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Final state interaction phase inB decays
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From an estimate of the meson-meson inelastic scattering at 5 GeV, it is concluded that a typical strong
phase inB decays to two mesons is of the order of 20°. For a particular final state, an estimate of the phase
depends on whether that state is more or less probable as a final state compared to those states to which it is
connected by the strong interactionS matrix. @S0556-2821~99!07317-8#

PACS number~s!: 13.25.Hw, 11.30.Er, 11.80.Gw, 14.40.Nd
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I. INTRODUCTION

Strong final state interactions play an important role in
analysis ofCP-violating effects inB decays. DirectCP vio-
lation such as the difference in rates forB1→F and B2

→F̄ vanishes in the limit at which there are no strong ph
shifts. Final state phases play a critical role in amplitu
analyses of a set ofB0 decay experimental results.

An approach to final state phases in inclusive decays
given by Bander, Silverman, and Soni@1#. For decays corre-
sponding to the transitionb→uūs, they considered at the
quark levelb→cc̄s→uūs, where the second transition o
the mass shell yielded the final state phase. Whether or
this is reasonable for inclusive decays, its application@2# to
exclusive decays such asB→K̄p has been criticized@3#,
because the major final state interactions ofK̄p are ‘‘soft’’
scattering toK̄np and not tocc̄ states.

A major difference ofB decays from decays of lighte
hadrons is the presence of a large number of final de
channels. The value of the strong phase for a given de
channel depends on the weak and strong amplitudes o
final states that communicate with it through strong inter
tion. While many theoretical attempts have been made, n
of them have tackled the formidable complexity arising fro
the large number of final decay channels. To give quant
tive predictions, one must in some way face a multichan
problem involving both weak and strong interactions.

We concentrate here on the decay ofB to two mesons,
referring to B→pp to be specific. Arguments have bee
given that the final state phase shifts should be small.
example, Bjorken@4# argued that there is little final stat
scattering inB→pp becauseB decays directly to colorles
qq̄ pairs that do not interact as they evolve intopp. Taken
literally this is not correct, since thes-state scattering at 5
GeV is expected to be sizable@5#, as we discuss below. In
the present paper we seek to analyze the relations betw
the weak decay amplitude and the strong interactionSmatrix
of final states that might lead to large or small final st
phases.

II. MULTICHANNEL FINAL-STATE INTERACTION

Consider the decay matrix element^ f outuOi uB& for the B
meson into the hadronic final statef, whereOi is a weak
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decay operator. The strong interactionS matrix is defined
with the ‘‘in’’ and ‘‘out’’ states by

Sf f 85^ f outu f 8 in&. ~1!

We choose states that are eigenstates ofJ, not of individual
meson momenta. The phases of thein andout states are fixed
by the time reversal transformationT:

Tu f 8 in&→^ f 8outu,
~2!

Tu f out&→^ f inu.

With this phase convention, time reversal invariance
strong interactions requires thatSf f 8 be a symmetric matrix

Sf f 85Sf 8 f . ~3!

Applying time-reversal operation onM f5^ f outuOi uB&, one
obtains

M f →
T

^BuTOiT
21u f in&. ~4!

If one inserts a complete set ofout states and uses Eq.~3!,
this relation becomesM f5( f 8Sf f 8M f 8

* for a T-even decay
operatorOi . One can express it in the operator form as

M5SM* , ~5!

where M is represented in a column vector. This matr
equation is formally solvable as

M5S1/2M0, ~6!

whereM0 is an arbitraryreal vector of the same dimensio
as M. If one uses the eigenstatesua& of the S matrix as a
basis, Eq.~6! reduces to the Watson theoremMa5Ma

0eida.
We thus may consider the vectorM0 as representing the
decay amplitude in the absence of the final state phases
to the strong interaction. SinceM and M0 are related by a
unitary matrix, it holds that( f uM f u25( f uM f

0u2.
If one subtracts the complex conjugate ofM from both

sides in Eq.~5! and divides by 2i , the familiar form ImM
5tM* emerges for the imaginary part ofM, where t5(S
21)/2i . In components, it reads
©1999 The American Physical Society19-1
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ImM f5(
f 8

t f f 8M f 8
* . ~7!

This form is commonly derived starting with Lehman
Symanzik-Zimmermann’s reduction formula. In the applic
tions of interest, the weak decay HamiltonianHw is given in
the form

Hw5(
i

l iOi , ~8!

where l i is a combination of the Cabibbo-Kobayash
Maskawa matrix elements andOi is a T-even operator. It is
to be understood thatM f is to be evaluated separately fo
different operatorsOi .

III. STRONG INTERACTION S MATRIX

When two mesons such asp1p2 interact in thes state,
we believe that they will scatter into a large number of m
tiparticle final states. Indeed, we expect similar inelastic
havior for all partial waves ofl ,kr, wherer is a character-
istic hadron radius. The sum over these partial waves ca
described by a diffractive scattering formula such as t
given by Pomeron exchange. For the case of meson-m
scattering, we extrapolate from the analysis of meson-bar
and baryon-baryon scattering, and for the invariant ela
scattering amplitude we write

T~s,t !5 is totsebt, ~9!

where the constant in front has been fixed by the opt
theorem. Defining the Pomeron residue byb(t)[s tote

bt,
with the factorization relation b(t)MM8b(t)pp
5b(t)Mpb(t)M8p

1 we obtain

s tot
pp.12 mb, s tot

pK.10 mb, s tot
KK̄.8 mb, ~10!

wheres tot
pp537 mb,s tot

pp521 mb, ands tot
Kp517 mb@6# have

been used for the diffractive contribution ofs tot at As
.mB . For the diffractive peak width, the factorization give

bpp.3.6 GeV22, bKp.2.8 GeV22,

bKK̄.2.0 GeV22 ~11!

if we choosebpp.5.0 GeV22, bpp.4.3 GeV22, andbKp

.3.5 GeV22 @7#. For Dp scattering, we use the quar
counting rule fors tot and the assumption that the charm
quark interacts with the light quarks much more weak
Then we obtain a crude estimate

s tot
Dp' 1

2 s tot
pp , ~12!

andbDp is a little smaller thanbKp.
Projecting out thes wave from the amplitude in Eq.~9!,

1The factorization can be proved only for simplel-plane singulari-
ties. It is an assumption for the Pomeron.
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al 50~s!5
1

16psE2s

0

T~s,t !dt, ~13!

yields

Imal 50.5
0.16 ~pp!

0.17 ~Kp!

0.18 ~KK̄ !

0.12 ~Dp!

~14!

at As55;6 GeV.
Extraction of thes-wave amplitude from the diffractive

formula may arouse suspicion since one thinks of diffract
as a peripheral process@8#. It would be better to conside
T(s,t) as describing the scattering from an absorbing g
sphere of radiusr. The values ofal up to l;kr vary gradu-
ally with l, thus adding up to a large forward peak. As
result, about 90% of the contribution to the integral in E
~13! comes fromutu,1 GeV2 even though thel 50 ampli-
tude itself is, of course, independent oft.

In what follows we use the estimate

Sf f.0.7 ~15!

corresponding to

al 50[t f f5
Sf f21

2i
50.15i . ~16!

This corresponds to the case of a gray sphere with an ine
ticity of 0.85. In the limiting case of a black sphereSf f goes
to zero and the inelasticity goes to 0.5. If one goes bey
the diffractive scattering approximation,Sf f is not purely
real. In the Regge theory, the real part arises from excha
of the non-Pomeron trajectories such asr and f 2. In p6p
scattering, the real-to-imaginary ratio of 10–20% was o
served in the forward scattering amplitudes atAs55 – 6 GeV
@9#. We can make an estimate of the real part for mes
meson scattering by using the factorization. We first de
mine the Regge parameters att50 from the total cross-
section differences@6#, and then extract theirt dependences
from the angular dependence of the differential cross s
tions @10#. The analysis is simpler if exchange degeneracy
imposed. The smallers tot and the largerr-f 2 residues tend
to enhance the real-to-imaginary amplitude ratio forpp scat-
tering overpp scattering, while the smallerbpp partially
compensates the trend. Particularly forp1p0, the real parts
of the r and f 2 terms add up close to 30% of the imagina
part. However, our major goal is to understand the impli
tions of the sizable inelastic scattering; for this purpose,
use the simplifying approximation thatSf f is real.

IV. TWO CHANNELS

Relation~5! was studied in the case of two channels@5#
assuming that the diagonalS matrix elementsSf f are purely
real. This requirement on theS matrix turns out to be so
9-2
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strong in the case of two channels that there is only a sin
parameter left:

S5S 1

A2
2

1

A2

1

A2

1

A2

D S e2iu 0

0 e22iuD S 1

A2

1

A2

2
1

A2

1

A2

D
5S cos 2u i sin 2u

i sin 2u cos 2u D . ~17!

WhenS1/2 is computed fromSand substituted into Eq.~6!, a
simple relation results:

M15M01cosu1 iM 02sinu,
~18!

M25 iM 01sinu1M02cosu.

The phase of the decay amplitude in channel 1 is large if
particle decays preferrentially to channel 2, while it is sm
if channel 1 is the dominant decay channel for small val
of u. Though this is an interesting conclusion, this pictu
turns out to be specific to the two-channel case. When
add one more channel in the final state, there are three
parameters even after ImSf f50 is assumed. The nice simp
relation of Eq.~18! does not hold any longer. If we go toN
final channels, there areN(N21)/2 real parameters eve
with ImSf f50, and no meaningful prediction results. Ther
fore we must change our strategy in studying the case oN
@1 such as theB decay.

V. RANDOMNESS OF WEAK DECAY AMPLITUDES

In the presence of many decay channels, strong inte
tions are so complicated that it is beyond our ability to p
dict final state interactions accurately. We must substit
lack of our knowledge with reasonable dynamical assum
tions and/or approximations. In search of such an assu
tion, we notice that sinceM f 8 andSf f 8 come from two dif-
ferent sources, weak and strong interactions, the phas
productSf 8 fM f 8

* for f 8Þ f takes equally likely a positive or a
negative value asf 8 is varied with f fixed. While M f 8 is
related toM f ( f 8Þ f ) by rescattering, there exist so man
states that the influence off on f 8 can be disregarded. W
therefore introduce the postulate that the phase ofSf f 8M f 8

*
takes random values asf 8 varies. It should be noted tha
randomness is postulated here for the relative phase and
of the decay matrix element to theS-matrix element, not for
the dynamical phases and mixing ofS matrix, as was intro-
duced in the randomSmatrix theory of nuclear physics@11#.

We start our analysis with Eqs.~7! and ~15!. Taking the
f 85 f term in the sum to the left-hand side in Eq.~7! and
using t f f. i Imt f f , we write Eq.~7! in the form

~11 i t f f !ImM f2t f fReM f5 (
f 8Þ f

t f f 8M f 8
* . ~19!
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The first and second terms of the left-hand side are real
imaginary, respectively, for Ret f f50. Given the estimate o
Eq. ~16! the coefficient of the first term is much larger tha
that of the second term, and we consider this primarily as
equation for ImM f . With the randomness postulate, th
phase ofM f is equally often positive or negative if we con
sider a large ensemble of final statesf. It is some kind of
average of the magnitude of the phase ofM f , not values for
individual M f , that we can study with our randomness po
tulate. For this purpose, we take the absolute value squ
for both sides of Eq.~19!. Then the right-hand side is

R5
1

4 (
f 8, f 9Þ f

Sf f 8M f 8
* Sf f 9

* M f 9 , ~20!

where t f f 85Sf f 8/2i has been used forf 8Þ f . The random
phase postulate allows us to retain only the terms off 85 f 9
and to reduce the double sum to a single sum:

R.
1

4 (
f 8Þ f

Sf f 8Sf 8 f
† uM f 8

2 u ~21!

[
1

4
uM f 8

2 u (
f Þ f 8

uSf f 8u
2, ~22!

where the second line definesuM f 8
2 u as the weighted averag

of the decay amplitudes into statesf 8. Then, using the uni-
tarity of theS matrix, we reach

R.
1

4
~12Sf f

2 !uM f 8
2 u. ~23!

While our estimate ofSf f is made on the basis of th
Pomeron exchange, it should be noted that contribution
Sf f 8 from quantum number exchange may be important
determininguM f 8

2 u from Eq. ~22! if they correspond to state
f 8 with large values ofuM f 8

2 u. Identifying Eq.~23! with the
absolute value squared of the left-hand side of Eq.~19!, we
obtain the prediction of our random phase approximation

~11Sf f !
2~ ImM f !

21~12Sf f !
2~ReM f !

25~12Sf f
2 !uM f 8

2 u.
~24!

Defining r by

r[uM f 8
2 u1/2/uM f u,

~25!
uM f u25~ ImM f !

21~ReM f !
2,

the ratio of the imaginary-to-real part ofM f is solved from
Eq. ~24! as

~ ImM f !
2

~ReM f !
2
[tan2d f5

t2~r22t2!

12r2t2
, ~26!

where
9-3
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t5S 12Sf f

11Sf f
D 1/2

. ~27!

Note thatt2 is equal to the ratio of elastic to inelastic sca
tering cross sectionsel /s inel of the relevant partial wave
Since the left-hand side of Eq.~26! is nonnegative,t andr
are constrained forSf f.0 by

t2<r2<1/t2. ~28!

For Sf f50.7,

t250.18, ~29!

so that rescattering among the final states does not a
uM f 8u

2 and uM f u2 to differ too greatly in magnitude. In the
weak limit of rescattering (t→0), of course, Eq.~28! allows
any value forr. In the black sphere limit (t→1) Eq. ~26! is
useless, and Eq.~28! constrainsr51. Our approach is only
useful to the extent that inelastic scattering dominates v
much over elastic for the final statef. It should be noticed
that Eq.~26! reduces to the two-channel case@Eq. ~18!# with

U M2
0

M1
0U2

5
r22t2

12r2t2
. ~30!

Our random approximation amounts to lumping all inelas
channels together as if they were a single inelastic cha
with an ‘‘average’’ decay amplitude. However, we now i
terpret this as something like the standard deviation of
phase for an ensemble of independent final statesf with a
given value ofr.

If the relevant statesf 8 were similar to the statef, then we
might expectr to be close to unity. Forr51, Eq. ~26! re-
duces to

tan2 d f5t25
12Sf f

11Sf f
,

~31!

sind f5A12Sf f

2
.

With Sf f50.7, this givesud f u;23°. Thus a typical value o
the final strong interaction phase in this case is not sm
This result for a typical state has a simple heuristic interp
tation. The original real decay amplitudeM1

0 is reduced as a
result of absorption by a factora, but an imaginary term
arises due to rescattering from other states. Since the
decay rate is not changed by final state scattering, the
value of uM f u for a typical state will be equal touM1

0u. Thus
M f takes the forms

M f5M1
0@a1 iA12a2#,

~32!
ImM f

ReM f
5A12a2/a.

This agrees with the result above if the absorption facto
identified as
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a5A~11Sf f !/2. ~33!

Any argument that a final state phase is small must be
argument thatr is small. It should be noted thatr depends on
the particular final statef and on the weak interaction opera

tor Oi . The quantityuM f 8
2 u is an average of the square of th

decay amplitude to statef 8 via Oi weighted by the square o
the scattering amplitude fromf to f 8 @cf. Eqs.~22! and~23!#.
Thus a value ofr much smaller than unity means that o
average the states to whichf scatters are much less likel
than f to be final states in the decay due to operatorOi .
Conversely, iff is a particularly unfavored final stater may
well be above unity. Figure 1 shows the dependence of
phase onr for the choice ofSf f50.7.

VI. POSSIBILITY OF SMALL OR LARGE STRONG
PHASES FOR TWO-BODY CHANNELS

While our randomness postulate leads to sizable str
phases for ‘‘typical’’ decay channels, dynamical argume
are necessary to estimate the parameterr for a specific chan-
nel and a specific decay operator. We ask what dynam
arguments could let our prediction agree with Bjorken’s
gument, which favors small phases for decays such asB0

→p1p2. The observed branching fraction ofB0→p1p2 is
about 1023 of the inclusive branching fraction forb→dq̄q
within large uncertainties. This might seem to indicate th
p1p2 is not a favored final state, and that the strong ph
of p1p2 might be of order of 20°. However, this conclusio
can be evaded if certain conditions are satisfied.

It should be noted that we are only interested in whet
p1p2 is a favored decay channel relative to those to wh
it is connected bySf 8 f . Most of the statesf 8 are multimeson
states with little jetlike character. It could be argued th
these states are not favored asB decay products because the
are not likely to develop from three quark jets into whichB
naturally decays. It is not clear whether this distinction
really operative for the energymB .

If the above argument were true, it could be considered
an interpretation of the Bjorken argument. In order to p
duce app final state, the final quarks must emerge as col

FIG. 1. The strong phased f defined in Eq.~26! plotted against
the ratior for Sf f50.7. d f is chosen between 0° and 90°.
9-4
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FINAL STATE INTERACTION PHASE INB DECAYS PHYSICAL REVIEW D60 074019
less pairs; alternative quark configurations are unlikely
hadronize intopp. Thus r would be close to its minimum
value and ImM f would be small. It is not true, however, tha
the finalpp state has little interaction, but the effect wou
primarily be a moderate absorption correction to the r
part. In the two-channel reduction this corresponds
M20/M10 close to zero, and the change of the real part ofM1
from M10 to M10cosu would be considered as the absorpti
correction.

An alternative possibility in which one might expect
large final state phase shift has been emphasized in a nu
of recent papers@12#. These are cases in whichM f vanishes
in the naive factorization approximation. An example is t
‘‘tree’’ amplitude proportional tolu5VubVus* for the decay

B2→K̄0p2. In this case the major contribution toM f may
arise from rescattering from favored states, so thatr might
be larger than unity. It can be argued@12# that, in this case,
even though the final state scattering mainly goes to mu
particle states, the main contribution to ImM f arises from the
scattering of quantum number exchange involving tw
particle to two-particle transitions. Of course, the real par
M f obtains a contribution from the dispersive part of su
diagrams, which is hard to calculate, so that quantitative
sults for the phase are not possible.

VII. CONCLUSION

For a ‘‘typical’’ final state, the strong final state pha
shift is not small; a typical magnitude is 20°. We understa
this to be the magnitude averaged over the states tha
interconnected by the final stateSmatrix. We expect there to
be sizable fluctuations about the average; in fact, since
cannot predict the sign of the phases, our analysis sugg
that the algebraic average phase may be zero.
es
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A simple heuristic understanding of this phase is that
final state absorption reduces the value of the original r
decay amplitudes, whereas rescattering from other states
vides an imaginary amplitude. For a ‘‘typical’’ state the a
solute value of the amplitude is not changed since the fi
state interaction does not change the total decay rate.
magnitude estimate of;20° is derived from the expecte
inelasticity of the meson-meson scattering.

It may be possible to argue for a particular final statef that
the phase is small. Any such argument must show that
states to whichf is connected by theS matrix are generally
less likely to be a decay product ofB thanf. Thus it might be
argued that the four-quark operator leads easily top1p2,
whereas there are many states to whichp1p2 scatters that
are not easily reached directly viaB decay. Conversely it
might be argued that for states which are not easily reac
via the four-quark operator, the strong phase is large.

It should be emphasized that at best one may give qu
tative arguments why a particular phase may be large
small. We do not believe any quantitative calculations
reliable because of the complexity of the multichannel pro
lem.

ACKNOWLEDGMENTS

One of the authors~L.W.! acknowledges the Miller Insti-
tute for Basic Research in Science for financial support d
ing this work at Berkeley. He was also supported by the U
Department of Energy under Contract No. DE-FG02-91-E
40682. The other author~M.S.! was supported in part by th
Director, Office of Energy Research, Office of High Ener
and Nuclear Physics, Division of High Energy Physics of t
U.S. Department of Energy under Contract No. DE-AC0
76SF00098 and in part by the National Science Founda
under Grant No. PHY-95-14797.
.

tt.
@1# M. Bander, D. Silverman, and A. Soni, Phys. Rev. Lett.43,
242 ~1979!.

@2# J. M. Gérard and W. S. Hou, Phys. Rev. D43, 2909~1991!.
@3# L. Wolfenstein, Phys. Rev. D43, 151 ~1991!.
@4# J. D. Bjorken, Nucl. Phys. B~Proc. Suppl.! 11, 325 ~1989!.
@5# J. F. Donoghue, E. Golowich, A. A. Petrov, and J. M. Soar

Phys. Rev. Lett.77, 2178~1996!.
@6# V. Barger and R. J. N. Phillips, Nucl. Phys.B32, 93 ~1971!.
@7# G. Y. Chow and J. Rix, Phys. Rev.184, 1714~1969!.
@8# M. Gronau and J. Rosner, Phys. Rev. D58, 113 005~1998!.
@9# K. J. Foley, Phys. Rev. Lett.14, 862~1965!: V. Barger and M.
,

Olson, Phys. Rev.146, 1080~1966!.
@10# For a review, see P. D. B. Collins and E. J. Squires,Regge

Poles in Particle Physics~Springer-Verlag, Berlin, 1968!, p.
223.

@11# F. J. Dyson, J. Math. Phys.3, 140 ~1962!; 3, 157 ~1962!; 3,
166 ~1962!, and references quoted therein.

@12# A. F. Falk, A. L. Kagan, Y. Nir, and A. A. Petrov, Phys. Rev
D 57, 4290~1998!; D. Atwood and A. Soni,ibid. 58, 036005
~1998!; B. Blok, M. Gronau, and J. L. Rosner, Phys. Rev. Le
78, 3999~1997!.
9-5


