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Relation Tr g550 and the index theorem in lattice gauge theory
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Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

~Received 23 April 1999; published 13 September 1999!

The relation Trg550 implies the contribution to the trace from unphysical~would-be! species doublers in
lattice gauge theory. This statement is also true for Pauli-Villars regularization in continuum theory. If one
insists on Trg550, one thus inevitably includes unphysical states in Hilbert space. If one truncates the trace

to the contribution from physical species only, one obtains T˜r g55n12n2 which is equal to the Pontryagin

index. A smooth continuum limit of T˜r g55Tr g5@12(a/2)D#5n12n2 for the Dirac operatorD satisfying
the Ginsparg-Wilson relation leads to a natural treatment of a chiral anomaly in the continuum path integral. In
contrast, the continuum limit of Trg550 is not defined consistently. It is shown that the nondecoupling of
heavy fermions in the anomaly calculation is crucial to understand the consistency of the customary lattice
calculation of the anomaly where Trg550 is used. We also comment on a closely related phenomenon in the
analysis of the photon phase operator where the notion of index and the modification of index by a finite cutoff
play a crucial role.@S0556-2821~99!07517-7#

PACS number~s!: 11.15.Ha
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I. INTRODUCTION

Recent developments in the treatment of fermions in
tice gauge theory led to a better understanding of chiral s
metry not only in lattice theory@1–7# but possibly also in
continuum theory@8#. These developments are based on
Hermitian lattice Dirac operatorg5D which satisfies the so
called Ginsparg-Wilson relation@1#

g5D1Dg55aDg5D. ~1.1!

An explicit example of the operator satisfying Eq.~1.1! and
free of species doubling was given by Neuberger@2#. The
operator was also discussed as a fixed-point form of bl
transformations@3#. Relation~1.1! led to interesting analyse
of the notion of the index in lattice gauge theory@4–9#. Here
g5 is a Hermitian chiral Dirac matrix.

The index relation is generally written as@4,5#

Tr g5~12 1
2 aD!5n12n2 , ~1.2!

which is confirmed by@8#

Tr @g5~12 1
2 aD!#5(

n
$fn

†g5fn2 1
2 fn

†g5aDfn%

5 (
ln50

fn
†g5fn1 (

lnÞ0
fn

†g5fn

2(
n

1
2 alnfn

†fn

5 (
ln50

fn
†g5fn

5n12n25 index, ~1.3!

wheren6 stand for the number of normalizable zero mod
in
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t-
-

a

k

s

g5Dfn5lnfn ~1.4!

for the Hermitian operatorg5D with simultaneous eigen
valuesg5fn56fn . We also used the relation

fn
†g5fn5

a

2
lnfn

†fn5
a

2
ln ~1.5!

for lnÞ0, which is derived by sandwiching relation~1.1!
betweenfn

†g5 andfn . It should be emphasized that relatio
~1.3! is derivedwithout using Trg550. The inner product
fn

†fn5(fn ,fn)[(xa
4fn

!(x)fn(x) is defined by summing
over all the lattice points which are not explicitly written i
fn . See the Appendix for further notational details.

An advantage of gauge theory defined on a finite lattice
that one can analyze some subtle aspects of chiral symm
in continuum theory in a well-defined finite setting. The pu
pose of the present paper is to study some of those aspec
chiral symmetry in the hope that this analysis also deep
our understanding of lattice regularization. In the pa
integral treatment of chiral anomaly in continuum, the re
tion

Tr g55n12n2 ~1.6!

in a suitably regularized sense plays a fundamental
@10,11#. On the other hand, it is expected that the relation

Tr g550 ~1.7!

holds on a finite lattice. As Chiu pointed out@12#, relation
~1.7! leads to an interestingconstraint

Tr g55n12n21N12N250, ~1.8!

where N6 stand for the number of eigenstatesg5Dfn
56(2/a)fn , with g5fn56fn , respectively. It is impor-
tant to recognize that Trg550 means that this relation hold
for anysensible basis set with any background gauge field
a given theory, which may be used to define the trace. C
©1999 The American Physical Society05-1
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KAZUO FUJIKAWA PHYSICAL REVIEW D 60 074505
sequently, the seemingly trivial relation Trg550 in fact car-
ries important physical information. In this paper we sho
that Trg550 implies the inevitable contribution from un
physical~would-be! species doublers in lattice theory or a
unphysical bosonic spinor in Pauli-Villars regularization.
other words, Trg550 cannot hold in the physical Hilber
space consisting of physical states only, and the continu
limit of Tr g550 is not defined consistently, as is seen in E
~1.8!. It is shown that the failure of the decoupling of hea
fermions in the anomaly calculation is crucial to understa
the consistency of the customary lattice calculation
anomaly where Trg550 is used.~The continuum limit in
this paper stands for the so-called ‘‘naive’’ continuum lim
with a→0, and the lattice size is gradually extended to
finity for any finite a in the process of taking the limita
→0.! We then discuss the possible implications of our ana
sis on the treatment of chiral anomalies in continuum theo
We also briefly comment on an analogous phenomeno
the analysis of photon phase operator, where the notio
index plays a crucial role.

II. CONSISTENCY OF THE RELATION Tr g550

In Sec. I we have seen that the consistency of the rela
Tr g550 requires the presence of theN6 states for an op-
eratorg5D satisfying Eq.~1.1! on a finite lattice. We thus
want to analyze the nature of theN6 states in more detail
For this purpose, we start with the conventional Wilson o
eratorDW :

DW~n,m![ igmCm~n,m!1B~n,m!2
1

a
m0dn,m ,

Cm~n,m!5
1

2a
@dm1m,nUm~m!2dm,n1mUm

† ~n!#,

~2.1!

B~n,m!5
r

2a (
m

@2dn,m2dm1m,nUm~m!2dm,n1mUm
† ~n!#,

Um~m!5exp@ iagAm~m!#,

where we added a constant mass term toDW for later con-
venience. Our matrix convention is thatgm are anti-
Hermitian, (gm)†52gm, and thusC” [gmCm(n,m) is Her-
mitian:

C” †5C” . ~2.2!

Since the operatorC” forms the basis for any fermion opera
tor on a lattice, we start with an analysis ofC” .

A. Operator C” and Tr g550

It was noted elsewhere@8# that Trg550 implies species
doubling for the operatorC” . The basic reasoning is based o
the index relation
07450
m
.

d
f

-

-
y.
in
of

n

-

dim kerS 12g5

2 DC” S 11g5

2 D2dim kerS 11g5

2 DC” S 12g5

2 D
50, ~2.3!

where we understand@(12g5)/2#C” @(11g5)/2# as standing
for the two-component operatorb in

C” 5S 0 b†

b 0 D . ~2.4!

This form of C” is deduced by notingC” †5C” and g5C”
1C” g550 in the representation whereg5 is diagonal. The
operatorb(m,n) projects a two-component spinor on a fini
lattice to another two-component spinor on the same latt
and thus it is a square matrix in the coordinate represe
tion. For a general finite dimensional square matrixM, the
index theorem dim kerM2dim kerM†50 holds @8#, where
dim kerM , for example, stands for the number of normal
able modes inMun50. In the present context, dim ker@(1
2g5)/2#C” @(11g5)/2#5dim kerb stands for the number o
normalizable zero modes in

C” fn50, ~2.5!

with @(11g5)/2#fn5fn . Thus the index relation~2.3!
shows that possible zero modes withg5fn56fn are always
paired. The eigenstates with nonzero eigenvalues in

C” fn5lnfn ~2.6!

give a vanishing contribution to the trace Trg5 since

fn
†g5fn50, ~2.7!

by noting g5C” 1C” g550. The index relation~2.3! is thus
equivalent to Trg550.

If one recalls the Atiyah-Singer index theorem@10,13#
written in the same notation as Eq.~2.3!,

dim kerS 12g5

2 DD” S 11g5

2 D2dim kerS 11g5

2 DD” S 12g5

2 D
5n, ~2.8!

wheren stands for the Pontryagin index~i.e., an integral of
anomaly! and D” [gm(]m2 igAm), one sees that a smoot
continuum limit of the lattice index relation~2.3! for a gen-
eral background gauge field configuration isinconsistent
with the absence of species doublers.

In the presentC” , a very explicit construction of specie
doublers is known. For a square lattice one can explic
show that the simplest lattice fermion action

S5c̄ iC” c ~2.9!

is invariant under the transformation@14#

c85Tc, c̄85c̄T 21, ~2.10!

whereT stands for any one of the 16 operators
5-2
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1, T1T2 , T1T3 , T1T4 ,

T2T3 , T2T4 , T3T4 , T1T2T3T4 , ~2.11!

and

T1 , T2 , T3 , T4 ,

T1T2T3 , T2T3T4 , T3T4T1 , T4T1T2 . ~2.12!

The operatorsTm are defined by

Tm[gmg5 exp~ ipxm/a!, ~2.13!

and satisfy the relation

TmTn1TnTm52dmn , ~2.14!

with Tm
† 5Tm5Tm

21 for anti-Hermitiangm . We denote the 16
operators byTn , n50;15, in the following withT051.
By recalling that the operatorTm adds the momentump/a to
the fermion momentumkm , we cover the entire Brillouin
zone

2
p

2a
<km,

3p

2a
~2.15!

by operation~2.10! starting with the free fermion defined i

2
p

2a
<km,

p

2a
. ~2.16!

The operators in Eq.~2.11! commute withg5, whereas those
in Eq. ~2.12! anticommute withg5 and thus change the sig
of chiral charge, reproducing the 15 species doublers w
correct chiral charge assignment:(n50

15 (21)ng550.
In a smooth continuum limit, the operaorC” producesD”

for each species doubler with alternating chiral charge. T
relation Trg550 or Eq.~2.3! for the operatorC” is consistent
for any background gauge field because of the presenc
these species doublers, which are degenerate with the p
cal species in the present case.

B. Wilson operator DW and Tr g550

The consistency of Trg550 is analyzed by means of to
pological properties which are specified by Eq.~2.8!, and
thus it is best described in the nearly continuum limit. To
more precise, one may define the near-continuum config
tions by the momentumkm carried by the fermion

2
p

2a
e<km<

p

2a
e ~2.17!

for sufficiently smalla ande combined with the operationTn
in Eqs. ~2.11! and ~2.12!. To identify each species double
clearly in the near-continuum configurations, we also ke
r /a andm0 /a finite for a→ small @14#, and the gauge fields
are assumed to be sufficiently smooth. For these config
tions, we can approximate the operatorDW by
07450
th

e

of
si-

e
a-

p

a-

DW5 iD” 1Mn1O~e2!1O~agAm! ~2.18!

for each species doubler, where the mass parametersMn
stand forM052m0 /a and one of

2r

a
2

m0

a
, ~4,21!,

4r

a
2

m0

a
, ~6,1!,

~2.19!
6r

a
2

m0

a
, ~4,21!,

8r

a
2

m0

a
, ~1,1!

for n51 – 15. Here we denoted~multiplicity, chiral charge!
in the brackets for species doublers. In Eq.~2.18! we used
the relation valid for configurations~2.17!, for example,

DW~k!5(
m

gm
sinakm

a
1

r

a (
m

~12cosakm!2
m0

a

5gmkm@11O~e2!#1
r

a
O~e2!2

m0

a
~2.20!

in the momentum representation with vanishing gauge fie
In these near-continuum configurations, the topologi

properties are specified by the operatorD” in DW . We can
thus evaluate Trg5 by using the basis set defined by

D” fn5lnfn , ~2.21!

which formallydiagonalizethe effective operatorDW in Eq.
~2.18! describing the low-energy excitations of each spec
doubler. We then obtain

Tr g55 (
n50

15

~21!n lim
L→ large

(
l 51

L

f l
†g5f l50, ~2.22!

wheref l
†g5f l50 for l lÞ0 because ofg5D” 1D” g550, and

Eq. ~2.22! states the cancellation of zero-mode contributio
(l l50f l

†g5f l among various species. We are assuming t
our near-continuum configurations~2.18! are accurate in the
treatment of these zero modes. An argument to support
identification of the near continuum configurations will b
given in Sec. II C.

Tr g550 is thus consistent even for a topologically no
trivial gauge background because of the presence of
would-be species doublers. This property is related to
well-known fact that one can safely ignore the Jacobian f
tor for global chiral transformationdc5 i eg5c and dc̄

5c̄ i eg5 for the theory defined byS5c̄DWc.

C. Overlap Dirac operator and Tr g550

The operatorD introduced by Neuberger@2#, which sat-
isfies relation~1.1!, has an explicit expression

aD512g5

H

AH2
511DW

1

ADW
† DW

, ~2.23!
5-3
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KAZUO FUJIKAWA PHYSICAL REVIEW D 60 074505
where DW52g5H is the Wilson operator. For the nea
continuum configurations specified above in Eq.~2.17!, one
can approximate

D5 (
n50

15

~1/a!F11~ iD” 1Mn!
1

AD” 21Mn
2G un&^nu,

g5D5 (
n50

15

~21!ng5~1/a!F11~ iD” 1Mn!
1

AD” 21Mn
2G un&^nu,

~2.24!

g55 (
n50

15

~21!ng5un&^nu.

Here we explicitly write the projectionun&^nu for each spe-
cies doubler. The operators in Eqs.~2.24! preserve the
Ginsparg-Wilson relation~1.1!. We can again use the bas
set in Eq.~2.21!, which formally diagonalizes the basic op
eratorD in Eqs.~2.24!, to define the trace operation. We th
obtain

Tr g55 (
n50

15

~21!n lim
L→ large

(
l 51

L

f l
†g5f l50 ~2.25!
07450
by assuming that our effective operators~2.24! are accurate
in describing the excitations near the zero modesD” f l50,
which are relevant for topological considerations. Again t
presence of the would-be species doublers makes the rel
Tr g550 consistent for any topologically nontrivial back
ground gauge field. A justification of our effective descri
tion @Eqs.~2.24!# will be given later.

The above expression ofD also shows that

Df l50,
~2.26!

Df l5
2

a
f l

for the physical species and the unphysical species doub
respectively, if one uses the zero modesD” f l50. Note that
M0,0 and the rest ofMn.0 in Eqs.~2.19! and ~2.24! @2#.
We also note thatf l can be a simultaneous eigenstate ofg5
only for D” f l50. That is,N6 states with the eigenvalue 2/a
in fact correspond to topological excitations associated w
species doublers; this means that the multiplicities of th
N6 are quite high due to the 15 species doublers, altho
they satisfy the sum rulen11N15n21N2 . This sum rule
is a direct consequence of Eqs.~2.25! and ~2.26! by noting
that f l

†g5f l50 for l lÞ0.
The calculation of the index~1.2! may proceed as
Tr g5S 12
a

2
D D 52Tr g5

a

2
D

52
1

2
Tr (

n50

15

~21!ng5F 11~ iD” 1Mn!
1

AD” 21Mn
2G

52
1

2
Tr (

n50

15

~21!ng5~ iD” 1Mn!
1

AD” 21Mn
2

52
1

2
(
n50

15

~21!n(
l

f l
†g5Mn

1

AD” 21Mn
2
f l

52
1

2
(
n50

15

~21!nMn

1

AMn
2

(
l l50

f l
†g5f l

52
1

2
(
n50

15

~21!nMn

1

AMn
2
~n12n2!

52
1

2
S 211 (

n51

15

~21!nD ~n12n2!5n12n2 , ~2.27!
he
dou-
ex
ers,
where we usedg5D” 1D” g550 and the fact thatf l
†g5f l50

for l lÞ0 in D” f l5l lf l . We also used the fact thatM0

,0 andMn.0 for n51;15 @2#. Index~2.27! is defined for
D” , while index~1.3! is defined forg5D, and both agree with
the Pontryagin index, as seen in Eq.~2.30! below.

In the above calculation@Eq. ~2.27!#, we used the relation
Tr g550 twice: In the second line, this relation requires t
presence of the physical species as well as the species
blers. As a result, we have the contribution to the final ind
from both of the physical species and 15 species doubl
although the species doublers withl l52/a should saturate
the index~and anomaly! in the expression@12#
5-4
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RELATION Tr g550 AND THE INDEX THEOREM IN . . . PHYSICAL REVIEW D 60 074505
2Tr~a/2!g5D5n12n2 , ~2.28!

as noted in Eq.~A10! in the Appendix. Our analysis of th
global topological property on the basis of effective ope
tors ~2.24! is thus consistent.

The above calculational scheme of index~2.27! in fact
corresponds to the evaluation of the local index~i.e.,
anomaly! performed in Ref.@8#. By using the plane-wave
basis, one has~in the limit a→0 with r /a and m0 /a kept
fixed!

tr g5S 12
a

2
D D ~x!

52
1

2 (
n50

15

~21!n trE
2`

` d4k

~2p!4

3e2 ikxg5~ iD” 1Mn!
1

AD” 21Mn
2

eikx

5
1

2
tr E

2`

` d4k

~2p!4
e2 ikxg5

1

AD” 2/M0
211

eikx

2
1

2 (
n51

15

~21!n tr E
2`

` d4k

~2p!4
e2 ikx

3g5

1

AD” 2/Mn
211

eikx, ~2.29!

which gives rise to the anomaly for alluMnu→` in the con-
tinuum limit:

tr g5S 12
a

2
D D ~x!5 lim

M→`

trE
2`

` d4k

~2p!4
e2 ikxg5f S D” 2

M2D eikx

5
g2

32p2
tr emnabFmnFab . ~2.30!

Here we definedf (x)51/Ax11, which satisfies

f ~0!51, f ~`!50,
~2.31!

f 8~x!xux505 f 8~x!xux5`50.

The right-hand side of Eq.~2.30! is known to be independen
of the choice of f (x) which satisfies the mild condition
~2.31! @11#.

A direct evaluation of the anomaly without using E
~2.27! is of course possible. We briefly sketch the proced
here, since it justifies our analysis based on the effec
expressions in Eq.~2.24! @and partly Eq.~2.18! also#. For an
operatorO(x,y) defined on the lattice, one may define

Omn[(
x,y

fm* ~x!O~x,y!fn~y!, ~2.32!

and the trace
07450
-

e
e

Tr O5(
n

Onn

5(
n

(
x,y

fn* ~x!O~x,y!fn~y!

5(
x

S (
n,y

fn* ~x!O~x,y!fn~y! D . ~2.33!

The local version of the trace~or anomaly! is then defined by
Tr O(x,x)[(n,yfn* (x)O(x,y)fn(y). For the operator of
our interest, we have

trS 2
1

2
g5DW

1

ADW
† DW

D ~x!

52
1

2 (
n50

15

tr E
2p/2a

p/2a d4k

~2p!4
,

3e2 ikxT n
21g5DW

1

ADW
† DW

T neikx ~2.34!

where we used the plane-wave basis defined in Eq.~2.16!
combined with the operationTn . We also used a shorthan
notationOeikx5(yO(x,y)eiky.

We first take thea→0 limit of this expression with all
Mn , n50 –15, kept fixed, and then take the limituMnu
→` later. For fixedMn ~to be precise, for fixedm0 /a and
r /a), one can confirm that the above integral~2.34! for the
domain (p/2a)e<ukmu<p/2a vanishes~at least! linearly in
a for a→0, if one takes into account the trace withg5. See
also Refs.@7,9#. In the remaining integral

2
1

2 (
n50

15

~21!n tr

3E
2(p/2a)e

(p/2a)e d4k

~2p!4
e2 ikxg5T n

21DW

1

ADW
† DW

T neikx,

~2.35!

one may take the limita→0 @and (p/2a)e→`#, keepinge
arbitrarily small. By taking Eq.~2.20! into account, one thus
recovers expression~2.29!. One can arrive at the same co
clusion by using an auxiliary regulatorh(C” 2/m2) in the in-
tegrand in Eq.~2.34! to make the intermediate steps bett
defined@8#. The domain in Eq.~2.17! with arbitrarily small
but finitee thus correctly describes the topological aspects
the continuum limit in the present prescription.

Here we went through the details of the anomaly calcu
tion to show that the interpretation of theN6 states in Eq.
~A8! as topological excitations related to species doublers
is shown in Eq.~2.26!, is also consistent with the loca
anomaly calculation. As for a general analysis of chi
anomaly in the overlap operator, see Ref.@15#.

At this stage it is instructive to consider an operator d
fined by
5-5
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D[
1

a F 11~ iD” 1M0!
1

AD” 21M0
2G ~2.36!

instead ofD in Eq. ~2.24!. This D is regarded as anMn
→`, nÞ0, limit of the effective operatorD @Eq. ~2.24!#
in the Lagrangian level, and it satisfies~a continuum version
of! the Ginsparg-Wilson relation~1.1! without any species
doubler. The relation Trg550 is thus expected to be incon
sistent. In fact we have an index related to the chiral Jacob
@5#

Tr g5S 12
a

2
D D5 lim

L→ large
(
l 51

L

f l
†g5S 12

a

2
D Df l

5 (
l l50

f l
†g5f l5n12n2 ~2.37!

by notingf l
†g5f l50 for l lÞ0 in D” f l5l lf l . On the other

hand, if one incorrectly uses Trg550, one obtains

Tr g5S 12
a

2
D D 52

1

2
TrS g5~ iD” 1M0!

1

AD” 21M0
2D

52
1

2
lim

L→ large
(
l 51

L

f l
†g5M0

1

AD” 21M0
2
f l

5
1

2
~n12n2! ~2.38!

by noting thatg5D” 1D” g550, f l
†g5f l50 for l lÞ0, and

M0,0. One thus loses half of the index or anomaly. In t
example, the evaluation of Trg5 is somewhat subtle, bu
Tr g550 is definitely inconsistent since the calculation in t
last line in Eq.~2.38! is well defined. In fact, the relations

Tr g55n12n2 and TrS 2
a

2
g5D D50 ~2.39!

are consistent for the present operatorD, since the species
doublers atg5Df l56(2/a)f l are missing. A more rigor-
ously regularized Jacobian for the present example is g
by formula ~3.3!, to be discussed below.

D. General lattice Dirac operator and Tr g550

We expect that our analysis of Trg550, namely, that its
consistency, is ensured only by the presence of the would
species doublers in the Hilbert space, works for a gen
lattice Dirac operator, since any lattice operator containsC”
as an essential part. For the smooth near-continuum con
rations, the lowest-dimensional operatorC” is expected to
specify the topological properties. From this viewpoint, t
overlap Dirac operatorD describes the topological propertie
such as the index theorem and Trg550 in a neater way than
the Wilson operatorDW , mainly because the operatorD
projects all the species doublers to the vicinity of 2/a: The
behavior for small values ofC” ~i.e., for uC” u!1/a) is de-
07450
n

n

be
al

u-

scribed in a more clear-cut way byD, and one can recogniz
clearly the topologicalN6 states related to species double

We here note that the Pauli-Villars regularization in co
tinuum theory can be analyzed in a similar way. The Pa
Villars regulator is defined in the path integral by introduci
a bosonic spinorf into the action:

S5E d4x@c̄~ iD” 2m!c1f̄~ iD” 2M !f#. ~2.40!

The Jacobian for the global chiral transformation then giv
rise to the graded trace@11#

Tr g55Trc g52Trf g550. ~2.41!

The relation Trg550 is thus consistent with any topolog
cally nontrivial background gauge field because of the pr
ence of the unphysical regulatorf. This f is analogous to
the species doublers in lattice regularization.

III. IMPLICATIONS OF THE PRESENT ANALYSIS

We have shown that the consistency of Trg550 for a
topologically nontrivial background gauge field requires t
presence of some unphysical states in the Hilbert sp
Coming back to the original lattice theory defined by

S5c̄Dc, ~3.1!

with D satisfying relation~1.1!, one obtains two times Eq
~1.3! as a Jacobian factor for the global chiral transformat
@5# dc5 i eg5@12(a/2)D#c and dc̄5c̄ i e@12(a/2)D#g5,
which leaves action~3.1! invariant. One can rewrite Eq.~1.3!
as

Tr g5S 12
a

2
D D5T̃r g5S 12

a

2
D D5T̃r g55n12n2 ,

~3.2!

where the modified trace T˜r is defined by truncating the un
physicalN6 states withln562/a. Without theN6 states,
T̃r g5(a/2)D50, since the eigenvaluesln of g5D with ln
Þ0,62/a appear always pairwise at6ulnu. See the Appen-
dix.

If one takes a smooth continuum limit of T˜r g55n1

2n2 in Eq. ~3.2!, one recovers the result of the continuu
path integral~1.6!. If one considers that T˜r g5 is too abstract,
one may define it more concretely by

Tr g5S 12
a

2
D D f S ~g5D !2

M2 D 5T̃r g5S 12
a

2
D D f S ~g5D !2

M2 D
5T̃r g5f S ~g5D !2

M2 D 5n12n2

~3.3!

for any f(x) which satisfies the mild condition in Eq.~2.31!.
See also Eqs.~1.3! and ~1.5!. This relation suggests that w
can extract the local index~or anomaly! by
5-6
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tr g5S 12
a

2
D D f S ~g5D !2

M2 D ~x!, ~3.4!

which is shown to be independent of the choice off (x) in
the limit a→0 and leads to Eq.~2.30! @for f (x) which goes
to zero rapidly forx→`# by using only the general prope
ties ofD @8#. If one constrains the momentum domain to E
~2.16! from the beginning, one may use the last expressio
Eq. ~3.3! to evaluate the anomaly for a more general class
f (x). We thus naturally recover the result of the continuu
path integral@11#.

As for a more practical implication of our analysis
Tr g550 in lattice theory, one may say that any result whi
depends critically on the statesN6 is unphysical. It is thus
necessary to define the scalar density~or mass term! and
pseudoscalar density in the theory~3.1! by @16,6#

S~x!5c̄LcR1c̄RcL5c̄S 12
a

2
D Dc,

~3.5!

P~x!5c̄LcR2c̄RcL5c̄g5S 12
a

2
D Dc.

Here we defined two independent projection operators

P65 1
2 ~16g5!,

~3.6!
P̂65 1

2 ~16ĝ5!,

with ĝ55g5(12aD) which satisfiesĝ5
251 @6#. The left and

right components are then defined by

c̄L,R5c̄P6 , cR,L5 P̂6c ~3.7!

which is based on the decomposition

D5P1DP̂21P2DP̂1 . ~3.8!

The physical operatorsS(x) and P(x) in Eqs. ~3.5! do not
contain the contribution from the unphysical statesN6 in Eq.
~A8!. In the spirit of this construction, the definition of th
index by Eq.~3.3!, which is independent of unphysical stat
N6 , is natural. In particular, all the unphysical species do
blers~not only the topological ones at 2/a! decouple from the
anomaly defined by Eq.~3.4! in the limit a→0 with fixedM.

The customary calculation of the index~and also
anomaly! by the relation@4–7,9#

Tr g5S 12
a

2
D D5TrS 2

a

2
g5D D5n12n2 ~3.9!

by itself is of course consistent, since one simply includ
the unphysical statesN6 in evaluating Trg550, and conse-
quently one obtains the index Tr@2(a/2)g5D# from the un-
physical statesN6 only. We after all know that the left-han
side of Eq.~3.9! is independent ofN6 .

Rather, the major message of our analysis is that the c
tinuum limit of Trg550 in Eq. ~1.8! ~unlike the relation
T̃r g55n12n2) cannotbe defined in a consistent way whe
07450
.
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the ~would-be! species doublers disappear from the Hilb
space. It is clear from the expression of Trg550 in Eq.~1.8!
that thea→0 limit of Tr g550 is not defined consistently
One may then ask how the calculation of local anomaly
the basis of Eq.~3.9! could be consistent in the limita→0 if
Tr g550 is inconsistent. A key to resolve this apparent pa
dox is the failure of the decoupling of heavy fermions in t
evaluation of anomaly. The massive unphysical species d
blers do not decouple from the anomaly—as is seen in
~2.29!, for example. If one insists on Trg550 in the con-
tinuum limit, one is also insisting on the failure of the d
coupling of these infinitely massive particles from Trg550.
The contributions of these heavy fermions to the anom
and to Trg550 precisely cancel, just as in the case of t
evaluation of global index in Eq.~3.9!. That is, the local
anomaly itself isindependentof these massive species do
blers in the continuum limit, as is clear in Eq.~3.4!. In this
sense, Eq.~3.4! is the only logically consistent definition o
local anomaly. It is an advantage of the finite lattice form
lation that we can now clearly illustrate this subtle cance
tion of the contributions of those ultraheavy regulators
Tr g550 and anomaly on the basis of Eq.~1.8!. ~In the case
of the Wilson fermion operatorDW , an analogous cancella
tion takes place in Trg51pseudoscalar mass term induc
by the chiral variation of the action.!

When one defines a chiral theory by recalling~3.8! @6,17#,

S5c̄P1DP̂2c5c̄LDcL , ~3.10!

one obtains thecovariantgauge anomaly~or Jacobian!

tr Tag5S 12
a

2
D D5(

n
fn~x!†Tag5S 12

a

2
D Dfn~x!

~3.11!

for the gauge transformationdcL(x)5 iaa(x)TaP̂2cL and
dc̄L(x)5c̄LP1(2 i )aa(x)Ta.

An analog of theU(1) anomaly@Eq. ~3.4!# is then defined
for the gauge anomaly~3.11! by @usingfn in Eq. ~1.4!#

(
n

fn~x!†Tag5S 12
a

2
D D f S ~g5D !2

M2 D fn~x!

5(
n

f S ln
2

M2D fn~x!†TaS g52
a

2
lnDfn~x!, ~3.12!

which reduces to the lattice expression forM→` with
f (0)51. In practice, one first takes the continuum limita
→0 with M fixed and one obtains~see, for example, Ref
@8#!

tr Tag5f S D” 2

M2D , ~3.13!

which is again known to be independent of the spec
choice off (x) in the limit M→` @11#. For the overlap Dirac
operator, one can show that the anomaly calculation in
~3.11! by using trTag550 corresponds effectively to a spe
5-7
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cific choice of f (x)51/A11x in Eq. ~3.13!, just as in the
case ofU(1) anomaly in Eq.~2.30!.

The definition of the regularized Jacobian~3.12! may be
regarded to correspond to the truncation of the statesN6

from the chiral action

S5 (
nPN1

S 2

aD C̄nCn1 (
0<ln,2/a

lnC̄nCn ~3.14!

to

S̃5 (
0<ln,2/a

lnC̄nCn , ~3.15!

and then taking the continuum limita→0, which is logically
more natural as theN6 states are eliminated from the Hilbe
spacebeforetaking the continuum limit.

Incidentally, action~3.14! is obtained from Eq.~3.10! by
expanding

c̄P15(
n

C̄nv̄n ,

~3.16!

P̂2c5(
n

Cnvn

with the choice of the basis sets

$v j%5$fnug5Dfn50,g5fn52fn%

% $fnug5Dfn52/afn ,g5fn51fn%

% $P̂2fn /A~11aln/2!/2 ug5Dfn

5lnfn ,2/a.ln.0%, ~3.17!

$v̄k
†%5$fnug5Dfn50,g5fn51fn%

% $fnug5Dfn52/afn ,g5fn51fn%

% $P1fn /A~11aln/2!/2ug5Dfn

5lnfn ,2/a.ln.0% ~3.18!

in terms of the eigenstates ofg5Dfn5lnfn summarized in
the Appendix.

Consequently, the path integral for a fixed backgrou
gauge field is defined by

Z5JE )
nPN1

dC̄ndCn )
0<ln,2/a

dC̄n )
0<lm,2/a

dCm expS,

~3.19!

Z̃5 J̃E )
0<ln,2/a

dC̄n )
0<lm,2/a

dCm expS̃,

with Jacobian factorsJ andJ̃ which depend on the basis se
A ~naive! continuum limit of the truncated expressionZ̃
naturally gives rise to the covariant path integral formulat
of chiral gauge theory@11#. In particular, the fermion numbe
anomaly which is given by Eq.~3.3! gives rise to the fermion
07450
d

number violation in chiral gauge thoery. As is well know
this formulation of the continuum limit is consistent if th
anomaly cancellation condition trTa$Tb,Tc%50 is satisfied,
when combined with the argument of the robustness of
tice gauge symmetry@18#. See also Ref.@19#.

An interesting analysis of the definition of chiral theory
a finite a was given by Lu¨scher recently@20#. The fermion
number violation arises from the nontrivial index of the re
angular~not square! matrix in Eq.~3.10! @cf. Eq. ~2.3!#,

dim kerP̂2g5DP12dim kerP1g5DP̂25n12n2 ,
~3.20!

as is seen in the explicit construction of the basis vector
Eqs. ~3.17! and ~3.18!: For a generaln3m matrix M, one
can prove an index theorem

dim kerM2dim kerM†5m2n, ~3.21!

which is a generalization of the case of a square matrix w
m5n. For the operatorP̂2g5DP1 in Eq. ~3.20!, the dimen-
sions of the column and row vectors are given, respectiv
by using the projection operators as TrP̂2 and TrP1 , and
thus m2n5Tr P12Tr P̂25Tr g5@12(a/2)D#5n12n2

@20#. Incidentally, an analogous analysis provides an alter
tive proof of the equivalence of Trg550 with the index
relation ~2.3!.

IV. DISCUSSION AND CONCLUSION

Motivated by the recent interesting developments in l
tice gauge theory, we analyzed the physical implications
the condition Trg550 in detail. We have shown that Trg5
50, whose validity is often taken for granted, is consiste
only when one includes some unphysical states in the Hilb
space. The continuuma→0 limit of Tr g550 is not defined
consistently, as seen in Eq.~1.8!. We have explained that th
failure of the decoupling of heavy fermions in the anoma
calculation is a key to understand the consistency of the c
tomary lattice calculation of anomaly where Trg550 is
used. Our analysis is perfectly consistent with relation~1.6!
in the continuum path integral, and even provides posit
support for formula ~3.3! and the related definition o
anomaly~3.4! in lattice theory.

We here want to comment on an analysis of the pho
phase operator@21#, where a closely related phenomeno
associated with the notion of index takes place@22#. The
Maxwell field is expanded into an infinite set of harmon
oscillators, and thus the analysis of the photon phase op
tor is performed for a simple harmonic oscillator

H5 1
2 ~p21v2q2!5\v~a†a1 1

2 !. ~4.1!

The quantum requirement of the absence of the nega
normed states leads toau0&50, and thus the index relation

dim kera2dim kera†51, ~4.2!
5-8
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since no states are annihilated bya†. On the other hand, the
existence of the observableHermitian phase operatorw re-
quires a decomposition@21#

a5U~w!AN, a†5ANU~w!21, ~4.3!

with a unitary U(w)5eiw and N5a†a. These expression
suggest

dim kera2dim kera†50, ~4.4!

in contradiction to relation~4.2!, since the unitary factor
U(w) does not influence the analysis of index. Index~4.2!
thus provides a no-go theorem against the Hermitian pho
phase operator and the resulting familiar phase-number
certainty relation@22#.

To circumvent the topological stricture~4.2!, one may
truncate the operatora to an @(s11)3(s11)#-dimensional
square matrix

as5S 0 1 0 0 .. 0

0 0 A2 0 .. 0

0 0 0 A3 .. 0

• • • • • •

0 0 0 0 .. As

0 0 0 0 .. 0

D
5u0&^1u1u1&^2uA2 . . . .1us21&^suAs ~4.5!

and as
†5(as)

†. One then obtains a vanishing index for
finite-dimensional square matrix@22#

dim keras2dim keras
†50, ~4.6!

and one can in fact introduce a Hermitian phase operatof
@23# which satisfies the relationas5eifAas

†as.
The parameters or the stateus& stands for the cutoff pa

rameter analogous to theN6 states related to Trg550 in
lattice theory. A careful analysis of the uncertainty relati
shows that the Hermitian operatorf, when used to analyze
the data which is already in the quantum limit, leads to
substantial deviation from the minimum uncertainty relati
at the characteristically quantum domain withsmall average
photon numbers. This artificial deviation from the minimu
uncertainty is caused by the presence of the unphysical
off introduced byus&, which fails to decouple from the low
energy quantities for arbitrarily large but finites @22#. Also, a
larges limit of Eq. ~4.6! is not defined consistently, which i
analogous to the ill-defined continuum limit of Trg550 in
Eq. ~1.8!.

It is expected that an analogous unphysical result w
appear in lattice gauge theory if one analyzes the low ene
quantity which critically depends on the unphysical sta
N6 . In fact, it is known that onehas toeliminate the con-
tribution of theN6 states to the physical observables such
S(x) andP(x) in Eq. ~3.5! @16,6#.
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APPENDIX: FINITE-DIMENSIONAL REPRESENTATIONS
OF THE GINSPARG-WILSON ALGEBRA

In this appendix we recapitulate the finite dimension
representations of the basic algebraic relation~1.1!. A con-
struction of the operatorg5D, which satisfies the Ginsparg
Wilson relation on a finite lattice, by using a correspondi
operatorg5D on an infinite lattice has been discussed in R
@20#. We first define an operator

G5[g5~12 1
2 aD!, ~A1!

which is Hermitian and satisfies the basic relation

G5g5D1g5DG550. ~A2!

This relation suggests that if

g5Dfn5lnfn , ~fn ,fn!51 ~A3!

then

g5D~G5fn!52ln~G5fn!. ~A4!

That is, the eigenvaluesln and 2ln are always paired if
lnÞ0 and (G5fn ,G5fn)Þ0.

We evaluate the norm ofG5fn :

~G5fn ,G5fn!5Ffn ,S g52
a

2
g5D D S g52

a

2
g5D DfnG

5Ffn ,S 12
a

2
g5~g5D1Dg5!

1
a2

4
~g5D !2DfnG

5Ffn ,S 12
a2

4
~g5D !2DfnG

5S 12
a

2
lnD S 11

a

2
lnD . ~A5!

That is,fn is a ‘‘highest’’ state

G5fn5S g52
a

2
g5D Dfn50 ~A6!

if @12(a/2)ln#@11(a/2)ln#50 for the Euclidean SO(4)-
invariant positive definite inner product (fn ,fn). We thus
conclude that the statesfn with ln562/a arenot paired by
the operationG5fn and are the simultaneous eigenstates
g5 , g5fn56fn respectively. One can also show that the
eigenvaluesln are the maximum or minimum of the possib
eigenvalues ofg5D. This is based on relation~1.5!, ualn/2u
5ufn

†g5fnu<ifni ig5fni51.
On the other hand, the relation Trg550, which is ex-

pected to be valid on a finite lattice leads to@by using Eq.
~1.5!#
5-9
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Tr g55(
n

fn
†g5fn

5 (
ln50

fn
†g5fn1 (

lnÞ0
fn

†g5fn

5 (
ln50

fn
†g5fn1 (

lnÞ0

a

2
ln

5n12n21 (
lnÞ0

a

2
ln50. ~A7!

In the last line of this relation, all the states except for t
states withln562/a cancel pairwise forlnÞ0. We thus
obtain a chirality sum rulen12n21N12N250 @12# or,

n11N15n21N2 ~A8!

whereN6 stand for the number of isolated~unpaired! states
with ln562/a and g5fn56fn , respectively. These rela
tions show that the chirality asymmetry at vanishing eig
values is balanced by the chirality asymmetry at the larg
eigenvalues withulnu52/a.

We note that all other states with 0,ulnu,2/a, which
appear pairwise withln56ulnu „note thatG5(G5fn)5@1
2(aln/2)2#fn}fn for ualn/2uÞ1…, satisfy the relations

fn
†G5fn50,

fn
†g5fn5

aln

2
, ~A9!

fm
† g5fn50 for lmÞln , lmln.0.

These statesfn cannot be the eigenstates ofg5 as ualn/2u
,1. The statesN6 saturate the index theorem common
written in the form@4–6#
st

.

fo
re

e

07450
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TrS 21

2
ag5D D5n12n2 ; ~A10!

that is, only the statesN6 contribute to the left-hand side.
Those properties we analyzed so far in this appendix h

both for non-Abelian and Abelian gauge theories. We did
specify precise boundary conditions, since our analysis
valid once nontrivial zero modes appear for a given bou
ary condition. For an Abelian theory, one needs to introdu
the gauge field configuration with suitable boundary con
tions, which carries a nonvanishing magnetic flux, to gen
ate a nontrivial indexn12n2 @20#. Our analysis of the index
in this appendix is formal, since it is well known that th
Ginsparg-Wilson relation~1.1! by itself does not uniquely
specify the index or the coefficient of chiral anomaly for
given gauge field configuration@24#.

To summarize the analyses of the present appendix
the normalizable eigenstatesfn of g5D on a finite lattice are
categorized into the following three classes.

~i! n6 states,

g5Dfn50, g5fn56fn . ~A11!

~ii ! N6 states,

g5Dfn56
2

a
fn , g5fn56fn , respectively. ~A12!

~iii ! Remaining states with 0,ulnu,2/a,

g5Dfn5lnfn , g5D~G5fn!52ln~G5fn!, ~A13!

and the sum rulen11N15n21N2 holds.
All the n6 and N6 states are the eigenstates ofD, Dfn

50 and Dfn5(2/a)fn , respectively. If one denotes th
number of states in~iii ! by 2N0, the total number of statesN
is given byN52(n11N11N0), which is expected to be a
constant independent of background gauge field config
tions.
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