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We consider the effects of going beyond the approximation of a straight string in mesons by using a flexible
flux tube model wherein a Nambu-Goto string bends in response to quark accelerations. The curved string is
dynamically identical to the straight string even for ultra-relativistic mesons except for a small additional radial
momentum. We numerically solve the curved string model in the case where both ends have equal mass quarks
and also in the case where one end is fixed. No approximation of non-relativistic motion is made. We note
some small but interesting differences from the straight stfi8§556-282199)07419-9

PACS numbd(s): 12.38.Aw

I. INTRODUCTION contribution from the outer part of the string will predomi-
nate due to the larger velocity of the end of the string. The
As the separation between quarks becomes large, theiret result will be an inward flowing radial momentum for the
color field contracts into a string-like or flux tube configura- case shown in Fig. 1 corresponding to increasing angular
tion. QCD is thus thought to resemble string theory in thevelocity (w>0). For a meson the total angular momentum is
large distance regime. The Nambu-Goto-Polyakov QCDconserved, and hence if the angular velocity is increasing,
string[1] is an elegant model for this color field from which the distance between the quarks must be decreasing. We con-
valuable insights into the nature of QCD are expected. Thelude that the tube radial momentum due to curvature always
most obvious of these is the well-known picture of statichas the same sign as the quark’s radial momentum. In a
linear confinement. For a dynamical hadron the simplest agneson with equal mass quarks the two halves of the string
sumption for the long distance color field configuration ishave equal but opposite radial momenta, just as the quarks
that the flux tube or string always remains straight. This waglo.
the assumption of the relativistic flux tube model for mesons Since the curved string meson is nearly identical to the
[2] which has enjoyed phenomenological success. rigid (straighy string meson similar methods are indicated
As pointed out by NesterenK@8] such rigid string models for our numerical solution. The effect of the curvature in-
cannot strictly be considered Nambu-Goto strings since thduced radial momentum is to shift the energy level solutions
string cannot remain straight during dynamical motion of thedownward only a few MeV. For practical purposes it is quite
quarks. Recently, the present authp4$ found an explicit ~ sufficient to ignore any deviation from straightness even for
solution to the string equations describing the deviation fronrmassless quarks with resulting ultra-relativistic kinematics.
straightness due to non-uniform end motion. The principalA principal result thus is that one can use the simpler straight
assumptions in our calculation are to treat the motion as
“adiabatic” and that the deviation from straightness is small.
The adiabatic assumption is just that the string shape de

14

pends on the end motion and that there is no other explicit dP, = dP, (- %)
time dependence. By direct calculation we find that for all °
physical cases the string never bends very much even fo ‘?7/ \;’_; N
relativistic motion. =4 02 04 06 o} u
An interesting conclusion of our previous wofk] was - % L 6= xR

that almost every dynamical quantity of the curved string is
the same as that of the straight string. The angular momen 05t ., —@dx)y vo
tum, energy, and momentum perpendicular to the line con- + Lt
necting the quarks are unchanged for small string deforma:
tions, assuming the quark distance and angular velocity are !
the same for the curved and straight strings. FIG. 1. The solution to the string shap@&17) with positive

The sole difference between the dynamically curvedandv, <1. The transverse and radial momenta of two elements are
string and the straight string is the component of momentundepicted. The contribution at the larger radius will predominate
along the line connecting the quarks. From Fig. 1 the origingiving a net radial momentum parallel to the quark’s radial momen-
of this radial momentum is clear. It is also evident that thetum.

dP, = (adx) 1,0
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string approximation with negligible loss in accuracy. The total energy and momentum of the string-quark system
The remainder of the paper is organized as follows. Inthen follows

Sec. Il we start with the string plus quark action and estab-

lish the equations of motion and conserved quantities. The 72

solution for the curved string is reviewed in Sec. Ill and the Plotar™ Psuing™ Pouarks™ Ll HN(T’U)deLi;Lz P

energy, angular momentum, and linear momentum are com- 2.7

puted. We show here that the curvature of the string induced

by general quark motion does not contribute to the energgnd the system angular momentum is

and angular momentum. The sole effect of the curved string .

is to enhance the radial momentum of the quark. The method = I I = f XTI do+ > (xlepty.

of quantization of the quark-string system and the solutions ’ i=12

scheme is covered in Sec. IV. Our numerical results and (2.9

general conclusions are given in Secs. V and VI.

Because of the spherical symmetry of the string and
X s >
ll. STRING-QUARK ACTION qu_arks system, we may copgder motion in thée X%) plane.
It is useful then to use helicity coordinates

We begin by reviewing the formalism of the Nambu-

Goto-Polyakov[1,5] string and spinless quark actions and X:_Xlilx2 29
some expressions for conserved quantities. The action for a B N (2.9
qguark and anti-quark connected by a QCD string is
We will adopt the notation
- b
[ oa and thereforeX* = X™. In terms of the spatial coordina€
_| 75 f dr(mV=x"X,)i, (21 the above results become
— 00
whereh?® is the inverse of the two-dimensional mettig, hap= = XX p+2 REXEX ), (211
whose indices run overr and o, while h=det(h,,).
X#(1,0) is '_[he string position anX’,=d,X*. The two E=P°:—af 2d0' \/__hhfax?a+_2 (my), .
quark coordinates arg/(7)=X*(r,0;) at the ends of the i=12
string. We use metric signature conventions that(—, (212

+) andp=(—,+,+,+).

The action(2.1) is classically equivalent to the string ten-
sion a times the worldsheet area swept out by the string
minus the masses of the quarks times their worldline lengthsp— _—_ (p14.jp2)= _aJ'UZdU J=hhaX .+ > (myx);,
Variation of the Lagrange multipliér,,, determines that it is 2 N
equal to the embedding metric, up to a multiplicative con- (2.13
stant

The spatial momentum can be expressed in helicity form as

where the quark coordinatg(r) is
hap= XX . 2.2
T At b 22 Xi(7)=X(7,09). (2.14
Variation of the string and quark positions yields the equa- 3
tions of motion Similarly, the angular momenturd® perpendicular to the
plane of motion is

(v—hhabX#) =0, (2.3
_ J3=2af do —hh™®Im(X X)+2 Z [my Im(xX*Xx)]; .
—(—)'ay=hh?Xf=(p") ., (2.4 v
’ (2.15
where the canonical quark momenta are
Ill. CURVED STRING WITH ONE FIXED END
0S uark mx* . . . .
pl=—= =(myx*); (2.5 As we showed previously, it is possible to perturb about
oxt —x¥x an exact straight string solution to obtain the shape of a

o string in which one end is fixed and the other has an arbitrary
forced motion with a sufficiently small angular acceleration.
The particular perturbation is of a form that has suppressed
55 vibrations._ The string motion in a meson can be consio_lered
M,(r,0)=—2=_a/=hh™X A7,0). (2.6  asaspecial case of this more general problem, wherein the
a © e system angular momentum and energy are conserved. We

andx{*=(x) .. The string momentum density is
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showed the equivalence of the quark equations of motion anﬁw(o_)_i_ yf(a)a%éz)] =[y.(0)oR+ 7y, (0)o?Raf'],.
the conservation of energy and angular momentum in an ’ (3_’1'])
appendix of Ref[4].

We begin this section by re-establishing the string shap#Jsing the easily verified identity [y, (o)R];

and the conserved quantities for the curved string by an ab=R[ 4y (¢)],, and droppingR¢ terms, we reduce Eq.

breviated method. Iii4] we began with the ansatz (3.1D to
XO(7,0)=1=t, d 5 df R0 23 a1
do | @ ‘YL(U)E =Rwoyi(0). (3.12
1 .
X(7,0)= E[UR(tHF(‘T)]eXp{'[“’H (O]}, Here we introduce the notation= ¢. It can be showr4]

(3.1) that the equations of motion for the spatial coordingtalso
reduce to this same equation. Integration of 8412 yields
where F(o) is complex andF (o) and ¢(t) are small. A )
more convenient starting point can be found by observing ﬂ_ R’w
that if X(t,c=1)=R/\/2, reparametrization invariance al- do v2
lows us to set Ré{) =0. We can then exploit the assumption
of a small deviation from straightness to make the simplemwhose solution is
but related ansatz

arcsinov |

- ‘727&(0')

(3.13

10'27&(0)'

wR?[1 , .
XO(7,0)=7=t, m‘(a)z—3 Eaviarcsmovl arcsinov, +Cyov,
\2
1 _ +Cy(Y1—0o?vi+ i . 3.1
X(7.0)= S oRWEXHI®), 3.2 V1=tV tovaresinov,). (319

In the above we have defined the transverse end velocity

where the overall phase is a rigid rotation plus the sum of/. =@R. After removal of the rigidly rotating phase, the

two phases, each dependent upon only one of the coordinatg¥'nd coordl_nate can be written in terms of a radial and a
transverse piece

d=owt+¢(t)+f(0). (3.3 1
With X* of the above form, from Eg2.11) we see that the X= E(XRJ”XL)’ (319
worldsheet metric is given as

which are given by
hab= = 8atfip+ (0R) a(oR) p+ (oR)?® ;@ ,, (3.4)

Xr
with individual components R & (3.19
hy=—7 () +20°R*wg, (35 X,
R of(o)
h,,= cRR+ 0?R2wf’, (3.6 1
= _wR?shapéo,v,). (3.17)
heoe=R?, 3.7 6 peo.v,

and volume density ][mgosing the end conditions, (c=0)=X, (o0=1)=0, we

R .
J—h=—deth= m[l—zaszyf(o)wcﬁ]-

E ; 2_ ; 2
oV, [(arcsinv, )“—(arcsinov  )?]

6
shapéo,v,)=— vl
1

(3.8 2
1—vZarcsi
In the above expressions we have used the notation toyloviaresinvg
Yy A(0)=1-0?w’R?, (3.9 —VJ1-o?vlarcsinov, |. (3.18
Yy 2(0)=v*(0)— o°R? (3.10  The string shape fov, <1 is shown in Fig. 1. Other ex-
amples are shown in Rei4].
The equations of motion for the strir{@.3) hold both for As we pointed out earlier, one can compare the angular
the temporaX®=t and spatiaX components. In the case of momentum, energy and linear momentum of the curved and
X%, we have, to first order ifiand ¢, straight string. The results are
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s .5  aRlarcsinv,) gg
‘]curved_‘]straight_ 2v, , (3.19 02 6= xR

—\/1—vf

Vi
-1 -05 0.5
i -02 <<l
arcsirv -04
Ecurved™ Estraight™ aR—V , (3.20 -06 —
1 L
FIG. 2. The solution to the string shap@17 with positive
aR for a string with equal mass quarks at its ends. The “shape func-
P curved P Straightzv—[l— Vi-v4]. (3.2)  tion” (3.18 is shown for non-relativistic and ultra-relativistic quark
L rotation.

Although there is no radial tube momentum for the straightv. QUANTIZATION AND METHOD OF NUMERICAL
string, it is non-zero for the curved string. This is evident SOLUTION

from Fig. 1 and by direct calculation: . _— o .
We begin by reviewing the quantization of the classical

expressions for the heavy-light straight string. From Eqgs.

2 (2.13, (3.19 and Eqgs(2.12), (3.20 the angular momentum

wR 7 VL ) )
Pr=—-aR——|1-y1-v{— —J-arcsinv, |arcsinv, .

vt 2 and energy are
3.2
3.22 JB=J=myv, R+aR?F(v,), 4.1
The presence of radial string momentum is the only dynami- arcsinv
cal evidence of the curved string. E=Mq+my+ aR—L, (4.2)
We have considered so far in this section only the heavy- Vi

light meson case where one tube end is fixed. Although the hereM - is the h K i defined
general straight string case was discussed previd@siwe whereMg, is the heavy quark mass afdv, ) is defined as

will consider here the generalization to curved strings of the 1 {arcsinv
equal quark mass case. In Fig. 2 we show the shape function F(v,)==— Db \/1_\,3 . 4.3
from —1<o=<+ 1 which describes the equal mass case. It is 2vi vy

evident that we may immediately find the angular momen-In the abover . — wR and we have used the notation
tum, energy, and linear momentum from the preceding ex- &=

pressions by using the substitution

, (4.4
R—r/2, 1-v?

vV, =wR—V, = 0r/2, (3.23 1

" \/1—vf—R2.

(4.5

which leads to the following expressions for the equal quark

mass case The radial quark velocity? has to be eliminated in favor of
) ) the radial quark momentum by the relation
ar<| arcsinv
‘JSQUaI mass. E T_ Vl_vi ' (3'24> Rz (m,y)Z
(pdUa™2 4+ m2=m? =, (46
1-v2-R Y1
__aresinv,
Ecqual mass afT, (3.29 which leads to
-, my=Wgry,, (4.7
P =—ar—|1- y1-v2
T T : We= (g7 +m?. (4.8
\Y . . From Egs.(4.1), (4.2), and(4.7) we have
— —LarcsmvL arcsinv . (3.26 gs(4.1), (4.2 .0
2 J
, 3 ) ﬁZWRYJ_VJ.—'—aRF(VJ_)a 4.9
Again we note thate and J° for the straight and curved
strings are identical. In the above we increaieandJ® by _
a factor of 2 because of the two string pieces. Of course we E—Mo~tW +aRafCS|WL
must add the quark contribution to each quantity to obtain Q RYL v,

the total. (4.10

074026-4



CURVED QCD STRING DYNAMICS PHYSICAL REVIEW D60 074026

Just as the radial VelOCity must be eXpreSSGd in terms qx/hmh Comp|ete|y Specify the guantum version (DRZ in
positions and momenta, the angular velocity, here encoded igrms ofR, v, , and the Hamiltonian given in E¢4.13, and

v, , must be eliminated in favor of the angular momentumg|iows us to quantize®® by choosing appropriate symme-

and positions. As in the case of the straight string, this iny;zation between the non-commuting operators. This proce-
volves solving a transcendental equation and must be dongre gives us

numerically!
We quantize Eq94.9) and(4.10 by making the replace- wbe (. ,1
ments[2] PR — a5 wR ,E{R,g(vL)} ) (4.20
_ 2 =7 e final step in quantizing Eq4.16 is to expand fg
I-VI0+1), pr—- g ﬂRZR, (4.11) = b9 by writing
and by symmetrizing terms which depend on bBtandv (PR PR*)2=Pa—{Pr.PR"F+(PR™Z (4.2

with anticommutators {(A,B}=AB+BA). This procedure
leads to the following quantum-mechanical equation for theere,
angular momentum and the energy: -
D Pr=— R 5RR

I(1+1) 1 R JR
%:E{WR!?’LVL}—{_a{R!F(VL)}! (4.12

andp%®is defined by Eqs(4.19—(4.20.
arcsirv The solution method for the straight string equations is
L . . P .
R,—] discussed in detail in Ref2]. The fundamental problem is
Vi that the unknown operator, cannot be analytically elimi-

(4.13  nated, so one must eliminate it numerically. This can be

As we have shown if4], the only difference between the accomplished by expanding the radial wave function in

straight and the curved QCD string is that the latter has radidfrms of a complete set of basis states, which reduces Eq.
momentum, (4.12 to a transcendental infinite dimensional matrix equa-

tion. By truncating the number of the basis states to a finite
pgbe: —aR(wRY)g(v,), (4.14 numberN, the matrix equation becomes finite dimensional,
and can be solved by iteration procedure describef2]n
where we defined Once the matrix forv, is known, one can calculate the
) Hamiltonian matrix from Eq(4.13 and solve for the energy
— Vi . arcsinv eigenvalues and corresponding wave functions. The modified
g(v,)={ 1= V1=vi—arcsinv, Vi algorithm for solving thpe curvged string equations involves
(4.15  continually updating th&Vg matrix during the iteration pro-
cedure[2] in which the matrixv, is found.

a

1
H=Mq+ E{WR:VL}_'—E

Sincepd'@™= pr— p&®®, Eq. (4.8) then becomes Note that truncation introduces the dependence of the ei-
. genvalues on the variational paramegedescribing the basis
W= (pr—PR")2+m?, (4.16  states. However, if a sufficiently large number of basis states

) ) o . is used, this dependence will exhibit a “plateau” indicating
In order to quantize the above expressions it is convenieny siaple solution. Examples of this will be shown in Sec. V.
to write The equal quark mass meson can be quantized by a
1 simple modification of the above. In this case we start with
wR?>=v,R—Rv,=-({v, ,RI—{Ryv,}). (4.17 Egs. (3.24—(3.26 to obtain expressions analogous to Egs.
2 (4.12, (4.13, and (4.20:

After promotingv, andR to quantum-mechanical operators I(1+1) a
in Eq.(4.17) we can use the quantum dynamical equations of ——={W,,y, v, }+ Z{r,F(vl)}, (4.22
motion r
v, =—i[v, H], (4.18 H:{Wﬁnﬁg[r,my
1
R=—i[R,H], (4.19 (4.23
al. .1
. E[ wrz,z{r,g(vi)}]-
we could also proceed in the standard way and eliminate the (4.24)

angular veIocityé;b in favor of the angular momentum and positions
[3]; however, we find it more convenient to eliminatg=r$,  The numerical solution is step by step the same as for the
which is also consistent. heavy-light case.
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1.265 — 20.0
1.263 | | w80 | ]
1.261 F # 160 | |
1259 1 140 | ]
> I ~ 3 -
§ 1.257 % 12.0
§1.255 F E 100 . |
1 1.253 | o i -
m N < 8.0
e 60t : ]
1.249 ol -
1.247 i -
e N10 2.0
1.245 L L L L 1 L L L ) 00 . . . . .
00 05 10 15 20 25 3.0 35 40 45 50 : ] > 3 . s s
B [Gev] )
FIG. 3. Dependence on the variational paramegef the FIG. 5. Difference between the energies of the straight and

ground statep-wave excitation energy of the heavy-light Hamil- curved heavy-light Hamiltonian as a function of the orbital angular
tonian with the straight strinupper curvesand with the curved momentum. We used=0.2 GeV? and light quark massn=0.
string (lower curve$. We useda=0.2 Ge\? and light quark mass Results shown are for the ground state=(1) and for the first two
m=0. Results shown were obtained with 10, 20 and 30 basis stategadially excited states.

The more general case of unequal arbitrary masses at t

; . ) ) I?:%nfine ourselves to non-zero angular momenta.
ends is one step more involved. This case was solvéd]in

The results for equal mass and heavy-light mesons are
; ot . ) ) %ualitatively similar and we will discuss these string configu-
one must require the "=0. This is equivalent t0 solving  ations in parallel, pointing out the similarities and differ-
for the center of momentum in addition to the angular mo-ences. As mentioned in the preceding section the set of basis
mentum and energy equations. The curved string dynamic@kates has a scale paramegerFor a given truncation tol

solution should proceed similarly to the two special case$)5qis states it is customary to plot energy eigenvalues as a

discussed previously. function of 8 to identify a “plateau” indicating a stable
solution. In Fig. 3(heavy-ligh} and Fig. 4(equal masswe
V. NUMERICAL RESULTS show the B dependence of the excitation energy of the

p-wave ground state meson with massless light quarks. The
_ ._'eénergy calculation is done twice: first with the straight string
(4.12 and (4.22 thatv, =0 as expected. The tube radial model and then with the curved string. We note that as the

momentum is zero and the HamiltoniaG&13 and (4.23 number of basis states increases definite plateaus develo
become equivalent to “spinless Salpeter” equations, which : piat P
The second observation we make from Figs. 3 and 4 is

have well-defined numerical solutiohg]. We will therefore

For zero angular momentum states we observe from Eq

20.0 . : : . .
18.0 | ]
16.0 | 2
140 | ]

120 =1

MeV]

= 100 | =3 1
8.0 | ]
6.0 | -
401 .
20t .
®00 05 10 15 20 25 30 35 40 45 50 00 ” 2 3 4 5 6
B [GeV] !

E [GeV]
AE

FIG. 4. Dependence on the variational paramegeof the FIG. 6. Difference between the energies of the straight and
ground statep-wave excitation energy of the equal mass Hamil- curved equal mass Hamiltonian as a function of the orbital angular
tonian with the straight stringupper curvesand with the curved momentum. We used=0.2 GeV? and light quark mass=0.
string (lower curvey. We useda=0.2 GeV and quark massn Results shown are for the ground state=(1) and for the first two
=0. Results shown were obtained with 10, 20 and 30 basis statesadially excited states.
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7.0 T v T T T 5 T
n=1 (ground state
6.0 k (g )
4 L
50 |
— 3}
% 40 |
E‘ S
m 3.0 2|
<
20|
1}
10
O'O I I L Il L 0 0 1‘
0 50 100 150 200 250 300
m [MeV]
FIG. 7. Difference between thewave (=1) energies of the FIG. 9. Regge trajectories for the heavy-light Hamiltonian with

straight and curved heavy-light Hamiltonian as a function of thethe curved string having a massless quark. The vertical line illus-
light quark mass. We use=0.2 Ge\?, and results shown are for trates the tower structure of nearly degenerate states of alternating
the ground stater(=1) and for the first four radially excited states. angular momentum.

uark mass increases. As expected, the curvature effect on
e solution is largest for massless quarks.
Finally, in Fig. 9 we show the Regge pattern for the
rved string with one massless quark and the other end
fixed. We exhibit the corresponding Regge pattern for mass-
: ; ; o less quark ends in Fig. 10. On this scale they are similar to
varies .W'th angular momentum and radial excitation. . those of the straight string. One observes towers of nearly
In Figs. 5 and 6 we illustrate how the curved and Stra'ghtdegenerate states of evésr odd angular momentum. The
strings differ for a variety.of low lying states. The Cases o cases are analogous except that the heavy-light Regge
shown are for zero mass light quéskat the eng) of the slope is double the light-light slope. Except for the value of

string. The general trend is that the difference increases fror{h | - ; L
. , th tt lar to that of | ten-
zero atl =0 (which must be the cag#o about 15 MeV at the tiael ;%%enemlgn%g 7e]rn IS Very simiiar fo that of scalar poten

higher angular momentum values shown.

The dependence of the energy difference gewave so-
lutions on the mass of the quark at either end of the string is
illustrated in Fig. 7(heavy-lighy and Fig. 8(equal mass In this paper we have investigated the dynamical effects
The energy differencaE is seen to decrease rapidly as the of the small radial momentum developed by a QCD string as

that the curved string energy is slightly less than the straig
string energy. We believe this results from a reduction of the
effective string tension due to the transverse motion of the(':u
string during the quark’s motion. The difference in the
p-wave case, shown in Fig. 3, is just a few MeV but this

VI. CONCLUSION

5.0 5
45 T p=1 (ground state)
4.0 4r
35
580 37
=25 ~
220 2r
15
1.0 r
05
00 01 02 03 04 05 06 07 08 09 1.0 B2
m[GeV ] 2na
FIG. 8. Difference between thgwave (=1) energies of the FIG. 10. Regge trajectories for the equal-mass Hamiltonian with

straight and curved equal-mass Hamiltonian as a function of théhe curved string having massless quarks at its ends. The vertical
quark mass. We usea=0.2 GeV\?, and results shown are for the line illustrates the tower structure of nearly degenerate states of
ground staterf=1) and for the first four radially excited states.  alternating angular momentum.

074026-7



THEODORE J. ALLEN, M. G. OLSSON, AND SINIS VESELI PHYSICAL REVIEW D 60 074026

it bends in response to the angular acceleration of the quarks The curvature effects are largest for massless quarks.
on the ends. Our principal results are that one can succesBEven in this case one finds shifts of at most a few MeV. Our

fully implement the curved string solutions into a dynamicalresults indicate that for most purposes the simpler straight
meson model with massive quarks at the string ends. Thstring model gives nearly correct results and, if desired, more
solution is self-consistent in that for a physical state the deaccuracy can be readily achieved.

viation from straightness is small. For such small transverse
string motion the energy, angular momentum, and transverse
momentum are identical to those of a straight string with the

same angular velocity. When the small curvature induced This work was supported in part by the U.S. Department
radial momentum is incorporated into the numerical methodf Energy under Contract No. DE-FG02-95ER40896. Fermi-
one finds solutions that are very similar to those of thelab is operated by URA under DOE contract DE-AC02-

straight string. 76CH03000.
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