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Final state interaction phase inB decays
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From an estimate of the meson-meson inelastic scattering at 5 GeV, it is concluded that a typical strong
phase inB decays to two mesons is of the order of 20°. For a particular final state, an estimate of the phase
depends on whether that state is more or less probable as a final state compared to those states to which it is
connected by the strong interacti®matrix. [S0556-282099)07317-9

PACS numbgs): 13.25.Hw, 11.30.Er, 11.80.Gw, 14.40.Nd

[. INTRODUCTION decay operator. The strong interacti®mmatrix is defined
with the “in” and “out” states by
Strong final state interactions play an important role in the .
analysis ofCP-violating effects inB decays. DirecCP vio- S = ("), D

lation such as the difference in rates B —F and B~ . S
— - We choose states that are eigenstated, obt of individual

$neson momenta. The phases of ith@ndout states are fixed

shifts. Final state phases play a critical role in amplitudeby the time reversal transformatian

analyses of a set @° decay experimental results.

An approach to final state phases in inclusive decays was TIf7imy L (f 70U
given by Bander, Silverman, and Sdai. For decays corre- ’ @)
sponding to the transitiob—uus, they considered at the T|foub  (fin],

quark levelb— ccs—uus, where the second transition on ] ) ) ] ) ]
the mass shell yielded the final state phase. Whether or nd¥ith this phase convention, time reversal invariance of
this is reasonable for inclusive decays, its applicafidhto ~ strong interactions requires th&{;, be a symmetric matrix

exclusive decays such @&—K has been criticized3], Sip =Syt 3)
because the major final state interactionof are “soft”
scattering toKns and not tocc states. Applying time-reversal operation ohl;=(f°"{O;|B), one

A major difference ofB decays from decays of lighter obtains
hadrons is the presence of a large number of final decay T
channels. The value of the strong phase for a given decay M — (B|TOT Y fiM). (4)
channel depends on the weak and strong amplitudes of all
final states that communicate with it through strong interacif one inserts a complete set ofit states and uses E(B),
tion. While many theoretical attempts have been made, nongis relation become#l ;=3 S M}, for a T-even decay

of them have tackled 'ghe formidable complexity arising fro.moperatoroi . One can express it in the operator form as
the large number of final decay channels. To give quantita-

tive predictions, one must in some way face a multichannel M =SM*, (5)
problem involving both weak and strong interactions.

We concentrate here on the decayBto two mesons, where M is represented in a column vector. This matrix
referring to B— 7 to be specific. Arguments have been gquation is formally solvable as
given that the final state phase shifts should be small. For
example, Bjorken 4] argued that there is little final state M =SY2mO, (6)
scattering inB— 77 becauseB decays directly to colorless
qapairs that do not interact as they evolve inta. Taken whereM? is an arbitraryreal vector of the same dimension
literally this is not correct, since thestate scattering at 5 as M. If one uses the eigenstatgs) of the S matrix as a
GeV is expected to be sizab|&], as we discuss below. In basis, Eq(6) reduces to the Watson theorthazMge' Oa,
the present paper we seek to analyze the relations betwe&ve thus may consider the vectdi® as representing the
the weak decay amplitude and the strong interacBamatrix ~ decay amplitude in the absence of the final state phases due
of final states that might lead to large or small final stateto the strong interaction. Sindd and M, are related by a
phases. unitary matrix, it holds thak (|M|2==M?|2.

If one subtracts the complex conjugate Mffrom both
sides in Eq.(5) and divides by 2, the familiar form InM

Consider the decay matrix elemgif®"|{O;|B) for theB  =tM* emerges for the imaginary part &, wheret=(S
meson into the hadronic final statewhereO; is a weak —1)/2i. In components, it reads

Il. MULTICHANNEL FINAL-STATE INTERACTION
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ImM ;= > M* (7) a_o(s)= —JO T(s
tisr ' — ,Hdt, 13
f = ff f | O( ) 16 s s ( ) ( )

This form is commonly derived starting with Lehmann- ;q|ds
Symanzik-Zimmermann’s reduction formula. In the applica-

tions of interest, the weak decay Hamiltonidy, is given in 0.16 (mm)
the form
0.17 (Km)
Ima, - o= — (14
Hu=2 O, ® 018 (KK)
' 0.12 (Dm)

where \; is a combination of the Cabibbo-Kobayashi-
Maskawa matrix elements ar@, is a T-even operator. It is atVs=5~6 GeV. _ o
to be understood tha¥l; is to be evaluated separately for ~ Extraction of theswave amplitude from the diffractive

different operator®; . formula may arouse suspicion since one thinks of diffraction
as a peripheral proce$8]. It would be better to consider
IIl. STRONG INTERACTION S MATRIX T(s,t) as describing the scattering from an absorbing gray

sphere of radius. The values ofy; up tol~kr vary gradu-

When two mesons such as" 7~ interact in thes state, ally with |, thus adding up to a large forward peak. As a
we believe that they will scatter into a large number of mul-result, about 90% of the contribution to the integral in Eq.
tiparticle final states. Indeed, we expect similar inelastic be{13) comes from|t|<1 Ge\? even though thé=0 ampli-
havior for all partial waves of<kr, wherer is a character- tude itself is, of course, independenttof
istic hadron radius. The sum over these partial waves can be In what follows we use the estimate
described by a diffractive scattering formula such as that
given by Pomeron exchange. For the case of meson-meson S=0.7 (15
scattering, we extrapolate from the analysis of meson-baryon
and baryon-baryon scattering, and for the invariant elasticorresponding to
scattering amplitude we write

Sk~
T(s,t)=iose, (9) ay-o=tfy=——=0.185. (16)
where the constant in front has been fixed by the optical . ) )
theorem. Defining the Pomeron residue Byt)= o€, Th|s corresponds to 'th<'a.case of a gray sphere with an inelas-
with  the factorization  relation B(t)ymB(%) ticity of 0.85. In the limiting case of a black sphe8g goes
= B()pB(wr, We obtain PP to zero and the inelasticity goes to 0.5. If one goes beyond

- the diffractive scattering approximatioi®s; is not purely
oTT~12 mb, Ugleo mb, 05)528 mb, (10) real. In the Regge theor_y, the_ real part arises from e&change
of the non-Pomeron trajectories such@and f,. In 7= p
whereaPP=37 mb,o7P=21 mb, andrkP=17 mb[6] have scattering, the real-to-imaginary ratio of 10-20% was ob-
been used for the diffractive contribution af,, at s served in the forward scattering amplitudes/at=5-6 GeV

~mg. For the diffractive peak width, the factorization gives [9]- We can make an estimate of the real part for meson-
meson scattering by using the factorization. We first deter-

b™™=3.6 GeV 2, bK"™=28 GeV?, mine the Regge parameters tat0 from the total cross-
_ section differencef6], and then extract theirdependences
b*K=2.0 GeV 2 (1)  from the angular dependence of the differential cross sec-

. op 2 pp ) Kp tions[10]. The analysis is simpler if exchange degeneracy is
if we choosgb =5.0 GeV'?, b™=4.3 GeV *, andb imposed. The smallet,,; and the largep-f, residues tend
=35 GeV “© [7]. For D scattering, we use the quark {g enhance the real-to-imaginary amplitude ratiofar scat-
counting rule foroy, and the assumption that the charmediering over p scattering, while the smalles™ partially
quark interacts with the light quarks much more weakly.compensates the trend. Particularly fof 7°, the real parts

Then we obtain a crude estimate of the p and f, terms add up close to 30% of the imaginary
Dr 1 part. However, our major goal is to understand the implica-
Ot =350 (12 i i i i ing: i
tot = 2 Otot tions of the sizable inelastic scattering; for this purpose, we

. . use the simplifying approximation th is real.
andbP7 is a little smaller tharb®~. plifying app s

Projecting out thes wave from the amplitude in Eq9),
IV. TWO CHANNELS

Relation(5) was studied in the case of two channgid$
The factorization can be proved only for simplplane singulari- ~ assuming that the diagon8Imatrix elementsS;; are purely
ties. It is an assumption for the Pomeron. real. This requirement on th® matrix turns out to be so
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strong in the case of two channels that there is only a singl&he first and second terms of the left-hand side are real and
parameter left: imaginary, respectively, for Rg=0. Given the estimate of
Eq. (16) the coefficient of the first term is much larger than

1 1 1 1 that of the second term, and we consider this primarily as an
- = 2i6 - = i i
e 0 equation for InM;. With the randomness postulate, the
S= V2 V2 0 _2ip V22 phase ofM; is equally often positive or negative if we con-
1 1 e 1 1 sider a large ensemble of final statedt is some kind of
E E - E E average of the magnitude of the phasévof, not values for

individual M, that we can study with our randomness pos-
( cos20 isin 20) tulate. For this purpose, we take the absolute value squared

i sin20  cos 2 17) for both sides of Eq(19). Then the right-hand side is

1 * ok
WhenS¥?is computed fron and substituted into E6), a R=3 f,%ﬂ Sit My Ser My (20
simple relation results:
where ts;,=S;;//2i has been used fof’ #f. The random
M1=My;C0860+iM g, siné, phase postulate allows us to retain only the term$’of f”
(18 and to reduce the double sum to a single sum:

M2=il\/|015in 0+ MOZCOSH.

1 2
The phase of the decay amplitude in channel 1 is large if the R= 4 E Sff/s;r/f|Mf/| 21)
particle decays preferrentially to channel 2, while it is small e
if channel 1 is the dominant decay channel for small values 1—
of 6. Though this is an interesting conclusion, this picture E_||v|f,| E |sff,|2, (22)
turns out to be specific to the two-channel case. When we 4 f#f/
add one more channel in the final state, there are three real -
parameters even after Bp=0 is assumed. The nice simple where the second line defingd f2,| as the weighted average
relation of Eq.(18) does not hold any longer. If we go t  of the decay amplitudes into statés Then, using the uni-
final channels, there arBl(N—1)/2 real parameters even tarity of the S matrix, we reach
with ImS;;=0, and no meaningful prediction results. There-

fore we must change our strategy in studying the cadd of 1 v an
>1 such as th® decay. R=7(1-Sp)[MF|. (23
V. RANDOMNESS OF WEAK DECAY AMPLITUDES While our estimate ofS;; is made on the basis of the

Pomeron exchange, it should be noted that contributions to

_ In the presence of many decay channels, strong interag, . from quantum number exchange may be important in
tlpns are so compllcatgd that it is beyond our ability to F.)re_determining|M2 | from Eq.(22) if they correspond to states
dict final state interactions accurately. We must substitute fr )

lack of our knowledge with reasonable dynamical assump!’ With large values ofM?,|. Identifying Eq.(23) with the
tions and/or approximations. In search of such an assumpbsolute value squared of the left-hand side of @§), we
tion, we notice that sincé;, andS;;, come from two dif-  obtain the prediction of our random phase approximation:
ferent sources, weak and strong interactions, the phase of —
productS;/ (M7, for f’#f takes equally likely a positive ora  (1+ St 2(IMM )%+ (1—S)4(ReM )= (1-Sf) M7, |
negative value ag’ is varied withf fixed. While M;, is (24)
related toM; (f'#f) by rescattering, there exist so many

states that the influence 6fon f’ can be disregarded. we Definingp by

therefore introduce the postulate that the phas&;pfv ;‘, T

takes random values &s varies. It should be noted that p=IMp[FIM ],

randomness is postulated here for the relative phase and sign (25)
of the decay matrix element to ti&matrix element, not for [M¢|%2=(ImM{)2+ (ReM;)?,

the dynamical phases and mixing $imatrix, as was intro-

duced in the randor8 matrix theory of nuclear physidd1].  the ratio of the imaginary-to-real part ; is solved from
We start our analysis with Eq$7) and (15). Taking the Eg. (24) as

f’=f term in the sum to the left-hand side in EJ) and

usingtsr=ilmts;, we write Eq.(7) in the form (ImM;)? ?(p%—7%)
——=tarfSy= ——————, (26)
(ReMy)? 1-p*7?
(L+ite)ImMM—tReM = X, t; M}, . (19)
£+t where
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1— Sff 1/2 delta (degrees)
= 2
_ _ _ _ _ 80
Note thatr? is equal to the ratio of elastic to inelastic scat-
tering cross sectiowrg/gi,e Of the relevant partial wave.
Since the left-hand side of E¢26) is nonnegatives and p 60
are constrained fog:;>0 by
40
P?<p?’<1i7. (28
FOI’ Sff = 07,
=0.18, (29
0.5 1 1.5 2 rho

so that rescattering among the final states does not allow
IM{/|? and [M|? to differ too greatly in magnitude. In the  FIG. 1. The strong phasé defined in Eq(26) plotted against
weak limit of rescattering£—0), of course, Eq(28) allows  the ratiop for S;;=0.7. &; is chosen between 0° and 90°.

any value forp. In the black sphere limit—1) Eq.(26) is

useless, and Eq28) constrainsp=1. Our approach is only a=/(1+S)/2. (33
useful to the extent that inelastic scattering dominates very
much over elastic for the final stafelt should be noticed Any argument that a final state phase is small must be an

that Eq.(26) reduces to the two-channel cd&s. (18)] with argument thap is small. It should be noted thatdepends on

) the particular final stateand on the weak interaction opera-

0 2
M2

M3

2 —
_pT (30 tor O; . The quantity| Mf2,| is an average of the square of the

1—-p272 decay amplitude to stafé via O; weighted by the square of
the scattering amplitude fromto f’ [cf. Egs.(22) and(23)].

Our random approximation amounts to lumping all inelasticThus a value ofp much smaller than unity means that on
channels together as if they were a single inelastic channelverage the states to whidhscatters are much less likely
with an “average” decay amplitude. However, we now in- thanf to be final states in the decay due to operafpr
terpret this as something like the standard deviation of th@onversely, iff is a particularly unfavored final stagemay
phase for an ensemble of independent final sthteith a  well be above unity. Figure 1 shows the dependence of the
given value ofp. phase orp for the choice ofS;=0.7.

If the relevant state§’ were similar to the statk then we
might expectp to be close to unity. Fop=1, Eq. (26) re-

VI. POSSIBILITY OF SMALL OR LARGE STRONG

duces to PHASES FOR TWO-BODY CHANNELS
tarf 8, = 7= 1-Si While our randomness postulate leads to sizable strong
1+Ss’ phases for “typical” decay channels, dynamical arguments
(31) are necessary to estimate the paramefer a specific chan-
_ 1-S¢ nel and a specific decay operator. We ask what dynamical
sinds= 2 arguments could let our prediction agree with Bjorken’s ar-

gument, which favors small phases for decays sucB%s
With S=0.7, this gived &;|~23°. Thus a typical value of — "7 . The observed branching fraction BY w7 is
the final strong interaction phase in this case is not smallabout 102 of the inclusive branching fraction fdJ_>qu
This result for a typical state has a simple heuristic interprewithin large uncertainties. This might seem to indicate that
tation. The original real decay amplitud!Aa‘l’ isreduced asa «*#7 is not a favored final state, and that the strong phase
result of absorption by a factam, but an imaginary term of 7" 7~ might be of order of 20°. However, this conclusion
arises due to rescattering from other states. Since the totahn be evaded if certain conditions are satisfied.
decay rate is not changed by final state scattering, the final It should be noted that we are only interested in whether

value of|My| for a typical state will be equal ttM?|. Thus =" 7~ is a favored decay channel relative to those to which

M; takes the forms it is connected bys; ¢ . Most of the state$’ are multimeson
states with little jetlike character. It could be argued that
Mi;=M (l’[a+i V1— az], these states are not favoredBadecay products because they

(32 are not likely to develop from three quark jets into whigh
ImM; naturally decays. It is not clear whether this distinction is
ReM; vi-aa. really operative for the energyg .
If the above argument were true, it could be considered as
This agrees with the result above if the absorption factor isin interpretation of the Bjorken argument. In order to pro-
identified as duce a7 final state, the final quarks must emerge as color-
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less pairs; alternative quark configurations are unlikely to A simple heuristic understanding of this phase is that the
hadronize intors. Thus p would be close to its minimum final state absorption reduces the value of the original real
value and Inv; would be small. It is not true, however, that decay amplitudes, whereas rescattering from other states pro-
the final 77 state has little interaction, but the effect would vides an imaginary amplitude. For a “typical” state the ab-
primarily be a moderate absorption correction to the reapolute value of the amplitude is not changed since the final
part. In the two-channel reduction this corresponds tostate interaction does not change the total decay rate. Our
M o/ M 1 close to zero, and the change of the real pagf magnitude estimate of-20° is derived from the expected

from M 5o to M;,cos8 would be considered as the absorption N€lasticity of the meson-meson scattering.
correction. It may be possible to argue for a particular final sfateat

An alternative possibility in which one might expect a the phase is small. Any such argument must show that the

large final state phase shift has been emphasized in a numbaftes to whictf is connected by th& matrix are generally
of recent paperkl2]. These are cases in whidh; vanishes less likely to be a decay product Bfthanf. Thus it might be

in the naive factorization approximation. An example is the2fued that the four-quark operator I(.ec’ilhdsieasilyrf’m‘,
“tree” amplitude proportional tox,=V,V*, for the decay whereas there are many states to whichw~ scatters that

— . . . are not easily reached directly via decay. Conversely it
B~ —K%r . In this case the major contribution ¥; may Y y Y y

ise f g f f q ioh might be argued that for states which are not easily reached
arise from rescattering from favored states, so thatight - i3"the four-quark operator, the strong phase is large.

be larger than unit_y. It can be argu_EtQ] thqt, in this case, . It should be emphasized that at best one may give quali-
even though the final state scattering mainly goes to mu'“fative arguments why a particular phase may be large or

particle states, the main contribution toMy arises fromthe  ga \we do not believe any quantitative caiculations are
scattering of quantum number exchange involving tWo-jiapie hecause of the complexity of the multichannel prob-
particle to two-particle transitions. Of course, the real part Ogl’em.

M; obtains a contribution from the dispersive part of such

diagrams, which is hard to calculate, so that quantitative re- ACKNOWLEDGMENTS
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