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Quark part of the nonforward BFKL kernel and the “bootstrap” for the gluon Reggeization
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We calculate the quark part of the kernel of the generalized nonforward BFKL equation at nonzero momen-
tum transfett in the next-to-leading logarithmic approximation. Along with the quark contribution to the gluon
Regge trajectory, this part includes pieces coming from the quark-antiquark production and from the quark
contribution to the radiative corrections in one-gluon production in Reggeon-Reggeon collisions. The results
obtained can be used for an arbitrary representation of the color grouptictihanel. Using the results for the
adjoint representation, we demonstrate explicitly the fulfillment of the “bootstrap” condition for the gluon
Reggeization in the next-to-leading logarithmic approximation in the part concerning the quark contribution.
[S0556-282(99)02817-9

PACS numbds): 12.38.Bx, 11.55.Jy

I. INTRODUCTION elastic amplitude§l]. Independently from the value tfwe
have in general a mixture of various irreducible representa-
The BalitskitFadin-Kuraev-LipatoBFKL) equation[1]  tions R of the color group in thé channel. The most inter-
became very popular in recent years due to the experimentakting representations are the color singRdmeron chan-
results on deep inelastic scattering obtained at the DESY nel) and the antisymmetric color octégluon channel For
collider HERA[2]. These results show that the power of thebrevity, we use the term “BFKL equation” for the general
growth of the cross section of the photon-proton interactiorcase as well, adding the word “nonforward” when it is nec-
with the energy for a “hard” photonthe “hardness” is essary to distinguish the general case from the particular
supplied either by the photon virtuality or by the masses of‘forward” case.
the quarks into which the photon is conveitésilarger than It is very important to find the corrections to the kernel of
the corresponding power for hadron processes. The idethe nonforward BFKL, for the gluon channel as well as for
arose that the rapid increase of the cross section of théhe Pomeron channel. In the case of the Pomeron channel the
“hard” photon interactions is the manifestation of the BFKL equation can be applied directly for the description of experi-
dynamics. mental data. The importance of the correction in the gluon
The BFKL equation was derived in the leading logarith- channel is determined by a remarkable property of QCD, the
mic approximation(LLA) of the QCD perturbation theory, gluon Reggeization. We remind that the derivation of the
which means the summation of all terms of the typeBFKL equation was baseld] on this property. In fact, this
[agdns]"; ag is the QCD coupling constant anslis the  equation is the equation for the Green function of two
square of the c.m.s. energy. Unfortunately, in this approxiReggeized gluons. In the color singlet state these Reggeized
mation neither the scale sfnor the argument of the running gluons create the Pomeron. The self-consistency requires
coupling constantyg are fixed. So, in order to do accurate that in the color octet case the two Reggeized gluons repro-
theoretical predictions, we have to know the radiative correcduce the Reggeized gluon itselfbootstrap” condition.
tions to the LLA. The program of the calculation of the ra- The above statements are valid in the NLLA as well as in
diative corrections was formulated in RE3] and satisfied in  LLA. The “bootstrap” equations in the NLLA were recently
Refs.[4-9]. Recently, the calculation of the radiative correc- derived[13]. Since the BFKL equation is very important for
tions to the kernel of the BFKL equation was completed ancthe theory of Regge processes at high enefgyin pertur-
the equation in the next-to-leading logarithmic approxima-bative QCD, these equations must be checked. Along with
tion (NLLA) was obtained10,11]. The corrections appear to the stringent test of the gluon Reggeization, this check has
be large and caused a series of pagé&® devoted to the another important meaning. The calculations of the radiative
problem how to deal with them and what they mean. corrections to the kernel are very complicated. Therefore,
The BFKL equation is a particular cagler forward scat-  they should be carefully verified. Up to now, only a small
tering, i.e.,t=0 and vacuum quantum numbers in thehan-  part of the calculations was independently perforrf&jdor
nel) of the equation for theé-channel partial waves of the checked14]. The bootstrap equations contain all the values
appearing in the calculations of the NLLA kernel, so that
they provide a global test of the calculations. Beside this, the

*Email address: FADIN@INP.NSK.SU color octet state of two Reggeized gluons is necessary for the
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Hereﬁl and— cﬁz are the transverse momenta of the colliding

gluons in thes channel,ﬁ is the momentum transfer ari
=4+ 2¢ is the space-time dimension, taken different from 4
to regularize the infrared divergences. Let us note that we
use a normalization which is different from the one used for
the forward casgl0]. The nonforward kernel, analogously to
the forward one, is given as the sum of the “virtual” part,
defined by the gluon trajectory(t)=1+ w(t), and the
)] —g “real” part ICER), related to the real particle production in

> BB(—G,—4) - i
PB v y2:4 Reggeon-Reggeon collisions:

FIG. 1. Diagrammatic representation of the elastic scattering
amplitudeA+B—A’+B’.

K®(q1,02;9)=[w(—q2)+ o(— (9, —9)?)]a2(q,—q)?

x 87Dy — o)+ K (1, 62;0). (2)
In this paper we consider the nonforward BFKL equation,
calculate the quark contribution to the kernel of this equationyp,o gluon trajectory is knowfs] in the NLLA. The “real”

and demonstrate explicitly the fulfillment of the “bootstrap” part for the nonforward case is known in the LLA orfty]:
conditions in the NLLA in the part concerning the quark-

antiquark contribution.

In the next section we present the general form of the
quark contribution to the kernel. In Sec. Il we give the ex-
plicit form of the quark piece of the gluon trajectory and L .
derive the quark part of the contribution to the kernel from qi(dz— @)%+ a3(qi—a)? -,
the one-gluon production. In Sec. IV we consider the quark- X (a _a )2 N
antiquark production in collisions of two Reggeized gluons. o2
In Sec. V we obtain the contribution of this process to the ()
kernel. In Sec. VI we demonstrate the fulfillment of the
“bootstrap” condition for the trajectory. The results ob- where the superscrif@ means the LLA(Born) approxima-
tained are discussed in Sec. VII. tion and the coefficientsg for the singlet R=1) and octet

(R=8) cases are

2
g Cr

’C(R)B q 1_) ;_) =
¢ (d1,92;0) (2m)P-1

, 4

II. DEFINITIONS AND BASIC EQUATIONS N
c1=N, c8=5

As usual, in an analysis of processes at high energy par-
ticle collisions, we use the Sudakov decomposition for par-
ticle momenta. Admitting that the initial particleés andB N being the number of colord\(=3 in QCD). In Eq.(3) and
have non-zero masses, we introduce the light-cone vectotselow g is the bare coupling constant, connected with the
p. and p_ in terms of which the momenta of the initial renormalized coupling,, in the modified minimal subtrac-
particles arepy=p. +(mz/s)p_ and pg=p_+(Ma/s)p,  tion (MS) scheme by the relation
respectively, withs=2(p,p_). In the NLLA, as well as in
the LLA, the elastic scattering amplitudes with momentum —
transferg=q, are expressed in terms of the impact factors = —e 1_1_ E E) g_#}

Lo ; g=g,.u : )

& of the scattering particles and of the Green funct®for
the scattering of Reggeized gluoht3] (see Fig. 1 The
Mellin transform of the Green function for Reggeized gluonswhere
with initial momenta in thes channelq,=Bp, +q,, and
—Qg,=ap_—0,, , momentum transfeq=q, and irreduc-
ible representatiorik of the color group in the channel, 52_9“— (6)
obeys the equatiofi.3] B (4m)?te
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Let us stress that in this paper we will systematically use the d°- 1,
perturbative expansion in terms of the bare coupting dpf:(27T)D5(D)< U=, If) IT — =
In the NLLA the “real” part of the kernel can be pre- i (27)7 2€
sented a$13] 9
q The sum oveff} in Eq. (8) is performed over all the contrib-
- - - SRR - i i ir di -
(R) O | (R) . _ uting particles{f} and over all their discreet quantum num
K (0 82:9) J’ (2m)P M AR (d1.d2:0) 05\~ Sre) bers. In the LLA only the one-gluon production does con-

tribute and Eq(7) gives for the kernel its LLA valué3); in
1 dP~2?r (R)B, = == the NLLA the contributing states include also the two-gluon
- §f m’cr (dz,r;Q) and the quark-antiquark states. The normalization of the cor-
responding vertices is defined in REL3].

o Si The most interesting representatioRsare the color sin-
xICER)B(r,qZ;q)In = = 3] glet (Pomeron channgland the antisymmetric color octet
(r—=qy)=(r—d) (gluon channél We have for the singlet case
(7
oA , 5c1c55c2cé
Here A%8(0,,0,;0) is the scattering amplitude of the (c1c1[Paleaca)= NZ_1 ni=1 (10
Reggeons with initial momentg,;=pB8p,+q;, and —q,
=ap_—(,, and momentum transfey=q, , for the repre-
sentationR of the color group in the channel,sgg=(q,  and for the octet case
—q,)? is the squared invariant mass of the Reggeons. The
srr-channel imaginary part I {9(q,,q,:q) is expressed i fe,crcfeyere
in terms of the effective vertices for the production of par- (cic1|Pgleochy = —N ng=N2-1, (11

ticles in the Reggeon-Reggeon collisiofis]. The second

term in the right-hand sidéRHS) of Eq. (7) serves for the

subtraction of the contribution of the larggg region in the  wheref . are the structure constants of the color group.
first term, in order to avoid a double counting of this region

in the BFKL equation. The intermediate parametgiin Eq.

(7) must be taken tending to infinity. At larggg only the lll. QUARK PART OF THE KERNEL FROM THE GLUON
contribution of the two-gluon production does survive in the TRAJECTORY AND REAL GLUON PRODUCTION

first integral, so that the dependencesyndisappears in Eq.  The gluon trajectory is knowri6] in the NLLA. The
(7) because of the factorization property of the two-gluongyark contributionnq(t) to the trajectory appears at the two-

production verte13]. Since we are interested here in the |oop level only. For the case of; massless quark flavors it
quark contribution only, we can omit the subtraction termecan pe written as

and perform the integration ovegg up to infinity.
The imaginary part of the Reggeon-Reggeon scattering

amplitudes entering Eq7) can be expressed in terms of the (2)(1)— g%t J’ d®=2)q, Fo(G)—2Fo(d)
production vertices, with the help of the operatdys for the 0 (= (27)P-1 51(51—5)2[ o(@)~2Fo(a],
projection of two-gluon color states in thiechannel on the (12
irreducible representatiori® of the color group. We have

[13]

wheret=g?=—q? and

Im AZR(q1,02:9) D\ /D
2g2N an( 2— E) I‘Z(E)

<Clci|757a|C2C§> Sy ~2\(D/2-2)
oM {f} F = . (13
Dl RURCRR o= e (@) 13

{f} PN
X(%i%(q”qz)) dps. ® The quark contribution to the Reggeon-Reggeon-gluon

(RRG) vertex was calculated in Ref5]. We remind that
, , , beyond the LLA the vertex has a complicated analytical
Here and belowg; =g;—q, i=1,2; ng is thfe number of  gcture[15,4], but in the NLLA only the real parts of the
independent states in the representaﬂhnyél}cz(ql,qz) IS production amplitudes do contribute, because only these
the effective vertex for the production of particlgsin col-  parts interfere with the LLA amplitudes, which are real. Ne-
lisions of Reggeons with momentg, —q, and color indi-  glecting the imaginary parts, the quark contribution to the
cescq, C, respectivelydp; is their phase space element, RRG vertex becomes
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3 D 2 D
g°n:I’ 2——2 r —2—1
G(Q)( )= dd
7c1c2 ql!QZ e C1Cy

egﬂ[ 2C,(dz,a)[F{¥+ 5]

(4m)°r(D)
Pa__ _Ps (Q_ (2k2— q2— G2)§(Q
s

Here:-:dG andeg” are the polarization vectors of the produced gluon in the color and Minkowskii spaces, respettiveline
color group generator in the adjoint representatlong, —q, is the gluon momentum,

202 205
C(d2,91)=—0d1, =02 + (01— 011) l—ﬁ +(d2—dz,) 1—? (15
and
(92+03) (D )2 K2 D ..D
Q=051 ¢0. 10=——7||5 2| 4205055 do|,
(q3—q3) | 2 2 (-2l 2 122
(Q) 1 =222 2 D 2
3 =—=——=5-|a102(D —2)"o+ 5_2 K 1|, (16)
gi—a3)
where
B=1(aD)" = (a3)"" ], 17

Using the expressiond4)—(16), with the help of Eqs(8)—(11), we obtain from Eq(7)

g'ng  I(—e) [T(1+e€)]?
(2m)P~1 (47)2te I'(4+2¢)

G i) = {[E2<2E2—6i—&%—2&12—2652+2&2)

@G 5,2)1[2<1+e>6§é§¢o—e<6%+6§>¢1] L (ka5
_ )] 20~ i
e (a5-a3)° (a5-a3)

€py

G- | 26D

k? (92—03)

+2(1+¢)? bo+(Q101,0205) | - (18

In the physical limite—0 we have

4
g ng

Roa2m)5

%Gy i) = —C {[IZ2<2I22—&§—G§—2612—2&§2+2&2)

oy ey s =, [20303IN(03/03) — (01— G3)]
+(qi—a3)(q1°—6")] s +
(91—d3)

(K2=q1*—a°

=2
°h
=2
a>

20123232 20202 — GA(GP+ G2
+2( d:19> QZQ2Q1 N d:19; »zq (fh %)) n
K (a1—a3)

+<am;,am;>]. a9

A remarkable property of the kernel, which follows from the IV. THE QUARK-ANTIQUARK PRODUCTION
gauge invariance of the theory, is that it vanishes when any IN THE REGGEON-REGGEON COLLISIONS

of the vectorsy; or ﬁi’ tends to zero. One can check that this  Let us consider the production of a quark and an antiquark
property is fulfilled in Eqs(18) and (19). with momental,; and |, respectively, in collisions of two
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Reggeons with momenty and—q,. We will use the Suda-
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According to Egs(7) and(8), the quark-antiquark contri-

kov parametrization for the produced quark and antiquarlbution to the BFKL kernel can be presented in the form

momental; andl,:

>

li=Bipataipetlin, safi=-17 =1 i=12,
BitB2=B, artax=a, |y +l =0 —0da,
(20)
and the denotation
k=11+1,=0:—0p, Spr=K. (21)

For the effective vertex of the quark-antiquark production in
the Reggeon-Reggeon collision we hd9é

lcz(Q1aQ2)__g 2u(l)[tertC2b(l 4, 1,)

—t2teb(l5, 1) v (1), (22

wheret® are the color group generators in the fundamental

representation. The expressions tofl ;
can be presented in the following way:

12) and b(l,,1,)

1
(2m)P

<0101|7)R|0202>
2ng

-

0:2:9

.,

K Rrod a1

X2
QQ

yclcz(ql 1q2)

x (v32.(a},a3)* dsredps, (26)
172

where the sum is taken over spin, color and flavor states of
the produced paiqg; =q;—q, Srr= (01— 0,)? is the squared
invariant mass of the two Reggeons and the elerdentof

the phase space is given by E8). The #-function in Eq.(7)

is omitted since the integral ovegg is convergent at infin-

ity. From the representatiof22) we obtain

<0101|73R| CC3)

T 27c1c2(Q1:Q2)(7 (ql,qzn*
g*ny

4¢>AQ1¢JB 1 . : -
b(ly,ly)=——=— - (23 Heren; is the number of light quark flavors, the coefficients
1 k ag andbg, for the interesting cases of singlet and octet rep-
resentations are
and
2
1 a,=N?—1, by=1; ag=—, bg=0 28
b(|2, ) pBQZIbA__F (24) 0 0 8 2 8 ( )
st, k2
and
where _
A=trtb(l1,12)t:b"(11,12)),
T=(a1—10)% To=(q1—1,)?
S el B=tr(h1b(13.1 )bb' (15,1)), (29
Qu=qu —lu, Qe=du—la, whereb’(1,,1,) is obtained fromb(l,1,) by the substitution
52 52 ?1,2ﬂgi’2(52%)12—q. I_rllI thTI X)Ilovc\j/irg, f';))r reaso;z Ie;vident
_ _ o 1 5 12 rom Eq. , we will ca an —A) “non-Abelian”
2| (A1t 0z). BpA<1 25a,8 ape| 1 25&[3”' and “Abelian” parts, respectively.
(25 The calculation of the traces gives
|
Ama2P2 5,60 +8 16( ., Gidz’+a3a;” ) 8 [ i sanpe 282t —232P1 ol Gy
po— - - Sa Sa
L) 1¥1 2 a - saf (K2)2 17 Say q CI2'8 1(d1+ 0
-2 B1 16 1 - -, .
X|saB;—saif+20;° ——2q B — 20 (a3 +ay) |+ T (Q1d7)(sa1B2—11l1>)
1
+(@1r2)(501,3+r1(ai+az) 2q;° + (T 05,000 B2, a0 B1,01 — 02,01 —q3) +[Gw5i’]],
(30)
B2 (Q1(15Q) +(Q)(MQY) — (M1)(AQY)| - -
(A=B)+(I11y) = 32{ tl Q01— %7 {112} (39
1ty 1tz
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The Abelian and non-Abelian parts possess a “nice” behavior at large transverse momenta of the produced particles and at

large values of their invariant mass, that guarantees the convergence of the integra(Zﬁ)Em.I*izaoo andsgg— . The

only region which leads to a singularity at the physical dimendion4 is the infrared regiork?—0. This singularity is
regularized by the nonzero=D/2— 2. To make the discussed behavior explicit, one has to take into account the reglaflons
between longitudinal and transverse variables. The func#oasd B can be expressed through the transverse momenta and
one ratio of the longitudinal momenta. Choosing this ratio as

B
X=—, 32
3 (32
we have
Bz_l al_(l—X)rlz az_szz
B YT TS a 3
A2
_ — 12—
Saﬁ_x(l—x)’ Srr=K x(1—x)’ 33
where
A=(1-x)T,—xI,, S=A2+x(1-x)k? (34)
and
r2 P2
~ 1 Q2 - > ~ |2 _;2 I
t1:_7_%+2(|1%), tzz_m_Q1+2(|2Q1),
7 B
t=—— —ar+2han, T=- 1= —a*+20ay). (39
Using these relations, we obtain
K" 2 "I" X2 [{_), 2 "/r 2
A=16x(1—x)| —x(1—x) 2( *Q1)+ (‘hi) a1 2( fh)_l_ (a; 1~) q
A2 Xty A2 xt}
S 1 2Aal)-dl) 2(8K) (@Gp—di’ 2(Ago(didy) (1 1
2\ A% Xt Xty t] A? 1, A? T, 1
q/2 Ra - SN 32 o
A 2(1-x)(2(g111)—q)+ Ak
L PGt G A | PV ))
> AZ? t, A?
S22 S22 iy 2
d192 d14: (AK) - -,
+Xx(1—x) i —X(1—x) 52 (1—2x+2x(1—x) e +{gi<q/}, (36
2TV 2060 — 2\ [ 26 T =G’ 2(6/ ) — a2
A4 (1) — 1610 —x(l—x)( (@ly-ai 2 2)~q1> (@l -6° | 2(6il2) gy
Xty (1—-x)t, Xty (1-x)t,
JGeai-a) 1 1 +<32(2(61F1)—&1’2)( 1 _i)
2t (1-x)1, Xt} 2t (1-x)1t, xt;
1 > ] sy i T2 22N/T o 2212 Ezaz
+ ———==7| —2(d111)(d102) +2(9111)(9:192) + (9, “—aD) (1 1K) +a7d, “— ——| [ {112}
X(1—=x)t,t; 2
(37
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It is easy to see from Eqé36) and(37) that the integrand in Eq26) falls down ag [;|* when|[;|— . Taking into account
that

dk2 dD 2|
@m = f2x(1 x)j(zﬂ. ©-1’ (39)

we see that the integration is well convergent at Ieﬁfgje As for the regions of values ofclose to 0 or Jwhich correspond

to large invariant masseszsgr—see Eqs.(33)], the convergence of the integration is guaranteed by the vanishing of the
functionsA andB asx(1—Xx), as it is evident from Eqg36) and(37). The limit k?*—0 meansA 2—0, according to Eq(33).

The Abelian part is regular in this limit, as it can be seen from @Bd). As for the non-Abelian part, from E¢36) we have

for its singular part

- 2, g2
_ (1_ Q1QZ Q2q . (39
A2 A2Kk2

<ql> qi(AK) | [ (Aap) a7 %(Ak)
A2R2 A2 - A2K2

smg =16x(1— X){ 8x(1—x)

V. THE QUARK CONTRIBUTION TO THE KERNEL

To obtain the contribution to the kernélggQa(ﬁl ,512;&) from the real quark-antiquark production, we have to perform the

integration in Eq(26). Though the expressior86) and(37) are convenient for analyzing the behavior of the functidremd
B, they are not suitable for the integration with the measure given in(88). For this purpose, it is better to use the
representation§30) and (31) which are explicitly invariant under the “left-right” transformation

1Ty, a1 By, ay—fy, Gi—0y, df < —0, (40)

and to exploit also the integration measure in the alternative form:

f dkzd _jl dy j dP-2|, m
2m " Jo2y(i=y) ) 2me-D’
where

_ %

y=—. (42)

The details of the integration are presented in the Appendix. The integration for the non-Abelian contribution can be performed
for arbitrary space-time dimension. The result is

2 _ 2 2\ €
dk 16 T(l—e) [T(1+€)] [2(1+6)2<(k)

_ , - )
(ZW)dpfA_(%)Z*f e T[(4+2¢) (9295 +930; )+(q2)1+)

[2(1+ €)q2a3 o e(q5+q3) 1]
(CI1_CI2)3

+[K2(2k?— 92— q3—20;°— 2052+ 20?)+ (45— 43)(a;*— a3?)]

e.|22__)/2__>!2 —4 1+62 ~252
. ( 0" =) —4( )%g? b1+ A(1+ €)2— 4192

— bo+(A1=0L,  Ar=05) |, (43)
(q2—a3) (GG—gg) ° 2]

where the functiong),, are given in Eq(17). Considering the physical limg&— 0, we must take into account the subsequent
integration of the kernel over, which leads to contributions €~ * from the terms having the singularity kt=0. Conserving
all the terms giving nonzero contributions in the linait>0 after integration ovek, the result(43) in this limit reads

074025-7



V. S. FADIN, R. FIORE, AND A. PAPA PHYSICAL REVIEW D60 074025

dk? 2 12 [T+ (K —rery ==y ..
(2_77) pfA_ 3(277)2|_(477.)e ( ) F(4+26) ( EZ (qlqz +QZQ1) (qz)l

[Z(hqgln((h/%) (Q1 QZ)]
(Q1_qZ)3

+[K?(2k?— g - 63— 20°~ 20,7+ 20%) + (07— 63)(A1° — %) ]

o 26202 — a2( 42+ G2 2 ~272
+(k2—q12—q§2)+2( Cthaq (?1 a2) in| 32| - 2621 410z
q*

(a1—q3) q%

(q1<—>q1,qz<—>qz)] (44)

The Abelian contribution is not singular at all, so we can consider it from the beginning in the physical space-time
dimension,e=0. Nevertheless, this contribution has a form much more complicated than the non-Abelian one. Evidently, the
circumstance that the latter contribution is simpler must be related to the special role played by the gluon channel in presence
of gluon Reggeization. In fact, the Abelian contribution was calculated many yearkl@gm the framework of quantum
electrodynamics and we can use the results obtained there. We have

dk? g = 32 . q-. q
f 2 pi(A=B+l;— z)—WKl N~ 5975 (45)

with the functionK; given by Eq.(A39) of Ref.[16], where in the RHS we have to make the substitutions

- -

_)—>_)—g _”—>_)—9 F—)
d—0aqz 2 q —0dz >

N,y

. Q—0q;—q(1-y), Q —d,—q(1—x).

It is worthwhile to say that Eq45) contains a nonzero fermion mass and, at first sight, has a logarithmic singularity when the
mass tends to zero; but the singularity is spurious because of cancellations among various terms.

We can now consider the quark contributiif’®?(q;,q,;q) to the “real” part of the nonforward kernel of the BFKL
equation. It was explained already that in the NLLA this contribution is determined by the quark correction to the one-gluon
production and by the quark-antiquark production in the Reggeon-Reggeon collisions:

ICﬁR)Q(ﬁl,ﬁz;ﬁ)=/C(R7§38(51,62;ﬁ)+’CSQQ6(61’62;6)' 40

The first term in the RHS of this equation is given by E@8.and (17)—(19); the second, by Eq$26)—(29) and (43)—(45).

For the octet case, as it can be seen from E2$—(29), the contribution from the quark-antiquark production contains only

the non-Abelian part, which was calculated for arbitrary space-time dimension. Since the quark correction to the one-gluon
production was also calculated for arbitrddy the quark contribution to the “real” part of the kernel in the gluon channel for
arbitrary e turns out to be

I 1 T(l-e [T2+e1?](K)E -, ., ,
K®9ay,02;9)=g*nyN 2052+ G3042)

(2mP t(am?te e T(4+2¢) | k2 (aia"+ a0
(623, 2 2

L G295 2~ q3q; S,
+%(gD) (G2 *+(q2)9) — %((qlf q%)f)+(q1<—>t11,qz<—>qé)]- (47)

It is easy to see that the expression in the curly brackets vanishes when anﬁdv’stbeﬁ{ ’s tends to zero, as it should be.
In the physical limite— 0, keeping all the terms giving nonzero contributions in this limit after integration lovere obtain

- - - g*mN 1 6 [T(2+¢€)]? (|22)f SRR
K (8)Q 0,:q)= - 25124 324512
r (ql QZ q) 24(271_)5 775 (477)26 ) F(4+2€) (qlqz qul )
ey (9%as’—a39:>) (a2 . . - .
+G2((q2) = (99)°—(63)9) %n q—; +(Gy 0y, G | - (48)
2

The quark contribution to the “real” part of the kernel in the Pomeron channel, according td&gsd (27)—(29) and
(49), can be presented as
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(49

. -
. . g'ng - g. g
e O’ =2k (8)Q .05:0)— K ( ——.0— =].
i (d1,92;9)=2K77(01,02:0) 2men T 20

Let us mention the properties of the kernel:
KR (08,:0) =K (d,0:0) =K {(0,62;0) =K P (d1,0;0) =0,
which follow from the gauge invariance, and
K(a1,02;0) =K (2,015, -9 =K " (a1,03;:—9),

which follow from the symmetry of the imaginary part of the Reggeon-Reggeon scattering amgBjidentering the
expression7) for the "real” part of the kernel. Let us stress here that the above properties, descending from very general
arguments, are valid also for the gluon part of the kernel; we omitted indeed the supée@sirifite above equations.

Another important property of the kernel is its infrared finiteness at ﬂ&-e(il—ﬁz. The 1k singularity in Eq.(47) is the
ultraviolet one and disappears when we expand the kernel in terms of the renormalized coupling. Indeed, in this case we have
to add to the RHS of Eq47) the piece coming from the coupling constant renormalizdtse® Eqs(5) and(6)] in the LLA
kernel (3). For the expansion in terms of the renormalized coupling we obtain in the dimid
K2\ 1

3

2
M

(®)Q(g q = —
/Cr (quQZrQ)renorm 7Tl+eF(l—E)N € 1'*(4+2€)

N ghu 2N [1(2[r(2+e)]2
|22

(97d;”+039;°) »21
- =  4q

1. aZEZ) (G202 - q30;2) (ai) - -
+3 qzln( == |~ = In| = | [+(d1<01,02+203) (- (50)
3 q203 K2 a3 ' ’

As it can be seen from this expression, the dihgularity at fixeck? disappear after expanding®(«2)€ in powers ofe. The

expansion is not performed here, since in the integral E\m‘rEq. (1) the region of smalk?, for which eln(lzzl,uz)~1, does
contribute. This region contributes to the integral with terms singularénMdr the vacuum channel, these terms cancel the
singularity in the “virtual” contribution to the kernel, related to the gluon trajectory. The cancellation occurs quite similarly

to the forward case, so it does not need a special treatment. For the octet case such cancellation is evidently absent because c
the different coefficient$4) between vacuum and gluon channels. We observe, however, that the cancellation is recovered in
the case of the colourless compound state of three Reggeized gluons, i.e., the odderon. In this case, indeed, the “real” part of
the kernel involves the three combinations with a different pair of Reggeized gluons in the octet channel, while the “virtual”
part of the kernel involves three gluon trajectories. The cancellation of the infrared singularities follows then quite simply from
the singular part of Eq49).

VI. THE CHECK OF THE “BOOTSTRAP” CONDITION

The “bootstrap” condition derived in Ref13] has the form

2Nt dD72 dD72 ..
2 f = KOGy, 00 = 0 D) (D) + (1), (51)

2(2m)P 1) gi(a,—a)?) g3(g,—q)?

Here KX ®)(q;,0,;q) is the kernel of the nonforward BFKL equatioa(t) = »)(t) + w@(t) is the deviation of the gluon
Regge trajectory from unity in the two-loop approximation ard—g2. In the one-loop approximatiofLLA ) the trajectory

g°Nt f d®2q,

oM(t)= —
2(2m® ) qi(q;—q)?

(52)

is purely gluonic. The quark contribution to the trajectory appears at the two-loop(MkEA ) and is given by Eq9.12) and
(13). The kernel’C(S)(ﬁl ,ﬁz;ﬁ), according to Eq(2), is expressed through the trajectory and the “real” part. The quark piece
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of the latter is given by Eq(47). Using this equation together with Eqgd.2) and (13) for the quark contribution to the
trajectory, we arrive at

1 T(1-¢) [(2+€)]? [ d° ?q,

P o0 5 a gt
== —=,K"7"(01,02;9) =9 n¢N
a5(

42— 0) (2mPt(am?te e T(4+2¢) ] g}
2 52
a g S12ve S2\e Sr2\e q T2\ € “2\e 2\ € = )
X R—i((qi)5+(qlz) —(03)°—(d5%) )+?«q2> — (0D~ (a5))+ (a1 ¢,
2

(53

wherek=q;—0,, q,=0,—q and g;,=0,—q. Putting the tude[see Eqs(1)—(3) of Ref.[18] and Eq.(2) of Ref.[17]],
RHS expression into Eq51) and using Eqs(52), (12) and  While our kernel is the kernel for the nonamputated ampli-
satisfied. our kernel,XC,, and their kernelV, should be(in the deno-
tations used in Ref17)) K.(d,d1,91) =a;°a;°V(d,q1,97).
VII. DISCUSSION W_|th th_|s correspondence our results disagree with those ob-
tained in Ref[17].
. However, in a revised version of their papér] (see also
In this paper we _have calculated the quark part of thq?ef. [19]), which appeared after the present work was pub-
kernel of the generalized nonforward BFKL equation at NONished as a report, the authors of REE7] have added an
Zero momentum transfeqn the next-to—leadm_g Io_ganthm|c Appendix where they use a different relation between their
approximation. Along Wlth. thg quark contribution to the nd our kernel[see Eq.(51) of Ref. [17]]. This relation
gluon Reggettrajtictoryfawhlcahtlhs th(fa same I?S for thle cadse Ybllows from requiring that their ansatz for the kernel satis-
ZEro momentum transteran eretoré 1S known airéaqdy, fiaq the correct symmetry properties. With this new corre-

:hlihpart(ljnctl_udes p|ecte_s CO}[T"nt?] from th? quark Zonttrlbutlo pondence there is indeed agreement between our results and
0 the radiative corrections for the one-giuon proauction anGpqirs iy the case of the quark contribution to the kernel. It

from the quark-antiquark production in the Reggeon-would be interesting to check if the symmetrized ansatz leads

Reggeon collisions. The results obtained can be used for 4B the correct results also for the gluon contribution to the
arbitrary representation of the color group in thehannel. 5ernel

For all such representations, the part of the kernel relate
with the real particle production is infrared finite, in the
sense that there are no singularities at fixed transverse mo- ACKNOWLEDGMENTS

mentumk of the produced particles. The integration oker This work was supported in part by the Ministero italiano
in the generalized BFKL equation leads to terms singular irdell’'Universitae della Ricerca Scientifica e Tecnologica, in
the limit e—0. For the vacuum channel, these terms cancepart by INTAS and in part by the Russian Fund of Basic
the singularity in the “virtual” contribution related to the Researches.

gluon trajectory. For the octet case such cancellation is evi-

dently absent, although it is recovered in _the case of 'Fhe APPENDIX
colourless compound state of three Reggeized gluons, i.e.,
for the odderon. In this Appendix we present the details of the calculation

The kernel for the octet case enters the “bootstrap” equaof
tion for the gluon Reggeization in QCD. The fulfillment of
this equation is necessary for the self-consistency of the deri- dk? 1 dx db-2,
vation of the BFKL equation. We demonstrate explicitly the f (Z_W)deA: fo 2x(1—x)f
fulfilment of the “bootstrap” condition in the next-to-

leading logarithmic approximation in the part concerning th P .
quark contribution. The check performed serves simult:yvhereA 's given by Eq.(30). We group the terms contrib

: T uting to A in four different classes according to their behav-
neously as a stringent examination of the correctness of th

. S Br under the integration. The first class contains only the
calculatmns_of the quark contribution to the kernel of thefirst term in the RHS of Eq(30):
BFKL equation.

Recently a paper by Braun and Vadda| appeared, de-
voted to the NLLA kernel of the nonforward BFKL equation A _325“1B2 (0,0)) (A2)
. . . . 1 ==, 1¥1)-
in the octet case. In this paper the kernel was obtained using tity
as a basis the bootstrap relation and a specific ansatz to solve
it. In Ref. [17] the kernel was defined as the kernel of thelt can be rewritten using Eq€20), (32), (33), and(35) in the
equation for the amputated Reggeized gluon-target ampliequivalent form

PR (A1)
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1-x 13(Q,Q; 32(1-x)15(Q:Q;
A =32 X 1(~Qi?1) - _ ﬁ(ﬁ X) »12(Q1Qi)2 — (A3)
X tity [17+x(a1—2(1g )] 17+ x(d;"—2(1103))]

Taking first the integral ovex, we have

J’l dx A= 16((31(51) P(ﬁi—rl)z
02X(1=X) "1 (g —T)2—(qi—T1)? (qi—T1)?

Using now the following simple trick:

1 Ir‘(ai—rl)zzfldz 1
(A—T)2= (a1~ T2 (-T2 Jo " z(qi—T)2+(1-2)(qy—11)?’

the integration ovel; and the subsequent integration ovdsecome trivial and give

64 (—e) [T(2+e)]* -, ... d®-21,
_ (477)2+6 [(4+2e€) (q2)1 +16j —(277)('3_1)- (A4)

The last term in the above expression vanishes in dimensional regularization. We stress once more, however, that indepen-

dently from the regularization scheme, the integrals which diverge at lﬁﬂgm D=4 cancel in Eq(Al).
The second class of terms in the RHS of E2p) is

27012 22702

16( -, 102" T30, )_ 8
(

_q_ 2 _ -2 41
A2—8 k2 q Sa{ﬂ k2)2 Saﬂl Sa1,8+2q1 o
= B . = = @ = B " =
—2q§§1—2ll(q1+q2) 5aﬁ1—5a1ﬂ+2q12;1—2q22f—2|1(q1+q2) : (A5)
Using again Eqs(20), (32), (33) and(35), the above expression can be recast in the following form:
"2_’_ Jr2 32512
A,=16x(1—x) 2+(1—2x)2%—2x(1—x)(1—2x)2%l
16¢3(1-x)%2(1-2%) [ -, g% (AK) h
_ It (1= (Agy)—x(1—-x) S 1—2x(1—x)§
2(1-2x) [ .. Gi(AK) q:’) aiaztaiay’ g
m((Aql)—X(l—X) s 1—2X(1—X)? - S +X(1—X)
12&2<1—x>2( . aw))( éﬁA%)
T A (Ag)=x(A=-x)—5 (Ady) —X(1-X) s ) (A6)
The nonzero integrals ovéy are the following:
d®72, 1 2I(—e) .
= == x(1—x)k?]¢,
1 f (277')(D71) 2 (477)2+€[ ( ) ]
dP72, 1 2l(1-e) R
| :f —= x(1—-x)k?]¢7 L, A7
2= | G D57 agyrre LK (A7)

| dezll 1 2I'(—€)
o=

(277)(D71) 522 = (47T)Z+E[X(1_X)|22]6_1'
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i 1 ai(A ))( ( k)
l4= J’W(A) (( Agy)—x(1-x) (Agp)—x(1- X)

—€) (1-€)qia;*—a;%(q:k) —a%(qik) .
= (4;);5 A (116)1 X (1= X)[x(1—x)k?]< L,

Using the above result and integrating also axemwe finally obtain

1 dx d®2;,  BA(—e) [T(2+e)P (KD -,y ey
fo(l x)f(zﬂ.)(Dl)Az__ (4m)2te T(4+2¢) |2 (01792 +0705°). (A8)

The remaining terms in the RHS of EO) are

16| 1 2 2y haie 27 v >y "rZal
A:FF T (Quay)(sasBz=1112)+(Qul2)| s+ 11(a1+d2) — 20"
1
+(r1<—>rz,a1<—>ﬁ2,az<—>ﬁ1,ﬁl<—>—ﬁz,ﬁi<—>—ﬁé)>1 (A9)
and
A4=A3(ﬁl<—>ﬁi, ﬁwﬁé)- (A10)

It is not necessary to calculate explicitly the integralfaf since it can be obtained by simple substitutions from thakof
ConcerningAs, it can be rewritten equivalently as

16x( 1-x)

2= (T.QDTo(ay+a5) +(1,Q1)11(q; +q5)

-

AT)Gu(Gi+ s 2
+( 1)Q:I;fql+‘:|2)+ @S (1—%)“2(21)_‘1:825(1_ (A11)

BS) (100 -

SinceA; is manifestly invariant under the “left-right” transformatiqd0), we can separate in the above expression two set
of terms, related each other by the “left-right” transformation. One possible separation is

16x(1=x) | - o oo o (AT Qu(di+ay) 20"
A=z | (QT(y+ )+ o @B\ 1= Lo Q) | +[leftright” 1=+ 1819,
1

(A12)

with obvious notation. Since the integration measure can be put in the two equivalent(8)nasd (41) connected by the
“left-right” transformation, the result of the integration o‘I(g"/R) can be obtained from that df; by the change &1<—>

— 0>, 05 —q5). Therefore the integration df-'® can be avoided. This allows to escape those integrandsAfitis. at the
denominator which come from the term proportionalatp/ « in Eq. (A11) and would be very nasty to integrate with the
measurg38). Let us focus then our attention dg which can be written as

8x(1—x) (AT)Qu(di+dp) o - T
fa=— T{_ AY(1,Qy)— X B +2(|1Q1)[_2(1_X)(qqu)+X(Q22_q12)+|1(Q1+Q2)] .
1
(A13)
The integration of the first term is trivial and gives
- fl dx f d°7 2, [16(1-x)AX(1,Qy)| 32A'(—e) [T(2+e)]? ., ... A4
* Jo2x(1-x)J (24)(®-D A%, © (4m)2te T(4+2e¢) (ap™ = (Al4)
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For the remaining terms we limit ourselves to illustrate the strategy of the integration, since presenting all the intermediate
results would be too lengthy. The basic integrals to be calculated are of thé form

dD 2| Xn+1
I—f f = =, A15
(2m)®D (I =xR X[ (11~ xay) >+ x(1=x)q7] AL
with n natural number. Using the Feynman parametrization and integratidgiAl ;, one obtains
_ 2T (1-¢) X+l 2I'(1—¢) . x"
2+ef f CNf24 1 anil-e 2+ff Yy f X
(4) {XZ[X(]- 2)q3+(1-x)q1l} (4) 0 y  [x(gz—q7)+ai—yas]
(Al6)

where the change of variable=xz has been performed in the last equality. This integral can be now calculated integrating
first overx and then ovey. The complete calculation for all the terms in E413) except the first is long, but straightforward.

The final result for
Jomw)
0 2X(1—X)

is given by the last three rows in the RHS of E43).

dD72

(Ast+Ay) (A17)

(277)(D 1)

IStrictly speaking, there are also integrals withyf), I'Z or (I',p)[# at the numerator, whene is a generic momentum in the transverse
space, but they can be treated similarly.
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