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The low-lying spectrum of the Dirac operator is predicted to be universal, within three classes, depending on
symmetry properties specified according to random matrix theory. The three universal classes are the orthogo-
nal, unitary and symplectic ensembles. Lattice gauge theory with staggered fermions has verified two of the
cases so far, unitary and symplectic, with staggered fermions in the fundamental representati¢d) ah8U
SU(2). We verify the missing case here, namely orthogonal, with staggered fermions in the adjoint represen-
tation of SUN.), N.=2,3.[S0556-282(99)05715-X]

PACS numbgs): 11.15.Ha, 11.30.Rd, 12.38.Gc¢

Random matrix theoryRMT) has been successful in pre- and chiral unitary. Staggered fermions are not always in the
dicting spectral properties of QCD-like theories in the so-same universality class as continuum fermions in the context
called microscopic scaling regime, defined byAdtp  of random matrix theory. Staggered and continuum fermions
<L<1/m,, with L the linear extent of the systefii,2].  belong to the unitary ensemble when the fermions are in the
Assuming spontaneous chiral symmetry breaking in the unfundamental representation of S\), N.=3. But stag-
derlying theory, this is the regime dominated by the softgered fermions in the fundamental representation of2pU
pions associated with the chiral symmetry breaki Up  belong to the symplectic ensemble since their entire spec-
to a scale, given by the chiral condens@einfinite volume  trum is twofold degeneratgll] in contrast to continuum
S = (), the distribution of the low lying eigenvalues, the fermions which belong to the orthogonal ensenfide An-
so-called microscopic spectral density other example where the staggered fermions and continuum

fermions are not in the same universality class is when the
1 z fermions are in the adjoint representation of 8lJ(. Here
ps(z)= lim VP(E) (1) the situation is just reversed: continuum fermions are in the
Ve symplectic ensemblg2] with a twofold degeneracy of the
. ) ) ~ entire spectrufwhile staggered fermions are in the orthogo-
with p(\) the usual(macroscopik spectral density and, in gl ensemble — they are real, since adjoint gauge fields are

Pmin(2) with z=VX\q, are universal, dependent only on are just phasesr 1. We therefore use this example with
the symmetry properties, the number of dynamical quark fla-

vors and the number of exact zero modes, i.e., the topologi- TABLE |. The chiral condensaté,, from fits of the distribution
cal sector, but not the potential in RM#]. Recently, these of the lowest eigenvalue to the RMT predictions. The last column
properties have been derived directly from the effective 9'Ves the confidence level of the fit.

finite-volume partition functions of QCD of Leutwyler and

Smilga[3], without the detour through RMT5]. Group B L N 2 Q
The lattice fermion action should have a chiral symmetrysy2) 1.8 4 5000 1.796.9) 0.921
for the predictions of random matrix theory to apply. Until sy(2) 2.0 4 5000 1.67@7) 0.640
recently, staggered fermions were the only fermions regulargyy) 20 6 2000 1.72@0) 0.496
ized on the lattice that retained a chiral symmétihe RMT Su2) 292 4 5000 1.4806) 0.840
predictions have been nicely verified for staggered fermiongu(z) 29 6 2000 1.52@8) 0.344
in the fundamental representations of (3JJ[8] and SU3) SU2) 24 6 2000 1.2121) 0.852
[9] gauge groups in quenched QCD, and for(3lalso with SUR) 24 8 1000 1.26(80) 0874
dynamical fermiong10]. These represent two out of the i i i
three different cases predicted by RMT, chiral symplecticSU(3) 5.1 4 2500 4.72076) 0.786
SUR) 51 6 1500 4.6701) 0.035

A new lattice regularization of massless fermions with good chi-
ral properties, and even an index theorem, has recently been devel-
oped[6]. The RMT predictions for these overlap fermions have 2To compare with RMT predictions only one of each degenerate
been verified for examples in all three ensembles, including theair of eigenvalues is kept and the adjoint fermion is thereby con-
classification into different topological sectors,[ifi. sidered as a Majorana fermion.
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staggered fermions in the adjoint representation of MgYJ( We have computed the low lying eigenvalues of the stag-
to test the missing case. gered Dirac operator in the adjoint representation with the

In this Brief Report, we consider staggered fermions inRitz functional method14], applied toD 'D = — D2, for sev-
the adjoint representation of $2) and SU3) in the eral SU2) gauge field ensembles and for two @Y en-
quenched approximation. Since staggered fermiahéinite ~ sembles. The distribution of the lowest eigenvalue, approxi-
lattice spacingdo not obey an index theorem and thus havemated by a histogram with jackknife errors, was fit to the
no exact zero modd4.2], the RMT predictions fon=0 are  predicted form, Eq(2), with %, the infinite volume value of
expected to apply. This has been found in the studies witliy ), as the only free parameter. The results of the fit, to-
staggered fermions in the fundamental representf8en(], gether with the number of configurations considered, gauge
and our results will support it for staggered fermions in thecoupling and lattice size, are given in Table I. In all cases we
adjoint representation. The rescaled distribution of the lowestbtained good fits to the predicted form. For most gauge
eigenvaluez=V2\ iy, should thus bg¢13] couplings we considered two different lattice sizes. The val-
ues for3, obtained from the two different lattice sizes agree
247 , well, within statistical errors. Some distributions, together
Pmin(2)= ——e #27778 (2)  with the fitted analytical predictions, are shown in Fig. 1.
4 The consistency of the extracted value for the chiral con-
densatey, from the two different lattice sizes makes it evi-
This distribution is quite distinct from all other cases: it startsdent that we could have used the value obtained from one
at a finite, non-zero value at=0. Given the chiral conden- lattice size to get a parameter free description of the results
sate,>, Eq. (2) is a parameter free prediction. ¥ is not  from the other lattice size. Given the scaleghe microscopic
otherwise known, it can be determined from a one-parametespectral densitys, Eq. (1), is predicted by results of RMT

fit of the distribution of the lowest eigenvalue to E). [15]. The comparison for the same systems as in Fig. 1 is
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shown in Fig. 2. The agreement is quite nice, extending ovethat the RMT predictions indeed describe the spectrum of
the entire region covered by the eigenvalues that we detetow lying eigenvalues of the staggered Dirac operator in the
mined. Note that for the chiral orthogonal ensemble the osadjoint representation very well for both &) and SU3) in
cillations in the RMT prediction fops, except the first one Our quenched simulations.

coming from the lowest eigenvalue, are very small. Obvi-  This research was supported by DOE contracts DE-FGO5-
ously, we would need much more statistics to resolve addigsER250000 and DE-FG05-96ER40979. Computations were
tional “wiggles” in our data. performed on the workstation cluster at SCRI. We thank P.

In conclusion, adjoint staggered fermions are argued t®amgaard for discussions and J. Verbaarschot for making
belong to the chiral orthogonal ensemble of RMT. We foundthe data for the analytical curve in Fig. 2 available.
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