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Kaluza-Klein and H dyons in string theory
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Kaluza-Klein monopole andH-monopole solutions, which areT dual to each other, are the well-known
solutions of string theory compactified onT6. Since string theory in this case has anS-duality symmetry, we
explicitly construct the corresponding dyonic solutions by expressing theD54 string effective action in a
manifestlySL(2,R) invariant form with anSL(2,R) invariant constraint. The Schwarz-Sen charge spectrum,
the Bogomol’nyi-Prasad-Sommerfield saturated mass formula as well as the stability of these states are dis-
cussed briefly.@S0556-2821~99!08118-7#

PACS number~s!: 11.25.2w
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I. INTRODUCTION

It is well known that the five dimensional pure Einste
gravity admits a solitonic solution known as the Kaluz
Klein ~KK ! monopole solution first obtained by Gross, Per
and Sorkin~GPS! @1,2#. Since in this construction one of th
spatial coordinates is compactified, this solution can also
viewed as a four-dimensional black hole with a magne
charge. TheU(1) gauge field corresponding to the magne
charge originates in this case from the isometry of the co
pact dimension. As the five-dimensional pure gravity is co
tained as a special case of dimensionally reduced st
theory, obviously, string theory in four or five dimensio
also admits a KK monopole solution. String theory in fo
dimensions admits another kind of monopole solution kno
as theH-monopole solution@3,4#. TheU(1) gauge field cor-
responding to the magnetic charge in this case arises f
the dimensional reduction of the second rank antisymme
tensorBMN contained in the string theory spectrum. The
two solutions are in factT dual @5# to each other. In the
original ten-dimensional theory they represent the five-br
solutions compactified on a circle and theT duality @6# re-
lates the type IIA~IIB ! KK monopole to the type IIB~IIA !
Neveu-Schwarz five-branes. Many interesting dynam
properties of KK monopoles as well as the world volum
theory have been studied in Refs.@7–14#. The world volume
theories of KK monopole are related to various supersy
metric gauge theories in 511 dimensions and can be used
study their properties.

Any string theory in four dimensions has been conje
tured@15# to possess an exactSL(2,Z) symmetry also known
as theS-duality symmetry as a part of the complete nonp
turbative U duality@16# symmetry. Many evidences in favo
of this conjecture have been given in Ref.@17#. One such
evidence is the prediction of the existence of dyonic so
tions corresponding to both the KK monopole and t
H-monopole solutions of string theory. The proof of ex
tence of these dyonic excitations~in both heterotic and type
II string theory! has been given in Refs.@18,19# by arguing
that the degeneracies of the dyonic states match prec
with those of the elementary string states. In this paper,
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explicitly construct the dyonic solutions starting from th
known monopole solutions of type II string theory in a sim
plified setting. We first express the four dimensional stri
effective action in a manifestlySL(2,R) invariant form
alongwith an SL(2,R) invariant constraint on the field
strengths. Then we use this symmetry to rotate the mono
solutions and obtain the corresponding dyonic solutions
different kind of dyonic solutions of both the KK andH
monopoles have been discussed in Refs.@20,21#, but the
electric and the magnetic charges considered there co
spond to different gauge fields instead of the same ga
field. We also obtain the Schwarz-Sen electric-magne
charge spectrum@22# as well as the Bogomol’nyi-Prasad
Sommerfield ~BPS! saturated Arnowitt-Deser-Misne
~ADM ! masses for these dyonic solutions. We then disc
how the stability of these states can be understood from
mass formula. Unlike the dyonic solutions discussed in R
@21#, the dyonic black hole we obtain has finite Hawkin
temperature but zero entropy.

This paper is organized as follows. In Sec. II, we brie
discuss the KK monopole solution of GPS and mention h
it can be regarded as a string theory solution inD54.
H-monopole solution is also discussed in brief. In Sec.
we construct the dyonic solutions by applyingSL(2,R)
transformation on the monopole solutions. The Schwarz-
charge spectrum and the BPS saturated mass formula
obtained. We also discuss the stability of the dyonic sta
Finally, our conclusions are presented in Sec. IV.

II. KK- AND H-MONOPOLE SOLUTIONS
IN STRING THEORY

The KK monopole was originally obtained by Gros
Perry, and Sorkin@1,2# as a solution of pure Einstein gravit
in five dimensions~with one of the spatial dimensions com
pactified! where the action has the form

S55E d5xA2GR. ~1!

If we denote the compact dimension asx4, then the five-
dimensional metric can be decomposed in terms of fo
dimensional metric as usual by the following KK ansatz:
©1999 The American Physical Society03-1
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GMN5S Gmn1AmAnG44 AmG44

AnG44 G44
D , ~2!

whereM ,N50,1, . . . ,4 andm,n50,1,2,3. Also all the four-
dimensional fields here are independent ofx4. Now the five-
dimensional action~1! reduces to the four-dimensional a
tion as follows:

S45E d4xA2ḠFR2
1

2
]mf̃]mf̃2

1

4
e2A3f̃FmnFmnG ,

~3!

where the metric Ḡmn5G44
1/2Gmn , the scalar f̃5

2(A3/2)logG44, andFmn5]mAn2]nAm .
The equations of motion obtained from action~3! has a

magnetically charged black hole solution which in the e
tremal limit takes the form@23–25#

ds252S 11
P

r D 21/2

dt21S 11
P

r D 1/2

@dr21r 2dV2
2#,

e2f̃5S 11
P

r D A3

or e2f̃/A35S 11
P

r D5G44
21 . ~4!

Hereds2 is written in terms of the canonical metricḠmn and
in terms ofGmn it is given by

ds252dt21S 11
P

r D @dr21r 2dV2
2#

52dt21G44
21@dr21r 2dV2

2#, ~5!

wheredV2
25du21 sin2 udw2 and P is the magnetic charge

of the black hole. The solution here is written in terms
spherical polar coordinatesr, u, w denoted as 1,2,3, respe
tively. ThusF235P sinu. This is the KK monopole solution
of GPS in four dimensions. Since theU(1) gauge field in
this case has the formA35P(12 cosu), the above solution
can be written in terms of Taub-NUT metric in five dime
sions as in Ref.@2#. Let us now try to understand how th
above solution arises in string theory. The low energy eff
tive action of any string theory inD55 has the following
form in common:

S5
(st)5E d5xA2Ge22FFR14]MF]MF2

1

12
HMNPHMNPG .

~6!

Here GMN , F and BMN are, respectively, the five
dimensional metric, dilaton, and Kalb-Ramond antisymm
ric tensor field, with the field strengthHMNP5]MBNP
1]NBPM1]PBMN . The rest of the fields which arise from
the dimensional reduction are set to zero. If we now furt
setHMNP50, then with the same KK ansatz~2! of the met-
ric, we can write the reduced action in the form
08200
-

f

-

t-

r

S4
(st)5E d4xA2Ge22fFR14]mf]mf2]ms]ms

2
1

4
e22sFmn

(1)F (1)mnG , ~7!

where the four-dimensional dilatonf5F1 1
2 s and the sca-

lar s is given by G445e22s. We have also renamed th
gauge fieldAm asAm

(1) for later convenience. Thus we notic
that the four-dimensional string action contains two scal
f ands instead of one,f̃, as in pure gravity case~3!. The
solution of the equations of motion following from Eq.~7! is
also given in terms of two scalars as follows@25#:

ds252dt21e2f1s@dr21r 2dV2
2#,

e2f5es5S 11
P(1)

r D 1/2

~8!

where we have renamed the KK monopole chargeP asP(1).
Note that the solutionds2 is written in terms of string metric
Gmn . In terms of canonical metricḠmn5e22fGmn , the so-
lution reduces to

ds252e22fdt21es@dr21r 2dV2
2#. ~9!

We find that the solution~8! and ~9! are precisely identica
with Eqs. ~5! and ~4! sinces5(1/A3)f̃. Note further that
sincef5 1

2 s is the solution, the five dimensional dilatonF
is trivial ~but the four-dimensional dilaton is not! as ex-
pected. Thus we note that although we started out with
ferent actions namely, Eqs.~3! and ~7!, we end up with the
same KK monopole solutions and this clarifies how K
monopole arises as a solution in string theory. We now d
cuss theH-monopole solution in string theory. Note from E
~6! that if instead of settingHMNP to zero, we keep the
componentBm45Am

(2) , the reduced action would take th
form with Am

(1)50, as

S̃4
(st)5E d4xA2Ge22fFR14]mf]mf

2]ms]ms2
1

4
e2sFmn

(2)F (2)mnG . ~10!

The equations of motion following from Eq.~10! has the
solution

ds252dt21e2f2s@dr21r 2dV2
2#,

e2f5e2s5S 11
P(2)

r D 1/2

. ~11!

Here P(2) is the magnetic charge associated with theH
monopole, i.e.,F23

(2)5P(2) sinu. In the canonical metric the
solution can be written as

ds252e22fdt21e2s@dr21r 2dV2
2#. ~12!
3-2
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Note that since here 2f52s is the solution, the five-
dimensional dilatonF is not trivial and therefore this solu
tion is strictly a string theory solution which can not be o
tained from pure gravity. This can also be understood si
the gauge fieldAm

(2) originates in this case from the dimen
sional reduction ofBMN which is a field contained only in
string theory spectrum. It should be mentioned here that
solution ~11! can be obtained from Eq.~8! by the following
transformations:

Gmn→Gmn , s→2s, f→f,

Am
(1)→Am

(2) , P(1)→P(2). ~13!

Although neither the actions~7! nor ~10! possess this sym
metry, the full string theory action indeed has this symme
the T-duality symmetry@which is O(1,1) symmetry in this
case#. Thus the string theory admits both the KK- an
H-monopole solutions which are related to each other by
T-duality transformations.

III. DYONIC SOLUTIONS

Starting from the monopole solutions discussed in the p
vious section, we, in this section, will construct the cor
sponding dyonic solutions having both magnetic and elec
charges. In order to obtain these solutions we will use
SL(2,R) symmetry of the four-dimensional string effectiv
action. The relevant four dimensional string action conta
ing both the gauge fieldsAm

(1) and Am
(2) as well as the anti-

symmetric tensor fieldBmn has the form

S(st)5E d4xA2Ge22fFR14]mf]mf2]ms]ms

2
1

4
e22sFmn

(1)F (1)mn2
1

4
e2sFmn

(2)F (2)mn

2
1

12
HmnlHmnlG . ~14!

Note that when both the gauge fieldsAm
(1) andAm

(2) are non-
zero, the reduced form of the field strengthHmnl is given as,1

Hmnl5]mBnl2
1

2
~Am

(1)Fnl
(2)1Am

(2)Fnl
(1)!1cyc. inmnl.

~15!

So, the action~14! is invariant under theT-duality transfor-
mation ~13! along with

Am
(2)→Am

(1) , Bmn→Bmn , P(2)→P(1). ~16!

1The antisymmetric tensor fieldBmn here is a modified form of the
dimensionally reducedBmn @26#.

2Here the equations of motion are obtained after rewriting

action in the Einstein metric, where Einstein metricḠmn

5e22fGmn .
08200
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Note thatH2 term is invariant under the transformations~13!
and~16! by itself. The transformations~13! and~16! consti-
tute the completeT-duality or O(1,1) symmetry of the
theory. WhenHmnl50 the equations of motion2 following
from Eq. ~14! are as given below:

¹2f1
1

8
e22f@e22s~F (1)!21e2s~F (2)!2#50, ~17!

¹2s1
1

4
e22f@e22s~F (1)!22e2s~F (2)!2#50, ~18!

¹m~e22f22sF (1)mn!50, ~19!

¹m~e22f12sF (2)mn!50, ~20!

Rmn52]mf]nf1]ms]ns1
1

2
e22f~e22sFmr

(1)Fn
(1)r

1e2sFmr
(2)Fn

(2)r!2
1

8
Ḡmne22f@e22s~F (1)!2

1e2s~F (2)!2#. ~21!

The equations of motion~17!–~21! can be easily solved by
assuming the form of the metric to be static, spherically sy
metric which becomes flat asymptotically. In fact, the sup
symmetric BPS saturated solution of the above equation
motion has already been obtained by Cvetic and Youm@21#
which has the following form:

ds252~ f 1f 2!21/2dt21~ f 1f 2!1/2@dr21r 2dV2
2#,

e2f5~ f 1f 2!1/2, e2s5S f 2

f 1
D 1/2

, ~22!

where f i5(11P( i )/r ) with i 51,2. HereP( i )’s are the mag-
netic charges associated with the gauge fieldsAm

( i ) . The so-
lution is indeed invariant under theT-duality transformations
~13! and ~16!. Note from Eq.~22! that P(2)50 corresponds
to KK monopole solution~8! whereasP(1)50 corresponds
to H-monopole solution~11! as discussed in the previou
section.

We would like to point out that forHmnlÞ0 the action
~14! as well as the equations of motion following from it ha
a larger symmetry than what has already been noted in E
~13! and ~16!. In fact, apart from theT-duality symmetry, it
also has anS-duality symmetry and we will use this symme
try to obtain the dyonic solutions.

We first note that the action~14! can be written in an
O(1,1) invariant form@27# as follows:

S(st)5E d4xA2Ge22fFR14]mf]mf1
1

8
tr ]mM]mM 21

2
1

4
F mn

T M 21F mn2
1

12
HmnlHmnlG , ~23!

e

3-3
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where

M5S e2s 0

0 e22sD
is anO(1,1) matrix satisfyingMThM5h, with

h5S 0 1

1 0D
and

Fmn5S Fmn
(1)

Fmn
(2)D .

The action~23! is invariant under a globalO(1,1) transfor-
mation

M→VMVT, Fmn→VFmn , Gmn→Gmn ,

f→f, and Bmn→Bmn , ~24!

where V is an O(1,1) matrix. Note that in this particula
caseV5h. By writing Eq. ~23! in Einstein metric,

S̄(st)5E d4xA2ḠFR22]mf]mf1
1

8
tr ]mM]mM 21

2
1

4
e22fF mn

T M 21F mn2
1

12
e24fHmnlHmnlG ,

~25!

we find that the equations of motion derived from Eq.~25!
can also be obtained from an alternative action@28,17#

S(alt)5E d4xA2ḠFR2
1

2l2
2
]ml]ml̄1

1

8
tr ]mM]mM 21

2
1

4
l2F mn

T M 21F mn2
1

4
l1F mn

T hF̃mnG , ~26!

where we have defined

Hmnl52
1

A2Ḡ
e4femnlr]ra ~27!

with a, a pseudoscalar called an axion. Equation~27! in fact
follows from the equation of motion ofHmnl in Eq. ~25!.
Also, l is a complex scalar defined as

l5a1 ie22f5l11 il2 ~28!

and F̃mn5 1
2
A2ḠemnlrF lr. The equations of motion fol-

lowing from Eq.~26! are

1

l2
2
¹m]ml1

i

l2
3
]ml]ml2

1

4
F mn

T hF̃mn2
i

4
F mn

T M 21F mn50,

~29!
08200
Rmn5
1

4l2
2 ~]ml]nl̄1]nl]ml̄!1

1

2
l2F mr

T M 21F n
r

2
1

8
l2ḠmnF rs

T M 21F rs2
1

8
tr ]mM]nM 21, ~30!

¹m~l2M 21F mn1l1hF̃mn!50 ~31!

and thes equation is as given in Eq.~18!. It can now be
checked that the above equations of motion are invar
under the globalSL(2,R) transformations as given below
@29,28,17#:

l→ al1b

cl1d
, Ḡmn→Ḡmn , M→M ,

Fmn→~cl11d!Fmn2cl2MhF̃mn , ~32!

where the globalSL(2,R) transformation matrix

L5S a b

c dD ,

with ad2bc51. However, we note that the action~26! is
not SL(2,R) invariant. Let us next rewrite the action in a
SL(2,R) invariant @16,30# fashion.3 In order to do this we
define

M5S e22f1a2e2f ae2f

ae2f e2f D ~33!

and

Hmn5S Fmn

Gmn
D , ~34!

where

Gmn5F̂mn2aFmn . ~35!

HereF̂mn is a pair of new fields we introduce which will b
related to the known fields through a constraint as we w
see below. The action~26! can now be written in a mani
festly SL(2,R) invariant form as follows:

S5E d4xA2ḠFR1
1

8
tr ]mM]mM 21

1
1

4
tr ]mM]mM 212

1

4
H mn

T MM 21H mnG , ~36!

where theSL(2,R) transformations are given as

Ḡmn→Ḡmn , M→M ,

3An SL(2,R) invariant four dimensional string effective actio
has also been constructed in@31# using a different method.
3-4
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M→LMLT, Hmn→~LT!21Hmn , ~37!

whereL is an SL(2,R) matrix. In order to see the equiva
lence between Eqs.~26! and ~36!, we note that the Bianch
identities and the equations of motion of the field streng
and the gauge fields following from Eq.~36! are

¹mF̃mn50, ~38!

¹mG̃mn50⇒¹m~ F̃̂mn2aF̃mn!50, ~39!

and

¹m~e2fM 21F̂mn!50, ~40!

¹m~e22fM 21F mn1ae2fM 21F̂mn!50. ~41!

Now it can be checked that if we impose the constraint

F̂mn5e22fMhF̃mn ~42!

then Eqs.~39! and ~41! reduce to the equations of motio
~31! derived from Eq.~26!, whereas, Eq.~40! reduces to the
Bianchi identity~38!. All other equations of motion can als
be shown to remain unaffected. Thus, we conclude that
action ~26! is equivalent to action~36! subject to the con-
straint~42!. Now the constraint~42! can also be written in an
SL(2,R) invariant form as
he

on

e

1

e

08200
s

e

H̃mn5MhSMHmn , ~43!

where

S5S 0 1

21 0D
is the SL(2,R) metric satisfyingLSLT5LTSL5S. We
would like to point out that the action~36! contains an
SL(2,R) doublet of field strengthsFmn and Gmn , which
makes it manifestlySL(2,R) invariant. On the other hand
action ~26! does not contain theSL(2,R) doublet of field
strengths, but the equations of motion following from it co

tains theSL(2,R) doubletFmn ande22fMhF̃mn , which can
be seen from~42!. That is why the equations of motion o
Eq. ~26! areSL(2,R) invariant even though the action itse
is not.

The SL(2,R) transformation matrix which takes th
asymptotic value~the subscript 0 will always denote th
asymptotic value! of the complex modulil05 i ~correspond-
ing to a05f050) to an arbitrary valuel0 has the form
@32,33#
L5S e2f0 cosa1a0 sinaef0 2 sinae2f01a0 cosaef0

ef0 sina ef0 cosa D . ~44!
of
n.
il-

wo
ec-

q.
Herea is an arbitrary parameter and will be fixed later. T
transformation of the field strengths from Eq.~37! then is
given as

F mn→ef0 cosaFmn2ef0 sinaGmn , ~45!

Gmn→~e2f0 sina2a0ef0 cosa!Fmn

1~e2f0 cosa1a0ef0 sina!Gmn . ~46!

Note that the initial configuration, i.e., the monopole soluti
~22! has onlyFmn whereF23

( i )5P( i ) sinu, for i 51,2. So, the
magnetic chargesP(1),P(2) are integers measured in som
basic units. In other words,P(1)5mP andP(2)5nP, where
m,n are integers andP is the charge unit which is set to
from now on. Now as we make theSL(2,R) transformations
~45!, ~46!, they will no longer remain integers. So, w
modify P(1) and P(2) by D1

1/2 andD2
1/2 and demand that the

charges remain integers after the transformation.D1 andD2
will be fixed soon. Thus from Eqs.~45! and ~46! we obtain

cosa 5e2f0D1
21/2p15e2f0D2

21/2p2 , ~47!
sina5~q11a0p1!ef0D1
21/25~q21a0p2!ef0D2

21/2,
~48!

where (pi ,qi) are integers measuring the number of units
magnetic and ‘‘electric’’ charges of the dyonic solutio
Note that the ‘‘electric’’ charge mentioned here is an aux
iary electric charge corresponding toGmn . The true electric
charge of the theory is given later in Eq.~59! which is non-
integral. Thus the dyonic solution is characterized by t
pairs of integers corresponding to the magnetic and ‘‘el
tric’’ charges associated withFmn andGmn . Equations~47!
and ~48! determines the value ofD1 andD2 as

D i5e22f0pi
21e2f0~qi1a0pi !

25~pi ,qi !M0S pi

qi
D .

~49!

As is clear,i is not summed over in the right-hand side of E
~49!. Since the charges transform as

S pi

qi
D→~LT!21S pi

qi
D ,
3-5
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we find that Eq.~49! is SL(2,Z) invariant. Note from Eq.
~49! that in order to maintain the charge vector to be inte
valued theSL(2,R) transformation would have to be re
stricted to SL(2,Z) i.e. integer valued, but then th
asymptotic value of the dilaton (f) and the axion (a) can
not be maintained to a fixed value. We here construct
dyonic solution for a fixed but arbitrary asymptotic value
the background fields. The transformed value of the comp
moduli and the field strengths are given as

l85
a0D1A1p1q1e22f0~A21!1 iD1A1/2e22f0

p1
2e22f01Ae2f0~a0p11q1!2

~50!

5
a0D2A1p2q2e22f0~A21!1 iD2A1/2e22f0

p2
2e22f01Ae2f0~a0p21q2!2

~51!

and

F8235S p1 sinu

p2 sinu D , ~52!

G8235S q1 sinu

q2 sinu D . ~53!

In Eqs.~50! and ~51! the functionA is defined as

A5F S 11
D1

1/2

r D S 11
D2

1/2

r D G21/2

. ~54!

Note that asymptoticallyA→1 and therefore, from Eqs.~50!
and~51! we havel→l0 as expected. Finally, the canonic
metric for the dyonic solution is given as

ds252F S 11
D1

1/2

r D S 11
D2

1/2

r D G21/2

dt2

1F S 11
D1

1/2

r D S 11
D2

1/2

r D G1/2

@dr21r 2dV2
2# ~55!

and

e2s5F11D2
1/2/r

11D1
1/2/r

G 1/2

. ~56!

Thus starting from the magnetic monopole solution~22! we
have obtained the dyonic solution carrying both magne
and electric charges given by the field configurations~50!–
~56!. The magnetic chargeD2

1/250 corresponds to the KK
dyonic solution whereasD1

1/250 corresponds to the H dy
onic solution. The BPS saturated ADM mass of the dyo
solution can be easily calculated@34# from Eq.~55! which is
given by

M25
1

16
~D1

1/21D2
1/2!2. ~57!
08200
r

e

x

c

c

We note from above that the mass formula in Eq.~57! can be
written in a manifestlySL(2,Z) andO(1,1,Z) invariant form
as @17,22#

M25
1

16
~pi ,qi !M0~M01h! i j S pj

qj
D . ~58!

M0 in Eq. ~58! is actually an identity matrix sincees→1
asymptotically as can be seen from Eq.~56!. This is the
Schwarz-Sen mass formula in this case. The electric, m
netic charge spectrum for the dyonic solutions can also
obtained from Eqs.~35! and ~42! as

~Qi
(mag),Qi

(el)!5@pi ,e2f0~M0h! i j ~qj1a0pj !#. ~59!

This charge spectrum has been obtained by Schwarz and
in Ref. @22# and they satisfy the Dirac-Schwinge
Zwanziger-Witten quantization rule@35#.

Now in order to understand the stability@36,17# of the
dyonic solution, we first note from Eq.~58! that the masses
of such solution are characterized by two pairs of integ
(p1 ,q1 ,p2 ,q2) and they satisfy as usual for a BPS state
triangle inequality of the form

M (p1 ,q1 ,p2 ,q2)1M (p
18 ,q

18 ,p
28 ,q

28)

>M (p11p
18 ,q11q

18 ,p21p
28 ,q21q

28) . ~60!

The equality holds when

~p11p2!~q181q28!5~p181p28!~q11q2!. ~61!

Hence we notice that when sum of the magnetic char
(p11p2) is relatively prime to the sum of the electri
charges (q11q2), the dyonic state will be stable since it wi
be prevented from decaying into lower mass state by
inequality ~60!.

Finally, we note from Eq.~58! that unlike the dyonic so-
lution considered in Ref.@21#, the solution considered her
has zero area of the event horizon, i.e., zero entropy but fi
Hawking temperature

TH5
1

4pAD1
1/2D2

1/2
. ~62!

IV. CONCLUSION

To summarize, we have briefly discussed the KK ma
netic monopole solution in five-dimensional pure Einste
gravity with one of the spatial dimensions compactified a
then showed how this solution arises in string theory. W
have also discussed another kind of monopole solu
known as theH-monopole solution in string theory. Thes
two solutions are related to each other by aT-duality trans-
formation in string theory. Next, we considered the magne
monopole solution when both KK gauge field and the gau
field originating from the dimensional reduction of Kalb
Ramond antisymmetric tensor field are present. Then by
cluding the H2 term we have shown that the full strin
3-6
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theory effective action can be expressed in a manife
SL(2,R) invariant form with anSL(2,R) invariant con-
straint. By using this symmetry we have explicitly co
structed the corresponding dyonic solution. We have
tained the BPS saturated ADM mass formula and
Schwarz-Sen electric-magnetic charge spectrum for this
lution. The dyonic solution is characterized by two pairs
integers. By using the mass formula we have shown
when sum of the magnetic charges is relatively prime to
sum of the ‘‘electric’’ charges the dyonic solution is stab
The stability can be understood from a triangle inequa
B

ys
.

ys

B

08200
ly

-
e
o-
f
at
e
.
y

relation satisfied by the masses of the dyonic states. We h
mentioned that unlike the dyonic solution considered in R
@21#, the solution we described has zero entropy, but fin
Hawking temperature.
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