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Curved QCD string dynamics

Theodore J. Allen
Department of Physics, Eaton Hall, Hobart and William Smith Colleges, Geneva, New York 14456

M. G. Olsson
Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706
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We consider the effects of going beyond the approximation of a straight string in mesons by using a flexible
flux tube model wherein a Nambu-Goto string bends in response to quark accelerations. The curved string is
dynamically identical to the straight string even for ultra-relativistic mesons except for a small additional radial
momentum. We numerically solve the curved string model in the case where both ends have equal mass quarks
and also in the case where one end is fixed. No approximation of non-relativistic motion is made. We note
some small but interesting differences from the straight string.@S0556-2821~99!07419-6#

PACS number~s!: 12.38.Aw
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I. INTRODUCTION

As the separation between quarks becomes large,
color field contracts into a string-like or flux tube configur
tion. QCD is thus thought to resemble string theory in t
large distance regime. The Nambu-Goto-Polyakov Q
string @1# is an elegant model for this color field from whic
valuable insights into the nature of QCD are expected. T
most obvious of these is the well-known picture of sta
linear confinement. For a dynamical hadron the simplest
sumption for the long distance color field configuration
that the flux tube or string always remains straight. This w
the assumption of the relativistic flux tube model for meso
@2# which has enjoyed phenomenological success.

As pointed out by Nesterenko@3# such rigid string models
cannot strictly be considered Nambu-Goto strings since
string cannot remain straight during dynamical motion of
quarks. Recently, the present authors@4# found an explicit
solution to the string equations describing the deviation fr
straightness due to non-uniform end motion. The princi
assumptions in our calculation are to treat the motion
‘‘adiabatic’’ and that the deviation from straightness is sma
The adiabatic assumption is just that the string shape
pends on the end motion and that there is no other exp
time dependence. By direct calculation we find that for
physical cases the string never bends very much even
relativistic motion.

An interesting conclusion of our previous work@4# was
that almost every dynamical quantity of the curved string
the same as that of the straight string. The angular mom
tum, energy, and momentum perpendicular to the line c
necting the quarks are unchanged for small string defor
tions, assuming the quark distance and angular velocity
the same for the curved and straight strings.

The sole difference between the dynamically curv
string and the straight string is the component of momen
along the line connecting the quarks. From Fig. 1 the ori
of this radial momentum is clear. It is also evident that t
0556-2821/99/60~7!/074026~8!/$15.00 60 0740
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contribution from the outer part of the string will predom
nate due to the larger velocity of the end of the string. T
net result will be an inward flowing radial momentum for th
case shown in Fig. 1 corresponding to increasing ang
velocity (v̇.0). For a meson the total angular momentum
conserved, and hence if the angular velocity is increas
the distance between the quarks must be decreasing. We
clude that the tube radial momentum due to curvature alw
has the same sign as the quark’s radial momentum. I
meson with equal mass quarks the two halves of the st
have equal but opposite radial momenta, just as the qu
do.

Since the curved string meson is nearly identical to
rigid ~straight! string meson similar methods are indicat
for our numerical solution. The effect of the curvature i
duced radial momentum is to shift the energy level solutio
downward only a few MeV. For practical purposes it is qu
sufficient to ignore any deviation from straightness even
massless quarks with resulting ultra-relativistic kinemati
A principal result thus is that one can use the simpler stra

FIG. 1. The solution to the string shape~3.17! with positive v̇
andv'!1. The transverse and radial momenta of two elements
depicted. The contribution at the larger radius will predomin
giving a net radial momentum parallel to the quark’s radial mom
tum.
©1999 The American Physical Society26-1
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string approximation with negligible loss in accuracy.
The remainder of the paper is organized as follows.

Sec. II we start with the string plus quark action and est
lish the equations of motion and conserved quantities.
solution for the curved string is reviewed in Sec. III and t
energy, angular momentum, and linear momentum are c
puted. We show here that the curvature of the string indu
by general quark motion does not contribute to the ene
and angular momentum. The sole effect of the curved st
is to enhance the radial momentum of the quark. The met
of quantization of the quark-string system and the soluti
scheme is covered in Sec. IV. Our numerical results
general conclusions are given in Secs. V and VI.

II. STRING-QUARK ACTION

We begin by reviewing the formalism of the Namb
Goto-Polyakov@1,5# string and spinless quark actions a
some expressions for conserved quantities. The action f
quark and anti-quark connected by a QCD string is

S52
a

2E dtE ds A2hhabX,a
m X,b

n hmn

2 (
i 51,2

E dt~mA2 ẋmẋm! i , ~2.1!

wherehab is the inverse of the two-dimensional metrichab
whose indices run overt and s, while h5det(hab).
Xm(t,s) is the string position andX,a

m []aXm. The two
quark coordinates arexi

m(t)[Xm(t,s i) at the ends of the
string. We use metric signature conventions thath5(2,
1) andh5(2,1,1,1).

The action~2.1! is classically equivalent to the string ten
sion a times the worldsheet area swept out by the str
minus the masses of the quarks times their worldline leng
Variation of the Lagrange multiplierhab determines that it is
equal to the embedding metric, up to a multiplicative co
stant

hab5X,a
m X,b

n hmn . ~2.2!

Variation of the string and quark positions yields the eq
tions of motion

~A2hhabX,b
m ! ,a50, ~2.3!

2~2 ! iaA2hhsbX,b
m 5~pi

m! ,t , ~2.4!

where the canonical quark momenta are

pi
m5

dSquark

d ẋi
m

5S mẋm

A2 ẋnẋn

D
i

[~mg ẋm! i , ~2.5!

and ẋi
m5(xi

m) ,t . The string momentum density is

Pm~t,s!5
dSstring

dẊm
52aA2hhtaXm,a~t,s!. ~2.6!
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The total energy and momentum of the string-quark sys
then follows

Ptotal
m 5Pstring

m 1Pquarks
m 5E

s1

s2
Pm~t,s!ds1 (

i 51,2
pi

m ,

~2.7!

and the system angular momentum is

Jtotal
mn 5Jstring

mn 1Jquarks
mn 5E

s1

s2
X[mPn]ds1 (

i 51,2
~x[mpn] ! i .

~2.8!

Because of the spherical symmetry of the string a
quarks system, we may consider motion in the (x1,x2) plane.
It is useful then to use helicity coordinates

X65
X16 iX2

A2
. ~2.9!

We will adopt the notation

X[X1, ~2.10!

and thereforeX* 5X2. In terms of the spatial coordinateX,
the above results become

hab52X,a
0 X,b

0 12 Re~X,a* X,b!, ~2.11!

E5P052aE
s1

s2
ds A2hhtaX,a

0 1 (
i 51,2

~mg! i .

~2.12!

The spatial momentum can be expressed in helicity form

P5
1

A2
~P11 iP2!52aE

s1

s2
ds A2hhtaX,a1 (

i 51,2
~mg ẋ! i ,

~2.13!

where the quark coordinatexi(t) is

xi~t!5X~t,s i !. ~2.14!

Similarly, the angular momentumJ3 perpendicular to the
plane of motion is

J352aE
s1

s2
ds A2hhtbIm~X,b* X!12 (

i 51,2
@mg Im~ ẋ* x!# i .

~2.15!

III. CURVED STRING WITH ONE FIXED END

As we showed previously, it is possible to perturb abo
an exact straight string solution to obtain the shape o
string in which one end is fixed and the other has an arbitr
forced motion with a sufficiently small angular acceleratio
The particular perturbation is of a form that has suppres
vibrations. The string motion in a meson can be conside
as a special case of this more general problem, wherein
system angular momentum and energy are conserved.
6-2
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CURVED QCD STRING DYNAMICS PHYSICAL REVIEW D60 074026
showed the equivalence of the quark equations of motion
the conservation of energy and angular momentum in
appendix of Ref.@4#.

We begin this section by re-establishing the string sh
and the conserved quantities for the curved string by an
breviated method. In@4# we began with the ansatz

X0~t,s!5t5t,

X~t,s!5
1

A2
@sR~ t !1F~s!#exp$ i @vt1f~ t !#%,

~3.1!

where F(s) is complex andF(s) and f(t) are small. A
more convenient starting point can be found by observ
that if X(t,s51)[R/A2, reparametrization invariance a
lows us to set Re(F)50. We can then exploit the assumptio
of a small deviation from straightness to make the simp
but related ansatz

X0~t,s!5t5t,

X~t,s!5
1

A2
sR~ t !exp~ iF!, ~3.2!

where the overall phase is a rigid rotation plus the sum
two phases, each dependent upon only one of the coordin

F5vt1f~ t !1 f ~s!. ~3.3!

With Xm of the above form, from Eq.~2.11! we see that the
worldsheet metric is given as

hab52datd tb1~sR! ,a~sR! ,b1~sR!2F ,aF ,b , ~3.4!

with individual components

htt52g22~s!12s2R2vḟ, ~3.5!

hts5sRṘ1s2R2v f 8, ~3.6!

hss5R2, ~3.7!

and volume density

A2h5A2det hab5
R

g'~s!
@122s2R2g'

2 ~s!vḟ#.

~3.8!

In the above expressions we have used the notation

g'
22~s!512s2v2R2, ~3.9!

g22~s!5g'
22~s!2s2Ṙ2. ~3.10!

The equations of motion for the string~2.3! hold both for
the temporalX05t and spatialX components. In the case o
X0, we have, to first order inf andf,
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@g'~s!1g'
3 ~s!s3vḟ# ,t5@g'~s!sṘ1g'~s!s2Rv f 8# ,s .

~3.11!

Using the easily verified identity @g'(s)R# ,t

5Ṙ@sg'(s)# ,s , and droppingṘḟ terms, we reduce Eq
~3.11! to

d

ds S s2g'~s!
d f

ds D5R2v̇s2g'
3 ~s!. ~3.12!

Here we introduce the notationv̇[f̈. It can be shown@4#
that the equations of motion for the spatial coordinateXi also
reduce to this same equation. Integration of Eq.~3.12! yields

d f

ds
5

R2v̇

v'
2 Fs2

arcsinsv'

s2g'~s! G1C1

1

s2g'~s!
, ~3.13!

whose solution is

s f ~s!5
v̇R2

v'
3 F1

2
sv'arcsinsv'Garcsinsv'1C1sv'

1C2~A12s2v'
2 1sv'arcsinsv'!. ~3.14!

In the above we have defined the transverse end velo
v'[vR. After removal of the rigidly rotating phase, th
string coordinate can be written in terms of a radial and
transverse piece

X5
1

A2
~XR1 iX'!, ~3.15!

which are given by

XR

R
5s, ~3.16!

X'

R
5s f ~s!

[
1

6
v̇R2 shape~s,v'!. ~3.17!

Imposing the end conditionsX'(s50)5X'(s51)50, we
find

shape~s,v'!52
6

v'
3 F1

2
sv'@~arcsinv'!22~arcsinsv'!2#

1sA12v'
2 arcsinv'

2A12s2v'
2 arcsinsv'G . ~3.18!

The string shape forv'!1 is shown in Fig. 1. Other ex
amples are shown in Ref.@4#.

As we pointed out earlier, one can compare the angu
momentum, energy and linear momentum of the curved
straight string. The results are
6-3
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Jcurved
3 5Jstraight

3 5
aR2

2v'
Farcsin~v'!

v'

2A12v'
2 G , ~3.19!

Ecurved5Estraight5aR
arcsinv'

v'

, ~3.20!

P' curved5P' straight5
aR

v'

@12A12v'
2 #. ~3.21!

Although there is no radial tube momentum for the strai
string, it is non-zero for the curved string. This is evide
from Fig. 1 and by direct calculation:

PR52aR
v̇R2

v'
4 F12A12v'

2 2
v'

2
arcsinv'Garcsinv' .

~3.22!

The presence of radial string momentum is the only dyna
cal evidence of the curved string.

We have considered so far in this section only the hea
light meson case where one tube end is fixed. Although
general straight string case was discussed previously@2# we
will consider here the generalization to curved strings of
equal quark mass case. In Fig. 2 we show the shape func
from 21<s<11 which describes the equal mass case. I
evident that we may immediately find the angular mom
tum, energy, and linear momentum from the preceding
pressions by using the substitution

R→r /2,

v'5vR→v'5vr /2, ~3.23!

which leads to the following expressions for the equal qu
mass case:

Jequal mass
3 5

ar2

4v'
Farcsinv'

v'

2A12v'
2 G , ~3.24!

Eequal mass5ar
arcsinv'

v'

, ~3.25!

Pr52ar
v̇r 2

8v'
4 F12A12v'

2

2
v'

2
arcsinv'Garcsinv' . ~3.26!

Again we note thatE and J3 for the straight and curved
strings are identical. In the above we increasedE andJ3 by
a factor of 2 because of the two string pieces. Of course
must add the quark contribution to each quantity to obt
the total.
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IV. QUANTIZATION AND METHOD OF NUMERICAL
SOLUTION

We begin by reviewing the quantization of the classic
expressions for the heavy-light straight string. From E
~2.13!, ~3.19! and Eqs.~2.12!, ~3.20! the angular momentum
and energy are

J3[J5mgv'R1aR2F~v'!, ~4.1!

E5MQ1mg1aR
arcsinv'

v'

, ~4.2!

whereMQ is the heavy quark mass andF(v') is defined as

F~v'!5
1

2v'
S arcsinv'

v'

2A12v'
2 D . ~4.3!

In the abovev'5vR and we have used the notation

g'5
1

A12v'
2

, ~4.4!

g5
1

A12v'
2 2Ṙ2

. ~4.5!

The radial quark velocityṘ has to be eliminated in favor o
the radial quark momentum by the relation

~pR
quark!21m25m2S Ṙ2

12v'
2 2Ṙ2

11D 5
~mg!2

g'
2 , ~4.6!

which leads to

mg5WRg' , ~4.7!

WR5A~pR
quark!21m2. ~4.8!

From Eqs.~4.1!, ~4.2!, and~4.7! we have

J

R
5WRg'v'1aRF~v'!, ~4.9!

E5MQ1WRg'1aR
arcsinv'

v'

.

~4.10!

FIG. 2. The solution to the string shape~3.17! with positive v̇
for a string with equal mass quarks at its ends. The ‘‘shape fu
tion’’ ~3.18! is shown for non-relativistic and ultra-relativistic quar
rotation.
6-4
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CURVED QCD STRING DYNAMICS PHYSICAL REVIEW D60 074026
Just as the radial velocity must be expressed in term
positions and momenta, the angular velocity, here encode
v' , must be eliminated in favor of the angular momentu
and positions. As in the case of the straight string, this
volves solving a transcendental equation and must be d
numerically.1

We quantize Eqs.~4.9! and~4.10! by making the replace
ments@2#

J→Al ~ l 11!, pR
2→2

1

R

]2

]R2
R, ~4.11!

and by symmetrizing terms which depend on bothR andv'

with anticommutators ($A,B%[AB1BA). This procedure
leads to the following quantum-mechanical equation for
angular momentum and the energy:

Al ~ l 11!

R
5

1

2
$WR ,g'v'%1a$R,F~v'!%, ~4.12!

H5MQ1
1

2
$WR ,g'%1

a

2 H R,
arcsinv'

v'
J .

~4.13!

As we have shown in@4#, the only difference between th
straight and the curved QCD string is that the latter has ra
momentum,

pR
tube52aR~v̇R2!g~v'!, ~4.14!

where we defined

g~v'!5S 12A12v'
2 2

v'

2
arcsinv'D arcsinv'

v'
4 .

~4.15!

SincepR
quark5pR2pR

tube, Eq. ~4.8! then becomes

WR5A~pR2pR
tube!21m2. ~4.16!

In order to quantize the above expressions it is conven
to write

v̇R25 v̇'R2Ṙv'5
1

2
~$v̇' ,R%2$Ṙ,v'%!. ~4.17!

After promotingv' andR to quantum-mechanical operato
in Eq. ~4.17! we can use the quantum dynamical equations
motion

v̇'52 i @v' ,H#, ~4.18!

Ṙ52 i @R,H#, ~4.19!

1We could also proceed in the standard way and eliminate

angular velocityḟ in favor of the angular momentum and positio

@3#; however, we find it more convenient to eliminatev'5r ḟ,
which is also consistent.
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which completely specify the quantum version ofv̇R2 in
terms ofR, v' , and the Hamiltonian given in Eq.~4.13!, and
allows us to quantizepR

tube by choosing appropriate symme
trization between the non-commuting operators. This pro
dure gives us

pR
tube52a

1

2 H v̇R2,
1

2
$R,g~v'!%J . ~4.20!

The final step in quantizing Eq.~4.16! is to expand (pR

2pR
tube) by writing

~pR2pR
tube!25pR

22$pR ,pR
tube%1~pR

tube!2. ~4.21!

Here,

pR52
i

R

]

]R
R

andpR
tube is defined by Eqs.~4.17!–~4.20!.

The solution method for the straight string equations
discussed in detail in Ref.@2#. The fundamental problem is
that the unknown operatorv' cannot be analytically elimi-
nated, so one must eliminate it numerically. This can
accomplished by expanding the radial wave function
terms of a complete set of basis states, which reduces
~4.12! to a transcendental infinite dimensional matrix equ
tion. By truncating the number of the basis states to a fin
numberN, the matrix equation becomes finite dimension
and can be solved by iteration procedure described in@2#.
Once the matrix forv' is known, one can calculate th
Hamiltonian matrix from Eq.~4.13! and solve for the energy
eigenvalues and corresponding wave functions. The modi
algorithm for solving the curved string equations involv
continually updating theWR matrix during the iteration pro-
cedure@2# in which the matrixv' is found.

Note that truncation introduces the dependence of the
genvalues on the variational parameterb describing the basis
states. However, if a sufficiently large number of basis sta
is used, this dependence will exhibit a ‘‘plateau’’ indicatin
a stable solution. Examples of this will be shown in Sec.

The equal quark mass meson can be quantized b
simple modification of the above. In this case we start w
Eqs. ~3.24!–~3.26! to obtain expressions analogous to Eq
~4.12!, ~4.13!, and~4.20!:

Al ~ l 11!

r
5$Wr ,g'v'%1

a

4
$r ,F~v'!%, ~4.22!

H5$Wr ,g'%1
a

2H r ,
arcsinv'

v'
J ,

~4.23!

pr
tube52

a

16H v̇r 2,
1

2
$r ,g~v'!%J .

~4.24!

The numerical solution is step by step the same as for
heavy-light case.

e

6-5
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THEODORE J. ALLEN, M. G. OLSSON, AND SINISˇA VESELI PHYSICAL REVIEW D 60 074026
The more general case of unequal arbitrary masses a
ends is one step more involved. This case was solved in@2#
for the straight string. For mesons with unequal mass qua
one must require thatP'

tot[0. This is equivalent to solving
for the center of momentum in addition to the angular m
mentum and energy equations. The curved string dynam
solution should proceed similarly to the two special ca
discussed previously.

V. NUMERICAL RESULTS

For zero angular momentum states we observe from E
~4.12! and ~4.22! that v'50 as expected. The tube radi
momentum is zero and the Hamiltonians~4.13! and ~4.23!
become equivalent to ‘‘spinless Salpeter’’ equations, wh
have well-defined numerical solutions@2#. We will therefore

FIG. 3. Dependence on the variational parameterb of the
ground statep-wave excitation energy of the heavy-light Ham
tonian with the straight string~upper curves! and with the curved
string ~lower curves!. We useda50.2 GeV2 and light quark mass
m50. Results shown were obtained with 10, 20 and 30 basis st

FIG. 4. Dependence on the variational parameterb of the
ground statep-wave excitation energy of the equal mass Ham
tonian with the straight string~upper curves! and with the curved
string ~lower curves!. We useda50.2 GeV2 and quark massm
50. Results shown were obtained with 10, 20 and 30 basis st
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confine ourselves to non-zero angular momenta.
The results for equal mass and heavy-light mesons

qualitatively similar and we will discuss these string config
rations in parallel, pointing out the similarities and diffe
ences. As mentioned in the preceding section the set of b
states has a scale parameterb. For a given truncation toN
basis states it is customary to plot energy eigenvalues
function of b to identify a ‘‘plateau’’ indicating a stable
solution. In Fig. 3~heavy-light! and Fig. 4~equal mass! we
show the b dependence of the excitation energy of t
p-wave ground state meson with massless light quarks.
energy calculation is done twice: first with the straight stri
model and then with the curved string. We note that as
number of basis states increases definite plateaus devel

The second observation we make from Figs. 3 and 4

s.

s.

FIG. 5. Difference between the energies of the straight a
curved heavy-light Hamiltonian as a function of the orbital angu
momentum. We useda50.2 GeV2 and light quark massm50.
Results shown are for the ground state (n51) and for the first two
radially excited states.

FIG. 6. Difference between the energies of the straight a
curved equal mass Hamiltonian as a function of the orbital ang
momentum. We useda50.2 GeV2 and light quark massm50.
Results shown are for the ground state (n51) and for the first two
radially excited states.
6-6
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CURVED QCD STRING DYNAMICS PHYSICAL REVIEW D60 074026
that the curved string energy is slightly less than the stra
string energy. We believe this results from a reduction of
effective string tension due to the transverse motion of
string during the quark’s motion. The difference in th
p-wave case, shown in Fig. 3, is just a few MeV but th
varies with angular momentum and radial excitation.

In Figs. 5 and 6 we illustrate how the curved and strai
strings differ for a variety of low lying states. The cas
shown are for zero mass light quark~s! at the end~s! of the
string. The general trend is that the difference increases f
zero atl 50 ~which must be the case! to about 15 MeV at the
higher angular momentum values shown.

The dependence of the energy difference forp-wave so-
lutions on the mass of the quark at either end of the strin
illustrated in Fig. 7~heavy-light! and Fig. 8~equal mass!.
The energy differenceDE is seen to decrease rapidly as t

FIG. 7. Difference between thep-wave (l 51) energies of the
straight and curved heavy-light Hamiltonian as a function of
light quark mass. We useda50.2 GeV2, and results shown are fo
the ground state (n51) and for the first four radially excited state

FIG. 8. Difference between thep-wave (l 51) energies of the
straight and curved equal-mass Hamiltonian as a function of
quark mass. We useda50.2 GeV2, and results shown are for th
ground state (n51) and for the first four radially excited states.
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quark mass increases. As expected, the curvature effec
the solution is largest for massless quarks.

Finally, in Fig. 9 we show the Regge pattern for th
curved string with one massless quark and the other
fixed. We exhibit the corresponding Regge pattern for ma
less quark ends in Fig. 10. On this scale they are simila
those of the straight string. One observes towers of ne
degenerate states of even~or odd! angular momentum. The
two cases are analogous except that the heavy-light Re
slope is double the light-light slope. Except for the value
the slope, this pattern is very similar to that of scalar pot
tial confinement@6,7#.

VI. CONCLUSION

In this paper we have investigated the dynamical effe
of the small radial momentum developed by a QCD string

e

e

FIG. 9. Regge trajectories for the heavy-light Hamiltonian w
the curved string having a massless quark. The vertical line il
trates the tower structure of nearly degenerate states of altern
angular momentum.

FIG. 10. Regge trajectories for the equal-mass Hamiltonian w
the curved string having massless quarks at its ends. The ver
line illustrates the tower structure of nearly degenerate state
alternating angular momentum.
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it bends in response to the angular acceleration of the qu
on the ends. Our principal results are that one can succ
fully implement the curved string solutions into a dynamic
meson model with massive quarks at the string ends.
solution is self-consistent in that for a physical state the
viation from straightness is small. For such small transve
string motion the energy, angular momentum, and transv
momentum are identical to those of a straight string with
same angular velocity. When the small curvature indu
radial momentum is incorporated into the numerical meth
one finds solutions that are very similar to those of
straight string.
po

07402
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ss-
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-
e
se
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d
d
e

The curvature effects are largest for massless qua
Even in this case one finds shifts of at most a few MeV. O
results indicate that for most purposes the simpler stra
string model gives nearly correct results and, if desired, m
accuracy can be readily achieved.
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