-Schwinger-
Zwanziger-Witten quantization rule5].

Now in order to understand the stabilifg6,17 of the
dyonic solution, we first note from E@58) that the masses
of such solution are characterized by two pairs of integers
(p1,91,P2,92) and they satisfy as usual for a BPS state the
triangle inequality of the form

Mp,.a;.p,.09 T M (p1.45.p5.05)

=M o, +p7.a,+a] Pyt aytal) - (60)
The equality holds when

(P1+P2) (a1 +03)=(p1+ps)(ds+0sy). (61)

Hence we notice that when sum of the magnetic charges
(p1+p2) is relatively prime to the sum of the electric
charges @, +q,), the dyonic state will be stable since it will
be prevented from decaying into lower mass state by the
inequality (60).

Finally, we note from Eq(58) that unlike the dyonic so-
lution considered in Ref21], the solution considered here
has zero area of the event horizon, i.e., zero entropy but finite
Hawking temperature

1

am\AYAY?

IV. CONCLUSION

Th= (62)

To summarize, we have briefly discussed the KK mag-
netic monopole solution in five-dimensional pure Einstein

have obtained the dyonic solution carrying both magnetiGyayity with one of the spatial dimensions compactified and

and electric charges given by the field configurati@®@—

(56). The magnetic chargdX?=0 corresponds to the KK
dyonic solution wheread}?’=0 corresponds to the H dy-

then showed how this solution arises in string theory. We
have also discussed another kind of monopole solution
known as theH-monopole solution in string theory. These

onic solution. The BPS saturated ADM mass of the dyonicwo solutions are related to each other by-duality trans-

solution can be easily calculatgd4] from Eq. (55) which is
given by

1
MZ= T (AT%+ 2592 (57)

formation in string theory. Next, we considered the magnetic
monopole solution when both KK gauge field and the gauge
field originating from the dimensional reduction of Kalb-
Ramond antisymmetric tensor field are present. Then by in-
cluding the H? term we have shown that the full string

082003-6
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theory effective action can be expressed in a manifestlyelation satisfied by the masses of the dyonic states. We have
SL(2R) invariant form with anSL(2,R) invariant con- mentioned that unlike the dyonic solution considered in Ref.
straint. By using this symmetry we have explicitly con-[21], the solution we described has zero entropy, but finite
structed the corresponding dyonic solution. We have obHawking temperature.

tained the BPS saturated ADM mass formula and the

Schwarz-Sen electric-magnetic charge spectrum for this so-

lution. The dyonic solution is characterized by two pairs of ACKNOWLEDGMENTS

integers. By using the mass formula we have shown that

when sum of the magnetic charges is relatively prime to the | would like to thank Ashoke Sen for very useful discus-
sum of the “electric” charges the dyonic solution is stable. sions. | would also like to thank J. X. Lu for some interesting
The stability can be understood from a triangle inequalitycomments.
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