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Small eigenvalues of the staggered Dirac operator in the adjoint representation
and random matrix theory
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The low-lying spectrum of the Dirac operator is predicted to be universal, within three classes, depending on
symmetry properties specified according to random matrix theory. The three universal classes are the orthogo-
nal, unitary and symplectic ensembles. Lattice gauge theory with staggered fermions has verified two of the
cases so far, unitary and symplectic, with staggered fermions in the fundamental representation of SU~3! and
SU~2!. We verify the missing case here, namely orthogonal, with staggered fermions in the adjoint represen-
tation of SU(Nc), Nc52,3. @S0556-2821~99!05715-X#

PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc
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Random matrix theory~RMT! has been successful in pre
dicting spectral properties of QCD-like theories in the s
called microscopic scaling regime, defined by 1/LQCD
!L!1/mp , with L the linear extent of the system@1,2#.
Assuming spontaneous chiral symmetry breaking in the
derlying theory, this is the regime dominated by the s
pions associated with the chiral symmetry breaking@3#. Up
to a scale, given by the chiral condensate~at infinite volume!
S5^c̄c&, the distribution of the low lying eigenvalues, th
so-called microscopic spectral density

rS~z!5 lim
V→`

1

V
rS z

VS D ~1!

with r(l) the usual~macroscopic! spectral density and, in
particular, the rescaled distribution of the lowest eigenva
Pmin(z) with z5VSlmin are universal, dependent only o
the symmetry properties, the number of dynamical quark
vors and the number of exact zero modes, i.e., the topol
cal sector, but not the potential in RMT@4#. Recently, these
properties have been derived directly from the effecti
finite-volume partition functions of QCD of Leutwyler an
Smilga @3#, without the detour through RMT@5#.

The lattice fermion action should have a chiral symme
for the predictions of random matrix theory to apply. Un
recently, staggered fermions were the only fermions regu
ized on the lattice that retained a chiral symmetry.1 The RMT
predictions have been nicely verified for staggered fermi
in the fundamental representations of SU~2! @8# and SU~3!
@9# gauge groups in quenched QCD, and for SU~2! also with
dynamical fermions@10#. These represent two out of th
three different cases predicted by RMT, chiral symplec

1A new lattice regularization of massless fermions with good c
ral properties, and even an index theorem, has recently been d
oped @6#. The RMT predictions for these overlap fermions ha
been verified for examples in all three ensembles, including
classification into different topological sectors, in@7#.
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and chiral unitary. Staggered fermions are not always in
same universality class as continuum fermions in the con
of random matrix theory. Staggered and continuum fermio
belong to the unitary ensemble when the fermions are in
fundamental representation of SU(Nc), Nc>3. But stag-
gered fermions in the fundamental representation of SU~2!
belong to the symplectic ensemble since their entire sp
trum is twofold degenerate@11# in contrast to continuum
fermions which belong to the orthogonal ensemble@2#. An-
other example where the staggered fermions and contin
fermions are not in the same universality class is when
fermions are in the adjoint representation of SU(Nc). Here
the situation is just reversed: continuum fermions are in
symplectic ensemble@2# with a twofold degeneracy of the
entire spectrum2 while staggered fermions are in the orthog
nal ensemble — they are real, since adjoint gauge fields
real and since the ‘‘Dirac matrices’’ for staggered fermio
are just phases,61. We therefore use this example wit
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TABLE I. The chiral condensate,S, from fits of the distribution
of the lowest eigenvalue to the RMT predictions. The last colu
gives the confidence level of the fit.

Group b L N S Q

SU~2! 1.8 4 5000 1.796~18! 0.921
SU~2! 2.0 4 5000 1.676~17! 0.640
SU~2! 2.0 6 2000 1.722~30! 0.496
SU~2! 2.2 4 5000 1.489~16! 0.840
SU~2! 2.2 6 2000 1.529~28! 0.344
SU~2! 2.4 6 2000 1.212~21! 0.852
SU~2! 2.4 8 1000 1.264~30! 0.874

SU~3! 5.1 4 2500 4.724~76! 0.786
SU~3! 5.1 6 1500 4.671~91! 0.035

2To compare with RMT predictions only one of each degener
pair of eigenvalues is kept and the adjoint fermion is thereby c
sidered as a Majorana fermion.
©1999 The American Physical Society02-1
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FIG. 1. The distribution of the rescaled lowe
eigenvalue,Pmin(z), together with the RMT pre-
diction using the best estimate for the chiral co
densate, which was found to be independent
the lattice size at fixed coupling.
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staggered fermions in the adjoint representation of SU(Nc)
to test the missing case.

In this Brief Report, we consider staggered fermions
the adjoint representation of SU~2! and SU~3! in the
quenched approximation. Since staggered fermions~at finite
lattice spacing! do not obey an index theorem and thus ha
no exact zero modes@12#, the RMT predictions forn50 are
expected to apply. This has been found in the studies w
staggered fermions in the fundamental representation@8–10#,
and our results will support it for staggered fermions in t
adjoint representation. The rescaled distribution of the low
eigenvalue,z5VSlmin , should thus be@13#

Pmin~z!5
21z

4
e2z/22z2/8. ~2!

This distribution is quite distinct from all other cases: it sta
at a finite, non-zero value atz50. Given the chiral conden
sate,S, Eq. ~2! is a parameter free prediction. IfS is not
otherwise known, it can be determined from a one-param
fit of the distribution of the lowest eigenvalue to Eq.~2!.
07750
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We have computed the low lying eigenvalues of the st
gered Dirac operator in the adjoint representation with
Ritz functional method@14#, applied toD†D52D2, for sev-
eral SU~2! gauge field ensembles and for two SU~3! en-
sembles. The distribution of the lowest eigenvalue, appro
mated by a histogram with jackknife errors, was fit to t
predicted form, Eq.~2!, with S, the infinite volume value of

^c̄c&, as the only free parameter. The results of the fit,
gether with the number of configurations considered, ga
coupling and lattice size, are given in Table I. In all cases
obtained good fits to the predicted form. For most gau
couplings we considered two different lattice sizes. The v
ues forS obtained from the two different lattice sizes agr
well, within statistical errors. Some distributions, togeth
with the fitted analytical predictions, are shown in Fig. 1.

The consistency of the extracted value for the chiral c
densate,S, from the two different lattice sizes makes it ev
dent that we could have used the value obtained from
lattice size to get a parameter free description of the res
from the other lattice size. Given the scaleS the microscopic
spectral densityrS , Eq. ~1!, is predicted by results of RMT
@15#. The comparison for the same systems as in Fig. 1
ch
at
FIG. 2. The microscopic spectral density,rS ,
together with the RMT prediction@15# using the
best estimate for the chiral condensate, whi
was found to be independent of the lattice size
fixed coupling.
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shown in Fig. 2. The agreement is quite nice, extending o
the entire region covered by the eigenvalues that we de
mined. Note that for the chiral orthogonal ensemble the
cillations in the RMT prediction forrS , except the first one
coming from the lowest eigenvalue, are very small. Ob
ously, we would need much more statistics to resolve ad
tional ‘‘wiggles’’ in our data.

In conclusion, adjoint staggered fermions are argued
belong to the chiral orthogonal ensemble of RMT. We fou
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that the RMT predictions indeed describe the spectrum
low lying eigenvalues of the staggered Dirac operator in
adjoint representation very well for both SU~2! and SU~3! in
our quenched simulations.
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