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N/D description of two meson amplitudes and chiral symmetry
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The most general structure of an elastic partial wave amplitude when the unphysical cuts are neglected is
deduced in terms of thd/D method. This result is then matched to lowest ord¥p?), chiral perturbation
theory (yPT) and to the exchangé&onsistent with chiral symmetryof resonances in the channel. The
extension of the method to coupled channels is also given. Making use of the former formalisim; dmel
Ka (1=1/2) P-wave scattering amplitudes are described without free parameters when taking into account
relations coming from the I, expansion and unitarity. Next, the scalar sector is studied and good agreement
with experiment up to/s=1.4 GeV is found. It is observed that tlag(980), o, and k(900 resonances are
meson-meson states originating from the unitarization of@p?) yPT amplitudes. On the other hand, the
f4(980) is a combination of a strorf§fwave meson-meson unitarity effect and a preexisting singlet resonance
with a mass around 1 GeV. We also study the size of the contributions of the unphysical cutsrte the
=0) andKm (1=1/2) elasticS-wave amplitudes fromyPT and the exchange of resonances in crossed
channels up ta/s~800 MeV. The loops are calculated asyRT at next to leading order. We find a small
correction from the unphysical cuts to our calculated partial wa\&@3556-282(99)01217-5

PACS numbs(s): 13.75.Lb, 11.55.Fv, 11.80.Et, 12.39.Fe

[. INTRODUCTION none in the basic lines we outlined before. These studies
have led to a variety of models dealing with the scalar
The understanding of the scalar meson-meson strong immeson-meson interaction and its associated low energy spec-
teraction is still so controversial that there is not even a controscopy. The low energy scalar states have been asdsfed

sensus about how many low lying statésith masses to conventionabjg mesong6,2], g%q? stateg7,8], KK mol-

<1 Ge\) there are. The main difficulties which appear in ecules[9,10], glueballs[11] and/or hybridg12].

this sector are, first, the possible presence of large width One can think in two possible ways in order to avoid the
resonances, as ttig(400—-1200)= o in mr scattering or the  former explicit model dependence for the scalar sector, apart,
K5 (900)=« in the | =1/2 K7 amplitude, which cannot be of course, of solving QCD in four dimensions for low ener-
easily distinguished from background contributions, andgies which, nowadays, is not affordable.

second, the existence of some resonances which appear justOne way to proceed is to make use only of general prin-
in the opening of an important channel with which they ciples that the physical amplitudes must fuffill, as unitarity
couple strongly, such as, for example, thg980) or the and analyticity. There are a series of works by Pennington,

a,(980) with theKK threshold around 1 GeV. All these Morganet al.[1,13] which fit nicely the experimental data
aspects show that it is not clear how many states are presestyailable for the scalar-isoscalar sector and try to obtain also
which is their nature, and why simple parametrizations of thesome understanding of the associated spectroscopy. Another
scalar physical amplitudes in terms of standard Breit-Wignework in this line is presented ifil4]. However, these ap-
resonances are not adequate, as stressed in several wopkeaches have also problems as, for example, the specific
[1,2,3. way in which the amplitudes are parametrized and the lack of
The conflicting situation for the scalar sector contrastsenough precision in the experimental data in order to discard
with the much better understood vector channels. In this latether possible solutions.
ter case, one can achieve a sound understanding of the phys- Another alternative is the use of effective field theories
ics involved just from first principle§4], namely, chiral which embody and exploit the symmetries of the underlying
symmetry, unitarity, and relations coming from the QCD dynamics, in this case QCD. In this sense, chiral perturbation
limit of an infinite number of colorglargeN, QCD). Thisis  theory (yPT) [15,16), is the effective field theory of QCD
accomplished thanks to the leading role of @70 and  with the lightest three quark flavors. This approach has been
K*(890) resonances, in accordance with vector meson domextensively used in the last years for the meson sector and
nance, very well established from particle and nuclear physallows to calculate any physical amplitude in a systematic
ics phenomenology. The issue is whether such a basic undgrower momentum expansion.
standing for the scalar sector is possible, and, at the same This latter point of view will be the one adopted here.
time, whether it is able to reproduce the associated phenontirst, we will derive, making use of th’/D method[17],
enology. Connected with the former, it should be interestinghe most general structure for an arbitrary partial wave am-
also to see if some kind of scalar meson dominance remainglitude when the unphysical cuts are neglected. In this way,
in analogy with the above mentioned vector meson domiour method can be seen as the zero order approach to a
nance. partial wave when treating the unphysical cuts in a perturba-
There have been many studies of the scalar sector buive sense. We think that this will be the case, at least, in
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those partial wave amplitudes which are dominated by unito include heavier meson states with sgirl [24], beyond
tarity and the presence of resonances indfehannel with  the lightest pseudoscalarg (K, ). Making use of this final

the same quantum numbers of the partial wave amplitudgormalism, we will study the scalar sector, being able to re-
For example, the case of theandK* resonances in thB-  produce the experimental data up to abgl=1.4GeV,
wave 7 andK 7 scattering respectively or the scalar chan-with s the Mandelstam variable corresponding to the square
nels with isospin 0, 1/2 or 1, where several resonances af the total momentum of the pair of mesons. In order to say
pear. In fact, for thep(K*) meson-meson channels, at leastSomething for higher energies, more channels, apart from the
up to ys=1.2 GeV, one can describe accurately the associo"€S taken here, should be added_. This is not considered in
ated wm(K7) phase shifts just in terms of simple Breit- this yvork, although It can be done in a strwghtforwqrd way.
Wigner parametrizations with the coupling of thgK*) albeit cumbersome, in terms of the present formahsm. We
with mm(Kw) given by the Kawarabayashi-Suzuki- also study the vectotrm and K#(1=1/2) scattering and

N . . : . compare it with the scalar sector to illustrate some important
R|azudd|?—any§zudt?méKSRF) .relatlor; [t}?] and thelrr] differences between both cases.
Masses taken directly by experiment. In this way On€ Nas a 1nqa ymain conclusion of the work is that one can obtain a

free parameter description for these processes without theher accurate description of the scalar sector compared to
unphysical cuts, since it only has the physical or right hanqexperiment, in a way consistent wigiPT and largeN, QCD

one as required by unitarity. Thus, one can deduce that f‘{r25], if the tree level structures coming from lare QCD
thesg processes the contribution from the .unphysical CUtS Br the meson-meson scattering are introduced in a way con-
certainly much smaller than the one coming from the eXjstent withyPT and then are properly unitarized in the way
change of these resonances in shghannel and from unitar- e show here. Contrary to what happens for the vector chan-
ity. Otherwise, a free parameter reproduction of these chamels, where the tree level contributions determine the states
nels with only the right hand cut could not be possible. Thiswhich appear in the scattering, we will see that for the scalar
type of description for the andK* meson-meson channels sector the unitarization of th@(p?) xPT amplitude is strong

is given below in Sec. Il and it was also given in Rgf| for  enough to produce meson-meson states, as for example, the
the case of thg. For the scalar channels with=0, 1 and 1/2  5(500), a,(980), «(900 and a strong contribution to the
there have been a number of previous stud#8,8,19,20  ;(980). All these states, except tlig(980), disappear for
which neglect the contribution from the unphysical cuts es{argeN. QCD because they originate from effects which are
tablishing clearly the great importance of unitarity for the subleading in M. counting rules(loops in thes-channel.
scalar sector. In particular, in the work of R¢L9] the |  we will see below that the origin for such a different behav-
=0,1 S-wave channels were described in terms of just ongor between the and theo will be just a numerical factor
free parameter up tg/s~1.2 GeV, indicating that the con- 1/6 between thé and S-wave O(p?) xPT amplitude. Note
tribution from the unphysical cuts should be small enough tahat in ann-loop calculation this gives rise to a relative sup-
be reabsorbed in this free parameter. The connection bgression factor of 1/6 ! of the P-wave loops with respect to
tween the work of Ref19] and the present one is discussedthe S-wave ones.

in Sec. IV before the subsection dedicated to the resonance

content of ourS-wave amplitudes. It is also interesting to

indicate that i 21,27 the S-wave scattering was also stud- Il. FORMALISM

. . . - 4 .
ied including the unphysical cuts up @(p”) in xPT and the Let us consider in the first place the elastic case, corre-

results obtained were very similar to the ones of the formersponding to the scattering of two particles of magsgsand
works, Refs.[19,20, without any unphysical cuts at all. n, ~respectively. We will also allow for several coupled
Apart from these considerations, we approach in the last se¢hannels at the end of the section.

tion of the present work the influence of the unphysical cuts | o 1! (s} pe a partial wave amplitude with isosdirand
from yPT and the exchange of resonances in crossed cha L(S) P P a

Q‘ngular momentunh.. Since we are dealing withr, K with

nels taking into account the results of REZ3]. In this ref- . . . R
i X and » as asymptotic particles, which have zero s ill

erence, therm andK 7 elastic amplitudes are calculated up N ymp P firw

; X - i A I h [ spin of th ial . Th jection i
to one loop including explicit resonance fielg¥]. In this also be the total spin of the partial wave. The projection in &

way the range of applicability ofPT is extended up tq/s definite angular momentum is given by

~700—-800 MeV. The loops are calculated asxRT at

O(p*. We conclude that the contributions of the unphysical | 1

cuts are small and soft enough to be reabsorbed in our free Tu(s)= 2(v2)“

parameters in a convergent way when treating the left hand

cut in a perturbative way. It is important to indicate that such

a small value for the influence of the unphysical cuts, as caM/here ¢2)® is a symmetry factor to take care of the pres-

be seen in Table Ill, is due to a cancellation between th&nce of identical particles states g or «rm, this last in the

contributions coming from the loops and the exchange ofsospin limit. The indexx can be 0, 1 or 2 depending on the

resonances in crossed channels. number of times these identical particle states appear in the
After neglecting the unphysical cuts we then match thecorresponding partial wave amplitude. For instanee; 2

general structure we obtain from ttN/D method with the for wm— 77, a=1 for nnp—KK, =0 for K7— K= and

lowest orderyPT Lagrangian((p?) [16], and its extension so on.P, (cos#) is the Legendre polynomial df'" degree.

fl d cosdT'(s,cos6) P, (cosh), (1)
-1

074023-2



N/D DESCRIPTION OF TWO MESON AMPLITUDES AND . .. PHYSICAL REVIEW D 60 074023

A T'L(s) partial wave amplitude has two kinds of cuts. N/ (s)
The right hand cut required by unitarity and the unphysical T/ (s)= D/ (s) ()
cuts from crossing symmetry. In our chosen normalization, L
the right hand cut leads to the equati@n the following From Egs.(2), (5), and(7), N/(s) and D (s) will obey

discussions we omit the superindexalthough, it should be 14 following equations:

kept in mind that we always refer to a definite isogpin

ImD/ =ImT/ "IN/ =—p(s)N/ v-, s>sy,,
ImT[1= —p(s) ) L L L p(S)NL th
. . ImD| =0, s<s, 9
for s>sihreshoid™=Sth - 1N the case of two particle scattering, L th ©
the one we are concerned abat=(m;+m,)? andp(s) is

. IMN/=ImT/D|, S<S_et,
given by L LML Left

0 IMN; =0, S>S_¢f- (10
p(s)= 8mys’ ©® Since N and O can be simultaneously multiplied by any
arbitrary real analytic function without changing its ratio,
with T, , nor Egs.(9) and(10), we will consider in the following
that N is free of poles and thus, the poles of a partial wave
_ V(= (my+my)?)(s—(mp—my)?) _ \A(s,mi,m3) amplitude will correspond to the zeros of D
24s B 24/s ' Using dispersion relations for|Ps) and N (s), we write
(4) from Eqgs.(9) and(10)

the center of mas&.m) three momentum of the two meson , (s—sp)" [ v(s")tp(s")N/(s")

system. Di(s)=— f ds’ (5 —9)(s' —sg)"
The unphysical cuts comprise two types of cuts in the th 0

complex s-plane. For processes of the typera—a+a n-1

with m;=m,=m,, there is only a left hand cut fos + > aps™, (11

<sS_eft- However for those ones of the tygetrb—a+b m=0

with m;=m, andm,=m,, apart from a left hand cut there

is also a circular cut in the complescplane for |s|=m3

—mf, where we have takem,>m;. In the rest of this

section, for simplicity in the formalism, we will just refer to ~ N/(s)

the left hand cut as if it were the full set of unphysical cuts. lim —7==0 (12)

This will be enough for our purposes in this section. In any s

case, if we worked in the complgx-plane all the_cuts will _since, from Eq(3),

be linear cuts and then only the left hand cut will appear in

wheren is the number of subtractions needed such that

this variable. vhp(s) 1
. P
The left hand cut, fos<s,ef;, reads im ——= 72 (13
S— 00
T(stie)—T(s—ie)=2iImT.(s). (5)

On the other hand, from Eq$5) and (7), consistently

The standard way of solving Eq) and (5) is theN/D  With Ed. (12)
method[17]. In this method a [(s) partial wave is ex-
pressed as a quotient of two functions:

N (s) (s—sg)" steftd , ImT.(s")D/(s")
T (5= (S (6) R R TCI L EE A EES
S)= ,
L D, (S) n—L-1
a7 oM
with the denominator function [s) bearing the right hand * mzzo AmS™ 14

cut and the numerator function, ) the unphysical cuts.
In order to take explicitly into account the behavior of a
partial wave amplitude near threshold, which vanishes like Equations(11) and (14) constitute a system of integral

p?t=ut, we consider the new quantity, T given by equations the input of which is given by Im(B) along the
left hand cut.
, T.(s) However, Eqgs.(11) and (14) are not the most general
Ti(s)= L () solution to Eqs(9) and(10) because of the possible presence

of zeros of T which do not originate when solving those
which also satisfy relations of the type of E¢B) and(5). So  equations. These zeros have to be included explicitly and we
that we can write choose to include them through poles irf DCastillejo-
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Dalitz-Dyson (CDD) poles after Ref[26]]. Following this
last reference, let us write along the real axis

PHYSICAL REVIEW D60 074023

x(s>=—j%v(s»Lp(s')NL(s')ds'+Msi>, (17)

Si

ImD|(s)= dr(s) 15
mD{(s)=—g-—- (15
Then by Eq.(9), with \(s;) unknown because the inverse of () is not
defined. Thus, we may write
A Ler
EZ—p(S)V N/, S>S,
S
A(S)=-L v(S’)Lp(S’)NL(S’)dS’JrZ A(si) O(s—si),
th
£=O, s<Si. (16) (18)
Let s; be the points along the real axis wherg(§)=0. _ o _
Between two consecutive points, ands; ., we will have  With 6(s) the usual Heaviside function.
from Eq. (16) From Egs.(15) and(18), it follows that
DI(s) (s—sp)" fw ImD/(s")ds’ +“il_ -
S)= ; ; ams
- T sth(s —s)(s'—sp)" =0 m
o — o (575" (= v p(SINI(S)) | (s=So)" [ S(s)A(S' )
:2 ansS — ’ ’ n S ’ ’ n
Mm=0 ™ sy (8" =9)(s"—sp) ™ sin (8" —=8)(8" —5p)
s—so)" (= v(s") p(s")N/(S) o NE s—5p)"
__( O) f : P , L . dS'+z amsm+2 ( |) n( 0) (19)
™ s (8" =S)(s"—5sp) m=0 T m(Si—Sp)" si—s
|
Equation(19) can also be obtained from E() and use (s—5o)" ,S—SiTS—Sg
of the Cauchy theorem for complex integration and allowing s—s (s—sp)" T e—s
for the presence of poles of Bzeros of T) inside and along ' '
the integration contour, which is given by a circle in the —(s—sn1[ 14 Si—So
infinity deformed to engulf the real axis along the right hand =(5~%) s—s;
cut, s;,<s' <. In this way one can also consider the pos- no1
sibility of there being higher order zeros and that some of the e\l (e _ (s—S0)
AR (s=50)" "+ (Si—80) ——<
s; could have nonvanishing imaginary pabecause of the S—S
Schwartz theorenms” will be another zero of [I(s)]. How- n—1 (5i—5o)"
ever, as we will see below far<1, when considering chiral = 2 (s—50)" "1 i(s—5¢) + =
symmetry in the largdé, QCD limit, the zeros will appear i=0 $TSi
on the real axis and also as simple zeros. In general, uging T (20)
instead of T, we avoid working withL'" order poles of P
at threshold in the dispersion relation given by Ep). The terms

The last term in the right hand side of Eq9) can also be

written in a more convenient way avoiding the presence of

the subtraction poingy. To see this, note that

n-1

;O (s—s9)" 1 (si—50)’
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can be reabsorbed in

As a result we can write

(s=s9)" = ¥(s) p(SINI(S) &'
f + 20 S

DL(S):_ s (S/_S)(S/_So)n =

(21)

withd,, (n—1=m=0) andy,;, s; (i=0), arbitrary param-
eters. However, if some of thg is complex there will be
anothers; such thats;=s" and%;=7%", as we explained
above. Each term of the last sum in K1) is referred to as
a CDD pole afteff26].

PHYSICAL REVIEW D 60 074023

The number of free parameters present in &4) is L
+1+2p, whereg is the number of CDD poledJl_, minus
the number of complex conjugate pairs §f These free
parameters have a clear physical interpretation. Consider first
the term 2 which comes from the presence of CDD poles in
D, (s), Eg. (24). In [27] the presence of CDD poles was
linked to the possibility of there being elementary particles
with the same quantum numbers as those of the partial wave
amplitude, that is, particles which are not originated from a
given “potential” or exchange forces between the scattering
states. One can think that given §(B8) we can add a CDD
pole and adjust its two parameters in order to get a zero of
the real part of the new [s) with the right position and
residue, having a resonance/bound state with the desired
mass and coupling. In this way, the arbitrary parameters that
come with a CDD pole can be related with the coupling
constant and mass of the resulting particle. This is one pos-
sible interpretation of the presence of CDD poles. However,
as we are going to see below, these poles can also enter just

Equations(21) and (14) stand for the general integral to ensure the presence of zeros required by the underlying
equations for B and N, respectively. Next we make the theory, in this case QCD, as the Adler zeros for Sawave
approximation of neglecting the left hand cut, that is, we setneson-meson interaction. The derivative of the partial wave

ImT,_(s)=0 in Eq.(14). Thus one has

n-L-1

N/ (s)= mE:() 3 s™. (22)

As a result, N(s) is just a polynomial of degreesn
—L—1.2 So we can write

n-L-1

N/(s)=C ;Ul (s—s)). (23)

In Eq. (23) it is understood that ih—L—1 is zero N is
just a constant. Thus, the only effect of Mill be, apart of

the normalization constaré, the inclusion, at most, of
—L—1 zeros to T(s). But we can always divide Nand O

by Eq.(23). The net result is that, when the left hand cut is

neglected, it is always possible to takg¢(s) =1 and all the

zeros of T(s) will be CDD poles of the denominator func-

tion. In this way,

T/ )——1
B
N/ (s)=1,
. (s=sgtttre o w(s)bp(s))
DL(S)_ p jsmds (S/_S)(SI_SO)L+1
L MR
"r‘mE:O amsm+2i S__S| (24)

'0ne can always make=L + 1 just by multiplying N and O by
s¥ with k large enough.

amplitude at the zero will fix the other CDD paramefgr,

With respect to the contributiob+ 1 to the number of free
parameters coming from the angular momentumit ap-
pears just because we have explicitly established the behav-
ior of a partial wave amplitude close to threshold, vanishing
asvt. This is required by the centrifugal barrier effect, well
known from quantum mechanics.

It should be stressed that E(R4) is the most general
structure that an elastic partial wave amplitude, with arbi-
trary L, has when the left hand cut is neglected. The free
parameters that appear there are fitted to the experiment or
calculated from the basic underlying theory. In our case the
basic dynamics is expected to be QCD, but Ex) could
also be applied to other scenarios beyond QCD as the elec-
troweak symmetry breaking sectavhich also has the sym-
metries[28] used to derive Eq(24), as far as it is knowh

Let us come back to QCD and split the subtraction con-
stantsa,, of Eq. (24) in two pieces

am=an+a>(so). (25
The termarLn will go asN., because in th&l;—c limit, the
meson-meson amplitudes go ragl [25]. Since the integral
in Eqg. (24) is O(1) in this counting, the subleading term
aﬁ}(so) is of the same order and depends on the subtraction
point sy. This implies that Eq(24), whenN,—«, will be-
come

o0

L MU R
D{(s)=D{*(s)= >, ahs™+ > ——, (26)
m=0 i STS

whereR{" is the leading part oR; andM|* counts the num-
ber of leading CDD poles.

Clearly Eq.(26) represents tree level structures, contact
and pole terms, which have nothing to do with any kind of
potential scattering, which in largé. QCD is suppressed.
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In order to determine Eq26) we will make use ofyPT Let us now study the inverse of E9) in order to con-
[16] and of the papefr24]. In this latter work it is shown the nect with O”. With &_, the number of zeros of [T, we
way to include resonances with sp#il consistent with chi- can write
ral symmetry at lowest order in the chiral power counting. It
is also seen that, when integrating out the resonance fields, 1 HiRle(s— Miz)
the contributions of the exchange of these resonances essen- T7%(s) =AL e (s—s) (30
tially saturate the next to leading®T Lagrangian. We will L r=1 '
make use of this result in order to state that in the inverse of
Eq. (26) the contact terms come just from the lowest order,
xPT Lagrangian and the pole terms from the exchange o
resonances in the-channel in the way given bj24] (con-
sistently with our approximation of neglecting the left hand
cut the exchange of resonances in crossed channels is
consideredl In the latter statement it is assumed that the
result of [24] at O(p*) is also applicable to higher orders.
That is, local terms appearing ¥PT and from Eq(26) of
order higher thanO(p*) are also saturated from the ex-
change of resonances filg> 1, where loops are suppressed.

Let us prove that Eq26) can accommodate the tree level
amplitudes coming from lowest ordgPT [16] and the La- way,
grangian given iff24] for the coupling of resonancewith &=R —1. (31)
spin <1) with the lightest pseudoscalafs, K and 7).

Following [24], one can write the exchange of a reso- For L=0, apart from the zeros between resonances, one

In the former equation, iR, =0 or & =0, the corre-
ponding product must be substituted byAL. is just a con-
tant. Note that from Eq$29) {p<Ry+1 andé;<R;, from
simple counting of the degree of the polynomials that appear
in the numerators after writing Eq$29) as rational func-

ns.

On the other hand, note from Ed&7) that, fors=0, the
amplitude from the exchange of resonances, bothLfei0
and 1, is positive below the mass of the resonance and nega-
tive above it. This implies that in the intervaM? ,=s
>Mi2, by continuity, there will be a zero of T. In this

nance(with spin <1) divided by v as has also the requirement from chiral symmetry of the pres-
ence of the Adler zero, along the real axis and below thresh-
(cis+c/m?)? Lo old. Thus,£,=R, and we can write
2_ 1 = 1
Mi—s R —L+1=¢ >R —L. (32
d;s Note that since th&® —L zeros of T are real, the pos-
MZ—s’ L=1, 27 sible single additional zero from the upper limit of E§2)
I

must be also real, since a complex one would imply its con-

whereM; is the mass of thé" resonancem? is some com- jugate too. This is so because all the coefficients in(28).

bination of squared masses of the lightest pseudoscalars aftf real. :
, ; : Let us do the counting of zeros and resonances from Eq.
C;, C{ andd; are arbitrary constants witth=0.

The lowest orderyPT partial wave amplitudel(<1), (26). The number of zeros of|T is equal to the number of

divided again byv", can be written schematically as CDD poles of ", M[. Hence
=M. 33
ast+a’'m? L=0, =ML (33
On the other hand, the number of poles ¢f Ts equal to
b; L=1, (28 the number of zeros of J which has the following upper
limit:
with fm? another combination of squared masses of the light- .
est pseudoscalars. RisM{+L=¢ +L. (34
Thus, in largeN. QCD, the partial wave amplitudes will
have the following structure, after omitting the exchange of Thus
resonances in crossed channels and contact terms of order £ =R —L (35)
higher thanO(p?): L=

R which gives the same lower limit as in E®2). Let us recall
0 (cistc/m?)? that the zeros of Eq.30) are real, as discussed above. This,
- M2—g ' together with the requirement of T(s) being a real function
1 . .

on the real axis, forces all parameters in E2f) to be real.
Ri g Then the number of free parameters in E26) are 2V

TI(s)=T,"(s)=b+ >, 2i5 . (299 tL+1=2§ +L+1. Wherj fixing thes_i parameters in Eq.
=1 M{—s (26) to thes, parameters in EqQ.30) this reduces ir¢, the

number of free parameters in E@6). By fixing the arbitrary

In the former equation it is understood thatRf =0 the  constantA, of Eq. (30) this leaves us withké, +L free pa-
sum does not appear. rameters in Eq(26). Imposing now the position of thR_

To(s)=T("(s)=as+a’ m?+
1
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resonances of Eq30) to be atMi2 we haveR, additional

constraints. Hence we should have
§L+L_RL>0’ (36)

which actually holds, as seen above in E2F). As a conse-

guence Egs(29) can always be cast in the form of E&6).
Let us define the functiog, (s) by

L
gL(s)vt= 20 asH(sp)s™

m=

(s—sp)- "t * s v(s)p(s’)
- . - S (Sr_s)(S/_SO)L+1
(37)
and using the notation
L ML 171
Tr(s)=2 X aps™+ >, —} (38)
m=0 i=1S—S;
results that from Eq(24) one has
TL(S)=[UT () +g ()] (39

The physical meaning of EG39) is clear. The T ampli-
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same happens with tha:SL although, as we will discuss be-
low, they are related b$U(3) considerations.

In Appendix A the already stated coupled channel version
of Eq. (39 is deduced directly from th&/D method in
coupled channelg29].

Ill. THE IDEAL CASE: ELASTIC VECTOR CHANNELS

In this section we are going to study ther and K7
scattering withl=L=1 and|=1/2, L=1, respectively. It
will be shown, as mentioned in the Introduction, that these
reactions can be understood just by invokiag chiral sym-
metry, (2) large N, QCD, and(3) unitarity.

A priori, one could think that relations coming from the
N.—<0 limit should work rather accurately at the phenom-
enological level in these channels due to the predominant
role of thep andK* poles over subleading effects inNl/,
as unitarity loops.

In Eq. (24) the L=1 zero at threshold is included in the
N, function, Eq.(6), which can be taken as

Ni=vN;=v,
D,=Dj, (42

with N; and D, defined in Eq.(8) and given in Eq.24).
However, in this chapter we will also include tliewave

tudes correspond to the tree level structures present befotRreshold factor as a CDD pole in the, Bunction. In this
unitarization. The unitarization is then accomplished throughway, we will treat theS-wave Adler zero and th®-wave
the functiong, (s). It is interesting at this point to connect threshold zero in the same footing, which will make the com-

with the most populaiK-matrix formalism to obtain uni-

tarized amplitudes. In this case one writes
Tu(s)=[KL(s) *=ip(s)]"*. (40)

We see that the former equation is analogous to (B§)
with T/~ *(s)+ Reg, (9 =K (5~

From the former comments it should be obvious the gen-
eralization of EQ.(39) to coupled channels. In this case,
T/ (s) is a matrix determined by the tree level partial wave

amplitudes given by the lowest ordgPT Lagrangian 16]
and the exchange of resonancé24]. For instance,
[TE =T+ TH, [TH(9)]=TH+TE, and so on,
where T is the matrix of theO(p?), xPT partial wave

amplitudes 16] and TR the corresponding one from the ex-
change of resonanc¢24] in the s-channel. Once we have

T/ (s) its inverse is the one which enters in Eg§9). Because
N[ (s) is proportional to the identityg, (s) will be a diagonal

parison among both partial waves more straightforward. The
final result can be derived in the same way as @4) but
working directly with T; instead of 1. Thus

Ni(s)=1,

S—Sp (* p(s")
(s'"—s)(s'—sp)

(43

ds’

Vi
Di(s)= +a-—
(9=3 Jora 2|

Of course, the partial wave amplitude Wwill be the same
than before since we have just divided at the same time N
and D by v=p?. As a simple and explicit example that Eq.
(24) together with Eq(42) are equivalent to Eq43), let us
consider the scattering of two pions. After multiplying N
and D, in Eq. (42) by 4, we divide both functions by 14
=S—5S,, With sA=4me. Keeping in mind Eq.(24), one
still has a sum over the former CDD poles together with

matrix, accounting for the right hand cut, as in the elasticanother one as=s,. The subtraction polynomial of order
case. In this way, unitarity, which in coupled channels readsne ins transforms into a CDD pole at=s, plus a constant.

(above the thresholds of the channielsnd j)

[(IMT = —pi(s)8;=Imgu(8)idy, (4D
is fulfilled. The matrix elemeng,(s);; obeys Eq.(37) with
the right masses corresponding to the chamraid its own
subtraction constani>(s,).

Finally, the dispersive integral gives rise to that of the former
equation(43) together with a constant plus a CDD pole at
s=s,—t0 see this just add and subtragtin 4v(s’) in the
integral of Eq.(24). Hence, the structure given in E@3) is
obtained.

The integral in Eq(43) will be evaluated making use of
dimensional regularization. It can be identified up to a con-

In the present work the coupling constants and resonancstant to the loop represented in Fig. 1. This identification is
masses contained in {s) are fitted to the experiment. The consequence of the fact that both the integral in(&8) and
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_q_
P </ m, \> P
1
m,

FIG. 1. Loop giving rise to the, function.

the loop given in Fig. 1 have the same cut and the sam
imaginary part along this cut, as it can be easily checked.
Following Eq.(37) we define

PHYSICAL REVIEW D60 074023

sional regularization oaS(s,) for the dispersion integral.
TheaSY(u) “constant” will change under a variation of the
scaleu to other oneu’ as

12
Ak =2 () +log” (45)
in order to haveyy(s) invariant under changes of the regu-
larization scale. We will takeu=M ,=770MeV [30]. The
function 0o(s) is also symmetric under the exchange
m,«<>m, and for the equal mass limit it reduces to

2

1 N mj 1, | o(s)+1
(5 —aSis) - S d ED 90(S)= (z72|87(w) +log 7 2 Tolg e
%o ° (s =8)(s ~s9) 40
5 .
m: m’-mi+s ma with
= S w)+log— — 2 " log—
(@2 (m) 9.2 >s g—z =
sS)=\1-— 4
)\lIZ(S,mi,mg) 0-( ) S ( 7)
2s After this preamble, let us consider in first place the
m2+ m%—s+)\1’2(s,m§,m§)” scattering withl=L=1. As can be seen from Fig. 2 this
X lo (44) rocess is dominated by theexchange. From Ed43) one
g mi—i—mg—s—)\llz(s,mf,m%) Eas y the g q43)
. T -1
for s=s;;,. For s<s;, or s complex one has the analytic amrn | Y1
continuation of Eq.(44). The function\'?(s,m?,m3) was Ti"(s)= s—am> +A5, 105 (S)+E - S|

already introduced in Eq(4). The regularization scalg.,
appearing in the last formula of EG4), plays a similar role
than the arbitrary subtraction poisj in the first formula of
Eq. (44). This similarity is consequence of the fact that both
u andsy can have any arbitrary value but the resulting func-

(48)

The first term in the RHS of the last equation fixes the
zero at threshold for &-wave amplitude.
The tree level part of T7(s) from Ref.[24] and lowest

tion go(s) is independent of this particular value because oforder yPT [16], in the way explained in the last section, is

the change in the subtraction constat-(x) for dimen-

given by

150

100

6" . (degrees)

FIG. 2. Isovector7# elastic
phase shifts from threshold up to
Js<1.2 GeV. The dashed line
corresponds to taking\z,zl and
#5'=0. The continuum line corre-
sponds to the simultaneous fit to
the p and K* channels, given by
Eq. (59). Data: circles [32];
squareg33].

400
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22 p721'7T S
O3 72 g2 o
V3 f Mo—s

2p2,

T (s)= 3zt (49

with pfm the three-momentum squared of the pions in the

c.m.,f=87.3 MeV the pion decay constant in the chiral limit
[16]. The deviation ogs with respect to unity measures the
variation of the value of the coupling to two pions with
respect to the KSFR relatidiig], g\2,=1. In [31] this KSFR
relation is justified making use of lardé. QCD (neglecting

PHYSICAL REVIEW D 60 074023

2 p2, M2
252 W2 - ;
3 f Mo—s—iM,I',(s)
r s)——zp?” M, (54)
ol 127 f \/—

For thel =1/2, L=1 K scattering, the tree level ampli-
tude '™, is just given by multiplying Eq(49) by 3/4 and
substitutingpZ . by pg,=X\(s,m%,mg)/4s andM, by M§

loop contribution and an unsubtracted dispersion relation =896 MeV[30], the mass of the neutr&* (890). Nowmy

for the pion electromagnetic form fact¢éa QCD inspired
high-energy behavigr
Comparing Egs(48) and (49), one needs only one addi-

is the mass of the kaon, 495.7 M¢80]. On the other hand,
since mg#m,, instead of having just a single pole in the
denominator function, as in E¢48), for the zero at thresh-

tional CDD pole apart from the one at threshold and wePld: Oné has two simple poles

obtain
at=0,
__ 6f2(M2-4am?)
y = 1
L (M2-4mZ(1-g5)
. 6f? g3|v|§
72 T 1 g2 M2-(1—g)am?’
2
S,= M"z. (50)
1-9;

Thus, we can write our final formula for the isovectotr
scattering in the following way:

T T -1
Y1 Y2
TT7(s) s—am? Ts-s, 90 (s) (51)

in terms of the parametegt and@®(u). Sinceg? is ex-

pected to be close to unity as discussed above, it is useful to

consider the limit wherg2—1, in which cases,— such
that

(52

in which case the second CDD pole in Ef1), ats,, moves
to infinity and the CDD pole contribution gives rise to a

constant term@’% . In this limit we can write

T -1
1 =L

T77(s)= 2 +a,.tgg (s)

(53

Our calculated phase shifts for the vectetr scattering
are represented in the dashed line of Fig. 2, V\g@ais taken
equal to one an@°S"=0 is set to zero. The agreement with

B yf” S_

> =
4pK"IT S+_S,

K
V1 S+

S—s, S—s_

, (59

with s, =(mx+m_)? ands_=(mx—m_)?. That is, we will
have two CDD poles but both entering with just one param-
eter because the behavior at threshold is proportionag ta

In our notation

Ti(s) 4
lim 5 = K-
S—Sih K Y1

For the simple and realistic casgé=1, we have, analo-
gously to the case of the,

K -1
i l =/ T
TX"(s)=| —+AL+095"(s)| (56)
4pK7T
with
. 8FF(ME, —(mg+m,)?)
71 Mi* 1
L 8f? 57
A = —
K M2

K*

In the general case whegf;aé 1, one proceeds in the same

way as for thep introducing an extra CDD, but we shall omit

the details here and the evaluations are done directly using
the final formula

-1
: (58)

1

Km_
E _[UFT””@J%”(s)

with TX™ evaluated as mentioned above.

In Fig. 3, the calculated phase shifts for the 1/2,
P-wave K scattering are shown in the dashed curve for
g2=1 andaS=0. The same remarks, as done before for the
p when commenting Fig. 2, are also valid for tK&. It is
worth stressing that the dashed lines of Figs. 2 and 3 have no
free parameters at all, and depend onlyfoand the masses
of the resonancek* and p.

the experimental data is rather good. If we had just taken the The subleading consta@" present ingo(s), Eq. (44),
imaginary part ofgg”(s) in the former equation we would should be the same for ther and K= states because the
have obtained basically the same curve. This last case corrdependence of the loop represented in Fig. 1 on the masses
sponds just to the Breit-Wigner amplitude of the intermediate particles is given by Eg4). This point

074023-9



J. A. OLLER AND E. OSET PHYSICAL REVIEW D60 074023

200 p——7vp—"+—7+—"+—+—FT-+—+—F——TFT" T T """

150 —

FIG. 3. P-wave elasticK
phase shifts withl=1/2, from
threshold up to s<1.2
GeV. The dashed line corre-
sponds to takinggZ=1 and @St
=0. The continuum line corre-
sponds to the simultaneous fit to
the p and K* channels, given by
Eq. (59). Data: triangles[34];
circles[35].
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can be used in the opposite sense. That is, if it is not possibleetting@St=0. In this way we are taking the regularization
to obtain a reasonable good fit after sett@gy to be the scale as a cutoff. Equatids3), neglecting mi with respect
same in both channels, some kind of(Slbreaking is miss- 1o |v|’2), transforms to

ing.

From Egs.(51) and (58) we do a simultaneous fit to the
experimentalP-wave 7 (I=1) and K# (1=1/2) phase
shifts with 95 and@S‘ as free parameters using the minimi-
zation progranMINUIT. In order to make the data from dif-
ferent experiments consistent between each other, a system- The resultingu will be around by 0.7 TeV, a value com-

atic relative error of a 5% is given to each data point if its pjetely senselessits natural value ige=1 GeV, where typi-
own error is smaller than this bound. The result of the fit iSCa”y resonances appear. A similar conclusion about these
unrealistic high values of the cutoff was also obtained in
g\2,=0.87910.016, [36]. This value ofu makes it manifest that, as we have
already seen in this section, the origin of the vect¢tsand
p is attached to tree level structures, preexisting before uni-
tarization. This case is different than what will be found in
) o . ) _ the scalar case where unitarity plays a very important role.
The errors are just statistical and are obtained by increasing gqr the scalar sector, which we will study in detail in the

in one unit thex? per degree of freedomxg . (- Thexgor  next section, we have only to make the following change in
obtained is Eq. (61):

f2 -1

+do(s) (61)

s—4m?2

7SL=0.341+0.042. (59)

Xi.0.1=0.74, (60) 6f2 £2

2 25
s—4m;  s—m3/2

(62)

with 81 experimental points.

The continuum line corresponds to the fit given by Eg. ) ) ) )
(59). We see that the agreement with data is very good. Notéhat is, basically a factor 6 of difference feraroundM; .
also thatg? is very close to unity. To consider the discrep- This makes that the “cutoff” needed in ther S-wave to
ancy with the KSFR result, which refers to the value of thedet @ resonance of the same mass thanptisgust 1.8 GeV.
coupling constant, it is better to ugg which results to be, The change has been drastic due to the logarithmic depen-
from Eq.(59), 0.94. That is, only a 6% of deviation respect
to unity.

It is interesting and enlightening to see the value that the 2jithout neglecting mi compared WitH\/li one has to multiply
regularization scal@ should have in order to generate fhe the quotient 6%/(s—4m?) in Eq. (61) by (M2—4m?2)/M>~0.87,

pole at 770 MeV when removin@;}7T from Eq. (53) and  as one can check from E¢3). The resultingu is 0.3 TeV.
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dence of the regularization scale in E§1). We will see For thel =0 S-wave, the 4r state becomes increasingly
below the consequences that follow from this fact for theimportant at energies above 1.2-1.3 GeV, so that, in this
scalar sector. channel, we are at the limit of applicability of only two me-

From Eqgs.(48) and (49), one can see the limitations that sons states whes is close to 1.4 GeV. In the= 1/2 chan-
some unitarization methods of théT amplitudes can have nel, the threshold of the importaktz’ state is also close to
when handling a general situation. In particular one can think .4 GeV. Thus, one can not go higher in energies in a real-
of the inverse amplitude methd@AM) [37]. This method istic description of the scalar sector without including the
has proved to be a very powerful tool to extend the range oK 7' and 4r states.
applicability of the perturbative series §PT up to energies Two sets of resonances appear in the foriner0 partial
around 1-1.2 GeV, giving rise to the physical resonancesvave amplitudeg30]. A first one, with a mass around 1
that appear in that case as theandK* in the vector chan-  GeV, contains thé=0 f,(400—1200) and(980) and the
nels as well as the, f,(980), k anday(980) in the scalar |=1 a,(980). A second set appears with a mass around 1.4
ones[20,21,23. This approach is based in an expansion ofGeV as the =0 f,(1370) and thef,(1500), the |
the inverse of th&< matrix [20], see Eq(40) and the sen- =1 a,(1450) or thel =1/2 K}(1430). As a consequence,
tence below it. Consider that one can neglect the loop congne could be tempted to include the exchange of two scalar
tributions in theK matrix, as it occurs for therm and | nonets, with masses around 1 and 1.4 GeV. Before discuss-
=1/2 K P-wave amplitudes and it is also the case in largeing whether this is the case, let us write the symmetéjc T
Nc QCD. Then, from Eq(49), if gi#1 a zero of the tree matrix of tree level amplitudes for the different isospins.
level amplitude will appear, which, in turn, implies a pole in This matrix, T;, is determined, as explained at the end of
its inverse. As a consequence, the expansion of the inversgsc || from the lowest ordexPT amplitudes, #, and
amplitude will break afnote that from Eq(40) a zerointhe  from the exchange of scalar nonets in thehannel as given
K matrix implies a zero in the full amplitude T by Ref.[24], TR. In the following formulas we consider the

M2 exchange of only one nonet. If more nonets are needed, they
=2 (63 have only to be added in the same way as the first nonet is

1-g; introduced.

S2

where the zero of the amplitude occurs.
Thus, for our final valug2~0.9, \s,~2.4 GeV, further
away of the physical region typically studied by this method.
That explains the success of the IAM when applied to the To11=
vector i andl =1/2 Kar channels in the region dominated
by the p and K* resonances, respectively. However, in a

=0

Zs—meJrE (ay)? +§ (8(0)1)?
2f2 "2M%2-s 2 M2-s’

general scenario witly? very different from 1 we cannot T §j+ aa; +‘/§B(0)1B(0)2
guarantee the applicability of the IAM. This point should be 0127 4 2 Mi—s M3—s
considered when making use of the IAM in other situations
beyond QCD, as the ESHS8], where the underlying theory 3 s (ay)? (B(0),)?
is not known and, furthermore, there are no experimental TOOO'ZZZZf_2+2 M2 +2 MZ—s '
data to rely upon. 178 8~ S
IV. THE SCALAR SECTOR T m> V3 ajas V3 B(0)18(0)s
0,13~ T 5 M2_< o 7_ )
In this section we want to study ttf®wavel=0, 1 and V122 2 Mi-s 2 Mg-=s
1/2 amplitudes. For the partial wave amplitudes wits 0
andl =0 and 1, coupled channels are fundamental in order to . 35—2m37— 2/3m2  aag
get an appropriate description of the physics involved up to To2=— AT T MZ—s
Js<1.4GeV. This is an important difference with respect to 7 !
the former vector channels, essentially elastic in the consid- B(0),8(0);
ered energy region. Up tgs=1.4 GeV the most important - Mgz—s d
channels are
T 16mz—7m2 1 (a3z)? 1 (B8(0)3)?
1=0, wm(1), KK(2), 77(3), o 16mc—7my 1 (ay)”  1(B(0)
Toss™ 187 "2MZs' 2 MI s
=1, mn(1), KK(2), (65)
1=1/2, Km(1), Kn(2), (64)  Wwith M; and Mg the masses of the singlet and octet in the

SU(3) limit, m,, is the mass of they, 547.45 MeV[30], f , is
where the number between brackets indicates the index athe decay constant of thg, set to the valud ,=1.3f, ac-
sociated to the corresponding channel when using a matrigording with theyPT prediction[39], f ,=93.3MeV is the
notation as the one introduced in Sec. Il. pion decay constant ang, and 3(0); are given by
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I=1
B(0)1= TZe2

s
Cq= +(Cp—Cq)m?
2 m | 2

me  (B(1)y)?
To11= 32" MIs

PN 2}
=———|C4qz +(cp—cdymg |,
o d [ s 4, Toa2= ~ 172 (65~ 8mp)
3T~ Co5 Cm— Ca) Mg
Vel 42" 3 B(1)18(1);
V2, (67)
(50m—cd)? ,
S (B(1),)?
4 _ S - - T0'22=—2+2—2 ,
@=1 cd§+(cm—cd)mi : 4f Mg—s
al_s ] with the functiong(1); given by
=2 Cd§+(cm—cd)mK ,
4[_ s _ (1) ﬁ[c(sm m)+20m]
3= 73|y + (C— T3 . (66) A= d m
The constantsy, ¢, €4 andt,, characterize the coupling of >
a given scalar nonet to the pseudoscalar pairs of pions, kaons _vs s oo 2
and etas as given if24]. B(1)2= 7z | Caz * (Cm—Ca)Mic |- (68)

I=1/2

, 5 m2smitmp) —3(mg—mD)? 3 (B(1/2),)°
011+ 8sf2 2 M2-s '

— 95?4 25N + 3sNT, + 7SNT, — Imy + Img (m-+m?) — 9mem?

24s %
. \ﬁ B(112),8(1/2),
2 Mz-s '

—9s?—9(mg—m’)2+6s(3mg+m’) —4snt.  (B(1/2),)? -
20T + MZ—s (69)

To,12:

To,zf

with fy the kaon decay constant with the valtie=1.2f Note that the introduction of a nonet implies six new pa-
according to experiment40]. The functionsB(1/2); are  rameters, two masses and four coupling constants, which we
given by fit to the experiment.
According to Eq.(39), we also need the functiogy(s),
B(1/2),= iz[CdSﬂL(Cm—Cd)(mﬁmei)], given by Egs.(44) and (46), with its corresponding>" for

fk the S-wave channels. By S@3) arguments, thaS" constant
can be different for vector and scalar channels. The reason is
that a two meson state has different(S)Uwave functions in
S and P wave, because under the exchange of both mesons
the spatialP-wave is antisymmetric while th&wave is
—cq(mz+ mf})]. (700 symmetric and the total wave function must be symmetric.

B(112),=— fz[cds+cm<5mK 3m?2)
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That is, the two mesons are in different @YU representa- The quantity (1 72,)/4 has been used instead of the in-

tions. elasticity, 799, because the former is much better measured
We have included ,, in the S-wave isoscala®(p®) xPT  and all the experiment®6,47,48 agree on that quantity.

amplitude forKK— 7% and fx in the S-wave, | =1/2 tree

level amplitudes, to obtain, after the fit, that @& constant

was the same for all the scalar channels. These changes come 120

from the SU3) breaking of the octet of+#,K, ) and cannot &Y

be taken into accoung priori, in our way of fixingD | (S) L i

making use of lowest ordegPT [16] and the exchange of ~ We distinguish between the more recent experinié@

resonances given Hi24]. and the older results34,35,50. We have averaged the data
The fit will be done for the following experimental data: from the latter analyses up tgs=1 GeV. Above this en-

the elasticS-wave 7 phase shifts with =0, 5%, the KK~ €rgy. in the latter group of experimental works, onBg]

— o, 1=L=0 phase shifts, 523 the 1=L=0 (1 offers data. The statistical errors in this latter experiment are

very small. We have enlarged them at the level of those in

the most recent experimef9] which would make the dif-

ferent experiments compatible. Thus, the final points used in

the fit for this magnitude will be the ones from9] and the

average betweef84,35,5(Q as described above.

— 7;30)/4, with 74 the inelasticity in that channel, the elastic
S-wave,| =1/2 K phase shiftss{}?° and a distribution of
events around the mass of tlag(980) resonance, corre-
sponding to the central production afrn in 300 GeVpp
collisions[41] for thel=1, L=0 channel.

| =1, L=0 data

600
. . . ) The experimental data is very scarce for this channel. We
Because results coming from different experiments analygjj| take a distribution of events corresponding to the central

ses are not compatible, we have taken as central va}lue f?froduction oy in 300 GeVpp collisions[41]. We will
each energy below’s=1 GeV the mean between the differ- study the data points around the mass ofah@80), where

ent experimental resul{#2,43. For ys>1GeV, the mean 0”014 think that the energy dependence will be domi-

valu_e comes fronf43,44. In .bOth cases the error is the.nated by the exchange of that resonance. We add in an inco-
maximum between the experimental one and the Iarge;t d'?{erent way with respect to the,(980) resonance, the same
tance of the experimental values to the mean one. This pr '

cedure will be the one adopted, when needed, for the rest %}apkg(jround as i41]. The ay(980) contribution is param-
the experimental magnitudes included in the fit. etrized as

dN
82 B = Mol (To)sd?, (71)
cm
For this quantity there are two sets of data belqw
=1.2 GeV. Higher in energy both sets converge. One group
will be represented bj6] and the other one by17,48. The
experimental results froif#6] are larger than the data of the it p.. the three momentum of thes state in the c.m
_— .m.

other works[47,48 below 1.'2 Ge\(. We Wi|| dist?nguish be- corresponding to a total energg, and.\is just a normal-
tween both cases when doing a fit referring to ihagh/low, ization constant

respectively. The change in the value of the fitted parameters
will be very small when changing from one set of data to
another, so that, this experimental ambiguity will not be rel-
evant for our final values. We will average the experimental The fit
data of the second set of works fgs<1.2 GeV in the way
explained above. Wher/s>1.2GeV the average will be Let us now discuss the fits obtained when includiay
done between all the quoted analy$46,47,48. two scalar nonets with masses around 1 and 1.4 Gef2)or
only one nonet with a mass around 1.4 GeV. Of course, the
final value for the tree level, “bare,” masses of the octet and
(1-72l4 singlet will be_ giv_en k_)y the fit. The fits have been done using
the MINUIT minimization program. The output value for the
There are a series of analyses and experiments about thgrameters are written with the same precision as given by
inelastic cross sectiomr7— KK, which agree between each MINUIT.
other in the values for (% 73,)/4. We have taken the data  The fit that results when two nonets are included and also
from [46,47] as representative for such a situation. with the high 93 data is
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First Nonet(MeV) Second None{MeV)
cq=1.80, c4=19.51,
Cm=0.66, cn=19.61,
Mg=1003*+ 600, Mg=1379,
T4=20.99, €4=0.33,

Tm=28.49, C=—2.72,
M;=1032, M;=1000* 600,
Xg.o.f:0-971

188 points.

ast=-0.72,
N=9.2x10"°MeV ?,

PHYSICAL REVIEW D60 074023

(72

A very striking aspect appears when observing the value
of the parameters given in E¢72). The value of the con-
stantscy, ¢, andt; andt/, are, at least, one order of mag-
nitude smaller thai€y, T, andcj, c;, respectively. This
makes that the first octet and second singlet are phenomeno-
logically irrelevant. Note that their masses are essentially
undetermined. This is shown by the need to increase them by
600 MeV in order to make thg , ; to increase by 0.5 units.

In this way, they do not originate or participate in the poles
corresponding to the physical resonances mentioned at the
beginning of the section. They only give rise to poles very
close to the real axis, with a width of only a few MeV. These
poles manifest themselves as very narrow peaks in the partial

Nonet (MeV)
cg=19.18, a5'=—-0.74,
Cm=15.25, N'=9.43X10° MeV 2,
Mg=1390,
Tq=20.94, x3,=1.21,
€,=10.64, 196 points

M,=1021. (74)

waves, which are not observed by experiment.

From the latter discussion we will just introduce a scalar W€ have also shown the statistical errors for the param-
nonet. The resulting values, after a new fit to the data, are eters of the highs fit obtained by increasing the , ; by

High 6%:

Nonet (MeV)

cq=19.1"31, aS'=-0.75+0.20,

Cm=15+30, N'=9.4+4.5x10° MeV 2,

M g= 1390 20,

T3=20.9"17, x3,.¢=1.07,

Tn=10.6"32, 188 points,

one unit, in order to appreciate the precision in the value of
the parameters given by the last fits. The large errocpis
because this constant, as can be seen from(Ef)s.(68) and
(70), enters through the multiplication of squared masses of
the lightest pseudoscalars which are much smaller than
~M?2, around the resonance region of the octet. Thus, its
influence in the final value of the amplitudes is very small.
This also happens 6, although to a lower extension be-
causeM;<Mg. One can see, comparing the last two fits,
that the variation in the value of the parameters is very small
when changing from one set of data to the other. The result-
ing fit for the highs%9 data is shown in Figs. 4—8. The results
obtained before also favor the high solution for #]8 phase
shifts because its correspondigg,, ; is smaller than the one
for the low 693 solution.

This fit has 8 free parameters, 6 constants from the nbnet,
aSt and the normalization constant. In our former work
[19], we were able to describ&?, 535 and (1— 73,)/4 up to
Js=1.2 GeV and a distribution of events around #3¢980)

3If the singlet and the octet introduced really form a nonet is
(73 something we cannot say. However, we will denote the global con-
tribution of the introduced octet plus the singlet by using the word
nonet as a shortcome. In this way, we also follow the nomenclature
of [24], inspired in the W3) symmetry which holds foN — .
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FIG. 4. Elastic isoscalamrr
phase shiftsg?®. The circles cor-
respond to the average of
[42,43,44, as discussed in thé)
subsection. We have also included
the triangle points from45] to
have some data close to threshold,
7 although these points have not
. been included in the fit because
— they are given without errors.

800 1000

Eou[MeV]

mass|[51], using only 2 free parameters: a cutgfirhich
plays the role of the regularization scaleand at the same
time generates a concrete value é5t) and a corresponding
normalization constant for th&,(980) event distribution. In
fact, if we remove the resonance contributions in E§S)
and(67) the formalism of Ref[19] follows from the present

pushed the fit up ta/s=1.4 GeV, while in[19] only data up
Js=1.2GeV was considered. The fact that new resonances
appear around/s= 1.4 GeV has forced us to include an oc-
tet, which implies 3 new parameters, two couplings and a
mass. However, the effect of this octet belgls= 1.2 GeV is
very small, hence only the singlet appearing with a mass

one. It might look surprising that a good fit to the data foraround 1 GeV is relevant for energies belgls=1.2 GeV.

Js<1.2GeV could be obtained ifL9] with just one free

The present fit to the data has led us to the inclusion of this

parameter and a normalization constant for the mass distrginglet resonance in gl apart from the lowest ordexPT
bution, while here one has needed 7 parameters, apart frotmgrangian, while in[19] only the latter contribution was
the normalization constant. One reason is that now we haveonsidered. The reason that forced us to include now the

300

200

12

100 —

FIG. 5. Swave KK—zm
isoscalar phase shiftss?. The
triangle points are from[46],
circles correspond to the average
of [47,48, and squares to the one
of [46,47,48.

1200
E.n[MeV]
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Ng % FIG. 6. (1- 729)/4 with 70
I I T the I=L=0 S-wave inelasticity.
N { i Circles[46]; triangles[47].
0.1 - _
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1000 1100 1200 1300 1400
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mentioned singlet is the consideration of the channel in  models[52,53 and has also been advocated in phenomeno-
I =0, which was omitted if19], and is not negligible above logical analyse$1,13]. Such state could be associated with
1 GeV, as can be seen in its strong coupling tof§@80)  the preexisting singlet state that we need.

resonance that we will obtain below. Thgy channel affects

mostly the magnitude (% 73)/4. Should one have taken the

available data fom, instead of those for (% 73,)/4, which Resonances

are measured with better precision from ther— KK in- Let us now concentrate on the resonance content of the fit
elastic cross section, the effect of the channel would be presented in Eq.73). The octet around 1.4 GeV gives rise to
masked by the large errors ify,. eight resonances which appear with masses very close to the

It is quite interesting to recall that an=0 elementary physical ones,fy(1500), ao(1450) and Kg(1430) [30].
state around 1 GeV has been predicted from QCD inspiredhus, the correlation between tree level resonances, poles

400 T T T T T T T T T T T T T T T T T T T T T T T T T T

300

FIG. 7. Distribution of events
around theay(980) mass corre-
sponding to the central production
7oy in 300 GeV collisiong41].
The abscissa represents the in-
variant mass,E.,,. The dashed
line represents the background in-
troduced in the same reference.

200

Bvents

100

800 850 900 950 1000 1050
E.m[MeV]
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150 —

FIG. 8. Swave |=1/2 K=«

elastic phase shiftss{y?°. The

11
T

g 100 = 7 triangles correspond to the aver-
© i ] age, as described if¥2° subsec-
r 7 tion, of [34,35,5Q. Circles corre-
r . spond to[49].
50 .
L 7y ]
0 1 ' ' | L ' ' 1 L L L 1 L L . |
800 1000 1200 1400
E..[MeV]
and physical resonances is clear aroyfse=1.4 GeV. How- While for the fo(980) one has a preexisting tree level
ever, this correlation is not so clear around 1 GeV. This issugesonance with a mass of 1020 MeV, for the other reso-
will be the object of the following discussiofis. nances present in Table | the situation is rather different. In

From Figs. 4 and 7, one can easily see two resonancédact, if we remove the tree level nonet contribution from Egs.
with masses around 1 GeV, the well knovig(980) and  (65), (67) and(69) theay(980), o and« poles still appear as
a,(980) resonances. The first one could be related to théan be seen in Table II. For tig(980), in such a situation,
singlet bare state witthl;=1020MeV, but for the second One has not a pole but a very strong cusp effect in the open-
we have not bare resonances to associate with, because tihg of the KK threshold. In fact, by varying a little the value
tree level resonance was included with a mass around 1df aS“ one can regenerate also a pole for fg€980) from
GeV and has evolved to the physieg(1450). The situation this strong cusp effect. In Table Il we have not given an

is even more complex, because we also find in our amplighsolute value for the coupling of thg(980) to theKK
tudes other poles corresponding to thg400-120050  channel because one has not a pole for the given value of
and to theKg (900)=«. In Table | the pole positions of the aSL. However, the ratios between the different amplitudes
resonances in the second sfieee given and also the modu- are stable around the cusp position. As a result, the physical
lus of the residues corresponding to the resondRcand  f,(980) will have two contributions: one from the bare sin-
channeli, ¢, given by glet state withM;=1020MeV and the other one coming

from meson-meson scattering, particulayK scattering,
generated by the lowest ordgPT Lagrangian.

In Egs. (65), (67) and (69) when the resonant tree level
contributions are removed, only the lowest ordéX(p?),
wheresg, is the complex pole for the resonanke xPT contributions remain. Thus, except for the contribution

to the f4(980) coming from the bare singlet at 1 GeV, the
poles present in Table Il originate from a “pure potential”
“We do not give a detailed study for the resonances with massescattering, following the nomenclature given[iv]. In this
around 1.4 GeV because we have not included channels which b&vay, the source of the dynamics is the lowest orgBiT
come increasingly important for energies abeve.3 GeV as 4in  amplitudes. The consta@>- can be interpreted from the
=0 orK 7' for | =1/2. This makes that the widths we obtain from need to give a “range” to this potential so that the loop
the pole position of the former resonances are systematicalljntegrals converge. These meson-meson states are shown in
smaller than the experimental onf30]. Thus, a more detailed Fig. 9 in the chiral limit, setting all the masses of the pseu-
study, which included all the relevant channels for energies aboveloscalars to zero and all thie,=f, where P denotes any
1.3 GeV, should be done in order to obtain a better determination gpseudoscalar mesoi, K or . We see in this last figure a

|ZF¢R]= lim |(s—sp) Tl (75)

S—SR

the parameters for this octet around 1.4 GeV. degenerate octet fdr=0, 1 and 1/2 with a mass around 500
5 sheet: Imp;>0, Imp,>0, Imp;>0; Il sheet: Imp,<0, Imp, MeV and a singlet in =0 with 400 MeV of mass. In both
>0, Imp;>0. cases these meson-meson resonances are very broad.
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TABLE I. Pole position and residues for the full amplitude.

s, =445+i221 MeV

{7 =4.26GeV

VSa,= 1053+i24 MeV

§i°§= 5.48 GeV

V'sg,=987+i14 MeV
fo

{ =363GeV

£y,
fo

{kk

=0.51

fo
nn

7 -111
0
{kk

s, =779+i330 MeV

{E.=4.99 GeV
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TABLE II. Pole position and residues when the bare resonant

contributions are removed.

Js,=434+i244 MeV

{7 =4.21GeV

V/s,=1082.0+113.3 MeV

52%: 5.98 GeV

V'sg,=cusp effect

fo == e e
e
fo
—=0.38
0
Sk
fo
1 =1.04
0
é’ .

KK

/s, =770+i341 MeV

k., =4.87GeV

{2 LK
“32=0.70 —=0.62 7% L%,
KK Ik . =0.74 —=0.61

KK

The situation is very different to that of the former studied
vector channels where all the physical resonancesy tired
K*, originate from the preexisting tree level resonances. W
already saw, at the end of the last section, when comparin
the S and P-wave 7 scattering, that thé(p?) xPT ampli-
tude is 6 times larger foL =0 than forL=1 around the
resonance energy region. This implies thabops inL=1,
with the O(p?) xPT amplitudes at the vertices, will be sup-
pressed by a factor 1761 with respect toL=0. The sup-
pression of loops is expected from lariye QCD and this is
in fact what happens for the vector channels, but for the V. ESTIMATIONS OF THE UNPHYSICAL CUT
scalar ones unitarity is unexpectedly Iarge, giving rise to CONTRIBUTION FROM xPT AND THE EXCHANGE
these meson-meson resonances. OF RESONANCES

As can be seen from E@39), these meson-meson poles,
without tree level resonant contributions, originate from the In this last section we estimate the influence of the un-
cancellation between the inverse of tt¥p?) yPT ampli- Physical cuts for the elastiem andK 7 S-waves withl =0
tude and theg, function. As a consequence, the following and 1/2, respectively. The unphysical cuts will be approxi-

relation between the masses of those resonancesfwigh ~ mated by means ofPT supplied with the exchange of reso-
sults: nanceg24] with spin<1 in thet andu channels. The loops

are calculated fromyPT atO(p*) and the exchange of reso-
nances in the crossed channels accounts for a resummation

gincego is O(1) andf? is O(N,) [25], these masses will
row asN;. Thus forN,—x these resonances will go to
finity. This movement can be followed by suppressing the
go function by a factorr from 1 (physical situatiopto O
(N.==). Itis then observed how the resonances in Table I,
without the preexisting resonant contributions, disappear go-
ing to infinity.

MZOCfZ/goy

(76)

O,
ZRRS
=
A
ZH

LS 7
’ L
LA ZEEZATTZF A
(R ELATIL
LRI T IS
LT
LN
A

FIG. 9. Chiral limit. From left to right,(a)—(c), respectively. In(@) the poles of T found in the unphysical sheet are shown 0.
Analogously forl =1/2 and 1 in(b) and(c), respectively.
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of counterterms up to an infinite order, in the way explained TABLE lIl. Influence of the unphysical cuts for the, L

in Sec. Il after Eq(26). The result can be taken directly from =0 andl=1/2,L =0K partial waves. The three first columns
Ref.[23], where ther7m— mmr andK 77— K amplitudes are  refer torm and the last three ti 7.

calculated up to one loop including explicit resonance fields

[24]. Vs Tieft Tiett Vs Tiert Tiett
In order to extract, from Ref23], the contribution of the MeV Toid Ton MV ML Ten
unphysical cuts, which we design by f;, we have made % % % %
use of Eqs(3.2), (3.10, (3.13, (3.14) for the 77 scattering
and of Egs.(3.6), (3.16), (3.19 and (3.20 for the K one. 276 3.7 4.8 634 7.1 8.7
We calculate the loop contributions at the same regulariza3’6 3.5 5.1 684 3.7 4.7
tion scale than i23], that is,u=M,=770 MeV, the same 476 4.1 5.7 734 0.3 0.4
we have taken in this work. In the following, when we refer 576 5.7 6 784 —-25 -3.3
to an equation in the forrtm.n), it should be understood that 676 8.1 6.1 834 -5.7 -7.2
this equation is the corresponding one from RH&B]. The 776 11.2 5.6

work of [23] contains loops and the exchange of resonances
in thes, t andu channels. The exchange of resonances in the
s channel is also present in our work where the masses and The former contribution, together with the exchange of
couplings of the scalar resonances, E@S), were fitted to  resonances and loops in the crossed channels, after project-
data. Obviously the loops and the exchange of resonances jig over theS-wave using Eq(1) with o= 2, define oy in
crossed channels, absent in our work, go t@q On the  our approach.
other hand, we must also include ipcf; a polynomial con- For thel =1/2,L=0 K partial wave one has essentially
tribution of O(p*) because the loop functions used[28],  the same situation than fars. From Eqgs.(3.6) and (3.19

po» MpgandJpq, whereP, Q arew, K or », and our loop ~ one calculates the contribution of loops, which we project
functions, ()go(s), differ in a constant. These polynomial over theS wave. The loops in the channel give the corre-
contributions can be interpreted as subtraction terms from aponding result to Eq77) for theK# | =1/2 Swave. In this
dispersion relation of Ts;. Since the loops are calculated case, instead of having the loop functidpp(s), one can

with Im T at O(p*) one needs three subtractions, which fix write it in terms of Ik (S) andJ_K,](s). After taking into

the order of the subtraction polynomial. Let us explain firstacCount the difference betwedpo(s) and our loop func-
the a7 scattering. _ _ tions, one obtains the analog result to E2p) for Kar. This
amlr)rli(:Td(aEa\}i(tﬁizlgr:re] tg?rsnéh; fﬁ?;ﬁ;’lﬁﬂ d%f 2? ue)laSEhg contribution, together with the projection over t8avave of
(3.10. Making use of Eqs(3.2) and(3.13 the contribution Icorzzze?jnghtgﬁn?;hange of resonanidegs. (3.6), (3.20] in
. N , give .
of the loops in thes channel is given by We have not considered the tadpole contributions coming
2.2 ) 4 from pseudoscalar loops without flux of energy and the cou-
(2s—m7) I (9)+ 3iJr (s)+ M 30 (s). (77 Pling of scalar resonances to the vacutffig. 2.b of[23])
2f4 T gf4 “KK 6f4 "> because they are reabsorbed into the residues and positions
of the CDD poles and the subtraction constagt Eq. (24),
It is straightforward to see that the imaginary part of Eq.which we have phenomenologically fixed.
(77) is the one required by unitarity up 10(p*) for the | Including explicit resonance fields as done [83] in-
=0 S-wave 7 elastic partial wave with pions, kaons and creases the range of safe applicability of chiral symmetry
etas as intermediate states. The squared amplitudes in frofiom Js~400 MeV, accomplished inyPT, up to /s
of the loop functions are the lowest ordgPT amplitudes ~700-800 MeV, as can be seen [i23] when comparing
since loops are calculated @ p?). This is the same kind of their results with the experimental data.
result we would obtain for the loop contributions in tke The results which we obtain for the contribution qfJ;
channel from the expansion of the generalization of (8) in the range of energies 23] are shown in Table Ill. In the
to coupled channels up to the order considered in(Zg, second and fifth columns we show, respectively, the ratio
after dividing Eq.(77) by a global factor 2 to match with our between T and the absolute value of our calculated.|,
normalization in Eq.(1) with «=2. However, as we dis- =0 7w andl=1/2,L=0 K partial wave amplitudes up to
cussed above we use-{gq(s);; instead ofdj;(s) in Eq.(77) Js~800MeV. In Table Il we also compare, J;, with the
in order to evaluate the loop contributions in thehannel. tree level amplitudes gf;;. This ratio is also significative
Hence, we must include in Ty, the following expression:  because the procedure which we have followed to arrive to a
unitarized amplitude from 3, would not be much affected

(2s—m?2)? ] 3s? ; by the addition of Te; which is a small correction with
o7 Unal9)+90(8)19F grz ki (S) +o(S)22) respect to §,,. We see that these ratios are rather small.
" " Therefore, this supports our point of view of treating the left
m? hand cut as a perturbation in the range of energies we have
+ 577 T8+ Go(S)53). (78 ~ considered. _ _
w It is worth mentioning that this smallness of the unphysi-
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cal cuts, as shown in Table llI, is a consequence of a cancePReris, J. R. Pékz and A. Kataev are also acknowledged.
lation between the contributions tq g from the loops and  This work was partially supported by DGICYT under con-
the exchange of resonances in crossed channels. In fact, thacts PB96-0753 and by the EEC-TMR Program-Contract
individual contributions in therm case, for energies around No. ERBFMRX-CT98-0169. J.A.O. acknowledges financial
Js=600MeV, are of the order of 15—20 % with respect tosupport from the Generalitat Valenciana.
Tg,ll'

In a recent work, Refl54], the authors also combine the APPENDIX: N/D IN COUPLED CHANNELS
N/D method with chiral symmetry studying the I(), ) _ _ )
=(0,0), (2,0 and (1,1) = partial wave amplitudes. How- In thls appendix we make use of a matrix for_mallsm to
ever, in this work only elastic unitarity is considered and thed€al with several coupled channels. In analogy with the elas-
calculations are done in the chiral limim(,=0). On the tic case, Eq(7), let us define the matrixTas
other hand, the left hand cut is approximated only by the N L
exchange of the plus a scalar resonance without including Tis)=p "Tuls)p (A1)
loops in the crossed channels. These loops, as we have seshh p a diagonal matrix which elements am;=p;d;

in this section, cancel to a large extent the crossed resonang\ﬁ]erep_ is the modulus of the c.m. momentum of the chan-
Do s . i .m.
contributions for theS-wave | =0 77 scattering. nel i, pi=AY4(s,m2 ,m2)/2ys, with my and my the

VI. CONCLUSIONS masses of the two mesons in channel '
From the beginning we neglect the unphysical cuts. As a

Making use of theN/D method, we have developed the consequence Ts);; will be proportional to pinJ.L, This
most general structure that an elastic partial wave amplitudgakes that T(s)i; , apart from the right hand cut coming
has when the unphysical cuts are neglected. After matchinfiom unitarity (above the thresholds for channélandj, s,
this result with lowest order)(p?), xPT [16] and with the  anq sl, respectively, will have another cut for odd. be-
exchange of resonances with spifil, in a way consistent tweens., ands), due to the square roots presentpinand
with chiral symmetry as given in Ref24], we extend the p; . In this way, T will be free of this cut and will have only

formalism to handle also coupled channels. Then, and : . o o .
. . ' the right hand cut coming from unitarity. Thus it will satis
Km(l=1/2) P-wave amplitudes are described up {® g 9 y fy

=1.2GeV. It is shown that these amplitudes can be given Im Tlf_—l(s): —ptp(s)p-=—p(s)p?, (A2)
rather accurately in terms oh,_., my, f and the masses of

the p and K* resonances, when restrictions coming fromwherep(s) is a diagonal matrix defined by

large N, QCD and unitarity are considered, in the lines of

what was observed if¥]. p

Next, the scalar sector is studied and good agreement with p(s) 8m\s o(s), (A3)
experiment up to/s=1.4 GeV is found. An octet and a sin-
glet are included with masses around 1.4 and 1 GeV, respegith 6(5) another diagona| matrix such thms)ii =1 above
tively. The former originates the observeth(1500),  the threshold of channéland 0 below it.
ap(1450) andK{ (1430) resonances, the latter an important  \we write T, as a quotient of two matrices, Nand O
contribution to the physical pole of tHg(980). Other poles  making use of the coupled channel version of KD
appearing in our amplitudes, teg(980), o, x and an im-  method[29]
portant contribution to the finafy,(980), originate from
meson-meson scattering with the lowest org®T ampli- T/=D/"'N/. (A4)
tudes plus the constaat: as dynamical sources. This situ-
ation is very different from the one observed in the vector We can always take Nfree of poles and also containing
channels where tree level structures dominate the scatterirajl the zeros of T. In such a case Nwill be just a matrix of
process and a strong suppression of unitarity loops occurs, a®lynomials, we then write
indicated at the end of Sec. IV. As a consequence, the

present study supports that a concept like scalar meson domi- N[ =Qn L 1, (A5)
nance, analogous to the well known vector meson one, is not_ ) ) )
suited at the phenomenological level. with Q,_, 1 a matrix of polynomials of maximum degree

In the last section we have made some estimations if—L—1.
order to investigate the influence of the unphysical cuts. The [n this way, from Eqs(A2) and(A4) one has
results obtained support our picture of treating the unphysi- N , oL
cal cuts in a perturbative way and then establishing the sta- ImDy(s)=—N.(s)p(s)P (AB)
bility of our conclusions in Secs. Ill and IV against the cor-

rections coming from cross symmetry. and making a dispersion relation fof @ne has

— n re ’ A YA
ACKNOWLEDGMENTS D’(s)=—ﬂj  Qn-1-1(S)p(sT)p" (')
L r__ r_ n
- . o m 0 (8" =s)(s" —sp)
We would like to acknowledge fruitful and basic discus-
sions for the present work with A. Pich. Discussions with S. +Ph_1, (A7)
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with P,_; a matrix of polynomials of maximum degree
n—1.

Because N is just a matrix of polynomials, it can be
reabsorbed in Pto give rise to a new Pwhich will fulfill

Eq. (A6) but with N/ =1. In this way

T, =D/},

PHYSICAL REVIEW D 60 074023

p(s)p?H(s")

s—sp)t+1 (=
— fo (5 —s)(s —sq 1 TR

aw

with R(s) a matrix of rational functions whose poles will

contain the zeros of T. This fact is in clear analogy with the

role played by the CDD poles included in Sec. Il for the
elastic case.
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