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Quark part of the nonforward BFKL kernel and the ‘‘bootstrap’’ for the gluon Reggeization

V. S. Fadin*
Budker Institute for Nuclear Physics, Novosibirsk State University, 630090 Novosibirsk, Russia

R. Fiore† and A. Papa‡

Dipartimento di Fisica, Universita` della Calabria, Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza,
Arcavacata di Rende, I-87036 Cosenza, Italy

~Received 22 December 1998; published 10 September 1999!

We calculate the quark part of the kernel of the generalized nonforward BFKL equation at nonzero momen-
tum transfert in the next-to-leading logarithmic approximation. Along with the quark contribution to the gluon
Regge trajectory, this part includes pieces coming from the quark-antiquark production and from the quark
contribution to the radiative corrections in one-gluon production in Reggeon-Reggeon collisions. The results
obtained can be used for an arbitrary representation of the color group in thet channel. Using the results for the
adjoint representation, we demonstrate explicitly the fulfillment of the ‘‘bootstrap’’ condition for the gluon
Reggeization in the next-to-leading logarithmic approximation in the part concerning the quark contribution.
@S0556-2821~99!02817-9#
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I. INTRODUCTION

The Balitskiı̆-Fadin-Kuraev-Lipatov~BFKL! equation@1#
became very popular in recent years due to the experime
results on deep inelastic scattering obtained at the DESYep
collider HERA @2#. These results show that the power of t
growth of the cross section of the photon-proton interact
with the energy for a ‘‘hard’’ photon~the ‘‘hardness’’ is
supplied either by the photon virtuality or by the masses
the quarks into which the photon is converted! is larger than
the corresponding power for hadron processes. The
arose that the rapid increase of the cross section of
‘‘hard’’ photon interactions is the manifestation of the BFK
dynamics.

The BFKL equation was derived in the leading logarit
mic approximation~LLA ! of the QCD perturbation theory
which means the summation of all terms of the ty
@asln s#n; as is the QCD coupling constant ands is the
square of the c.m.s. energy. Unfortunately, in this appro
mation neither the scale ofs nor the argument of the runnin
coupling constantas are fixed. So, in order to do accura
theoretical predictions, we have to know the radiative corr
tions to the LLA. The program of the calculation of the r
diative corrections was formulated in Ref.@3# and satisfied in
Refs.@4–9#. Recently, the calculation of the radiative corre
tions to the kernel of the BFKL equation was completed a
the equation in the next-to-leading logarithmic approxim
tion ~NLLA ! was obtained@10,11#. The corrections appear t
be large and caused a series of papers@12# devoted to the
problem how to deal with them and what they mean.

The BFKL equation is a particular case~for forward scat-
tering, i.e.,t50 and vacuum quantum numbers in thet chan-
nel! of the equation for thet-channel partial waves of th
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elastic amplitudes@1#. Independently from the value oft, we
have in general a mixture of various irreducible represen
tions R of the color group in thet channel. The most inter
esting representations are the color singlet~Pomeron chan-
nel! and the antisymmetric color octet~gluon channel!. For
brevity, we use the term ‘‘BFKL equation’’ for the genera
case as well, adding the word ‘‘nonforward’’ when it is ne
essary to distinguish the general case from the partic
‘‘forward’’ case.

It is very important to find the corrections to the kernel
the nonforward BFKL, for the gluon channel as well as f
the Pomeron channel. In the case of the Pomeron channe
equation can be applied directly for the description of expe
mental data. The importance of the correction in the glu
channel is determined by a remarkable property of QCD,
gluon Reggeization. We remind that the derivation of t
BFKL equation was based@1# on this property. In fact, this
equation is the equation for the Green function of tw
Reggeized gluons. In the color singlet state these Regge
gluons create the Pomeron. The self-consistency requ
that in the color octet case the two Reggeized gluons re
duce the Reggeized gluon itself~‘‘bootstrap’’ condition!.
The above statements are valid in the NLLA as well as
LLA. The ‘‘bootstrap’’ equations in the NLLA were recently
derived@13#. Since the BFKL equation is very important fo
the theory of Regge processes at high energyAs in pertur-
bative QCD, these equations must be checked. Along w
the stringent test of the gluon Reggeization, this check
another important meaning. The calculations of the radia
corrections to the kernel are very complicated. Therefo
they should be carefully verified. Up to now, only a sm
part of the calculations was independently performed@8# or
checked@14#. The bootstrap equations contain all the valu
appearing in the calculations of the NLLA kernel, so th
they provide a global test of the calculations. Beside this,
color octet state of two Reggeized gluons is necessary for
description of colorless compound states of more than
gluons, in particular, for the odderon.
©1999 The American Physical Society25-1
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In this paper we consider the nonforward BFKL equatio
calculate the quark contribution to the kernel of this equat
and demonstrate explicitly the fulfillment of the ‘‘bootstrap
conditions in the NLLA in the part concerning the quar
antiquark contribution.

In the next section we present the general form of
quark contribution to the kernel. In Sec. III we give the e
plicit form of the quark piece of the gluon trajectory an
derive the quark part of the contribution to the kernel fro
the one-gluon production. In Sec. IV we consider the qua
antiquark production in collisions of two Reggeized gluon
In Sec. V we obtain the contribution of this process to t
kernel. In Sec. VI we demonstrate the fulfillment of th
‘‘bootstrap’’ condition for the trajectory. The results ob
tained are discussed in Sec. VII.

II. DEFINITIONS AND BASIC EQUATIONS

As usual, in an analysis of processes at high energy
ticle collisions, we use the Sudakov decomposition for p
ticle momenta. Admitting that the initial particlesA and B
have non-zero masses, we introduce the light-cone vec
p1 and p2 in terms of which the momenta of the initia
particles arepA5p11(mA

2/s)p2 and pB5p21(mB
2/s)p1

respectively, withs52(p1p2). In the NLLA, as well as in
the LLA, the elastic scattering amplitudes with momentu
transferq.q' are expressed in terms of the impact facto
F of the scattering particles and of the Green functionG for
the scattering of Reggeized gluons@13# ~see Fig. 1!. The
Mellin transform of the Green function for Reggeized gluo
with initial momenta in thes channelq1.bp11q1' and
2q2.ap22q2' , momentum transferq.q' and irreduc-
ible representationR of the color group in thet channel,
obeys the equation@13#

FIG. 1. Diagrammatic representation of the elastic scatte
amplitudeA1B→A81B8.
07402
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vGv
(R)~qW 1 ,qW 2 ;qW !5qW 1

2~qW 12qW !2d (D22)~qW 12qW 2!

1E dD22r

rW 2~rW2qW !2

3K (R)~qW 1 ,rW;qW !Gv
(R)~rW,qW 2 ;qW !. ~1!

HereqW 1 and2qW 2 are the transverse momenta of the collidi
gluons in thes channel,qW is the momentum transfer andD
5412e is the space-time dimension, taken different from
to regularize the infrared divergences. Let us note that
use a normalization which is different from the one used
the forward case@10#. The nonforward kernel, analogously t
the forward one, is given as the sum of the ‘‘virtual’’ par
defined by the gluon trajectoryj (t)511v(t), and the
‘‘real’’ part K r

(R) , related to the real particle production i
Reggeon-Reggeon collisions:

K (R)~qW 1 ,qW 2 ;qW !5@v~2qW 1
2!1v„2~qW 12qW !2

…#qW 1
2~qW 12qW !2

3d (D22)~qW 12qW 2!1K r
(R)~qW 1 ,qW 2 ;qW !. ~2!

The gluon trajectory is known@6# in the NLLA. The ‘‘real’’
part for the nonforward case is known in the LLA only@1#:

K r
(R)B~qW 1 ,qW 2 ;qW !5

g2cR

~2p!D21

3S qW 1
2~qW 22qW !21qW 2

2~qW 12qW !2

~qW 12qW 2!2
2qW 2D ,

~3!

where the superscriptB means the LLA~Born! approxima-
tion and the coefficientscR for the singlet (R51) and octet
(R58) cases are

c15N, c85
N

2
, ~4!

N being the number of colors (N53 in QCD!. In Eq.~3! and
below g is the bare coupling constant, connected with t
renormalized couplinggm in the modified minimal subtrac
tion ~MS! scheme by the relation

g5gmm2eF11S 11

3
2

2

3

nf

N D ḡm
2

2e
G , ~5!

where

ḡm
2 5

gm
2 NG~12e!

~4p!21e
. ~6!

g

5-2
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QUARK PART OF THE NONFORWARD BFKL KERNEL . . . PHYSICAL REVIEW D 60 074025
Let us stress that in this paper we will systematically use
perturbative expansion in terms of the bare couplingg.

In the NLLA the ‘‘real’’ part of the kernel can be pre
sented as@13#

K r
(R)~qW 1 ,qW 2 ;qW !5E dsRR

~2p!D
Im A RR

(R)~q1 ,q2 ;qW !u~sL2sRR!

2
1

2E dD22r

rW 2~rW2qW !2
K r

(R)B~qW 1 ,rW;qW !

3K r
(R)B~rW,qW 2 ;qW !lnS sL

2

~rW2qW 1!2~rW2qW 2!2D .

~7!

Here A RR
(R)(q1 ,q2 ;qW ) is the scattering amplitude of th

Reggeons with initial momentaq15bp11q1' and 2q2
5ap22q2' and momentum transferq5q' , for the repre-
sentationR of the color group in thet channel,sRR5(q1
2q2)2 is the squared invariant mass of the Reggeons.
sRR-channel imaginary part ImA RR

(R)(qW 1 ,qW 2 ;qW ) is expressed
in terms of the effective vertices for the production of pa
ticles in the Reggeon-Reggeon collisions@13#. The second
term in the right-hand side~RHS! of Eq. ~7! serves for the
subtraction of the contribution of the largesRR region in the
first term, in order to avoid a double counting of this regi
in the BFKL equation. The intermediate parametersL in Eq.
~7! must be taken tending to infinity. At largesRR only the
contribution of the two-gluon production does survive in t
first integral, so that the dependence onsL disappears in Eq
~7! because of the factorization property of the two-glu
production vertex@13#. Since we are interested here in th
quark contribution only, we can omit the subtraction te
and perform the integration oversRR up to infinity.

The imaginary part of the Reggeon-Reggeon scatte
amplitudes entering Eq.~7! can be expressed in terms of th
production vertices, with the help of the operatorsP̂R for the
projection of two-gluon color states in thet channel on the
irreducible representationsR of the color group. We have
@13#

Im A RR
(R)~q1 ,q2 ;qW !

5
^c1c18uP̂Ruc2c28&

2nR
(
$ f %

E gc1c2

$ f % ~q1 ,q2!

3„gc
18c

28
$ f %

~q18 ,q28!…* dr f . ~8!

Here and belowqi85qi2q, i 51,2; nR is the number of
independent states in the representationR, gc1c2

$ f % (q1 ,q2) is

the effective vertex for the production of particles$f% in col-
lisions of Reggeons with momentaq1 , 2q2 and color indi-
cesc1 , c2 respectively,dr f is their phase space element,
07402
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dr f5~2p!Dd (D)S q12q22(
$ f %

l f D)
$ f %

dD21l f

~2p!D212e f

.

~9!

The sum over$f% in Eq. ~8! is performed over all the contrib
uting particles$f% and over all their discreet quantum num
bers. In the LLA only the one-gluon production does co
tribute and Eq.~7! gives for the kernel its LLA value~3!; in
the NLLA the contributing states include also the two-glu
and the quark-antiquark states. The normalization of the c
responding vertices is defined in Ref.@13#.

The most interesting representationsR are the color sin-
glet ~Pomeron channel! and the antisymmetric color octe
~gluon channel!. We have for the singlet case

^c1c18uP̂1uc2c28&5
dc1c

18
dc2c

28

N221
, n151, ~10!

and for the octet case

^c1c18uP̂8uc2c28&5
f c1c

18cf c2c
28c

N
, n85N221, ~11!

where f abc are the structure constants of the color group.

III. QUARK PART OF THE KERNEL FROM THE GLUON
TRAJECTORY AND REAL GLUON PRODUCTION

The gluon trajectory is known@6# in the NLLA. The
quark contributionvQ(t) to the trajectory appears at the two
loop level only. For the case ofnf massless quark flavors
can be written as

vQ
(2)~ t !5

g2t

~2p!D21E d(D22)q1

qW 1
2~qW 12qW !2

@FQ~qW !22FQ~qW 1!#,

~12!

wheret5q252qW 2 and

FQ~qW !5

2g2NnfGS 22
D

2 DG2S D

2 D
~4p!D/2G~D !

~qW 2!(D/222). ~13!

The quark contribution to the Reggeon-Reggeon-glu
~RRG! vertex was calculated in Ref.@5#. We remind that
beyond the LLA the vertex has a complicated analyti
structure@15,4#, but in the NLLA only the real parts of the
production amplitudes do contribute, because only th
parts interfere with the LLA amplitudes, which are real. N
glecting the imaginary parts, the quark contribution to t
RRG vertex becomes
5-3
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gc1c2

G(Q)~q1 ,q2!5«G
d Tc1c2

d

g3nfGS 22
D

2 DG2S D

2
21D

~4p!D/2G~D !
eG*

mH 2Cm~q2 ,q1!@ f 1
(Q)1 f 2

(Q)#

1S pA

~kpA!
2

pB

~kpB! D
m

@ f 3
(Q)2~2kW22qW 1

22qW 2
2! f 2

(Q)#J . ~14!

Here«G
d andeG*

m are the polarization vectors of the produced gluon in the color and Minkowskii spaces, respectively,Td is the
color group generator in the adjoint representation,k5q12q2 is the gluon momentum,

C~q2 ,q1!52q1'2q2'1~q12q1'!S 12
2qW 1

2

kW2 D 1~q22q2'!S 12
2qW 2

2

kW2 D ~15!

and

f 1
(Q)5

~qW 1
21qW 2

2!

~qW 1
22qW 2

2!
S D

2
21D 2

f0 , f 2
(Q)5

kW2

~qW 1
22qW 2

2!3 F S D

2
22Df22qW 1

2qW 2
2 D

2
f0G ,

f 3
(Q)5

1

~qW 1
22qW 2

2!
FqW 1

2qW 2
2~D22!2f01S D

2
22D kW2f1G , ~16!

where

fn5@~qW 1
2!n1e2~qW 2

2!n1e#. ~17!

Using the expressions~14!–~16!, with the help of Eqs.~8!–~11!, we obtain from Eq.~7!

K RRG
(R)Q~qW 1 ,qW 2 ;qW !5cR

g4nf

~2p!D21

G~2e!

~4p!21e

@G~11e!#2

G~412e! H @kW2~2kW22qW 1
22qW 2

222qW 18
222qW 28

212qW 2!

1~qW 1
22qW 2

2!~qW 18
22qW 28

2!#
@2~11e!qW 1

2qW 2
2f02e~qW 1

21qW 2
2!f1#

~qW 1
22qW 2

2!3
1

~kW22qW 18
22qW 28

2!

~qW 1
22qW 2

2!
ef1

12~11e!2S qW 1
2qW 28

22qW 2
2qW 18

2

kW2
1

2qW 1
2qW 2

22qW 2~qW 1
21qW 2

2!

~qW 1
22qW 2

2!
D f01~qW 1↔qW 18 ,qW 2↔qW 28!J . ~18!

In the physical limite→0 we have

K RRG
(R)Q~qW 1 ,qW 2 ;qW !52cR

g4nf

24~2p!5 H @kW2~2kW22qW 1
22qW 2

222qW 18
222qW 28

212qW 2!

1~qW 1
22qW 2

2!~qW 18
22qW 28

2!#
@2qW 1

2qW 2
2ln~qW 1

2/qW 2
2!2~qW 1

42qW 2
4!#

~qW 1
22qW 2

2!3
1~kW22qW 18

22qW 28
2!

12S qW 1
2qW 28

22qW 2
2qW 18

2

kW2
1

2qW 1
2qW 2

22qW 2~qW 1
21qW 2

2!

~qW 1
22qW 2

2!
D lnS qW 1

2

qW 2
2D 1~qW 1↔qW 18 ,qW 2↔qW 28!J . ~19!
e
an
is ark
A remarkable property of the kernel, which follows from th
gauge invariance of the theory, is that it vanishes when
of the vectorsqW i or qW i8 tends to zero. One can check that th
property is fulfilled in Eqs.~18! and ~19!.
07402
y
IV. THE QUARK-ANTIQUARK PRODUCTION
IN THE REGGEON-REGGEON COLLISIONS

Let us consider the production of a quark and an antiqu
with momental 1 and l 2 respectively, in collisions of two
5-4
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Reggeons with momentaq1 and2q2 . We will use the Suda-
kov parametrization for the produced quark and antiqu
momental 1 and l 2:

l i5b i pA1a i pB1 l i' , sa ib i52 l i'
2 5 lW i

2, i 51,2,

b11b25b, a11a25a, l 1'1 l 2'5q1'2q2' ,
~20!

and the denotation

k5 l 11 l 25q12q2 , sRR5k2. ~21!

For the effective vertex of the quark-antiquark production
the Reggeon-Reggeon collision we have@9#

gc1c2

QQ̄ ~q1 ,q2!5
1

2
g2ū~ l 1!@ tc1tc2b~ l 1 ,l 2!

2tc2tc1b~ l 2 ,l 1!#v~ l 2!, ~22!

where tc are the color group generators in the fundamen
representation. The expressions forb( l 1 ,l 2) and b( l 2 ,l 1)
can be presented in the following way:

b~ l 1 ,l 2!5
4p” AQ” 1p” B

s t̃1
2

1

k2
G” ~23!

and

b~ l 2 ,l 1!5
4p” BQ” 2p” A

s t̃2
2

1

k2
G” , ~24!

where

t̃ 15~q12 l 1!2, t̃ 25~q12 l 2!2,

Q15q1'2 l 1' , Q25q1'2 l 2' ,

G52F ~q11q2!'2bpAS 122
qW 1

2

sab
D 1apBS 122

qW 2
2

sab
D G .

~25!
07402
k

l

According to Eqs.~7! and~8!, the quark-antiquark contri-
bution to the BFKL kernel can be presented in the form

K RRQQ̄
(R)

~qW 1 ,qW 2 ;qW !5
^c1c18uP̂Ruc2c28&

2nR

1

~2p!D

3(
QQ̄

E gc1c2

QQ̄ ~q1 ,q2!

3„gc
18c

28
QQ̄

~q18 ,q28!…* dsRRdr f , ~26!

where the sum is taken over spin, color and flavor state
the produced pair,qi85qi2q, sRR5(q12q2)2 is the squared
invariant mass of the two Reggeons and the elementdr f of
the phase space is given by Eq.~9!. Theu-function in Eq.~7!
is omitted since the integral oversRR is convergent at infin-
ity. From the representation~22! we obtain

^c1c18uP̂Ruc2c28&
2nR

(
QQ̄

gc1c2

QQ̄ ~q1 ,q2!„gc
18c

28
QQ̄

~q18 ,q28!…*

5
g4nf

32N
@aRA1bRB1~ l 1↔ l 2!#. ~27!

Herenf is the number of light quark flavors, the coefficien
aR andbR for the interesting cases of singlet and octet re
resentations are

a05N221, b051; a85
N2

2
, b850 ~28!

and

A5tr„ł 1b~ l 1 ,l 2!ł 2b8~ l 1 ,l 2!…,

B5tr„ł 1b~ l 1 ,l 2!ł 2b8~ l 2 ,l 1!…, ~29!

whereb8( l 1 ,l 2) is obtained fromb( l 1 ,l 2) by the substitution
q1,2→q1,28 [q1,22q. In the following, for reasons eviden
from Eq. ~28!, we will call A and (B2A) ‘‘non-Abelian’’
and ‘‘Abelian’’ parts, respectively.

The calculation of the traces gives
A532
sa1b2

t̃ 1 t̃ 18
~QW 1QW 18!182

16

k2
S qW 22

qW 1
2qW 28

21qW 2
2qW 18

2

sab
D 2

8

~k2!2 Fsab12sa1b12qW 1
2 a1

a
22qW 2

2 b1

b
22 lW1~qW 11qW 2!G

3Fsab12sa1b12qW 18
2 a1

a
22qW 28

2 b1

b
22 lW1~qW 181qW 28!G1

16

k2 H F 1

t̃ 1
S F ~QW 1qW 18!~sa1b22 lW1 lW2!

1~QW 1 lW2!S sa1b1 lW1~qW 181qW 28!22qW 18
2 a1

a D G1~ lW1↔ lW2 ,a1↔b2 ,a2↔b1 ,qW 1↔2qW 2 ,qW 18↔2qW 28! D G1@qW i↔qW i8#J ,

~30!

~A2B!1~ lW1↔ lW2!532H sa1b2

t̃ 1 t̃ 18
~QW 1QW 18!2

~ lW1QW 1!~ lW2QW 28!1~ lW2QW 1!~ lW1QW 28!2~ lW1 lW2!~QW 1QW 28!

t̃ 1 t̃ 28
J 1$ lW1↔ lW2%. ~31!
5-5
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The Abelian and non-Abelian parts possess a ‘‘nice’’ behavior at large transverse momenta of the produced particle
large values of their invariant mass, that guarantees the convergence of the integral in Eq.~26! at lW i

2→` andsRR→`. The
only region which leads to a singularity at the physical dimensionD54 is the infrared regionk2→0. This singularity is
regularized by the nonzeroe5D/222. To make the discussed behavior explicit, one has to take into account the relation~20!
between longitudinal and transverse variables. The functionsA andB can be expressed through the transverse momenta
one ratio of the longitudinal momenta. Choosing this ratio as

x5
b1

b
, ~32!

we have

b2

b
512x,

a1

a
5

~12x! lW1
2

S
,

a2

a
5

x lW2
2

S
,

sab5
S

x~12x!
, sRR5k25

LW 2

x~12x!
, ~33!

where

LW 5~12x! lW12x lW2 , S5LW 21x~12x!kW2, ~34!

and

t̃ 152
lW1

2

x
2qW 1

212~ lW1qW 1!, t̃ 252
lW2

2

12x
2qW 1

212~ lW2qW 1!,

t̃ 1852
lW1

2

x
2qW 18

212~ lW1qW 18!, t̃ 2852
lW2

2

12x
2qW 18

212~ lW2qW 18!. ~35!

Using these relations, we obtain

A516x~12x!H 2x~12x!S 2
~LW qW 1!

LW 2
1

2~qW 1 lW1!2qW 1
2

x t̃1
D S 2

~LW qW 18!

LW 2
1

2~qW 18 lW1!2qW 18
2

x t̃18
D

2
qW 2

2 S 1

LW 2
1

1

x t̃1

1
2~qW 1 lW1!2qW 1

2

x t̃1 t̃ 18
D 1

2~LW kW !

LW 2

~qW 1qW 18!2qW 18
2

t̃ 1

1
2~LW qW 1!~qW 18qW 28!

LW 2 S 1

t̃ 1

2
1

t̃ 18
D

1
qW 18

2

S S 4x~12x!
~LW qW 1!

LW 2
1

2~12x!„2~qW 1 lW1!2qW 1
2
…1qW 2

2

t̃ 1
D S 122x12x~12x!

~LW kW !

LW 2 D
1x~12x!

qW 1
2qW 28

2

LW 2S
2x~12x!

qW 1
2qW 18

2

S2 S 122x12x~12x!
~LW kW !

LW 2 D 2J 1$qW i↔qW i8%, ~36!

~A2B!1~ l 1↔ l 2!516x~12x!H 2x~12x!S 2~qW 1 lW1!2qW 1
2

x t̃1

1
2~qW 1 lW2!2qW 1

2

~12x! t̃ 2
D S 2~qW 18 lW1!2qW 18

2

x t̃18
1

2~qW 18 lW2!2qW 18
2

~12x! t̃ 28
D

1
qW 2
„2~qW 1 lW1!2qW 1

2
…

2 t̃ 1
S 1

~12x! t̃ 28
2

1

x t̃18
D 1

qW 2
„2~qW 18 lW1!2qW 18

2
…

2 t̃ 18
S 1

~12x! t̃ 2

2
1

x t̃1
D

1
1

x~12x! t̃ 1 t̃ 28
S 22~qW 1 lW1!~qW 18qW 28!12~qW 18 lW1!~qW 1qW 2!1~qW 18

22qW 1
2!~ lW1kW !1qW 1

2qW 28
22

kW2qW 2

2
D J 1$ l 1↔ l 2%.

~37!
074025-6
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It is easy to see from Eqs.~36! and~37! that the integrand in Eq.~26! falls down asu lW i u4 whenu lW i u→`. Taking into account
that

E dk2

~2p!
dr f5E

0

1 dx

2x~12x!
E dD22l 1

~2p!(D21)
, ~38!

we see that the integration is well convergent at largeu lW i u. As for the regions of values ofx close to 0 or 1@which correspond
to large invariant massessRR—see Eqs.~33!#, the convergence of the integration is guaranteed by the vanishing o
functionsA andB asx(12x), as it is evident from Eqs.~36! and~37!. The limit k2→0 meansLW 2→0, according to Eq.~33!.
The Abelian part is regular in this limit, as it can be seen from Eq.~37!. As for the non-Abelian part, from Eq.~36! we have
for its singular part

Asing516x~12x!H 28x~12x!S ~LW qW 1!

LW 2
2

qW 1
2~LW kW !

LW 2kW2 D S ~LW qW 18!

LW 2
2

qW 18
2~LW kW !

LW 2kW2 D 2
qW 2

LW 2
1

qW 1
2qW 28

21qW 2
2qW 18

2

LW 2kW2 J . ~39!

V. THE QUARK CONTRIBUTION TO THE KERNEL

To obtain the contribution to the kernelK RRQQ̄
(R) (qW 1 ,qW 2 ;qW ) from the real quark-antiquark production, we have to perform

integration in Eq.~26!. Though the expressions~36! and~37! are convenient for analyzing the behavior of the functionsA and
B, they are not suitable for the integration with the measure given in Eq.~38!. For this purpose, it is better to use th
representations~30! and ~31! which are explicitly invariant under the ‘‘left-right’’ transformation

lW1↔ lW2 , a1↔b2 , a2↔b1 , qW 1↔2qW 2 , qW 18↔2qW 28 , ~40!

and to exploit also the integration measure in the alternative form:

E dk2

~2p!
dr f 5E

0

1 dy

2y~12y!
E dD22l 2

~2p!(D21)
, ~41!

where

y5
a2

a
. ~42!

The details of the integration are presented in the Appendix. The integration for the non-Abelian contribution can be pe
for arbitrary space-time dimension. The result is

E dk2

~2p!
dr fA5

16

~4p!21e

G~12e!

e

@G~11e!#2

G~412e! H 2~11e!2S ~kW2!e

kW2
~qW 1

2qW 28
21qW 2

2qW 18
2!1~qW 2!11eD

1@kW2~2kW22qW 1
22qW 2

222qW 18
222qW 28

212qW 2!1~qW 1
22qW 2

2!~qW 18
22qW 28

2!#
@2~11e!qW 1

2qW 2
2f02e~qW 1

21qW 2
2!f1#

~qW 1
22qW 2

2!3

1
e~kW22qW 18

22qW 28
2!24~11e!2qW 2

~qW 1
22qW 2

2!
f114~11e!2

qW 1
2qW 2

2

~qW 1
22qW 2

2!
f01~qW 1↔qW 18 , qW 2↔qW 28!J , ~43!

where the functionsfn are given in Eq.~17!. Considering the physical limite→0, we must take into account the subsequ
integration of the kernel overkW , which leads to contributions;e21 from the terms having the singularity atkW250. Conserving
all the terms giving nonzero contributions in the limite→0 after integration overkW , the result~43! in this limit reads
074025-7
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E dk2

~2p!
dr fA5

2

3~2p!2 H 2
12

~4p!e
G~2e!

@G~21e!#2

G~412e! S ~kW2!e

kW2
~qW 1

2qW 28
21qW 2

2qW 18
2!2~qW 2!11eD

1@kW2~2kW22qW 1
22qW 2

222qW 18
222qW 28

212qW 2!1~qW 1
22qW 2

2!~qW 18
22qW 28

2!#
@2qW 1

2qW 2
2ln~qW 1

2/qW 2
2!2~qW 1

42qW 2
4!#

~qW 1
22qW 2

2!3

1~kW22qW 18
22qW 28

2!12S 2qW 1
2qW 2

22qW 2~qW 1
21qW 2

2!

~qW 1
22qW 2

2!
D lnS qW 1

2

qW 2
2D 22qW 2lnS qW 1

2qW 2
2

qW 4 D 1~qW 1↔qW 18 ,qW 2↔qW 28!J . ~44!

The Abelian contribution is not singular at all, so we can consider it from the beginning in the physical spac
dimension,e50. Nevertheless, this contribution has a form much more complicated than the non-Abelian one. Eviden
circumstance that the latter contribution is simpler must be related to the special role played by the gluon channel in
of gluon Reggeization. In fact, the Abelian contribution was calculated many years ago@16# in the framework of quantum
electrodynamics and we can use the results obtained there. We have

E dk2

~2p!
dr f~A2B1 l 1↔ l 2!5

32

~2p!2
K1S qW 12

qW

2
,qW 22

qW

2
D , ~45!

with the functionK1 given by Eq.~A39! of Ref. @16#, where in the RHS we have to make the substitutions

qW→qW 12
qW

2
, qW 8→qW 22

qW

2
, rW→ qW

2
, QW →qW 12qW ~12y!, QW 8→qW 22qW ~12x!.

It is worthwhile to say that Eq.~45! contains a nonzero fermion mass and, at first sight, has a logarithmic singularity whe
mass tends to zero; but the singularity is spurious because of cancellations among various terms.

We can now consider the quark contributionK r
(R)Q(qW 1 ,qW 2 ;qW ) to the ‘‘real’’ part of the nonforward kernel of the BFKL

equation. It was explained already that in the NLLA this contribution is determined by the quark correction to the one
production and by the quark-antiquark production in the Reggeon-Reggeon collisions:

K r
(R)Q~qW 1 ,qW 2 ;qW !5K RRG

(R)Q~qW 1 ,qW 2 ;qW !1K RRQQ̄
(R)

~qW 1 ,qW 2 ;qW !. ~46!

The first term in the RHS of this equation is given by Eqs.~4! and ~17!–~19!; the second, by Eqs.~26!–~29! and ~43!–~45!.
For the octet case, as it can be seen from Eqs.~26!–~29!, the contribution from the quark-antiquark production contains o
the non-Abelian part, which was calculated for arbitrary space-time dimension. Since the quark correction to the on
production was also calculated for arbitraryD, the quark contribution to the ‘‘real’’ part of the kernel in the gluon channel
arbitrarye turns out to be

K r
(8)Q~qW 1 ,qW 2 ;qW !5g4nfN

1

~2p!D21

1

~4p!21e

G~12e!

e

@G~21e!#2

G~412e! H ~kW2!e

kW2
~qW 1

2qW 28
21qW 2

2qW 18
2!

1qW 2
„~qW 2!e2~qW 1

2!e1~qW 2
2!e

…2
~qW 1

2qW 28
822qW 2

2qW 18
2!

kW2
„~qW 1

2!e2~qW 2
2!e

…1~qW 1↔qW 18 ,qW 2↔qW 28!J . ~47!

It is easy to see that the expression in the curly brackets vanishes when any of theqW i ’s or qW i8’s tends to zero, as it should be

In the physical limite→0, keeping all the terms giving nonzero contributions in this limit after integration overkW , we obtain

K r
(8)Q~qW 1 ,qW 2 ;qW !5

g4nfN

24~2p!5 H 2
1

pe

6

~4p!2e
G~2e!

@G~21e!#2

G~412e! F ~kW2!e

kW2
~qW 1

2qW 28
21qW 2

2qW 18
2!

1qW 2
„~qW 2!e2~qW 1

2!e2~qW 2
2!e

…G2
~qW 1

2qW 28
22qW 2

2qW 18
2!

kW2
lnS qW 1

2

qW 2
2D 1~qW 1↔qW 18 ,qW 2↔qW 28!J . ~48!

The quark contribution to the ‘‘real’’ part of the kernel in the Pomeron channel, according to Eqs.~4! and ~27!–~29! and
~49!, can be presented as
074025-8
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K r
(1)Q~qW 1 ,qW 2 ;qW !52K r

(8)Q~qW 1 ,qW 2 ;qW !2
g4nf

~2p!5N
K1S qW 12

qW

2
,qW 22

qW

2
D . ~49!

Let us mention the properties of the kernel:

K r
(R)~0,qW 2 ;qW !5K r

(R)~qW 1,0;qW !5K r
(R)~qW ,qW 2 ;qW !5K r

(R)~qW 1 ,qW ;qW !50,

which follow from the gauge invariance, and

K r
(R)~qW 1 ,qW 2 ;qW !5K r

(R)~qW 2 ,qW 1 ;2qW !5K r
(R)~qW 18 ,qW 28 ;2qW !,

which follow from the symmetry of the imaginary part of the Reggeon-Reggeon scattering amplitude~8!, entering the
expression~7! for the ’’real’’ part of the kernel. Let us stress here that the above properties, descending from very g
arguments, are valid also for the gluon part of the kernel; we omitted indeed the superscriptQ in the above equations.

Another important property of the kernel is its infrared finiteness at fixedkW5qW 12qW 2. The 1/e singularity in Eq.~47! is the
ultraviolet one and disappears when we expand the kernel in terms of the renormalized coupling. Indeed, in this case
to add to the RHS of Eq.~47! the piece coming from the coupling constant renormalization@see Eqs.~5! and~6!# in the LLA
kernel ~3!. For the expansion in terms of the renormalized coupling we obtain in the limite→0

K r
(8)Q~qW 1 ,qW 2 ;qW !renorm5

ḡm
4 m22enf

p11eG~12e!N
H 1

e S 2@G~21e!#2

G~412e! S kW2

m2D e

2
1

3D F ~qW 1
2qW 28

21qW 2
2qW 18

2!

kW2
2qW 2G

1
1

3 FqW 2lnS qW 2kW2

qW 1
2qW 2

2D 2
~qW 1

2qW 28
22qW 2

2qW 18
2!

kW2
lnS qW 1

2

qW 2
2D G1~qW 1↔qW 18 ,qW 2↔qW 28!J . ~50!

As it can be seen from this expression, the 1/e singularity at fixedkW2 disappear after expanding (kW2/m2)e in powers ofe. The
expansion is not performed here, since in the integral overkW of Eq. ~1! the region of smallkW2, for which e ln(kW 2/m2);1, does
contribute. This region contributes to the integral with terms singular in 1/e. For the vacuum channel, these terms cancel
singularity in the ‘‘virtual’’ contribution to the kernel, related to the gluon trajectory. The cancellation occurs quite sim
to the forward case, so it does not need a special treatment. For the octet case such cancellation is evidently absent
the different coefficients~4! between vacuum and gluon channels. We observe, however, that the cancellation is recov
the case of the colourless compound state of three Reggeized gluons, i.e., the odderon. In this case, indeed, the ‘‘rea
the kernel involves the three combinations with a different pair of Reggeized gluons in the octet channel, while the ‘‘v
part of the kernel involves three gluon trajectories. The cancellation of the infrared singularities follows then quite simp
the singular part of Eq.~49!.

VI. THE CHECK OF THE ‘‘BOOTSTRAP’’ CONDITION

The ‘‘bootstrap’’ condition derived in Ref.@13# has the form

g2Nt

2~2p!D21E dD22q1

qW 1
2~qW 12qW !2E dD22q2

qW 2
2~qW 22qW !2

K (8)~qW 1 ,qW 2 ;qW !5v (1)~ t !„v (1)~ t !1v (2)~ t !…. ~51!

HereK (8)(qW 1 ,qW 2 ;qW ) is the kernel of the nonforward BFKL equation,v(t)5v (1)(t)1v (2)(t) is the deviation of the gluon
Regge trajectory from unity in the two-loop approximation andt52qW 2. In the one-loop approximation~LLA ! the trajectory

v (1)~ t !5
g2Nt

2~2p!D21E dD22q1

qW 1
2~qW 12qW !2

~52!

is purely gluonic. The quark contribution to the trajectory appears at the two-loop level~NLLA ! and is given by Eqs.~12! and
~13!. The kernelK (8)(qW 1 ,qW 2 ;qW ), according to Eq.~2!, is expressed through the trajectory and the ‘‘real’’ part. The quark p
074025-9
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of the latter is given by Eq.~47!. Using this equation together with Eqs.~12! and ~13! for the quark contribution to the
trajectory, we arrive at

E dD22q2

qW 2
2~qW 22qW !2

K(8)Q~qW 1 ,qW 2 ;qW !5g4nfN
1

~2p!D21

1

~4p!21e

G~12e!

e

@G~21e!#2

G~412e!
E dD22q2

qW 2
2

3H qW 1
2

kW2
„~qW 1

2!e1~qW 18
2!e2~qW 2

2!e2~qW 28
2!e

…1
qW 2

qW 28
2
„~qW 2!e2~qW 1

2!e2~qW 2
2!e

…1~qW 1↔qW 18!J ,

~53!
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n

e
e
,

io
n
n
r

te
e
m

r i
c

ev
th
i.

ua
f
e

he

th
lta
t

he

n
si
so
he
p

li-
n

ob-

b-

eir

is-
re-
s and
. It
ads
he

o
in
ic

on

-
v-
the
where kW5qW 12qW 2 , qW 185qW 12qW and qW 285qW 22qW . Putting the
RHS expression into Eq.~51! and using Eqs.~52!, ~12! and
~13!, it is easy to verify that the ‘‘bootstrap’’ equation~51! is
satisfied.

VII. DISCUSSION

In this paper we have calculated the quark part of
kernel of the generalized nonforward BFKL equation at no
zero momentum transfert in the next-to-leading logarithmic
approximation. Along with the quark contribution to th
gluon Regge trajectory, which is the same as for the cas
zero momentum transfert and therefore is known already
this part includes pieces coming from the quark contribut
to the radiative corrections for the one-gluon production a
from the quark-antiquark production in the Reggeo
Reggeon collisions. The results obtained can be used fo
arbitrary representation of the color group in thet channel.

For all such representations, the part of the kernel rela
with the real particle production is infrared finite, in th
sense that there are no singularities at fixed transverse
mentumkW of the produced particles. The integration overkW
in the generalized BFKL equation leads to terms singula
the limit e→0. For the vacuum channel, these terms can
the singularity in the ‘‘virtual’’ contribution related to the
gluon trajectory. For the octet case such cancellation is
dently absent, although it is recovered in the case of
colourless compound state of three Reggeized gluons,
for the odderon.

The kernel for the octet case enters the ‘‘bootstrap’’ eq
tion for the gluon Reggeization in QCD. The fulfillment o
this equation is necessary for the self-consistency of the d
vation of the BFKL equation. We demonstrate explicitly t
fulfillment of the ‘‘bootstrap’’ condition in the next-to-
leading logarithmic approximation in the part concerning
quark contribution. The check performed serves simu
neously as a stringent examination of the correctness of
calculations of the quark contribution to the kernel of t
BFKL equation.

Recently a paper by Braun and Vacca@17# appeared, de-
voted to the NLLA kernel of the nonforward BFKL equatio
in the octet case. In this paper the kernel was obtained u
as a basis the bootstrap relation and a specific ansatz to
it. In Ref. @17# the kernel was defined as the kernel of t
equation for the amputated Reggeized gluon-target am
07402
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e
e.,
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ri-
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he
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tude†see Eqs.~1!–~3! of Ref. @18# and Eq.~2! of Ref. @17# ‡,
while our kernel is the kernel for the nonamputated amp
tude@see our Eq.~1!#. This implies that the relation betwee
our kernel,Kr , and their kernel,V, should be~in the deno-
tations used in Ref.@17#! Kr(q,q1 ,q18)5q18

2q28
2V(q,q1 ,q18).

With this correspondence our results disagree with those
tained in Ref.@17#.

However, in a revised version of their paper@17# ~see also
Ref. @19#!, which appeared after the present work was pu
lished as a report, the authors of Ref.@17# have added an
Appendix where they use a different relation between th
and our kernel†see Eq.~51! of Ref. @17# ‡. This relation
follows from requiring that their ansatz for the kernel sat
fies the correct symmetry properties. With this new cor
spondence there is indeed agreement between our result
theirs in the case of the quark contribution to the kernel
would be interesting to check if the symmetrized ansatz le
to the correct results also for the gluon contribution to t
kernel.
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APPENDIX

In this Appendix we present the details of the calculati
of

E dk2

~2p!
dr fA5E

0

1 dx

2x~12x!
E dD22l 1

~2p!(D21)
A, ~A1!

whereA is given by Eq.~30!. We group the terms contrib
uting to A in four different classes according to their beha
ior under the integration. The first class contains only
first term in the RHS of Eq.~30!:

A1532
sa1b2

t̃ 1 t̃ 18
~QW 1QW 18!. ~A2!

It can be rewritten using Eqs.~20!, ~32!, ~33!, and~35! in the
equivalent form
5-10
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A1532
12x

x

lW1
2~QW 1QW 18!

t̃ 1 t̃ 18
5

32x~12x! lW1
2~QW 1QW 18!

@ lW1
21x„qW 1

222~ lW1qW 1!…#@ lW1
21x„qW 18

222~ lW1qW 18!…#
. ~A3!

Taking first the integral overx, we have

E
0

1 dx

2x~12x!
A15

16~QW 1QW 18!

~qW 182 lW1!22~qW 12 lW1!2
ln

~qW 182 lW1!2

~qW 12 lW1!2
.

Using now the following simple trick:

1

~qW 182 lW1!22~qW 12 lW1!2
ln

~qW 182 lW1!2

~qW 12 lW1!2
5E

0

1

dz
1

z~qW 182 lW1!21~12z!~qW 12 lW1!2
,

the integration overl 1 and the subsequent integration overz become trivial and give

2
64G~2e!

~4p!21e

@G~21e!#2

G~412e!
~qW 2!11e116E dD22l 1

~2p!(D21)
. ~A4!

The last term in the above expression vanishes in dimensional regularization. We stress once more, however, that
dently from the regularization scheme, the integrals which diverge at largeu lW i u in D54 cancel in Eq.~A1!.

The second class of terms in the RHS of Eq.~30! is

A2582
16

k2
S qW 22

qW 1
2qW 28

21qW 2
2qW 18

2

sab
D 2

8

~k2!2 Fsab12sa1b12qW 1
2 a1

a

22qW 2
2 b1

b
22 lW1~qW 11qW 2!GFsab12sa1b12qW 18

2 a1

a
22qW 28

2 b1

b
22 lW1~qW 181qW 28!G . ~A5!

Using again Eqs.~20!, ~32!, ~33! and ~35!, the above expression can be recast in the following form:

A2516x~12x!F21~122x!2
qW 1

21qW 18
2

S
22x~12x!~122x!2

qW 1
2qW 18

2

S2 G
2

16x2~12x!2

LW 2
F2~122x!

x~12x!
S ~LW qW 18!2x~12x!

qW 18
2~LW kW !

S
D S 122x~12x!

qW 1
2

S
D

1
2~122x!

x~12x!
S ~LW qW 1!2x~12x!

qW 1
2~LW kW !

S
D S 122x~12x!

qW 18
2

S
D 2

qW 18
2qW 2

21qW 1
2qW 28

2

S
1

qW 2

x~12x!
G

2
128x2~12x!2

~LW 2!2
S ~LW qW 1!2x~12x!

qW 1
2~LW kW !

S
D S ~LW qW 18!2x~12x!

qW 18
2~LW kW !

S
D . ~A6!

The nonzero integrals overl 1 are the following:

I 15E dD22l 1

~2p!(D21)

1

S
5

2G~2e!

~4p!21e
@x~12x!kW2#e,

I 25E dD22l 1

~2p!(D21)

1

S2
5

2G~12e!

~4p!21e
@x~12x!kW2#e21, ~A7!

I 35E dD22l 1

~2p!(D21)

1

LW 2S
52

2G~2e!

~4p!21e
@x~12x!kW2#e21,
074025-11
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I 45E dD22l 1

~2p!(D21)

1

~LW 2!2
S ~LW qW 1!2x~12x!

qW 1
2~LW kW !

S
D S ~LW qW 18!2x~12x!

qW 18
2~LW kW !

S
D

52
G~2e!

~4p!21e

~12e!qW 1
2qW 18

22qW 18
2~qW 1kW !2qW 1

2~qW 18kW !

~11e!
x~12x!@x~12x!kW2#e21.

Using the above result and integrating also overx , we finally obtain

E
0

1 dx

2x~12x!
E dD22l 1

~2p!(D21)
A252

64G~2e!

~4p!21e

@G~21e!#2

G~412e!

~kW2!e

kW2
~qW 18

2qW 2
21qW 1

2qW 28
2!. ~A8!

The remaining terms in the RHS of Eq.~30! are

A35
16

k2 F 1

t̃ 1
S F ~QW 1qW 18!~sa1b22 lW1 lW2!1~QW 1 lW2!S sa1b1 lW1~qW 181qW 28!22qW 18

2 a1

a D G
1~ lW1↔ lW2 ,a1↔b2 ,a2↔b1 ,qW 1↔2qW 2 ,qW 18↔2qW 28! D G ~A9!

and

A45A3~qW 1↔qW 18 , qW 2↔qW 28!. ~A10!

It is not necessary to calculate explicitly the integral ofA4, since it can be obtained by simple substitutions from that ofA3.
ConcerningA3, it can be rewritten equivalently as

A35
16x~12x!

LW 2 t̃ 1

F ~ lW1QW 1! lW2~qW 181qW 28!1~ lW2QW 1! lW1~qW 181qW 28!

1
~LW lW1!QW 1~qW 181qW 28!

x
1a1bsS 12

2qW 18
2

abs
D ~ lW2QW 1!2ab2sS 12

2qW 28
2

abs
D ~ lW1QW 1!G . ~A11!

SinceA3 is manifestly invariant under the ‘‘left-right’’ transformation~40!, we can separate in the above expression two
of terms, related each other by the ‘‘left-right’’ transformation. One possible separation is

A35
16x~12x!

LW 2 t̃ 1

F ~ lW1QW 1! lW2~qW 181qW 28!1
~LW lW1! QW 1~qW 181qW 28!

2x
2ab2sS 12

2qW 28
2

abs
D ~ lW1QW 1!G1@ ‘ ‘ left-right’ ’ #[ f 31 f 3

(L/R) ,

~A12!

with obvious notation. Since the integration measure can be put in the two equivalent forms~38! and ~41! connected by the
‘‘left-right’’ transformation, the result of the integration off 3

(L/R) can be obtained from that off 3 by the change (qW 1↔
2qW 2 , qW 18↔2qW 28). Therefore the integration off 3

(L/R) can be avoided. This allows to escape those integrands withLW 2 t̃ 1S at the
denominator which come from the term proportional toa1 /a in Eq. ~A11! and would be very nasty to integrate with th
measure~38!. Let us focus then our attention onf 3 which can be written as

f 352
8x~12x!

LW 2 t̃ 1

H 2

x
LW 2~ lW1QW 1!2

~LW lW1!QW 1~qW 181qW 28!

x
12~ lW1QW 1!@22~12x!~qW 18qW 28!1x~qW 28

22qW 18
2!1 lW1~qW 181qW 28!#J .

~A13!

The integration of the first term is trivial and gives

I 552E
0

1 dx

2x~12x!
E dD22l 1

~2p!(D21) F16~12x!LW 2~ lW1QW 1!

LW 2 t̃ 1
G5

32G~2e!

~4p!21e

@G~21e!#2

G~412e!
~qW 1

2!11e. ~A14!
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For the remaining terms we limit ourselves to illustrate the strategy of the integration, since presenting all the inter
results would be too lengthy. The basic integrals to be calculated are of the form1

I 5E
0

1

dxE dD22l 1

~2p!(D21)

xn11

~ lW12xkW !2@~ lW12xqW 1!21x~12x!qW 1
2#

, ~A15!

with n natural number. Using the Feynman parametrization and integrating indD22l 1, one obtains

I 5
2G~12e!

~4p!21e E0

1

dxE
0

1

dz
xn11

$xz@x~12z!qW 2
21~12x!qW 1

2#%12e
5

2G~12e!

~4p!21e E0

1

dy ye21E
y

1

dx
xn

@x~qW 2
22qW 1

2!1qW 1
22yqW 2

2#12e
,

~A16!

where the change of variabley5xz has been performed in the last equality. This integral can be now calculated integ
first overx and then overy. The complete calculation for all the terms in Eq.~A13! except the first is long, but straightforward
The final result for

E
0

1 dx

2x~12x!
E dD22l 1

~2p!(D21)
~A31A4! ~A17!

is given by the last three rows in the RHS of Eq.~43!.

1Strictly speaking, there are also integrals with (lW1pW ), lW1
2 or ( lW1pW ) lW1

2 at the numerator, wherepW is a generic momentum in the transver
space, but they can be treated similarly.
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