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N/D description of two meson amplitudes and chiral symmetry
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The most general structure of an elastic partial wave amplitude when the unphysical cuts are neglected is
deduced in terms of theN/D method. This result is then matched to lowest order,O(p2), chiral perturbation
theory ~xPT! and to the exchange~consistent with chiral symmetry! of resonances in thes channel. The
extension of the method to coupled channels is also given. Making use of the former formalism, thepp and
Kp (I 51/2) P-wave scattering amplitudes are described without free parameters when taking into account
relations coming from the 1/Nc expansion and unitarity. Next, the scalar sector is studied and good agreement
with experiment up toAs51.4 GeV is found. It is observed that thea0(980), s, andk~900! resonances are
meson-meson states originating from the unitarization of theO(p2) xPT amplitudes. On the other hand, the
f 0(980) is a combination of a strongS-wave meson-meson unitarity effect and a preexisting singlet resonance
with a mass around 1 GeV. We also study the size of the contributions of the unphysical cuts to thepp (I
50) and Kp (I 51/2) elasticS-wave amplitudes fromxPT and the exchange of resonances in crossed
channels up toAs'800 MeV. The loops are calculated as inxPT at next to leading order. We find a small
correction from the unphysical cuts to our calculated partial waves.@S0556-2821~99!01217-5#

PACS number~s!: 13.75.Lb, 11.55.Fv, 11.80.Et, 12.39.Fe
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I. INTRODUCTION

The understanding of the scalar meson-meson strong
teraction is still so controversial that there is not even a c
sensus about how many low lying states~with masses
<1 GeV! there are. The main difficulties which appear
this sector are, first, the possible presence of large w
resonances, as thef 0(40021200)[s in pp scattering or the
K0* (900)[k in the I 51/2 Kp amplitude, which cannot be
easily distinguished from background contributions, a
second, the existence of some resonances which appea
in the opening of an important channel with which th
couple strongly, such as, for example, thef 0(980) or the

a0(980) with the KK̄ threshold around 1 GeV. All thes
aspects show that it is not clear how many states are pre
which is their nature, and why simple parametrizations of
scalar physical amplitudes in terms of standard Breit-Wig
resonances are not adequate, as stressed in several
@1,2,3#.

The conflicting situation for the scalar sector contra
with the much better understood vector channels. In this
ter case, one can achieve a sound understanding of the p
ics involved just from first principles@4#, namely, chiral
symmetry, unitarity, and relations coming from the QC
limit of an infinite number of colors~largeNc QCD!. This is
accomplished thanks to the leading role of ther~770! and
K* (890) resonances, in accordance with vector meson do
nance, very well established from particle and nuclear ph
ics phenomenology. The issue is whether such a basic un
standing for the scalar sector is possible, and, at the s
time, whether it is able to reproduce the associated phen
enology. Connected with the former, it should be interest
also to see if some kind of scalar meson dominance rema
in analogy with the above mentioned vector meson do
nance.

There have been many studies of the scalar sector
0556-2821/99/60~7!/074023~22!/$15.00 60 0740
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none in the basic lines we outlined before. These stud
have led to a variety of models dealing with the sca
meson-meson interaction and its associated low energy s
troscopy. The low energy scalar states have been ascribe@5#

to conventionalqq̄ mesons@6,2#, q2q̄2 states@7,8#, KK̄ mol-
ecules@9,10#, glueballs@11# and/or hybrids@12#.

One can think in two possible ways in order to avoid t
former explicit model dependence for the scalar sector, ap
of course, of solving QCD in four dimensions for low ene
gies which, nowadays, is not affordable.

One way to proceed is to make use only of general p
ciples that the physical amplitudes must fulfill, as unitar
and analyticity. There are a series of works by Penningt
Morgan et al. @1,13# which fit nicely the experimental dat
available for the scalar-isoscalar sector and try to obtain a
some understanding of the associated spectroscopy. Ano
work in this line is presented in@14#. However, these ap
proaches have also problems as, for example, the spe
way in which the amplitudes are parametrized and the lac
enough precision in the experimental data in order to disc
other possible solutions.

Another alternative is the use of effective field theori
which embody and exploit the symmetries of the underly
dynamics, in this case QCD. In this sense, chiral perturba
theory ~xPT! @15,16#, is the effective field theory of QCD
with the lightest three quark flavors. This approach has b
extensively used in the last years for the meson sector
allows to calculate any physical amplitude in a systema
power momentum expansion.

This latter point of view will be the one adopted her
First, we will derive, making use of theN/D method@17#,
the most general structure for an arbitrary partial wave a
plitude when the unphysical cuts are neglected. In this w
our method can be seen as the zero order approach
partial wave when treating the unphysical cuts in a pertur
tive sense. We think that this will be the case, at least
©1999 The American Physical Society23-1
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J. A. OLLER AND E. OSET PHYSICAL REVIEW D60 074023
those partial wave amplitudes which are dominated by u
tarity and the presence of resonances in thes-channel with
the same quantum numbers of the partial wave amplitu
For example, the case of ther andK* resonances in theP-
wavepp andKp scattering respectively or the scalar cha
nels with isospin 0, 1/2 or 1, where several resonances
pear. In fact, for ther(K* ) meson-meson channels, at lea
up to As51.2 GeV, one can describe accurately the ass
ated pp(Kp) phase shifts just in terms of simple Brei
Wigner parametrizations with the coupling of ther(K* )
with pp(Kp) given by the Kawarabayashi-Suzuk
Riàzuddin-Fayyazuddin~KSRF! relation @18# and their
masses taken directly by experiment. In this way one ha
free parameter description for these processes without
unphysical cuts, since it only has the physical or right ha
one as required by unitarity. Thus, one can deduce that
these processes the contribution from the unphysical cu
certainly much smaller than the one coming from the
change of these resonances in thes-channel and from unitar
ity. Otherwise, a free parameter reproduction of these ch
nels with only the right hand cut could not be possible. T
type of description for ther andK* meson-meson channe
is given below in Sec. III and it was also given in Ref.@4# for
the case of ther. For the scalar channels withI 50, 1 and 1/2
there have been a number of previous studies@2,3,8,19,20#
which neglect the contribution from the unphysical cuts
tablishing clearly the great importance of unitarity for t
scalar sector. In particular, in the work of Ref.@19# the I
50,1 S-wave channels were described in terms of just o
free parameter up toAs'1.2 GeV, indicating that the con
tribution from the unphysical cuts should be small enough
be reabsorbed in this free parameter. The connection
tween the work of Ref.@19# and the present one is discuss
in Sec. IV before the subsection dedicated to the resona
content of ourS-wave amplitudes. It is also interesting
indicate that in@21,22# the S-wave scattering was also stud
ied including the unphysical cuts up toO(p4) in xPT and the
results obtained were very similar to the ones of the form
works, Refs.@19,20#, without any unphysical cuts at al
Apart from these considerations, we approach in the last
tion of the present work the influence of the unphysical c
from xPT and the exchange of resonances in crossed c
nels taking into account the results of Ref.@23#. In this ref-
erence, thepp andKp elastic amplitudes are calculated u
to one loop including explicit resonance fields@24#. In this
way the range of applicability ofxPT is extended up toAs
'700– 800 MeV. The loops are calculated as inxPT at
O(p4). We conclude that the contributions of the unphysi
cuts are small and soft enough to be reabsorbed in our
parameters in a convergent way when treating the left h
cut in a perturbative way. It is important to indicate that su
a small value for the influence of the unphysical cuts, as
be seen in Table III, is due to a cancellation between
contributions coming from the loops and the exchange
resonances in crossed channels.

After neglecting the unphysical cuts we then match
general structure we obtain from theN/D method with the
lowest orderxPT Lagrangian,O(p2) @16#, and its extension
07402
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to include heavier meson states with spin<1 @24#, beyond
the lightest pseudoscalars (p,K,h). Making use of this final
formalism, we will study the scalar sector, being able to
produce the experimental data up to aboutAs<1.4 GeV,
with s the Mandelstam variable corresponding to the squ
of the total momentum of the pair of mesons. In order to s
something for higher energies, more channels, apart from
ones taken here, should be added. This is not considere
this work, although it can be done in a straightforward wa
albeit cumbersome, in terms of the present formalism.
also study the vectorpp and Kp(I 51/2) scattering and
compare it with the scalar sector to illustrate some import
differences between both cases.

The main conclusion of the work is that one can obtain
rather accurate description of the scalar sector compare
experiment, in a way consistent withxPT and largeNc QCD
@25#, if the tree level structures coming from largeNc QCD
for the meson-meson scattering are introduced in a way c
sistent withxPT and then are properly unitarized in the w
we show here. Contrary to what happens for the vector ch
nels, where the tree level contributions determine the st
which appear in the scattering, we will see that for the sca
sector the unitarization of theO(p2) xPT amplitude is strong
enough to produce meson-meson states, as for example
s~500!, a0(980), k~900! and a strong contribution to th
f 0(980). All these states, except thef 0(980), disappear for
largeNc QCD because they originate from effects which a
subleading in 1/Nc counting rules~loops in thes-channel!.
We will see below that the origin for such a different beha
ior between ther and thes will be just a numerical factor
1/6 between theP andS-waveO(p2) xPT amplitude. Note
that in ann-loop calculation this gives rise to a relative su
pression factor of 1/6n11 of theP-wave loops with respect to
the S-wave ones.

II. FORMALISM

Let us consider in the first place the elastic case, co
sponding to the scattering of two particles of massesm1 and
m2 respectively. We will also allow for several couple
channels at the end of the section.

Let TL
I (s) be a partial wave amplitude with isospinI and

angular momentumL. Since we are dealing withp, K with
andh as asymptotic particles, which have zero spin,L will
also be the total spin of the partial wave. The projection i
definite angular momentum is given by

TL
I ~s!5

1

2~& !a E21

1

d cosuTI~s,cosu!PL~cosu!, ~1!

where (&)a is a symmetry factor to take care of the pre
ence of identical particles states ashh or pp, this last in the
isospin limit. The indexa can be 0, 1 or 2 depending on th
number of times these identical particle states appear in
corresponding partial wave amplitude. For instance,a52
for pp→pp, a51 for hh→KK̄, a50 for Kp→Kp and
so on.PL(cosu) is the Legendre polynomial ofLth degree.
3-2
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N/D DESCRIPTION OF TWO MESON AMPLITUDES AND . . . PHYSICAL REVIEW D 60 074023
A TL
I (s) partial wave amplitude has two kinds of cut

The right hand cut required by unitarity and the unphysi
cuts from crossing symmetry. In our chosen normalizati
the right hand cut leads to the equation~in the following
discussions we omit the superindexI , although, it should be
kept in mind that we always refer to a definite isospin!

Im TL
2152r~s! ~2!

for s.sthreshold[sth . In the case of two particle scatterin
the one we are concerned about,sth5(m11m2)2 andr(s) is
given by

r~s!5
p

8pAs
, ~3!

with

p5
A„s2~m11m2!2

…„s2~m12m2!2
…

2As
[

l1/2~s,m1
2 ,m2

2!

2As
,

~4!

the center of mass~c.m.! three momentum of the two meso
system.

The unphysical cuts comprise two types of cuts in
complex s-plane. For processes of the typea1a→a1a
with m15m25ma , there is only a left hand cut fors
,sLe f t . However for those ones of the typea1b→a1b
with m15ma andm25mb , apart from a left hand cut ther
is also a circular cut in the complexs-plane for usu5m2

2

2m1
2, where we have takenm2.m1 . In the rest of this

section, for simplicity in the formalism, we will just refer t
the left hand cut as if it were the full set of unphysical cu
This will be enough for our purposes in this section. In a
case, if we worked in the complexp2-plane all the cuts will
be linear cuts and then only the left hand cut will appear
this variable.

The left hand cut, fors,sLe f t , reads

TL~s1 i e!2TL~s2 i e!52i Im TL~s!. ~5!

The standard way of solving Eqs.~2! and ~5! is theN/D
method @17#. In this method a TL(s) partial wave is ex-
pressed as a quotient of two functions:

TL~s!5
NL~s!

DL~s!
, ~6!

with the denominator function DL(s) bearing the right hand
cut and the numerator function NL(s) the unphysical cuts.

In order to take explicitly into account the behavior of
partial wave amplitude near threshold, which vanishes
p2L[nL, we consider the new quantity, TL8 , given by

TL8~s!5
TL~s!

nL , ~7!

which also satisfy relations of the type of Eqs.~2! and~5!. So
that we can write
07402
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TL8~s!5
NL8~s!

DL8~s!
. ~8!

From Eqs.~2!, ~5!, and ~7!, NL8(s) and DL8(s) will obey
the following equations:

Im DL85Im TL8
21NL852r~s!NL8nL, s.sth ,

Im DL850, s,sth , ~9!

Im NL85Im TL8DL8 , s,sLe f t ,

Im NL850, s.sLe f t . ~10!

Since NL8 and DL8 can be simultaneously multiplied by an
arbitrary real analytic function without changing its rati
TL8 , nor Eqs.~9! and~10!, we will consider in the following
that NL8 is free of poles and thus, the poles of a partial wa
amplitude will correspond to the zeros of DL8 .

Using dispersion relations for DL8(s) and NL8(s), we write
from Eqs.~9! and ~10!

DL8~s!52
~s2s0!n

p E
sth

`

ds8
n~s8!Lr~s8!NL8~s8!

~s82s!~s82s0!n

1 (
m50

n21

āmsm, ~11!

wheren is the number of subtractions needed such that

lim
s→`

NL8~s!

sn2L 50 ~12!

since, from Eq.~3!,

lim
s→`

nLr~s!

sL 5
1

4L12p
. ~13!

On the other hand, from Eqs.~5! and ~7!, consistently
with Eq. ~12!

NL8~s!5
~s2s0!n2L

p E
2`

sLe f t
ds8

Im TL~s8!DL8~s8!

n~s8!L~s82s0!n2L~s82s!

1 (
m50

n2L21

ām8 sm. ~14!

Equations~11! and ~14! constitute a system of integra
equations the input of which is given by Im TL(s) along the
left hand cut.

However, Eqs.~11! and ~14! are not the most genera
solution to Eqs.~9! and~10! because of the possible presen
of zeros of TL which do not originate when solving thos
equations. These zeros have to be included explicitly and
choose to include them through poles in DL8 @Castillejo-
3-3
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Dalitz-Dyson ~CDD! poles after Ref.@26##. Following this
last reference, let us write along the real axis

Im DL8~s!5
dl~s!

ds
. ~15!

Then by Eq.~9!,

dl

ds
52r~s!nLNL8 , s.sth ,

dl

ds
50, s,sth . ~16!

Let si be the points along the real axis where TL8(si)50.
Between two consecutive points,si andsi 11 , we will have
from Eq. ~16!
ing

e
nd
s
th

l

g

o

07402
l~s!52E
si

s

n~s8!Lr~s8!NL8~s8!ds81l~si !, ~17!

with l(si) unknown because the inverse of TL8(si) is not
defined. Thus, we may write

l~s!52E
sth

s

n~s8!Lr~s8!NL8~s8!ds81(
i

l~si !u~s2si !,

~18!

with u(s) the usual Heaviside function.
From Eqs.~15! and ~18!, it follows that
DL8~s!5
~s2s0!n

p E
sth

` Im DL8~s8!ds8

~s82s!~s82s0!n 1 (
m50

n21

āmsm

5 (
m50

n21

āmsm2
~s2s0!n

p E
sth

` n~s8!Lr~s8!NL8~s8!

~s82s!~s82s0!n ds81
~s2s0!n

p E
sth

` ( il~si !d~s82si !

~s82s!~s82s0!n ds8

52
~s2s0!n

p E
sth

` n~s8!Lr~s8!NL8~s8!

~s82s!~s82s0!n ds81 (
m50

n21

āmsm1(
i

l~si !

p~si2s0!n

~s2s0!n

si2s
. ~19!
Equation~19! can also be obtained from Eq.~9! and use
of the Cauchy theorem for complex integration and allow
for the presence of poles of DL8 ~zeros of TL8! inside and along
the integration contour, which is given by a circle in th
infinity deformed to engulf the real axis along the right ha
cut, sth,s8,`. In this way one can also consider the po
sibility of there being higher order zeros and that some of
si could have nonvanishing imaginary part@because of the
Schwartz theorem,si* will be another zero of TL8(s)#. How-
ever, as we will see below forL<1, when considering chira
symmetry in the largeNc QCD limit, the zeros will appear
on the real axis and also as simple zeros. In general, usinL8
instead of TL , we avoid working withLth order poles of DL
at threshold in the dispersion relation given by Eq.~19!.

The last term in the right hand side of Eq.~19! can also be
written in a more convenient way avoiding the presence
the subtraction points0 . To see this, note that
-
e

T

f

~s2s0!n

s2si
5~s2s0!n21

s2si1si2s0

s2si

5~s2s0!n21S 11
si2s0

s2si
D

5~s2s0!n211~si2s0!
~s2s0!n21

s2si

5 (
i 50

n21

~s2s0!n212 i~si2s0! i1
~si2s0!n

s2si
.

~20!

The terms

(
i 50

n21

~s2s0!n212 i~si2s0! i
3-4
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can be reabsorbed in

(
m50

n21

āmsm.

As a result we can write

DL8~s!52
~s2s0!n

p E
sth

` n~s8!Lr~s8!NL8~s8!

~s82s!~s82s0!n 1 (
m50

n21

ãmsm

1(
i

g̃ i

s2si
, ~21!

with ãm (n21>m>0) andg̃ i , si ( i>0), arbitrary param-
eters. However, if some of thesi is complex there will be
anothersj such thatsj5si* and g̃ j5g̃ i* , as we explained
above. Each term of the last sum in Eq.~21! is referred to as
a CDD pole after@26#.

Equations~21! and ~14! stand for the general integra
equations for DL8 and NL8 , respectively. Next we make th
approximation of neglecting the left hand cut, that is, we
Im TL(s)50 in Eq. ~14!. Thus one has

NL8~s!5 (
m50

n2L21

ãm8 sm. ~22!

As a result, NL8(s) is just a polynomial of degree<n
2L21.1 So we can write

NL8~s!5C )
j 51

n2L21

~s2sj !. ~23!

In Eq. ~23! it is understood that ifn2L21 is zero NL8 is
just a constant. Thus, the only effect of NL8 will be, apart of
the normalization constantC, the inclusion, at most, ofn
2L21 zeros to TL8(s). But we can always divide NL8 and DL8
by Eq. ~23!. The net result is that, when the left hand cut
neglected, it is always possible to take NL8(s)51 and all the
zeros of TL8(s) will be CDD poles of the denominator func
tion. In this way,

TL8~s!5
1

DL8~s!
,

NL8~s!51,

DL8~s!52
~s2s0!L11

p E
sth

`

ds8
n~s8!Lr~s8!

~s82s!~s82s0!L11

1 (
m50

L

amsm1(
i

ML Ri

s2si
. ~24!

1One can always maken>L11 just by multiplying NL8 and DL8 by
sk with k large enough.
07402
t

The number of free parameters present in Eq.~24! is L
1112%, where% is the number of CDD poles,ML , minus
the number of complex conjugate pairs ofsi . These free
parameters have a clear physical interpretation. Consider
the term 2% which comes from the presence of CDD poles
DL8(s), Eq. ~24!. In @27# the presence of CDD poles wa
linked to the possibility of there being elementary partic
with the same quantum numbers as those of the partial w
amplitude, that is, particles which are not originated from
given ‘‘potential’’ or exchange forces between the scatter
states. One can think that given a DL8(s) we can add a CDD
pole and adjust its two parameters in order to get a zero
the real part of the new DL8(s) with the right position and
residue, having a resonance/bound state with the des
mass and coupling. In this way, the arbitrary parameters
come with a CDD pole can be related with the coupli
constant and mass of the resulting particle. This is one p
sible interpretation of the presence of CDD poles. Howev
as we are going to see below, these poles can also ente
to ensure the presence of zeros required by the underl
theory, in this case QCD, as the Adler zeros for theS-wave
meson-meson interaction. The derivative of the partial wa
amplitude at the zero will fix the other CDD parameter,g̃ i .
With respect to the contributionL11 to the number of free
parameters coming from the angular momentumL, it ap-
pears just because we have explicitly established the be
ior of a partial wave amplitude close to threshold, vanish
asnL. This is required by the centrifugal barrier effect, we
known from quantum mechanics.

It should be stressed that Eq.~24! is the most genera
structure that an elastic partial wave amplitude, with ar
trary L, has when the left hand cut is neglected. The f
parameters that appear there are fitted to the experimen
calculated from the basic underlying theory. In our case
basic dynamics is expected to be QCD, but Eq.~24! could
also be applied to other scenarios beyond QCD as the e
troweak symmetry breaking sector@which also has the sym
metries@28# used to derive Eq.~24!, as far as it is known#.

Let us come back to QCD and split the subtraction co
stantsam of Eq. ~24! in two pieces

am5am
L 1am

SL~s0!. ~25!

The termam
L will go asNc , because in theNc→` limit, the

meson-meson amplitudes go asNc
21 @25#. Since the integral

in Eq. ~24! is O~1! in this counting, the subleading term
am

SL(s0) is of the same order and depends on the subtrac
point s0 . This implies that Eq.~24!, whenNc→`, will be-
come

DL8~s![DL8
`~s!5 (

m50

L

am
L sm1(

i

ML
`

Ri
`

s2si
, ~26!

whereRi
` is the leading part ofRi andML

` counts the num-
ber of leading CDD poles.

Clearly Eq. ~26! represents tree level structures, conta
and pole terms, which have nothing to do with any kind
potential scattering, which in largeNc QCD is suppressed.
3-5
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In order to determine Eq.~26! we will make use ofxPT
@16# and of the paper@24#. In this latter work it is shown the
way to include resonances with spin<1 consistent with chi-
ral symmetry at lowest order in the chiral power counting
is also seen that, when integrating out the resonance fie
the contributions of the exchange of these resonances e
tially saturate the next to leadingxPT Lagrangian. We will
make use of this result in order to state that in the inverse
Eq. ~26! the contact terms come just from the lowest ord
xPT Lagrangian and the pole terms from the exchange
resonances in thes-channel in the way given by@24# ~con-
sistently with our approximation of neglecting the left ha
cut the exchange of resonances in crossed channels is
considered!. In the latter statement it is assumed that t
result of @24# at O(p4) is also applicable to higher order
That is, local terms appearing inxPT and from Eq.~26! of
order higher thanO(p4) are also saturated from the e
change of resonances forNc@1, where loops are suppresse

Let us prove that Eq.~26! can accommodate the tree lev
amplitudes coming from lowest orderxPT @16# and the La-
grangian given in@24# for the coupling of resonances~with
spin <1! with the lightest pseudoscalars~p, K andh!.

Following @24#, one can write the exchange of a res
nance~with spin <1! divided bynL as

~cis1ci8m
2!2

Mi
22s

; L50,

dis

Mi
22s

; L51, ~27!

whereMi is the mass of thei th resonance,m2 is some com-
bination of squared masses of the lightest pseudoscalars
ci , ci8 anddi are arbitrary constants withdi>0.

The lowest orderxPT partial wave amplitude (L<1),
divided again bynL, can be written schematically as

as1a8m̂2; L50,

b; L51, ~28!

with m̂2 another combination of squared masses of the lig
est pseudoscalars.

Thus, in largeNc QCD, the partial wave amplitudes wi
have the following structure, after omitting the exchange
resonances in crossed channels and contact terms of
higher thanO(p2):

T08~s![T08
`~s!5as1a8m̂21(

i 51

R0 ~cis1ci8m
2!2

Mi
22s

,

T18~s![T18
`~s!5b1(

i 51

R1 dis

Mi
22s

. ~29!

In the former equation it is understood that ifRL50 the
sum does not appear.
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Let us now study the inverse of Eq.~29! in order to con-
nect with DL8

` . With jL , the number of zeros of TL8
` , we

can write

1

TL8
`~s!

5AL

P i 51
RL ~s2Mi

2!

P r 51
jL ~s2sr !

. ~30!

In the former equation, ifRL50 or jL50, the corre-
sponding product must be substituted by 1.AL is just a con-
stant. Note that from Eqs.~29! j0<R011 andj1<R1 , from
simple counting of the degree of the polynomials that app
in the numerators after writing Eqs.~29! as rational func-
tions.

On the other hand, note from Eqs.~27! that, fors>0, the
amplitude from the exchange of resonances, both forL50
and 1, is positive below the mass of the resonance and n
tive above it. This implies that in the interval,Mi 11

2 >s
>Mi

2 , by continuity, there will be a zero of TL8
` . In this

way,

jL>RL21. ~31!

For L50, apart from the zeros between resonances,
has also the requirement from chiral symmetry of the pr
ence of the Adler zero, along the real axis and below thre
old. Thus,j0>R0 and we can write

RL2L11>jL>RL2L. ~32!

Note that since theRL2L zeros of TL
` are real, the pos-

sible single additional zero from the upper limit of Eq.~32!
must be also real, since a complex one would imply its c
jugate too. This is so because all the coefficients in Eq.~29!
are real.

Let us do the counting of zeros and resonances from
~26!. The number of zeros of TL8

` is equal to the number o
CDD poles of DL8

` , ML
` . Hence

jL5ML
` . ~33!

On the other hand, the number of poles of TL8
` is equal to

the number of zeros of DL8
` which has the following upper

limit:

RL<ML
`1L[jL1L. ~34!

Thus

jL>RL2L, ~35!

which gives the same lower limit as in Eq.~32!. Let us recall
that the zeros of Eq.~30! are real, as discussed above. Th
together with the requirement of TL8

`(s) being a real function
on the real axis, forces all parameters in Eq.~26! to be real.
Then the number of free parameters in Eq.~26! are 2ML

`

1L1152jL1L11. When fixing thesi parameters in Eq.
~26! to the sr parameters in Eq.~30! this reduces injL the
number of free parameters in Eq.~26!. By fixing the arbitrary
constantAL of Eq. ~30! this leaves us withjL1L free pa-
rameters in Eq.~26!. Imposing now the position of theRL
3-6
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resonances of Eq.~30! to be atMi
2 we haveRL additional

constraints. Hence we should have

jL1L2RL>0, ~36!

which actually holds, as seen above in Eq.~35!. As a conse-
quence Eqs.~29! can always be cast in the form of Eq.~26!.

Let us define the functiongL(s) by

gL~s!nL5 (
m50

L

am
SL~s0!sm

2
~s2s0!L11

p E
sth

`

ds8
n~s8!Lr~s8!

~s82s!~s82s0!L11

~37!

and using the notation

TL
`~s!5nLF (

m50

L

am
L sm1(

i 51

ML Ri

s2si
G21

~38!

results that from Eq.~24! one has

TL~s!5@1/TL
`~s!1gL~s!#21. ~39!

The physical meaning of Eq.~39! is clear. The TL
` ampli-

tudes correspond to the tree level structures present be
unitarization. The unitarization is then accomplished throu
the functiongL(s). It is interesting at this point to connec
with the most popularK-matrix formalism to obtain uni-
tarized amplitudes. In this case one writes

TL~s!5@KL~s!212 ir~s!#21. ~40!

We see that the former equation is analogous to Eq.~39!
with TL

`21(s)1RegL(s)5KL(s)
21.

From the former comments it should be obvious the g
eralization of Eq.~39! to coupled channels. In this cas
TL

`(s) is a matrix determined by the tree level partial wa
amplitudes given by the lowest orderxPT Lagrangian@16#
and the exchange of resonances@24#. For instance,
@TL

`(s)#115T11
(2)1T11

R , @TL
`(s)#125T12

(2)1T12
R and so on,

where T(2) is the matrix of theO(p2), xPT partial wave
amplitudes@16# andTR the corresponding one from the e
change of resonances@24# in the s-channel. Once we hav
TL

`(s) its inverse is the one which enters in Eq.~39!. Because
NL8(s) is proportional to the identity,gL(s) will be a diagonal
matrix, accounting for the right hand cut, as in the elas
case. In this way, unitarity, which in coupled channels re
~above the thresholds of the channelsi and j !

@ Im TL
21# i j 52r i i ~s!d i j 5Im gL~s! i i d i j , ~41!

is fulfilled. The matrix elementgL(s) i i obeys Eq.~37! with
the right masses corresponding to the channeli and its own
subtraction constantsai

SL(s0).
In the present work the coupling constants and resona

masses contained in TL
`(s) are fitted to the experiment. Th
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same happens with theai
SL although, as we will discuss be

low, they are related bySU(3) considerations.
In Appendix A the already stated coupled channel vers

of Eq. ~39! is deduced directly from theN/D method in
coupled channels@29#.

III. THE IDEAL CASE: ELASTIC VECTOR CHANNELS

In this section we are going to study thepp and Kp
scattering withI 5L51 and I 51/2, L51, respectively. It
will be shown, as mentioned in the Introduction, that the
reactions can be understood just by invoking~1! chiral sym-
metry, ~2! largeNc QCD, and~3! unitarity.

A priori, one could think that relations coming from th
Nc→` limit should work rather accurately at the phenom
enological level in these channels due to the predomin
role of ther andK* poles over subleading effects in 1/Nc ,
as unitarity loops.

In Eq. ~24! the L51 zero at threshold is included in th
N1 function, Eq.~6!, which can be taken as

N15nN185n,

D15D18 , ~42!

with N18 and D18 defined in Eq.~8! and given in Eq.~24!.
However, in this chapter we will also include theP-wave
threshold factor as a CDD pole in the D1 function. In this
way, we will treat theS-wave Adler zero and theP-wave
threshold zero in the same footing, which will make the co
parison among both partial waves more straightforward. T
final result can be derived in the same way as Eq.~24! but
working directly with T1 instead of T18 . Thus

N1~s!51,

D1~s!5(
i

g i

s2si
1a2

s2s0

p E
sth

`

ds8
r~s8!

~s82s!~s82s0!
.

~43!

Of course, the partial wave amplitude T1 will be the same
than before since we have just divided at the same time1
and D1 by n5p2. As a simple and explicit example that E
~24! together with Eq.~42! are equivalent to Eq.~43!, let us
consider the scattering of two pions. After multiplying N1
and D1 in Eq. ~42! by 4, we divide both functions by 4n
5s2sA , with sA54 mp

2 . Keeping in mind Eq.~24!, one
still has a sum over the former CDD poles together w
another one ats5sA . The subtraction polynomial of orde
one ins transforms into a CDD pole ats5sA plus a constant.
Finally, the dispersive integral gives rise to that of the form
equation~43! together with a constant plus a CDD pole
s5sA—to see this just add and subtracts0 in 4n(s8) in the
integral of Eq.~24!. Hence, the structure given in Eq.~43! is
obtained.

The integral in Eq.~43! will be evaluated making use o
dimensional regularization. It can be identified up to a co
stant to the loop represented in Fig. 1. This identification
consequence of the fact that both the integral in Eq.~43! and
3-7
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the loop given in Fig. 1 have the same cut and the sa
imaginary part along this cut, as it can be easily checked

Following Eq.~37! we define

g0~s!5aSL~s0!2
s2s0

p E
sth

`

ds8
r~s8!

~s82s!~s82s0!

5
1

~4p!2 F ãSL~m!1 log
m2

2

m2 2
m1

22m2
21s

2s
log

m2
2

m1
2

2
l1/2~s,m1

2 ,m2
2!

2s

3 logS m1
21m2

22s1l1/2~s,m1
2 ,m2

2!

m1
21m2

22s2l1/2~s,m1
2 ,m2

2!
D G ~44!

for s>sth . For s,sth or s complex one has the analyti
continuation of Eq.~44!. The functionl1/2(s,m1

2 ,m2
2) was

already introduced in Eq.~4!. The regularization scalem,
appearing in the last formula of Eq.~44!, plays a similar role
than the arbitrary subtraction points0 in the first formula of
Eq. ~44!. This similarity is consequence of the fact that bo
m ands0 can have any arbitrary value but the resulting fun
tion g0(s) is independent of this particular value because
the change in the subtraction constant,ãSL(m) for dimen-

FIG. 1. Loop giving rise to theg0 function.
07402
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f

sional regularization oraSL(s0) for the dispersion integral
The ãSL(m) ‘‘constant’’ will change under a variation of the
scalem to other onem8 as

ãSL~m8!5ãSL~m!1 log
m82

m2 ~45!

in order to haveg0(s) invariant under changes of the reg
larization scale. We will takem5M r5770 MeV @30#. The
function g0(s) is also symmetric under the exchang
m1↔m2 and for the equal mass limit it reduces to

g0~s!5
1

~4p!2 F ãSL~m!1 log
m1

2

m2 1s~s!log
s~s!11

s~s!21G ,
~46!

with

s~s!5A12
4m1

2

s
. ~47!

After this preamble, let us consider in first place thepp
scattering withI 5L51. As can be seen from Fig. 2 thi
process is dominated by ther exchange. From Eq.~43! one
has

T1
pp~s!5F g1

pp

s24mp
2 1ãpp

L 1g0
pp~s!1(

i 52

g i

s2si
G21

.

~48!

The first term in the RHS of the last equation fixes t
zero at threshold for aP-wave amplitude.

The tree level part of T1
pp(s) from Ref. @24# and lowest

order xPT @16#, in the way explained in the last section,
given by
o

o

FIG. 2. Isovectorpp elastic
phase shifts from threshold up t
As<1.2 GeV. The dashed line
corresponds to takinggv

251 and
ãSL50. The continuum line corre-
sponds to the simultaneous fit t
the r and K* channels, given by
Eq. ~59!. Data: circles @32#;
squares@33#.
3-8
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T1
pp`~s!5

2

3

ppp
2

f 2 1gv
2 2

3

ppp
2

f 2

s

M r
22s

, ~49!

with ppp
2 the three-momentum squared of the pions in

c.m., f 587.3 MeV the pion decay constant in the chiral lim
@16#. The deviation ofgv

2 with respect to unity measures th
variation of the value of ther coupling to two pions with
respect to the KSFR relation@18#, gv

251. In @31# this KSFR
relation is justified making use of largeNc QCD ~neglecting
loop contributions! and an unsubtracted dispersion relati
for the pion electromagnetic form factor~a QCD inspired
high-energy behavior!.

Comparing Eqs.~48! and ~49!, one needs only one add
tional CDD pole apart from the one at threshold and
obtain

ãL50,

g1
pp5

6 f 2~M r
224mp

2 !

„M r
224mp

2 ~12gv
2!…

,

g2
pp5

6 f 2

12gv
2

gv
2M r

2

M r
22~12gv

2!4mp
2 ,

s25
M r

2

12gv
2 . ~50!

Thus, we can write our final formula for the isovectorpp
scattering in the following way:

T1
pp~s!5F g1

pp

s24mp
2 1

g2
pp

s2s2
1g0

pp~s!G21

~51!

in terms of the parametersgv
2 and ãSL(m). Sincegv

2 is ex-
pected to be close to unity as discussed above, it is usef
consider the limit whengv

2→1, in which cases2→` such
that

g2
pp

s2s2
→2

6 f 2

M r
2 [ãpp8L , ~52!

in which case the second CDD pole in Eq.~51!, ats2 , moves
to infinity and the CDD pole contribution gives rise to
constant term,ãpp8L . In this limit we can write

T1
pp~s!5F g1

pp

s24mp
2 1ãpp8L 1g0

pp~s!G21

. ~53!

Our calculated phase shifts for the vectorpp scattering
are represented in the dashed line of Fig. 2, whengv

2 is taken
equal to one andãSL50 is set to zero. The agreement wi
the experimental data is rather good. If we had just taken
imaginary part ofg0

pp(s) in the former equation we would
have obtained basically the same curve. This last case c
sponds just to the Breit-Wigner amplitude
07402
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2

3

ppp
2

f 2

M r
2

M r
22s2 iM rGr~s!

,

Gr~s!5
ppp

3

12p f 2

M r

As
. ~54!

For theI 51/2, L51 Kp scattering, the tree level ampli
tude T1

Kp` , is just given by multiplying Eq.~49! by 3/4 and
substitutingppp

2 by pKp
2 5l(s,mp

2 ,mK
2 )/4s and M r by MK*

5896 MeV @30#, the mass of the neutralK* (890). NowmK
is the mass of the kaon, 495.7 MeV@30#. On the other hand
since mKÞmp instead of having just a single pole in th
denominator function, as in Eq.~48!, for the zero at thresh-
old, one has two simple poles

g1
Kp

4pKp
2 5

g1
Kp

s12s2
F s1

s2s1
2

s2

s2s2
G , ~55!

with s15(mK1mp)2 ands25(mK2mp)2. That is, we will
have two CDD poles but both entering with just one para
eter because the behavior at threshold is proportional topKp

2 .
In our notation

lim
s→sth

T1
Kp~s!

pKp
2 5

4

g1
Kp .

For the simple and realistic case,gv
251, we have, analo-

gously to the case of ther,

T1
Kp~s!5F g1

Kp

4pKp
2 1ãKp8L 1g0

Kp~s!G21

, ~56!

with

g1
Kp5

8 f 2
„MK*

2
2~mK1mp!2

…

MK*
2 ,

ãKp
L 52

8 f 2

MK*
2 . ~57!

In the general case whengv
2Þ1, one proceeds in the sam

way as for ther introducing an extra CDD, but we shall om
the details here and the evaluations are done directly u
the final formula

T1
Kp5F 1

1/T1
Kp`1g0

Kp~s!G
21

, ~58!

with T1
Kp` evaluated as mentioned above.

In Fig. 3, the calculated phase shifts for theI 51/2,
P-wave Kp scattering are shown in the dashed curve
gv

251 andãSL50. The same remarks, as done before for
r when commenting Fig. 2, are also valid for theK* . It is
worth stressing that the dashed lines of Figs. 2 and 3 hav
free parameters at all, and depend only onf and the masses
of the resonancesK* andr.

The subleading constantãSL present ing0(s), Eq. ~44!,
should be the same for thepp and Kp states because th
dependence of the loop represented in Fig. 1 on the ma
of the intermediate particles is given by Eq.~44!. This point
3-9
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FIG. 3. P-wave elastic Kp
phase shifts with I 51/2, from
threshold up to As<1.2
GeV. The dashed line corre
sponds to takinggv

251 and ãSL

50. The continuum line corre-
sponds to the simultaneous fit t
the r and K* channels, given by
Eq. ~59!. Data: triangles @34#;
circles @35#.
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can be used in the opposite sense. That is, if it is not poss
to obtain a reasonable good fit after settingãSL to be the
same in both channels, some kind of SU~3! breaking is miss-
ing.

From Eqs.~51! and ~58! we do a simultaneous fit to th
experimentalP-wave pp (I 51) and Kp (I 51/2) phase
shifts with gv

2 and ãSL as free parameters using the minim
zation programMINUIT . In order to make the data from dif
ferent experiments consistent between each other, a sys
atic relative error of a 5% is given to each data point if
own error is smaller than this bound. The result of the fit

gv
250.87960.016,

ãSL50.34160.042. ~59!

The errors are just statistical and are obtained by increa
in one unit thex2 per degree of freedom,xd.o. f

2 . Thexd.o. f
2

obtained is

xd.o. f
2 50.74, ~60!

with 81 experimental points.
The continuum line corresponds to the fit given by E

~59!. We see that the agreement with data is very good. N
also thatgv

2 is very close to unity. To consider the discre
ancy with the KSFR result, which refers to the value of t
coupling constant, it is better to usegv which results to be,
from Eq. ~59!, 0.94. That is, only a 6% of deviation respe
to unity.

It is interesting and enlightening to see the value that
regularization scalem should have in order to generate ther
pole at 770 MeV when removingãpp8L from Eq. ~53! and
07402
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.
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e

settingãSL50. In this way we are taking the regularizatio
scale as a cutoff. Equation~53!, neglecting 4mp

2 with respect
to M r

2 , transforms to

F 6 f 2

s24mp
2 1g0~s!G21

. ~61!

The resultingm will be around by 0.7 TeV, a value com
pletely senseless.2 Its natural value ism.1 GeV, where typi-
cally resonances appear. A similar conclusion about th
unrealistic high values of the cutoff was also obtained
@36#. This value ofm makes it manifest that, as we hav
already seen in this section, the origin of the vectorsK* and
r is attached to tree level structures, preexisting before u
tarization. This case is different than what will be found
the scalar case where unitarity plays a very important ro

For the scalar sector, which we will study in detail in th
next section, we have only to make the following change
Eq. ~61!:

6 f 2

s24mp
2 → f 2

s2mp
2 /2

, ~62!

that is, basically a factor 6 of difference fors aroundM r
2 .

This makes that the ‘‘cutoff’’ needed in thepp S-wave to
get a resonance of the same mass than ther is just 1.8 GeV.
The change has been drastic due to the logarithmic de

2Without neglecting 4mp
2 compared withM r

2 one has to multiply
the quotient 6f 2/(s24mp

2 ) in Eq. ~61! by (M r
224mp

2 )/M r
2.0.87,

as one can check from Eq.~53!. The resultingm is 0.3 TeV.
3-10
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dence of the regularization scale in Eq.~61!. We will see
below the consequences that follow from this fact for t
scalar sector.

From Eqs.~48! and ~49!, one can see the limitations tha
some unitarization methods of thexPT amplitudes can hav
when handling a general situation. In particular one can th
of the inverse amplitude method~IAM ! @37#. This method
has proved to be a very powerful tool to extend the range
applicability of the perturbative series ofxPT up to energies
around 1–1.2 GeV, giving rise to the physical resonan
that appear in that case as ther, andK* in the vector chan-
nels as well as thes, f 0(980), k anda0(980) in the scalar
ones@20,21,22#. This approach is based in an expansion
the inverse of theK matrix @20#, see Eq.~40! and the sen-
tence below it. Consider that one can neglect the loop c
tributions in theK matrix, as it occurs for thepp and I
51/2 Kp P-wave amplitudes and it is also the case in lar
Nc QCD. Then, from Eq.~49!, if gv

2Þ1 a zero of the tree
level amplitude will appear, which, in turn, implies a pole
its inverse. As a consequence, the expansion of the inv
amplitude will break at@note that from Eq.~40! a zero in the
K matrix implies a zero in the full amplitude TL#

s25
M r

2

12gv
2 , ~63!

where the zero of the amplitude occurs.
Thus, for our final valuegv

2'0.9, As2'2.4 GeV, further
away of the physical region typically studied by this metho
That explains the success of the IAM when applied to
vectorpp andI 51/2 Kp channels in the region dominate
by the r and K* resonances, respectively. However, in
general scenario withgv

2 very different from 1 we canno
guarantee the applicability of the IAM. This point should
considered when making use of the IAM in other situatio
beyond QCD, as the ESBS@38#, where the underlying theory
is not known and, furthermore, there are no experime
data to rely upon.

IV. THE SCALAR SECTOR

In this section we want to study theS-wave I 50, 1 and
1/2 amplitudes. For the partial wave amplitudes withL50
andI 50 and 1, coupled channels are fundamental in orde
get an appropriate description of the physics involved up
As<1.4 GeV. This is an important difference with respect
the former vector channels, essentially elastic in the con
ered energy region. Up toAs51.4 GeV the most importan
channels are

I 50, pp~1!, KK̄~2!, hh~3!,

I 51, ph~1!, KK̄~2!,

I 51/2, Kp~1!, Kh~2!, ~64!

where the number between brackets indicates the index
sociated to the corresponding channel when using a ma
notation as the one introduced in Sec. II.
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For the I 50 S-wave, the 4p state becomes increasing
important at energies above 1.2–1.3 GeV, so that, in
channel, we are at the limit of applicability of only two me
sons states whenAs is close to 1.4 GeV. In theI 51/2 chan-
nel, the threshold of the importantKh8 state is also close to
1.4 GeV. Thus, one can not go higher in energies in a re
istic description of the scalar sector without including t
Kh8 and 4p states.

Two sets of resonances appear in the formerL50 partial
wave amplitudes@30#. A first one, with a mass around
GeV, contains theI 50 f 0(400– 1200) andf 0(980) and the
I 51 a0(980). A second set appears with a mass around
GeV as the I 50 f 0(1370) and the f 0(1500), the I
51 a0(1450) or theI 51/2 K0* (1430). As a consequence
one could be tempted to include the exchange of two sc
nonets, with masses around 1 and 1.4 GeV. Before disc
ing whether this is the case, let us write the symmetric0

`

matrix of tree level amplitudes for the different isospin
This matrix, T0

` , is determined, as explained at the end
Sec. II, from the lowest orderxPT amplitudes, T(2), and
from the exchange of scalar nonets in thes-channel as given
by Ref. @24#, TR. In the following formulas we consider th
exchange of only one nonet. If more nonets are needed,
have only to be added in the same way as the first none
introduced.

I 50

T0,11
` 5

2s2mp
2

2 f 2 1
3

2

~a1!2

M1
22s

1
3

2

„b~0!1…
2

M8
22s

,

T0,12
` 5

)

4

s

f 2 1)
a1a2

M1
22s

1)
b~0!1b~0!2

M8
22s

,

T0,22
` 5

3

4

s

f 2 12
~a2!2

M1
22s

12
„b~0!2…

2

M8
22s

,

T0,13
` 52

mp
2

A12f 2
2
)

2

a1a3

M1
22s

2
)

2

b~0!1b~0!3

M8
22s

,

T0,23
` 52

3s22mh
222/3mp

2

4 f f h
2

a2a3

M1
22s

2
b~0!2b~0!3

M8
22s

,

T0,33
` 5

16mK
2 27mp

2

18f 2 1
1

2

~a3!2

M1
22s

1
1

2

„b~0!3…
2

M8
22s

,

~65!

with M1 and M8 the masses of the singlet and octet in t
SU~3! limit, mh is the mass of theh, 547.45 MeV@30#, f h is
the decay constant of theh, set to the valuef h51.3f p ac-
cording with thexPT prediction@39#, f p593.3 MeV is the
pion decay constant anda i andb(0)i are given by
3-11
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b~0!15
4

A6 f 2 Fcd

s

2
1~cm2cd!mp

2 G ,
b~0!252

&

) f 2 Fcd

s

2
1~cm2cd!mK

2 G ,
b~0!352

4

A6 f 2 Fcd

s

2
1

4

3
~2cm2cd!mK

2

2~5cm2cd!
mp

2

3 G ,
a15

4

f 2 F c̃d

s

2
1~ c̃m2 c̃d!mp

2 G ,
a25

4

f 2 F c̃d

s

2
1~ c̃m2 c̃d!mK

2 G ,
a35

4

f 2 F c̃d

s

2
1~ c̃m2 c̃d!mh

2 G . ~66!

The constantscd , cm , c̃d andc̃m characterize the coupling o
a given scalar nonet to the pseudoscalar pairs of pions, k
and etas as given in@24#.
07402
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I 51

T0,11
` 5

mp
2

3 f 2 1
„b~1!1…

2

M8
22s

,

T0,12
` 52

A3/2

12f 2 ~6s28mK
2 !

2&
b~1!1b~1!2

M8
22s

, ~67!

T0,22
` 5

s

4 f 2 12
„b~1!2…

2

M8
22s

,

with the functionb(1)i given by

b~1!15
&

) f 2
@cd~s2mp

2 2mh
2 !12cmmp

2 #,

b~1!25
&

f 2 Fcd

s

2
1~cm2cd!mK

2 G . ~68!
I 51/2

T0,11
` 5

5s222s~mp
2 1mK

2 !23~mK
2 2mp

2 !2

8s fK
2 1

3

2

„b~1/2!1…
2

M8
22s

,

T0,12
` 5

29s212smK
2 13smh

217smp
2 29mK

4 19mK
2 ~mp

2 1mh
2 !29mp

2 mh
2

24s fK
2

1A3

2

b~1/2!1b~1/2!2

M8
22s

,

T0,22
` 5

29s229~mk
22mh

2 !216s~3mK
2 1mh

2 !24smp
2

24s fK
2 1

„b~1/2!2…
2

M8
22s

, ~69!
a-
we

n is

ons

ric.
with f K the kaon decay constant with the valuef K51.2f p

according to experiment@40#. The functionsb(1/2)i are
given by

b~1/2!15
1

f K
2 @cds1~cm2cd!~mK

2 1mp
2 !#,

b~1/2!252
1

A6 f K
2 @cds1cm~5mK

2 23mp
2 !

2cd~mK
2 1mh

2 !#. ~70!
Note that the introduction of a nonet implies six new p
rameters, two masses and four coupling constants, which
fit to the experiment.

According to Eq.~39!, we also need the functiong0(s),
given by Eqs.~44! and ~46!, with its correspondingaSL for
the S-wave channels. By SU~3! arguments, theaSL constant
can be different for vector and scalar channels. The reaso
that a two meson state has different SU~3! wave functions in
S and P wave, because under the exchange of both mes
the spatialP-wave is antisymmetric while theS-wave is
symmetric and the total wave function must be symmet
3-12



co

f

a:

ic

-

aly

r-

e
d
pr
t

ou

e
-

te
to
el
ta

t
h
a

n-
red

ta

are
in

d in

We
ral

mi-
nco-
e

the
nd
ing
e
by

lso

N/D DESCRIPTION OF TWO MESON AMPLITUDES AND . . . PHYSICAL REVIEW D 60 074023
That is, the two mesons are in different SU~3! representa-
tions.

We have includedf h in the S-wave isoscalarO(p2) xPT
amplitude forKK̄→hh and f K in the S-wave, I 51/2 tree
level amplitudes, to obtain, after the fit, that theaSL constant
was the same for all the scalar channels. These changes
from the SU~3! breaking of the octet of (p,K,h) and cannot
be taken into account,a priori, in our way of fixingDL(s)
making use of lowest orderxPT @16# and the exchange o
resonances given by@24#.

The fit will be done for the following experimental dat
the elasticS-wave pp phase shifts withI 50, d11

00, the KK̄
→pp, I 5L50 phase shifts, d12

00, the I 5L50 (1
2h00

2 )/4, with h00 the inelasticity in that channel, the elast
S-wave,I 51/2 Kp phase shifts,d11

(1/2)0 and a distribution of
events around the mass of thea0(980) resonance, corre
sponding to the central production ofpph in 300 GeVpp
collisions @41# for the I 51, L50 channel.

d11
00

Because results coming from different experiments an
ses are not compatible, we have taken as central value
each energy belowAs51 GeV the mean between the diffe
ent experimental results@42,43#. For As.1 GeV, the mean
value comes from@43,44#. In both cases the error is th
maximum between the experimental one and the largest
tance of the experimental values to the mean one. This
cedure will be the one adopted, when needed, for the res
the experimental magnitudes included in the fit.

d12
00

For this quantity there are two sets of data belowAs
51.2 GeV. Higher in energy both sets converge. One gr
will be represented by@46# and the other one by@47,48#. The
experimental results from@46# are larger than the data of th
other works@47,48# below 1.2 GeV. We will distinguish be
tween both cases when doing a fit referring to it ashigh/low,
respectively. The change in the value of the fitted parame
will be very small when changing from one set of data
another, so that, this experimental ambiguity will not be r
evant for our final values. We will average the experimen
data of the second set of works forAs<1.2 GeV in the way
explained above. WhenAs.1.2 GeV the average will be
done between all the quoted analyses@46,47,48#.

(12h00
2 )/4

There are a series of analyses and experiments abou
inelastic cross sectionpp→KK̄, which agree between eac
other in the values for (12h00

2 )/4. We have taken the dat
from @46,47# as representative for such a situation.
07402
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The quantity (12h00
2 )/4 has been used instead of the i

elasticity,h00, because the former is much better measu
and all the experiments@46,47,48# agree on that quantity.

d11
(1/2)0

We distinguish between the more recent experiment@49#
and the older results@34,35,50#. We have averaged the da
from the latter analyses up toAs51 GeV. Above this en-
ergy, in the latter group of experimental works, only@35#
offers data. The statistical errors in this latter experiment
very small. We have enlarged them at the level of those
the most recent experiment@49# which would make the dif-
ferent experiments compatible. Thus, the final points use
the fit for this magnitude will be the ones from@49# and the
average between@34,35,50# as described above.

I51, L50 data

The experimental data is very scarce for this channel.
will take a distribution of events corresponding to the cent
production ofpph in 300 GeVpp collisions @41#. We will
study the data points around the mass of thea0(980), where
one could think that the energy dependence will be do
nated by the exchange of that resonance. We add in an i
herent way with respect to thea0(980) resonance, the sam
background as in@41#. The a0(980) contribution is param-
etrized as

dN

dEcm
5Npphu~T0!12u2, ~71!

with pph the three momentum of theph state in the c.m.
corresponding to a total energyEcm andN is just a normal-
ization constant.

The fit

Let us now discuss the fits obtained when including~1!
two scalar nonets with masses around 1 and 1.4 GeV or~2!
only one nonet with a mass around 1.4 GeV. Of course,
final value for the tree level, ‘‘bare,’’ masses of the octet a
singlet will be given by the fit. The fits have been done us
the MINUIT minimization program. The output value for th
parameters are written with the same precision as given
MINUIT .

The fit that results when two nonets are included and a
with the highd12

00 data is
3-13
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First Nonet ~MeV! Second Nonet~MeV!

cd51.80, cd8519.51, aSL520.72,

cm50.66, cm8 519.61, N59.231025 MeV22,

M8510036600, M8851379,

c̃d520.99, c̃d850.33,

c̃m58.49, c̃m8 522.72,

M151032, M18510006600,

xd.o. f
2 50.97,

188 points. ~72!
lu

-

en
al

.
le
t t
r

se
rt

la
re

m-

of

of
n
its
ll.
-

ts,
all
ult-
ts

et,

is
on-
rd

ture
A very striking aspect appears when observing the va
of the parameters given in Eq.~72!. The value of the con-
stantscd , cm and c̃d8 and c̃m8 are, at least, one order of mag
nitude smaller thanc̃d , c̃m and cd8 , cm8 respectively. This
makes that the first octet and second singlet are phenom
logically irrelevant. Note that their masses are essenti
undetermined. This is shown by the need to increase them
600 MeV in order to make thexd.o. f

2 to increase by 0.5 units
In this way, they do not originate or participate in the po
corresponding to the physical resonances mentioned a
beginning of the section. They only give rise to poles ve
close to the real axis, with a width of only a few MeV. The
poles manifest themselves as very narrow peaks in the pa
waves, which are not observed by experiment.

From the latter discussion we will just introduce a sca
nonet. The resulting values, after a new fit to the data, a

High d12
00:

Nonet ~MeV!

cd519.122.1
12.4, aSL520.7560.20,

cm515630, N59.464.531025 MeV22,

M851390620,

c̃d520.921.0
11.6, xd.o. f

2 51.07,

c̃m510.623.5
14.5, 188 points,

M151021220
140. ~73!

Low d12
00:
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Nonet ~MeV!

cd519.18, aSL520.74,

cm515.25, N59.4331025 MeV22,

M851390,

c̃d520.94, xd.o. f
2 51.21,

c̃m510.64, 196 points

M151021. ~74!

We have also shown the statistical errors for the para
eters of the highd12

00 fit obtained by increasing thexd.o. f
2 by

one unit, in order to appreciate the precision in the value
the parameters given by the last fits. The large error oncm is
because this constant, as can be seen from Eqs.~66!, ~68! and
~70!, enters through the multiplication of squared masses
the lightest pseudoscalars which are much smaller thas
.M8

2, around the resonance region of the octet. Thus,
influence in the final value of the amplitudes is very sma
This also happens toc̃m , although to a lower extension be
causeM1,M8 . One can see, comparing the last two fi
that the variation in the value of the parameters is very sm
when changing from one set of data to the other. The res
ing fit for the highd12

00 data is shown in Figs. 4–8. The resul
obtained before also favor the high solution for thed12

00 phase
shifts because its correspondingxd.o. f

2 is smaller than the one
for the low d12

00 solution.
This fit has 8 free parameters, 6 constants from the non3

aSL and the normalization constantN. In our former work
@19#, we were able to described11

00, d12
00 and (12h00

2 )/4 up to
As<1.2 GeV and a distribution of events around thea0(980)

3If the singlet and the octet introduced really form a nonet
something we cannot say. However, we will denote the global c
tribution of the introduced octet plus the singlet by using the wo
nonet as a shortcome. In this way, we also follow the nomencla
of @24#, inspired in the U~3! symmetry which holds forNc→`.
3-14
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FIG. 4. Elastic isoscalarpp
phase shifts,d11

00. The circles cor-
respond to the average o
@42,43,44#, as discussed in thed11

00

subsection. We have also include
the triangle points from@45# to
have some data close to threshol
although these points have no
been included in the fit becaus
they are given without errors.
o

st
fro
a

ces
c-

a

ass

this

the
mass @51#, using only 2 free parameters: a cutoff~which
plays the role of the regularization scalem and at the same
time generates a concrete value foraSL! and a corresponding
normalization constant for thea0(980) event distribution. In
fact, if we remove the resonance contributions in Eqs.~65!
and~67! the formalism of Ref.@19# follows from the present
one. It might look surprising that a good fit to the data f
As,1.2 GeV could be obtained in@19# with just one free
parameter and a normalization constant for the mass di
bution, while here one has needed 7 parameters, apart
the normalization constant. One reason is that now we h
07402
r

ri-
m

ve

pushed the fit up toAs51.4 GeV, while in@19# only data up
As51.2 GeV was considered. The fact that new resonan
appear aroundAs51.4 GeV has forced us to include an o
tet, which implies 3 new parameters, two couplings and
mass. However, the effect of this octet belowAs51.2 GeV is
very small, hence only the singlet appearing with a m
around 1 GeV is relevant for energies belowAs51.2 GeV.
The present fit to the data has led us to the inclusion of
singlet resonance in T0

` apart from the lowest orderxPT
Lagrangian, while in@19# only the latter contribution was
considered. The reason that forced us to include now
e
e

FIG. 5. S-wave KK̄→pp
isoscalar phase shifts,d12

00. The
triangle points are from@46#,
circles correspond to the averag
of @47,48#, and squares to the on
of @46,47,48#.
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FIG. 6. (12h00
2 )/4 with h00

the I 5L50 S-wave inelasticity.
Circles @46#; triangles@47#.
e

ire

no-
ith

e fit
to

the

oles
mentioned singlet is the consideration of thehh channel in
I 50, which was omitted in@19#, and is not negligible above
1 GeV, as can be seen in its strong coupling to thef 0(980)
resonance that we will obtain below. Thehh channel affects
mostly the magnitude (12h00

2 )/4. Should one have taken th
available data forh00 instead of those for (12h00

2 )/4, which

are measured with better precision from thepp→KK̄ in-
elastic cross section, the effect of thehh channel would be
masked by the large errors inh00.

It is quite interesting to recall that anI 50 elementary
state around 1 GeV has been predicted from QCD insp
07402
d

models@52,53# and has also been advocated in phenome
logical analyses@1,13#. Such state could be associated w
the preexisting singlet state that we need.

Resonances

Let us now concentrate on the resonance content of th
presented in Eq.~73!. The octet around 1.4 GeV gives rise
eight resonances which appear with masses very close to
physical ones,f 0(1500), a0(1450) and K0* (1430) @30#.
Thus, the correlation between tree level resonances, p
n

-

FIG. 7. Distribution of events
around thea0(980) mass corre-
sponding to the central productio
pph in 300 GeV collisions@41#.
The abscissa represents theph in-
variant mass,Ecm . The dashed
line represents the background in
troduced in the same reference.
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FIG. 8. S-wave I 51/2 Kp
elastic phase shifts,d11

(1/2)0 . The
triangles correspond to the ave
age, as described ind11

(1/2)0 subsec-
tion, of @34,35,50#. Circles corre-
spond to@49#.
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and physical resonances is clear aroundAs.1.4 GeV. How-
ever, this correlation is not so clear around 1 GeV. This is
will be the object of the following discussions.4

From Figs. 4 and 7, one can easily see two resonan
with masses around 1 GeV, the well knownf 0(980) and
a0(980) resonances. The first one could be related to
singlet bare state withM151020 MeV, but for the second
we have not bare resonances to associate with, becaus
tree level resonance was included with a mass around
GeV and has evolved to the physicala0(1450). The situation
is even more complex, because we also find in our am
tudes other poles corresponding to thef 0(400– 1200)[s
and to theK0* (900)[k. In Table I the pole positions of the
resonances in the second sheet5 are given and also the modu
lus of the residues corresponding to the resonanceR and
channeli , z i

R , given by

uz i
Rz j

Ru5 lim
s→sR

u~s2sR!Ti j u, ~75!

wheresR is the complex pole for the resonanceR.

4We do not give a detailed study for the resonances with ma
around 1.4 GeV because we have not included channels which
come increasingly important for energies above.1.3 GeV as 4p in
I 50 or Kh8 for I 51/2. This makes that the widths we obtain fro
the pole position of the former resonances are systematic
smaller than the experimental ones@30#. Thus, a more detailed
study, which included all the relevant channels for energies ab
1.3 GeV, should be done in order to obtain a better determinatio
the parameters for this octet around 1.4 GeV.

5I sheet: Imp1.0, Imp2.0, Imp3.0; II sheet: Imp1,0, Imp2

.0, Imp3.0.
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While for the f 0(980) one has a preexisting tree lev
resonance with a mass of 1020 MeV, for the other re
nances present in Table I the situation is rather different
fact, if we remove the tree level nonet contribution from Eq
~65!, ~67! and~69! thea0(980), s andk poles still appear as
can be seen in Table II. For thef 0(980), in such a situation
one has not a pole but a very strong cusp effect in the op
ing of theKK̄ threshold. In fact, by varying a little the valu
of aSL one can regenerate also a pole for thef 0(980) from
this strong cusp effect. In Table II we have not given
absolute value for the coupling of thef 0(980) to theKK̄
channel because one has not a pole for the given valu
aSL. However, the ratios between the different amplitud
are stable around the cusp position. As a result, the phys
f 0(980) will have two contributions: one from the bare si
glet state withM151020 MeV and the other one comin
from meson-meson scattering, particularlyKK̄ scattering,
generated by the lowest orderxPT Lagrangian.

In Eqs. ~65!, ~67! and ~69! when the resonant tree leve
contributions are removed, only the lowest order,O(p2),
xPT contributions remain. Thus, except for the contributi
to the f 0(980) coming from the bare singlet at 1 GeV, th
poles present in Table II originate from a ‘‘pure potentia
scattering, following the nomenclature given in@17#. In this
way, the source of the dynamics is the lowest orderxPT
amplitudes. The constantaSL can be interpreted from the
need to give a ‘‘range’’ to this potential so that the loo
integrals converge. These meson-meson states are show
Fig. 9 in the chiral limit, setting all the masses of the pse
doscalars to zero and all thef P5 f , where P denotes any
pseudoscalar mesonp, K or h. We see in this last figure a
degenerate octet forI 50, 1 and 1/2 with a mass around 50
MeV and a singlet inI 50 with 400 MeV of mass. In both
cases these meson-meson resonances are very broad.
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e-
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The situation is very different to that of the former studi
vector channels where all the physical resonances, ther and
K* , originate from the preexisting tree level resonances.
already saw, at the end of the last section, when compa
theS andP-wavepp scattering, that theO(p2) xPT ampli-
tude is 6 times larger forL50 than for L51 around the
resonance energy region. This implies thatn-loops inL51,
with the O(p2) xPT amplitudes at the vertices, will be su
pressed by a factor 1/6n11 with respect toL50. The sup-
pression of loops is expected from largeNc QCD and this is
in fact what happens for the vector channels, but for
scalar ones unitarity is unexpectedly large, giving rise
these meson-meson resonances.

As can be seen from Eq.~39!, these meson-meson pole
without tree level resonant contributions, originate from t
cancellation between the inverse of theO(p2) xPT ampli-
tude and theg0 function. As a consequence, the followin
relation between the masses of those resonances withf re-
sults:

M2} f 2/g0 , ~76!

TABLE I. Pole position and residues for the full amplitude.

Ass54451 i221 MeV Asf 0
59871 i14 MeV

zpp
s 54.26 GeV z

KK̄

f 0 53.63 GeV

z
KK̄

s

zpp
s 50.254

z pp
f 0

z
KK̄

f 0
50.51

zhh
s

zpp
s 50.036

z hh
f 0

z
KK̄

f 0
51.11

Asa0
510531 i24 MeV Ask57791 i330 MeV

z
KK̄

a0 55.48 GeV zKp
k 54.99 GeV

zph
a0

z
KK̄

a0
50.70

zKh
k

zKp
k

50.62
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since g0 is O(1) and f 2 is O(Nc) @25#, these masses wil
grow asNc . Thus for Nc→` these resonances will go t
infinity. This movement can be followed by suppressing t
g0 function by a factort from 1 ~physical situation! to 0
(Nc5`). It is then observed how the resonances in Table
without the preexisting resonant contributions, disappear
ing to infinity.

V. ESTIMATIONS OF THE UNPHYSICAL CUT
CONTRIBUTION FROM xPT AND THE EXCHANGE

OF RESONANCES

In this last section we estimate the influence of the u
physical cuts for the elasticpp andKp S-waves withI 50
and 1/2, respectively. The unphysical cuts will be appro
mated by means ofxPT supplied with the exchange of res
nances@24# with spin<1 in thet andu channels. The loops
are calculated fromxPT atO(p4) and the exchange of reso
nances in the crossed channels accounts for a resumm

TABLE II. Pole position and residues when the bare reson
contributions are removed.

Ass54341 i244 MeV Asf 0
5cusp effect

zpp
s 54.21 GeV z

KK̄

f 0 5 ¯

z
KK̄

s

zpp
s 50.301

zpp
f 0

z
KK̄

f 0
50.38

zhh
s

zpp
s 50.033

z hh
f 0

z
KK̄

f 0
51.04

Asa0
51082.01 i13.3 MeV Ask57701 i341 MeV

z
KK̄

a0 55.98 GeV zKp
k 54.87 GeV

zph
a0

z
KK̄

a0
50.74

zKh
k

zKp
k

50.61
FIG. 9. Chiral limit. From left to right,~a!–~c!, respectively. In~a! the poles of T found in the unphysical sheet are shown forI 50.
Analogously forI 51/2 and 1 in~b! and ~c!, respectively.
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of counterterms up to an infinite order, in the way explain
in Sec. II after Eq.~26!. The result can be taken directly from
Ref. @23#, where thepp→pp andKp→Kp amplitudes are
calculated up to one loop including explicit resonance fie
@24#.

In order to extract, from Ref.@23#, the contribution of the
unphysical cuts, which we design by TLe f t , we have made
use of Eqs.~3.2!, ~3.10!, ~3.13!, ~3.14! for the pp scattering
and of Eqs.~3.6!, ~3.16!, ~3.19! and ~3.20! for the Kp one.
We calculate the loop contributions at the same regular
tion scale than in@23#, that is,m5M r5770 MeV, the same
we have taken in this work. In the following, when we ref
to an equation in the form~m.n!, it should be understood tha
this equation is the corresponding one from Ref.@23#. The
work of @23# contains loops and the exchange of resonan
in thes, t andu channels. The exchange of resonances in
s channel is also present in our work where the masses
couplings of the scalar resonances, Eqs.~73!, were fitted to
data. Obviously the loops and the exchange of resonanc
crossed channels, absent in our work, go to TLe f t . On the
other hand, we must also include in TLe f t a polynomial con-
tribution of O(p4) because the loop functions used in@23#,
JPQ

r , M PQ
r andJ̄PQ , whereP, Q arep, K or h, and our loop

functions, (2)g0(s), differ in a constant. These polynomia
contributions can be interpreted as subtraction terms fro
dispersion relation of TLe f t . Since the loops are calculate
with Im T at O(p4) one needs three subtractions, which
the order of the subtraction polynomial. Let us explain fi
the pp scattering.

From Eq.~3.2! one has the expression of the elasticpp
amplitude withI 50 in terms of the amplitude A(s,t,u), Eq.
~3.10!. Making use of Eqs.~3.2! and ~3.13! the contribution
of the loops in thes channel is given by

~2s2mp
2 !2

2 f p
4 Jpp

r ~s!1
3s2

8 f p
4 JKK

r ~s!1
mp

4

6 f p
4 Jhh

r ~s!. ~77!

It is straightforward to see that the imaginary part of E
~77! is the one required by unitarity up toO(p4) for the I
50 S-wave pp elastic partial wave with pions, kaons an
etas as intermediate states. The squared amplitudes in
of the loop functions are the lowest orderxPT amplitudes
since loops are calculated atO(p4). This is the same kind o
result we would obtain for the loop contributions in thes
channel from the expansion of the generalization of Eq.~39!
to coupled channels up to the order considered in Eq.~77!,
after dividing Eq.~77! by a global factor 2 to match with ou
normalization in Eq.~1! with a52. However, as we dis
cussed above we use (2)g0(s) i i instead ofJii

r (s) in Eq. ~77!
in order to evaluate the loop contributions in thes channel.
Hence, we must include in TLe f t the following expression:

~2s2mp
2 !2

2 f p
4 „Jpp

r ~s!1g0~s!11…1
3s2

8 f p
4 „JKK

r ~s!1g0~s!22…

1
mp

4

6 f p
4 „Jhh

r ~s!1g0~s!33…. ~78!
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The former contribution, together with the exchange
resonances and loops in the crossed channels, after pro
ing over theS-wave using Eq.~1! with a52, define TLe f t in
our approach.

For theI 51/2, L50 Kp partial wave one has essential
the same situation than forpp. From Eqs.~3.6! and ~3.19!
one calculates the contribution of loops, which we proje
over theS wave. The loops in thes channel give the corre
sponding result to Eq.~77! for theKp I 51/2 S wave. In this
case, instead of having the loop functionJPP

r (s), one can

write it in terms of J̄Kp(s) and J̄Kh(s). After taking into
account the difference betweenJ̄PQ(s) and our loop func-
tions, one obtains the analog result to Eq.~78! for Kp. This
contribution, together with the projection over theS-wave of
loops and the exchange of resonances@Eqs.~3.6!, ~3.20!# in
crossed channels, give TLe f t .

We have not considered the tadpole contributions com
from pseudoscalar loops without flux of energy and the c
pling of scalar resonances to the vacuum~Fig. 2.b of @23#!
because they are reabsorbed into the residues and pos
of the CDD poles and the subtraction constanta0 , Eq. ~24!,
which we have phenomenologically fixed.

Including explicit resonance fields as done in@23# in-
creases the range of safe applicability of chiral symme
from As'400 MeV, accomplished inxPT, up to As
'700– 800 MeV, as can be seen in@23# when comparing
their results with the experimental data.

The results which we obtain for the contribution of TLe f t
in the range of energies of@23# are shown in Table III. In the
second and fifth columns we show, respectively, the ra
between TLe f t and the absolute value of our calculated I,L
50 pp andI 51/2, L50 Kp partial wave amplitudes up to
As'800 MeV. In Table III we also compare TLe f t with the
tree level amplitudes T0,11

` . This ratio is also significative
because the procedure which we have followed to arrive
unitarized amplitude from T0,11

` would not be much affected
by the addition of TLe f t which is a small correction with
respect to T0,11

` . We see that these ratios are rather sm
Therefore, this supports our point of view of treating the l
hand cut as a perturbation in the range of energies we h
considered.

It is worth mentioning that this smallness of the unphy

TABLE III. Influence of the unphysical cuts for theI , L
50pp andI 51/2, L50Kp partial waves. The three first column
refer topp and the last three toKp.

As
MeV

TLeft

uT0.11u
%

TLe f t

T0,11
`

%

As
MeV

TLeft

uT0,11

%

TLe f t

T0,11
`

%

276 3.7 4.8 634 7.1 8.7
376 3.5 5.1 684 3.7 4.7
476 4.1 5.7 734 0.3 0.4
576 5.7 6 784 22.5 23.3
676 8.1 6.1 834 25.7 27.2
776 11.2 5.6
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cal cuts, as shown in Table III, is a consequence of a can
lation between the contributions to TLe f t from the loops and
the exchange of resonances in crossed channels. In fac
individual contributions in thepp case, for energies aroun
As5600 MeV, are of the order of 15– 20 % with respect
T0,11

` .
In a recent work, Ref.@54#, the authors also combine th

N/D method with chiral symmetry studying the (I,L)
5(0,0), ~2,0! and ~1,1! pp partial wave amplitudes. How
ever, in this work only elastic unitarity is considered and t
calculations are done in the chiral limit (mp50). On the
other hand, the left hand cut is approximated only by
exchange of ther plus a scalar resonance without includin
loops in the crossed channels. These loops, as we have
in this section, cancel to a large extent the crossed reson
contributions for theS-wave I 50 pp scattering.

VI. CONCLUSIONS

Making use of theN/D method, we have developed th
most general structure that an elastic partial wave amplit
has when the unphysical cuts are neglected. After match
this result with lowest order,O(p2), xPT @16# and with the
exchange of resonances with spin<1, in a way consisten
with chiral symmetry as given in Ref.@24#, we extend the
formalism to handle also coupled channels. Then,pp and
Kp(I 51/2) P-wave amplitudes are described up toAs
51.2 GeV. It is shown that these amplitudes can be gi
rather accurately in terms ofmp , mK , f and the masses o
the r and K* resonances, when restrictions coming fro
large Nc QCD and unitarity are considered, in the lines
what was observed in@4#.

Next, the scalar sector is studied and good agreement
experiment up toAs51.4 GeV is found. An octet and a sin
glet are included with masses around 1.4 and 1 GeV, res
tively. The former originates the observedf 0(1500),
a0(1450) andK0* (1430) resonances, the latter an importa
contribution to the physical pole of thef 0(980). Other poles
appearing in our amplitudes, thea0(980), s, k and an im-
portant contribution to the finalf 0(980), originate from
meson-meson scattering with the lowest orderxPT ampli-
tudes plus the constantaSL as dynamical sources. This situ
ation is very different from the one observed in the vec
channels where tree level structures dominate the scatte
process and a strong suppression of unitarity loops occur
indicated at the end of Sec. IV. As a consequence,
present study supports that a concept like scalar meson d
nance, analogous to the well known vector meson one, is
suited at the phenomenological level.

In the last section we have made some estimations
order to investigate the influence of the unphysical cuts. T
results obtained support our picture of treating the unph
cal cuts in a perturbative way and then establishing the
bility of our conclusions in Secs. III and IV against the co
rections coming from cross symmetry.
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APPENDIX: N/D IN COUPLED CHANNELS

In this appendix we make use of a matrix formalism
deal with several coupled channels. In analogy with the e
tic case, Eq.~7!, let us define the matrix TL8 as

TL8~s!5p2LTL~s!p2L, ~A1!

with p a diagonal matrix which elements arepi j 5pid i j
wherepi is the modulus of the c.m. momentum of the cha
nel i , pi5l1/2(s,m1i

2 ,m2i
2 )/2As, with m1i and m2i the

masses of the two mesons in channeli .
From the beginning we neglect the unphysical cuts. A

consequence TL(s) i j will be proportional to pi
Lpj

L . This
makes that TL(s) i j , apart from the right hand cut comin
from unitarity ~above the thresholds for channelsi and j , sth

i

and sth
j respectively!, will have another cut for oddL be-

tweensth
i and sth

j due to the square roots present inpi and
pj . In this way, TL8 will be free of this cut and will have only
the right hand cut coming from unitarity. Thus it will satisf

Im TL8
21~s!52pLr~s!pL52r~s!p2L, ~A2!

wherer(s) is a diagonal matrix defined by

r~s!52
p

8pAs
u~s!, ~A3!

with u(s) another diagonal matrix such thatu(s) i i 51 above
the threshold of channeli and 0 below it.

We write TL8 as a quotient of two matrices, NL and DL

making use of the coupled channel version of theN/D
method@29#

TL85DL8
21NL8 . ~A4!

We can always take NL8 free of poles and also containin
all the zeros of TL8 . In such a case NL8 will be just a matrix of
polynomials, we then write

NL85Qn2L21 , ~A5!

with Qn2L21 a matrix of polynomials of maximum degre
n2L21.

In this way, from Eqs.~A2! and ~A4! one has

Im DL8~s!52NL8~s!r~s!p2L ~A6!

and making a dispersion relation for DL8 one has

DL8~s!52
~s2s0!n

p E
0

`

ds8
Qn2L21~s8!r~s8!p2L~s8!

~s82s!~s82s0!n

1Pn21 , ~A7!
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with Pn21 a matrix of polynomials of maximum degre
n21.

Because NL8 is just a matrix of polynomials, it can b

reabsorbed in DL8 to give rise to a new D˜
L8 which will fulfill

Eq. ~A6! but with ÑL851. In this way

TL85D̃L8
21,

ÑL851,
ro

ys

R

r-

ry

07402
D̃L852
~s2s0!L11

p E
0

` r~s8!p2L~s8!

~s82s!~s82s0!L11 1R~s!,

~A8!

with R(s) a matrix of rational functions whose poles wi
contain the zeros of TL8 . This fact is in clear analogy with the
role played by the CDD poles included in Sec. II for th
elastic case.
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