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Relation Tr y5=0 and the index theorem in lattice gauge theory

Kazuo Fujikawa
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
(Received 23 April 1999; published 13 September 1999

The relation Trys=0 implies the contribution to the trace from unphysitabuld-be species doublers in
lattice gauge theory. This statement is also true for Pauli-Villars regularization in continuum theory. If one
insists on Trys=0, one thus inevitably includes unphysical states in Hilbert space. If one truncates the trace
to the contribution from physical species only, one obtaing<Fn_ —n_ which is equal to the Pontryagin
index. A smooth continuum limit of Tys=Tr ys[1—(a/2)D]=n, —n_ for the Dirac operatoP satisfying
the Ginsparg-Wilson relation leads to a natural treatment of a chiral anomaly in the continuum path integral. In
contrast, the continuum limit of Tys=0 is not defined consistently. It is shown that the nondecoupling of
heavy fermions in the anomaly calculation is crucial to understand the consistency of the customary lattice
calculation of the anomaly where J£=0 is used. We also comment on a closely related phenomenon in the
analysis of the photon phase operator where the notion of index and the modification of index by a finite cutoff
play a crucial role[S0556-282(199)07517-1

PACS numbds): 11.15.Ha

. INTRODUCTION v5D =N nbp, (1.4

Recent developments in the treatment of fermions in latfor the Hermitian operator ysD with simultaneous eigen-
tice gauge theory led to a better understanding of chiral symvaluesys¢,= * ¢,. We also used the relation
metry not only in lattice theory1-7] but possibly also in . a
continuum theony8]. These developments are based on a + _ t .
Hermitian lattice Dirac operatogsD which satisfies the so- PnYsbn=5 Mndndn=5An (1.5
called Ginsparg-Wilson relatioft]
for A,#0, which is derived by sandwiching relatiqi.1)
ysD+Dys=aDysD. (1.2 betweenqﬁlyg, and ¢, . It should be emphasized that relation
(1.3 is derivedwithout using Trys=0. The inner product
An explicit example of the operator satisfying Hd.1) and qﬁ,‘:qbn:(qsn,¢n)52xa4¢;(x)¢n(x) is defined by summing
free of species doubling was given by Neuberf@r The  over all the lattice points which are not explicitly written in
operator was also discussed as a fixed-point form of blocky,. See the Appendix for further notational details.
transformation$3]. Relation(1.1) led to interesting analyses An advantage of gauge theory defined on a finite lattice is
of the notion of the index in lattice gauge thegdy-9]. Here  that one can analyze some subtle aspects of chiral symmetry

vs is @ Hermitian chiral Dirac matrix. in continuum theory in a well-defined finite setting. The pur-
The index relation is generally written §4,5] pose of the present paper is to study some of those aspects of
chiral symmetry in the hope that this analysis also deepens
Trys(1-3aD)=n,—n_, (1.2 our understanding of lattice regularization. In the path-
integral treatment of chiral anomaly in continuum, the rela-
which is confirmed by[8] tion
Trys=n,—n_ (1.6

Triys(1-3aD)]=2 {$ys¢n—3nvsaDbo)
. in a suitably regularized sense plays a fundamental role

: ) [10,11]. On the other hand, it is expected that the relation
= 2 davstat 2 bnvsn

Trys=0 (1.7
_2 Lan.dt holds on a finite lattice. As Chiu pointed oft2], relation
2a n¢n¢n . . .
n (1.7 leads to an interestingonstraint

Trys=n,—n_+N,—N_=0, 1.8
:AEZO ¢$75¢n Ys + + ( )

where N. stand for the number of eigenstategD ¢,
=n,—n_= index, (1.3 ==*(2/a)p,, With ysd,= £ ¢,,, respectively. It is impor-
tant to recognize that Tys=0 means that this relation holds
wheren.. stand for the number of normalizable zero modesfor any sensible basis set with any background gauge field in
in a given theory, which may be used to define the trace. Con-

0556-2821/99/6(F)/074505%11)/$15.00 60 074505-1 ©1999 The American Physical Society



KAZUO FUJIKAWA PHYSICAL REVIEW D 60 074505

ries important physical information. In this paper we show dimke 2 2 2 2
that Trys=0 implies the inevitable contribution from un-

physical (would-be species doublers in lattice theory or an =0, (2.3
unphysical bosonic spinor in Pauli-Villars regularization. In )
other words, Ttys=0 cannot hold in the physical Hilbert Where we understanid1—ys)/2]C[(1+ ys)/2] as standing
space consisting of physical states only, and the continuurfPr the two-component operatarin
limit of Tr ys=0 is not defined consistently, as is seen in Eq. (O bT>

sequently, the seemingly trivial relation F£=0 in fact car- 1— s 1+ ys ] 1+ ys 1— s
C —dimke C

(1.9). It is shown that the failure of the decoupling of heavy
fermions in the anomaly calculation is crucial to understand
the consistency of the customary lattice calculation of ] .
anomaly where Tys=0 is used.(The continuum limit in ~ This form of € is deduced by notingZ'=C and ysC

this paper stands for the so-called “naive” continuum limit +€ys=0 in the representation wherg; is diagonal. The
with a—0, and the lattice size is gradually extended to in-OPeratotb(m,n) projects a two-component spinor on a finite
finity for any finite a in the process of taking the limi lattice to a_lnpther two-compo_ne_nt spinor on _the same lattice,
—,0.) We then discuss the possible implications of our analy2nd thus it is a square matrix in the coordinate representa-
sis on the treatment of chiral anomalies in continuum theorytion. For a general finite dimensional square maixthe

We also briefly comment on an analogous phenomenon ifffdex theorem dim kel —dim kerM'=0 holds[8], where

the analysis of photon phase operator, where the notion dfimkerM, for example, stands for the number of normaliz-
index plays a crucial role. able modes ilMu,=0. In the present context, dim K¢l

—y5)/12]C[(1+ v5)/2]=dimkerb stands for the number of
normalizable zero modes in

In Sec. | we have seen that the consistency of the relation Chn=0, (2.9

Trys=0 requi_res.the presence of tll)e__P state_s for an op-  ith [(1+ ¥5)/2]én=b,. Thus the index relation2.3)
erator ysD satisfying Eq.(1.1) on a finite Ia_ttlce. We thu_s shows that possible zero modes withp, = * ¢, are always
want to analyze the nature of té. states in more detail. pajred. The eigenstates with nonzero eigenvalues in
For this purpose, we start with the conventional Wilson op-

eratorDyy: Chp=Nnop (2.6)

b 0 (2.9

Il. CONSISTENCY OF THE RELATION Tr y5=0

give a vanishing contribution to the trace 5ly since

bl yspn=0, 2.7

1 by noting ys€+Cys=0. The index relation2.3) is thus
C.(n,m)= 5[5m+#,nUM(m) - 5m,n+MU,TL(n)], equivalent to Trys=0.

If one recalls the Atiyah-Singer index theordr0,13
(2.3) written in the same notation as E@.3),

1-7s 1+ys 1+ys D 1-vs
2 2 2 2

U,(m)=exdiagA,(m)], =, (2.9

1
Dw(n,m)=iy*C,(n,m)+B(n,m)— amo5n,ma

r
B(n,m)= 5 2 [28hm= S nU (M) = S UM, 0
y2

dim ker( —dim ker(

wherev stands for the Pontryagin indéke., an integral of
anomaly and D= y*(d,—igA,), one sees that a smooth
continuum limit of the lattice index relatiof2.3) for a gen-
eral background gauge field configuration ireconsistent
with the absence of species doublers.

In the present, a very explicit construction of species
doublers is known. For a square lattice one can explicitly

show that the simplest lattice fermion action
Since the operatof forms the basis for any fermion opera-

tor on a lattice, we start with an analysis ©f S:%(Zw (2.9

where we added a constant mass ternDtp for later con-
venience. Our matrix convention is thay* are anti-
Hermitian, (*)"=—y*, and thusC=y*“C,(n,m) is Her-
mitian:

ct=c. (2.2

A. Operator € and Tr y5=0 is invariant under the transformatigm4]

It was noted elsewher8] that Trys=0 implies species W =Ty, o =y¢T L, (2.10
doubling for the operatof. The basic reasoning is based on
the index relation where7 stands for any one of the 16 operators
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1, T.T,, TiT3, TiTg4, Dw=iD +M,+0(e?)+0(agA,) (2.18
ToTs, ToTs, TaTy, TiT,T3Ty4, (2.1))  for each species doubler, where the mass paraméigrs
stand forM o= —mg/a and one of
and
Ty, T Ta T Mo gy, Mo g
1 2 3 4 a a y ( y )1 a a y ( y );
T1T2T3 ’ T2T3T4 ) T3T4T1 ’ T4T1T2 . (212 (219)
6r mg 8r mg
The operatord ,, are defined by a a’ (4.-1), a a’ (1)

Tu=vuys explimx“/a), (213 for n=1-15. Here we denote@nultiplicity, chiral charge

in the brackets for species doublers. In E2.18 we used

and satisfy the relation the relation valid for configuration®.17), for example,

T,T,+T,T,=2 2.1
MoV vip 5/uu ( 4) 5 k) 2 Msinakﬂ+r2 L k) mO
= = —cosak,)— —
with Tl::TM:T;1 for anti-Hermitiany,, . We denote the 16 wl m Y a a, ( " a
operators byZ,, n=0~15, in the following withZ,=1. ; m
By recall!ng that the operatdr, adds the momeptum{a to' _ yﬂk#[1+o(ez)]+ —0(€?)— 0 (2.20
the fermion momentunk,, we cover the entire Brillouin a a
zone
in the momentum representation with vanishing gauge field.
T 37 In these near-continuum configurations, the topological
- ﬁgku<z (2.19 properties are specified by the operalbrin Dy,. We can

thus evaluate Tys by using the basis set defined by

by operation(2.10 starting with the free fermion defined in
D bn=Nnén, (2.29)

- £$ku<£' (218 \which formally diagonalizethe effective operatob,y in Eqg.
(2.18 describing the low-energy excitations of each species
The operators in Eq2.11) commute withys, whereas those doubler. We then obtain
in EqQ. (2.12 anticommute withys and thus change the sign
of chiral charge, reproducing the 15 species doublers with . N
correct chiral charge assignmeit:® ;(—1)"ys=0. r 75:20 (=D" lim 2’1 &l ysh=0, (222
In a smooth continuum limit, the opera@r producesd Lolarge

for each species doubler with alternating chiral charge. The + B .
relation Trys=0 or Eq.(2.3) for the operatof is consistent where gy ys =0 for A, #0 because ofsD +Dys=0, and

for any background gauge field because of the presence gfq (2.22 states the cancellation of zero-mode contributions

: . ; .
these species doublers, which are degenerate with the physia =01 ¥s¢1 among various species. We are assuming that
cal Species in the present case. our near-continuum COﬂfIgUf&thlﬁg.].& are accurate in the

treatment of these zero modes. An argument to support our
identification of the near continuum configurations will be
given in Sec. Il C.

The consistency of Tys=0 is analyzed by means of to- Ty .=0 is thus consistent even for a topologically non-
pological properties which are specified by E@.8), and  trivial gauge background because of the presence of the
thus it is best described in the nearly continuum limit. To bewould-be species doublers. This property is related to the
more precise, one may define the near-continuum configurage||-known fact that one can safely ignore the Jacobian fac-

tions by the momenturk,, carried by the fermion tor for global chiral transformationsy=ieysy and 5y

T T = yi eys for the theory defined b= /D i.
——esk,<—c¢€ (2.17

15 L

B. Wilson operator D, and Tr y5=0

C. Overlap Dirac operator and Tr y5=0

for sufficiently smalla ande combined with the operatio#, The operatoD introduced by Neubergd®], which sat-

in Egs.(2.11) and (2.12. To identify each species doubler isfies relation(1.1), has an explicit expression
clearly in the near-continuum configurations, we also keep ’

r/a andmg/a finite for a— small[14], and the gauge fields H

are assumed to be sufficiently smooth. For these configura- aD=1-y5—==1+Dy
tions, we can approximate the operaldy, by VH?

1
——, (2.23
VDwDw
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where D= —ysH is the Wilson operator. For the near- by assuming that our effective operatd®s24) are accurate

continuum configurations specified above in E217), one
can approximate

15

D= 2 (1/a)| 1+ (iD + M) —=——=||n)}(n|,

Ji

15

ysD= 2 (—1)"ys(1/a) Iny(nl,

(2.29

1+ (iD + M) ——

Ji

15

75:20 (—1)"ys|n)(nl.

Here we explicitly write the projectiom)(n| for each spe-
cies doubler. The operators in Eq&.24 preserve the

Ginsparg-Wilson relatiorf1.1). We can again use the basis
set in Eq.(2.21), which formally diagonalizes the basic op-
eratorD in Egs.(2.24), to define the trace operation. We thus

obtain

15

Tr?’s—E( H" lim 2 & vsbi=

Lﬂlarge =

(2.25

a ) a
Trys| 1—-D|=—Trys-D
Vs 2 7’52

15

1
=T 2 ()"
2 n=0

1 15

=—=TrX (—=1)"ys(iD+M,)

2 n=0

=
(4]

S
2o
o

l\)ll—\ NI, NP N| P
>
[
o

=
(4]

—~~

>
I
o

where we usedsD + D ys=0 and the fact tha¢| V5=
for \y#0 in D¢ =\ ¢,. We also used the fact thaﬂo
<0 andMn>O forn=1~15[2]. Index(2.27) is defined for
D, while index(1.3) is defined forysD, and both agree with
the Pontryagin index, as seen in Eg.30 below.

In the above calculatiofEg. (2.27], we used the relation

—~
I
[
N
=3

in describing the excitations near the zero moas =0

which are relevant for topological considerations. Again the

presence of the would-be species doublers makes the relation
Trys=0 consistent for any topologically nontrivial back-
ground gauge field. A justification of our effective descrip-
tion [Egs. (2.24)] will be given later.

The above expression @f also shows that

D¢ =
5 (2.26
D ¢, :a¢|

for the physical species and the unphysical species doublers,
respectively, if one uses the zero modié,=0. Note that
M<0 and the rest oM ,>0 in Egs.(2.19 and(2.29 [2].
We also note that, can be a simultaneous eigenstateygf
only for D ¢, =0. That is,N.. states with the eigenvaluea?/
in fact correspond to topological excitations associated with
species doublers; this means that the multiplicities of these
N. are quite high due to the 15 species doublers, although
they satisfy the sum rule, +N,=n_+N_. This sum rule
is a direct consequence of Ed8.25 and (2.26) by noting
that ¢ ys¢=0 for \;#0.

The calculation of the indefl.2) may proceed as

1
1+(D+M,)———
D2+ M}
1
VD% +M?
nz T 1
-1 M, ——
) I ¢I Vs \/m¢l
! T
M, V5P
\/I\/I2 A=
n
1
—1)"™p——=(n,—n.)
MI’]
15
1+E( 1) )(n+—n_)=n+—n_, (2.27

Tr v5=0 twice: In the second line, this relation requires the
presence of the physical species as well as the species dou-
blers. As a result, we have the contribution to the final index
from both of the physical species and 15 species doublers,
although the species doublers with=2/a should saturate

the index(and anomalyin the expressiofl2]
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—Tr(a/2)ysD=n,—n_, (2.28

as noted in Eq(A10) in the Appendix. Our analysis of the

PHYSICAL REVIEW D 60 074505

global topological property on the basis of effective opera-

tors (2.24) is thus consistent.

The above calculational scheme of indéx27) in fact
corresponds to the evaluation of the local indée.,
anomaly performed in Ref[8]. By using the plane-wave
basis, one hagin the limit a—0 with r/a and my/a kept
fixed)

a
try5(l—§D)(x)

= d%k

1 15

—=(2m)*

x e Mys(id +Mp) fx

1
————¢€
D2+ M}

1 (= d*% 1 _
=—1tr Ikx’)’s—e'kx
2" Jow(2m)t VD2IME+1
15 - 4
. _1 ntrf e*ikX
2 (-uhr | o)
1

(2.29

which gives rise to the anomaly for dM | — in the con-
tinuum limit:

2

—ikx ikx

a _ = d%
tr yg 1—§D (x)=lim trf > 2€

fl —|e
Mo J—w(2md 5 M2
2
:32772 tr s“”aﬁFWFaﬂ. (2.30
Here we defined (x) = 1/yx+ 1, which satisfies
f(0)=1, f(=)=0,
(2.31

£/ (X)X|x—o=T"(X)X|4===0.

The right-hand side of Eq2.30) is known to be independent
of the choice off(x) which satisfies the mild condition
(2.3 [11].

dn (X)O(X,Y) dn(y)

n ()O(XY)dn(y) . (2.33

The local version of the trad@r anomaly is then defined by
TrO(x,x)=2,,éh (X)O(X,y) dn(y). For the operator of
our interest, we have

(X)

1 1
tr{f ——ysDyy——=
2 VD\,Dw
1 B w2a  dk
LY
2 =0 7w/2a(277)4

T eikX
n

1
VDI Dy

where we used the plane-wave basis defined in (Bd.6
combined with the operatioff,. We also used a shorthand
notationO€**=3, O(x,y)e'.

We first take thea— 0 limit of this expression with all
M,, n=0-15, kept fixed, and then take the linji1 |
—oo |ater. For fixedM, (to be precise, for fixeany/a and
r/a), one can confirm that the above integ2l34) for the
domain (7/2a)e< |k, |<m/2a vanishedat least linearly in
a for a—0, if one takes into account the trace wifh. See
also Refs[7,9]. In the remaining integral

X e T LysDy,

(2.39

15

1
—5 2 (=1)"tr
n=0
(ml2a)e  d*K
[ s
~(ml2a)e(27)*
(2.35

one may take the limia—0 [and (7/2a) e— ], keepinge
arbitrarily small. By taking Eq(2.20 into account, one thus
recovers expressiof2.29. One can arrive at the same con-
clusion by using an auxiliary regulatt(C?/m?) in the in-
tegrand in Eq.(2.34) to make the intermediate steps better
defined[8]. The domain in Eq(2.17) with arbitrarily small

—ikx

T eikX
n [l

1
-1
¥sT, Dw
" UDIDw

A direct evaluation of the anomaly without using Eq. but finite € thus correctly describes the topological aspects of
(2.27 is of course possible. We briefly sketch the procedurehe continuum limit in the present prescription.
here, since it justifies our analysis based on the effective Here we went through the details of the anomaly calcula-
expressions in Eq2.24) [and partly Eq(2.18 alsq|. For an  tion to show that the interpretation of thé. states in Eq.
operatorO(x,y) defined on the lattice, one may define (A8) as topological excitations related to species doublers, as
is shown in EQ.(2.26), is also consistent with the local
anomaly calculation. As for a general analysis of chiral
anomaly in the overlap operator, see Héb|.

At this stage it is instructive to consider an operator de-
fined by

omnEXEy BE(X)O(X,Y) bn(Y), (2.32

and the trace
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1 scribed in a more clear-cut way Iy, and one can recognize
I (2.3 clearly the topologicaN.. states related to species doublers.
D2+ MS We here note that the Pauli-Villars regularization in con-
tinuum theory can be analyzed in a similar way. The Pauli-
instead ofD in Eq. (2.24. This D is regarded as aM, Villars regulator is defined in the path integral by introducing
—oo,  n#0, limit of the effective operatob [Eq. (2.24)] a bosonic spinog into the action:
in the Lagrangian level, and it satisfiés continuum version
of) the Ginsparg-Wilson relatiofl.1) without any species
doubler. The relation Tys=0 is thus expected to be incon-

sistent. In fact we have an index related to the chiral Jacobian . . . )
[5] The Jacobian for the global chiral transformation then gives

rise to the graded tradd 1]

1

1+(iD +Mg)

szfd4x[E(im—m)¢+$(iD—M)¢]. (2.40

L

Tr ys(l—ED)z lim >, ¢|T75<1—§D)¢| Trys=Tr, y5—Try ys=0. (241
2 L—large!=1 2

The relation Trys=0 is thus consistent with any topologi-

cally nontrivial background gauge field because of the pres-

ence of the unphysical regulatgr. This ¢ is analogous to

the species doublers in lattice regularization.

= ¢lysp=n.—n_ (2.37)
=0

by noting¢ry5¢|=0 for\;#0 in D ¢ =\ ¢, . On the other
hand, if one incorrectly uses H%=0, one obtains . IMPLICATIONS OF THE PRESENT ANALYSIS

We have shown that the consistency ofyEe=0 for a
topologically nontrivial background gauge field requires the
presence of some unphysical states in the Hilbert space.
Coming back to the original lattice theory defined by

1

a 1
Tr')/s 1_ED :_ETr 'y5(ID+M0)

VD2+ M3

1 - 1
=—- lim X ¢/ysMo———=1¢ S=yDy, 3.1
2 L—large!=1 \/D2+|\/|(2) WDy @D
with D satisfying relation(1.1), one obtains two times Eq.
:E(n —n) (2.39 (1.3) as a Jacobian factor for the %)bil chiral transformation
20 T ' [5] Sy=ieys[1—(a/2)D]y and Sy=ie[1—(a/2)D]ys,

which leaves actiofi3.1) invariant. One can rewrite E4L.3)
by noting thatysD+Dys=0, ¢|T75¢|=0 for A#0, and gs

My<<0. One thus loses half of the index or anomaly. In this
example, the evaluation of i is somewhat subtle, but a_ |\ = a_ | =~

Tr y5=0 is definitely inconsistent since the calculation inthe 1" ¥s| 17 3P |=Trvs{ 1=5D |=Trys=n.—n_,
last line in Eq.(2.38 is well defined. In fact, the relations 3.2

where the modified tracerTs defined by truncating the un-
physicalN. states with\,= = 2/a. Without theN.. states,
Tr ys(a/2)D=0, since the eigenvalues, of ysD with \,,
#0,*2/a appear always pairwise at|\,|. See the Appen-

a
Trys=n,—n_ and Tr(—§y5D>=0 (2.39

are consistent for the present operairsince the species
doublers atysD ¢, = = (2/a) ¢, are missing. A more rigor-

3 . 22 dix.

ously regularized Jacobian for the present example is given " tak h " imit Gfr V. —

by formula(3.3), to be discussed below. one takes a smooth continuum fimit 0 WS—F”
—n_ in Eqg. (3.2, one recovers the result of the continuum

path integral(1.6). If one considers thatfTys is too abstract,
one may define it more concretely by

('}’SD)Z
M2

D. General lattice Dirac operator and Tr y5=0

We expect that our analysis of £=0, namely, that its
consistency, is ensured only by the presence of the would-be
species doublers in the Hilbert space, works for a generalTr ¥s
lattice Dirac operator, since any lattice operator cont&ins
as an essential part. For the smooth near-continuum configu-
rations, the lowest-dimensional operai@ris expected to =Tr 75f(
specify the topological properties. From this viewpoint, the
overlap Dirac operatdd describes the topological properties (3.3
such as the index theorem andyE= 0 in a neater way than
the Wilson operatoD,,, mainly because the operatdr for any f(x) which satisfies the mild condition in E¢2.31).
projects all the species doublers to the vicinity ch:2The  See also Eq91.3) and(1.5). This relation suggests that we
behavior for small values o€ (i.e., for |C|<1/a) is de- can extract the local indefor anomaly by

(75D)2
MZ

2 2

a ~ a
1——D)f =Try5<1——D>f

<y5D>2)_
> | =ny—n_

074505-6
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J
which is shown to be independent of the choicef f) in
the limit a—0 and leads to Eq2.30 [for f(x) which goes
to zero rapidly forx—oo] by using only the general proper-
ties of D [8]. If one constrains the momentum domain to Eq.

(2.16 from the beginning, one may use the last expression i
Eq. (3.3 to evaluate the anomaly for a more general class

a D)?
1-2p (vsD)
2 M?2

(x), (3.9

tr ’)’5(

path integral11].

As for a more practical implication of our analysis of
Tr y5=0 in lattice theory, one may say that any result which
depends critically on the statd$. is unphysical It is thus
necessary to define the scalar dengity mass terrn and
pseudoscalar density in the thedB1) by [16,6]

B
o

Here we defined two independent projection operators

P.=3(1%ys),

_ _ a
S(X)= iyt 'ﬂRlﬂL:J( 1- ED
(3.5

a
1--D

P(X):EL‘//R_ER’#L:E')’S( >

A (3.6
=31 ys),

with 'y5— v5(1—aD) which sat|sf|e3y5
right components are then defined by

1[6]. The left and

YLr=YP., Yr =P,y 3.7
which is based on the decomposition
D=P,DP_+P_DP,. (3.8

The physical operator§(x) and P(x) in Egs. (3.5 do not
contain the contribution from the unphysical statesin Eq.
(A8). In the spirit of this construction, the definition of the
index by Eq.(3.3), which is independent of unphysical states

N., is natural. In particular, all the unphysical species dou-

blers(not only the topological ones até)/decouple from the
anomaly defined by Eq3.4) in the limita— 0 with fixed M.

The customary calculation of the indetand also
anomaly by the relation4-7,9

a a
Try5(l—§D)=Tr(—EySD)=n+—n (3.9

i e anomaly—as s seen i
f(x). We thus naturally recover the result of the continuum 2.29, for example. If one insists on F=0 in the con

PHYSICAL REVIEW D 60 074505

the (would-be species doublers disappear from the Hilbert

space. It is clear from the expression ofyE=0 in Eq.(1.8)

that thea— O limit of Tr y5=0 is not defined consistently.

One may then ask how the calculation of local anomaly on

the basis of Eq(3.9) could be consistent in the limé— 0 if

Tr y5=0 is inconsistent. A key to resolve this apparent para-

dox is the failure of the decoupling of heavy fermions in the

evaluation of anomaly. The massive unphysical species dou-
lers do not decouple from the anomaly—as is seen in Eq.

tinuum limit, one is also insisting on the failure of the de-
coupling of these infinitely massive particles fromyg=0.
The contributions of these heavy fermions to the anomaly
and to Try;=0 precisely cancel, just as in the case of the
evaluation of global index in Eq(3.9). That is, the local
anomaly itself isindependenbf these massive species dou-
blers in the continuum limit, as is clear in E@.4). In this
sense, Eq(3.4) is the only logically consistent definition of
local anomaly. It is an advantage of the finite lattice formu-
lation that we can now clearly illustrate this subtle cancella-
tion of the contributions of those ultraheavy regulators to
Tr y5=0 and anomaly on the basis of Ed.8). (In the case
of the Wilson fermion operatdd,,, an analogous cancella-
tion takes place in Tys+ pseudoscalar mass term induced
by the chiral variation of the action.

When one defines a chiral theory by recalliidg8) [6,17],

S=yP,DP_y=y Dy, (3.10

one obtains theovariantgauge anomalyor Jacobiaj

1——D)¢>n(><)
(3.11

for the gauge transformatiodiyy, (x) =ia®(x) T2P_y; and
SPL() =P (—1)a?(x) T

An analog of theJ(1) anomaly Eq.(3.4)] is then defined
for the gauge anomal{B.11) by [using ¢,, in Eq. (1.4)]

trTan(l——D 2 Bn(X) T Toys

(75D)2

2 TTa?’s(l—ED)f )qsn(x)

—E f( )¢n<x>TTa( ys5— —A )%(X) (3.12

which reduces to the lattice expression fisk—o with
f(0)=1. In practice, one first takes the continuum lirait
—0 with M fixed and one obtaingsee, for example, Ref.

by itself is of course consistent, since one simply includes

the unphysical statdd.. in evaluating Trys=0, and conse-
guently one obtains the index[Fr (a/2)ysD] from the un-
physical state®dl.. only. We after all know that the left-hand
side of Eq.(3.9) is independent oN.. .

[8])
DZ
trTay5f<W) , (313)

which is again known to be independent of the specific

Rather, the major message of our analysis is that the corthoice off (x) in the limit M— o [11]. For the overlap Dirac

tinuum limit of Trys=0 in Eq. (1.8 (unlike the relation
Trys=n,—n_) cannotbe defined in a consistent way when

operator, one can show that the anomaly calculation in Eg.
(3.1 by using trT?ys=0 corresponds effectively to a spe-
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cific choice off(x)=1/{y1+x in Eq. (3.13, just as in the
case ofU(1) anomaly in Eq(2.30.

The definition of the regularized Jacobié®h12 may be
regarded to correspond to the truncation of the staies
from the chiral action

2\ — _
S= > [=Z|C,.Ch+t > AN.C.C,h (319
neN, \a 0=<\,<2/a
to
S= ACrCh, (3.19
0=\, <2/a

and then taking the continuum limat— O, which is logically
more natural as the.. states are eliminated from the Hilbert
spacebeforetaking the continuum limit.
Incidentally, action(3.14) is obtained from Eq(3.10 by
expanding
9P.=3 Cov,,
(3.16
P_ = ; CnVn

with the choice of the basis sets
{Vj}:{¢n|75D¢n:0175¢n: — o)
®{¢nl vsD pn=2/ady, ysn=+ ¢n}
®{P_¢n/V(1+ar/2)/2] ysD b,

=N\n¢n,2/@>N,>0}, (3.17

{Vi}={nl 75D ¢n=0,75¢n= + p}
69{d’nl YsD ¢n=2/ad,,ysdn=+ ¢n}
69{P+ ¢n/ \/(1+a)\n/2)/2| 75D¢n
=N\pn,2/2>N\,>0} (3.18

in terms of the eigenstates ¢£D ¢,=\,,¢,, summarized in
the Appendix.
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number violation in chiral gauge thoery. As is well known,
this formulation of the continuum limit is consistent if the
anomaly cancellation condition T8{T®, T} =0 is satisfied,
when combined with the argument of the robustness of lat-
tice gauge symmetr/18]. See also Ref.19].

An interesting analysis of the definition of chiral theory at
a finite a was given by Lscher recentlyf20]. The fermion
number violation arises from the nontrivial index of the rect-
angular(not squarée matrix in Eqg.(3.10 [cf. Eq. (2.3)],

dimkerP_ysDP, —dimkerP, ysDP_=n,—n_,
(3.20

as is seen in the explicit construction of the basis vectors in
Egs. (3.17 and (3.18: For a generahxXm matrix M, one
can prove an index theorem

dim kerM —dimkerMT=m—n,

(3.21

which is a generalization of the case of a square matrix with

m=n. For the operatoP_ysDP, in Eq.(3.20, the dimen-
sions of the column and row vectors are given, respectively,
by using the projection operators asPr and TrP. , and
thus m-n=TrP,—TrP_=Try{1-(a/2)D]=n,—n_

[20]. Incidentally, an analogous analysis provides an alterna-

tive proof of the equivalence of frs=0 with the index
relation (2.3).

IV. DISCUSSION AND CONCLUSION

Motivated by the recent interesting developments in lat-
tice gauge theory, we analyzed the physical implications of
the condition Trys=0 in detail. We have shown that ¥&
=0, whose validity is often taken for granted, is consistent
only when one includes some unphysical states in the Hilbert
space. The continuum— 0 limit of Tr y5=0 is not defined
consistently, as seen in Ed..8). We have explained that the
failure of the decoupling of heavy fermions in the anomaly
calculation is a key to understand the consistency of the cus-
tomary lattice calculation of anomaly where Jg=0 is
used. Our analysis is perfectly consistent with relatibi®)
in the continuum path integral, and even provides positive
support for formula(3.3) and the related definition of

Consequently, the path integral for a fixed backgroundanomaly(3.4) in lattice theory.

gauge field is defined by

z=J| [[ dc,dc, [I dc, Il dc,exps,
neNy 0=\, <2/a 0=<\p<2/a
(3.19
7-3 J I dc, TI dc,exs
0=\, <2/a 0=\,<2/a

with Jacobian factord andJ which depend on the basis set.
A (naive continuum limit of the truncated expressi&]

We here want to comment on an analysis of the photon
phase operatof21], where a closely related phenomenon
associated with the notion of index takes pld@&]. The
Maxwell field is expanded into an infinite set of harmonic
oscillators, and thus the analysis of the photon phase opera-
tor is performed for a simple harmonic oscillator

H=3(p’+w’q®)=fw(a’a+i). 4.2

The quantum requirement of the absence of the negative

naturally gives rise to the covariant path integral formulationnormed states leads &0)=0, and thus the index relation

of chiral gauge theorj11]. In particular, the fermion number
anomaly which is given by Eq3.3) gives rise to the fermion

dim kera—dim kera™=1, (4.2)
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since no states are annihilated &} On the other hand, the APPENDIX: FINITE-DIMENSIONAL REPRESENTATIONS
existence of the observabléermitian phase operatog re- OF THE GINSPARG-WILSON ALGEBRA

quires a decompositiof21] In this appendix we recapitulate the finite dimensional

_ representations of the basic algebraic relaiibri). A con-
a=U(e)VN, a'=JNU(¢) %, (4.3 struction of the operatoysD, which satisfies the Ginsparg-
. ) i . ) Wilson relation on a finite lattice, by using a corresponding
with a unitary U(¢)=€'* andN=a'a. These expressions gperatorysD on an infinite lattice has been discussed in Ref.
suggest [20]. We first define an operator

dim kera—dim kera™=0, (4.9 I'c=y5(1-%aD), (A1)

in contradiction to relation4.2), since the unitary factor which is Hermitian and satisfies the basic relation
U(¢) does not influence the analysis of index. Indéx2)

thus provides a no-go theorem against the Hermitian photon I'sysD + ysDT'5=0. (A2)
phase operator and the resulting familiar phase-number un-
certainty relatior{ 22]. This relation suggests that if
To circumvent the topological stricturgt.2), one may
truncate the operata to an[(s+1)X(s+1)]-dimensional YsDdn=Andn, (dn,dn)=1 (A3)
square matrix
then
1 0 O 0
0 \/E 0 ¥sD(I'sén) = —An(L'sébp). (A4)
a— 0 V3 . 0 That is, the eigenvalues, and —\, are always paired if
s . . ANp70 and Cs5¢,,,I'5¢,)#0.
00 0 0 /s We evaluate the norm dfg¢,,:
00 0O 0O .. 0 (F¢F¢)¢>( aD>( aD)d)}
5Pn:Ll 5Pn)=| Pns| Y5~ 575 Y5— 575 n
2 2
=[0)(1]+[1)(2[V2 ... +[s—1)s|\s (4.5
a
and a/=(ay)". One then obtains a vanishing index for a :{¢n'(1_§75(75D+D75)
finite-dimensional square matrj22] )
a
< 2
dim kera,— dim kera! =0, (4.6) T4 (7sD) )‘Z}”}
2
and one can in fact introduce a Hermitian phase operator Z{fﬁn ( 1— a_(),SD)Z) d’n}
[23] which satisfies the relatioa;=e€'?+/alas. 4
The parametes or the statgs) stands for the cutoff pa- a
rameter analogous to thd.. states related to Tys=0 in =(1— E)\n 1+ 5)\“)' (A5)

lattice theory. A careful analysis of the uncertainty relation
shows that the Hermitian operatgr, when used to analyze
the data which is already in the quantum limit, leads to
substantial deviation from the minimum uncertainty relation
at the characteristica_llly quantum dpmain watmall average F5¢n=( y5— a 7’5D) $,=0 (AB)
photon numbers. This artificial deviation from the minimum 2
uncertainty is caused by the presence of the unphysical cut-
off introduced by|s), which fails to decouple from the low- if [1—(a/2)\p][1+(a/2)\,]=0 for the Euclidean S@)-
energy quantities for arbitrarily large but fing¢22]. Also, a  invariant positive definite inner product, ¢,). We thus
larges limit of Eq. (4.6) is not defined consistently, which is conclude that the states, with A= *2/a arenot paired by
analogous to the ill-defined continuum limit of F£=0 in the operation's¢, and are the simultaneous eigenstates of
Eq. (1.9). Vs, Vs5Pn= E ¢, respectively. One can also show that these
It is expected that an analogous unphysical result willeigenvalues., are the maximum or minimum of the possible
appear in lattice gauge theory if one analyzes the low energgigenvalues ofysD. This is based on relatiofi.5), |ax /2|
quantity which critically depends on the unphysical states=|/ ysdn|<|énll|vsdnl=1.

aThat is, ¢, is a “highest” state

N. . In fact, it is known that ondas toeliminate the con- On the other hand, the relation J%=0, which is ex-
tribution of theN.. states to the physical observables such apected to be valid on a finite lattice leads[ty using Eq.
S(x) andP(x) in Eq. (3.5 [16,6)]. (1.9]
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-1
Tay5D)=n+—n; (A10)

Tr y5=§ b vsdn Tr

+ + that is, only the stateN.. contribute to the left-hand side.
:AEZO ¢n75¢n+)\2¢0 bnYsPn Those properties we analyzed so far in this appendix hold
" " both for non-Abelian and Abelian gauge theories. We did not
+ a specify precise boundary conditions, since our analysis is
=)\2:0 ¢n75¢n+)\2¢0 §>\n valid once nontrivial zero modes appear for a given bound-
" " ary condition. For an Abelian theory, one needs to introduce
a the gauge field configuration with suitable boundary condi-
=n,—n_+ 2 E)\n_ . (A7) tions, which carries a nonvanishing magnetic flux, to gener-
ate a nontrivial index. —n_ [20]. Our analysis of the index
In the last line of this relation, all the states except for thein this appendix is formal, since it is well known that the
states with\ ,= * 2/a cancel pairwise fom,#0. We thus ~ Ginsparg-Wilson relatior(1.1) by itself does not uniquely

obtain a chirality sum rule.—n_+N,—N_=0 [12] or, specify the index or the coefficient of chiral anomaly for a
given gauge field configuratior24].
n,+N,=n_+N_ (A8) To summarize the analyses of the present appendix, all

) ) the normalizable eigenstatés, of ysD on a finite lattice are
whereN.. stand for the number of isolateédnpaired states  categorized into the following three classes.

with A,=*2/a and ys¢,= = ¢;, respectively. These rela- (i) n, states,

tions show that the chirality asymmetry at vanishing eigen- -

values is balanced by the chirality asymmetry at the largest ¥sDhn=0, ¥5¢n== 0. (A11)
eigenvalues with\ | =2/a. (i) N. states,

We note that all other states with<Q\ ,|<2/a, which

s . 2
appear pairwise with\,=*|\,| (note thatl'5(I's¢,)=[1 Dé.=+— -+ respectively.  (A12
— (any/2)] ¢pn dy for |an,/2| # 1), satisfy the relations P I=Lg o Yobn=* on. P y. (AL2)

ST =0, (i) Remaining states withQ|\,|<2/a,
YsDdn=An¢bn, vsD(I'spn)=—Nn(I's¢p), (A13)
; an,
¢n75¢n:7' (A9)  and the sum rul@, +N,=n_+N_ holds.
All the n. andN.. states are the eigenstatesdfD ¢,
¢jn75¢n:0 for Nm#Nn, ApAp>0. =0 and D¢,=(2/a) ¢,, respectively. If one denotes the
number of states ifiii ) by 2N, the total number of statd$
These stateg, cannot be the eigenstates of as|a\ /2| is given byN=2(n, +N, +Ng), which is expected to be a
<1. The stated\N. saturate the index theorem commonly constant independent of background gauge field configura-
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