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Dispersion relations and rescattering effects inB nonleptonic decays
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~Received 7 April 1999; published 8 September 1999!

Recently, the final state strong interactions in nonleptonicB decays were investigated in a formalism based
on hadronic unitarity and dispersion relations in terms of the off-shell mass squared of theB meson. We
consider a heuristic derivation of the dispersion relations in the mass variables using the reduction Lehmann-
Symanzik-Zimmermann formalism and find a discrepancy between the spectral function and the dispersive
variable used in recent works. The part of the unitarity sum which describes final state interactions is shown to
appear as a spectral function in a dispersion relation based on the analytic continuation in the mass squared of
one final particle. As an application, by combining this formalism with Regge theory andSU(3) flavor
symmetry we obtain constraints on the tree and the penguin amplitudes of the decayB0→p1p2.
@S0556-2821~99!04817-1#

PACS number~s!: 14.40.Nd, 11.55.Fv, 13.25.Hw
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I. INTRODUCTION

Final state strong interactions are known to play an
portant role in weak nonleptonic decays. In particular,
interplay between the strong and the weak phases is requ
by many signals of directCP violation in B decays. The
presence of final state rescattering is relevant also for
extraction of the Cabibbo-Kobayashi-Maskawa~CKM!
phases from time dependent asymmetries, and can mo
the magnitude of some processes suppressed in the sta
model such asB→pK transitions, thus reducing their sens
tivity to new physics.

The effect of the final state interactions~FSIs! was as-
sumed until recently to be small in the very energetic dec
such as those ofB meson to light pseudoscalar meson
where the final particles get apart very quickly and have
time to interact strongly by soft multigluon exchanges.
related argument was based on the fact that at the high
ergy scale imposed by the mass of theB meson there is a
suppression of rescattering due to the specific form of
Regge amplitudes dominant at this scale. Recently,
qualitative picture was challenged by a more detailed
namical approach@1–4#. The crucial remark made in Ref.@1#
is that, contrary to conventional expectations, the soft fi
state interactions do not disappear at the center of mass
ergy set bymB . The analysis made in Refs.@1–4# is based
on hadronic unitarity and very general features of high
ergy soft interactions. Consider the weak decayB→P1P2,
wherePi are pseudoscalar mesons, and denote byAB→P1P2

the amplitude of this process. In the most general way,
unitarity of theS matrix allows one to express the discon
nuity of AB→P1P2

as

DiscAB→P1P2
5

1

2i
@^P1P2uT uB&2^P1P2uT †uB&#

5
1

2 (
I

^P1P2uT †uI &^I uT uB&, ~1!
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where T is the transition operator (S512 iT), which de-
scribes both the weak and strong interactions. To first or
the weak hamiltonianHw can appear either in the first matri
element of the product in the right hand side of Eq.~1!, or in
the second. The intermediate hadronic states$I% depend of
course on the place ofHw . If Hw is acting in the matrix
element containingB, $I% denote hadronic states produced
the weak decay ofB and connected to the final state$P1P2%
by a strong rescattering. It is this configuration of the sum~1!
which describes the final state interactions inB nonleptonic
decays. Alternatively, the operatorHw can be located in the
first matrix element in the unitarity sum, in which case$I% are
states produced by the strong decay ofB, and connected to
$P1P2% through a weak interaction. When all the particl
are on shell these terms vanish, sinceB is stable with respec
to strong interactions. The above remarks, though ra
trivial, will be useful below for the discussion of the dispe
sion relations.

According to general principles, the decay amplitu
AB→P1P2

can be obtained from its discontinuity by means
a dispersion relation. This approach was considered in R
@2–4#, where, neglecting possible subtractions, a dispers
relation of the following form was used:

A~mB
2 ,m1

2 ,m2
2!5

1

pEs0

`

ds
DiscA~s1 i e,m1

2 ,m2
2!

s2mB
22 i e

. ~2!

In this relation and the similar ones written below, the lim
e→0 is implicitly assumed.

We use here the notationAB→P1P2
5A(mB

2 ,m1
2 ,m2

2) to
show explicitly the dependence of the decay amplitude
the external masses. As for the discontinuity~already divided
by 2i ), it was taken in Refs.@2–4# as the ‘‘rescattering part’’
of the unitarity sum~1! discussed above, evaluated for a
off-shell B meson of mass squared equal tos.

The dispersion relation~2! is based obviously on the ana
lytic continuation of the decay matrix element with respect
©1999 The American Physical Society16-1
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the mass of the initial mesonB. We recall that dispersion
relations in the external mass variables were derived in
frame of axiomatic field theory@5–8#, and were used in phe
nomenological calculations of form factors@9,10# ~see also
Ref. @11#!. Heuristic derivations of such dispersion relatio
are based on the Lehmann-Symanzik-Zimmermann~LSZ!
reduction formalism@8#, combined with causality and had
ronic unitarity. As emphasized in Ref.@11# one must be cau
tious in using such dispersion relations, since the heuri
conjectures might be violated, in particular through the
pearance of anomalous thresholds.

Of interest to the present work is the fact that the spec
form of the dispersion relation and of its discontinuity d
pends on which of the external particles is reduced in
LSZ formula. By treating the matrix element of the dec
B→P1P2 in the frame of this formalism, one can prove th
the spectral function of a dispersion relation with respects
~the mass squared of theB meson!, as in Eq.~2!, is givennot
by the ‘‘rescattering’’ part of Eq.~1!, as it was assumed in
Refs.@2–4#, but by the second class terms in this sum. Mo
over, one can also prove that the terms describing the fi
state interaction in the unitarity sum~1! appear as spectra
function in a dispersion relation in terms of the mass squa
of one of the final mesons (P1 or P2). Therefore, the calcu
lation of the whole decay amplitude from its discontinu
proceeds along a different line than that applied in Re
@2–4#.

In the present paper, we provide arguments for the as
tions made above and consider some applications. In the
section, using the LSZ formalism, we discuss the heuri
derivation of dispersion relations for the decay amplitu
AB→P1P2

, when eitherB or one of the final mesonsP1 or P2

are off-mass shell. We do not attempt to give rigoro
proofs, but only to establish the correspondence between
dispersion variable and the expression of the absorbtive p
In Sec. III we consider in more details the approximation
two particle unitarity combined with Regge theory for stro
interactions, and in Sec. IV we discuss some applicatio
first we briefly indicate how the conclusions of Ref.@4# are
modified by the use of the adequate dispersion relat
Then, by combining the formalism withSU(3) flavor sym-
metry we derive constraints on the amplitudes of theB0

→p1p2 decay.

II. DISPERSION RELATIONS IN THE EXTERNAL MASS
VARIABLE

We consider the weak decay amplitudeAB→P1P2
defined

as

A~p2,k1
2 ,k2

2!5^P1~k1!P2~k2!,outuHw~0!uB~p!&, ~3!

where we indicated the dependence on the Lorentz invari
p2, k1

2, and k2
2 ~for the physical amplitudep25mB

2 , k1
2

5m1
2 , k2

25m2
2). By applying the well known LSZ formal-

ism @8# we ‘‘reduce’’ the particleP1, which gives
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A~mB
2 ,k1

2 ,m2
2!5

i

A2v1
E dx eik1xu~x0!

3^P2~k2!u@h1~x!,Hw~0!#uB~p!&. ~4!

In this relation,h1(x) denotes the source of the mesonP1,
defined asKxf1(x)5h1(x), whereKx is the Klein-Gordon
operator andf1(x) the interpolating field (v15Ak1

21m1
2, is

the energy of the on shell particleP1). We use here and in
what follows the fact that the single particle states in and
are identical. As shown in Refs.@5–8#, due to the factor
u(x0) the amplitude~4! can be extended as an analytic fun
tion in the upper half of the complex plane of the time co
ponentk10. A more detailed analysis@7#, exploiting also the
causality properties of the retarded commutator and the r
tion k1

25k10
2 1k1

2 , shows that the amplitudeA(mB
2 ,k1

2 ,m2
2)

can be extended as an analytic function in the whole co
plex planek1

2, cut along a part of the real axis, where i
discontinuity is@5#

DiscA~mB
2 ,k1

2 ,m2
2!5

1

2A2v1
E dx eik1x^P2~k2!u

3@h1~x!,Hw~0!#uB~p!&. ~5!

This discontinuity coincides actually with the imaginary pa
Im A(mB

2 ,k1
21 i e,m2

2) of the decay amplitude on the uppe
edge of the cut~it will be shown below that this spectra
function is real!. The right-hand side of Eq.~5! is treated in
the standard way by inserting a complete set of states in
two terms of the commutator. By performing the translati

h1~x!5eiPxh1~0!e2 iPx, ~6!

we write Eq.~5! as

Im A~mB
2 ,k1

21 i e,m2
2!5

1

2A2v1
E dx eik1x

3(
n

@ei (k22pn)x^P2~k2!uh1un&

3^nuHwuB~p!&

2ei (pn2p)x^P2~k2!uHwun&

3^nuh1uB~p!&#, ~7!

where we denotedHw5Hw(0) andh15h1(0). The trivial
integral with respect tox gives

Im A~mB
2 ,k1

21 i e,m2
2!5

1

2A2v1
(

n
@d~k11k22pn!

3^P2~k2!uh1un&^nuHwuB~p!&

2d~k11pn2p!^P2~k2!uHwun&

3^nuh1uB~p!&#. ~8!
6-2
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DISPERSION RELATIONS AND RESCATTERING . . . PHYSICAL REVIEW D60 074016
The states contributing to the first sum have the fo
momentumpn5k11k25p and the invariant masspn

25mB
2 ,

they correspond to what we called above the ‘‘rescatterin
part of Eq.~1!. It is easy to see that this sum is nonzero
k1

2 in the allowed interval 0,k1
2,(mB2m2)2 ~as we men-

tioned anomalous thresholds might be present!. As the sec-
ond sum in Eq.~8! is concerned, it gives a vanishing contr
bution, since B is stable with respect to the stron
interactions.

We recall that by the reduction formula we obtained t
analytic continuation of the physical matrix element w
respect to the variablek1

2 ~the mass squared of an off-she
mesonP1). Therefore, the decay amplitude can be calcula
from its discontinuity by means of a dispersion relation
this external mass variable. As discussed above, the inte
extends along a finite interval, so the dispersion relat
reads

A~mB
2 ,m1

2 ,m2
2!5

1

pE0

(mB2m2)2

dz
Im A~mB

2 ,z1 i e,m2
2!

z2m1
22 i e

,

~9!

with the discontinuity given by the first sum in Eq.~8!.
Let us see now what is the form of the dispersion relat

obtained in the LSZ formalism, when the analytic continu
tion is done with respect to the mass squared of theB meson.
To this end, we start again from the matrix eleme
^P1(k1)P2(k2),outuHw(0)uB(p)&, and apply the LSZ for-
mula, reducing this time the initial mesonB. We obtain

A~p2,m1
2 ,m2

2!5
i

A2vB
E dx e2 ipxu~2x0!

3^P1~k1!P2~k2!,outu@Hw~0!,hB~x!#u0&.

~10!

By exploiting the causality properties of the retarded co
mutator one can prove@7# that the amplitude can be extende
as a real analytic function in the complex planes5p2, with
the discontinuity across the real axis given by

Im A~p21 i e,m1
2 ,m2

2!

5
1

2A2vB

3(
n

@d~p2pn!^P1~k1!P2~k2!,outuHwun&^nuhBu0&

2d~pn!^P1~k1!P2~k2!,outuhBun&^nuHwu0&#. ~11!

We obtained this result in the standard way@5#, replacing
iu(2x0) in Eq. ~10! by 1/2, and inserting a complete set
states in the commutator. Actually, the second sum in
~11! vanishes because the only intermediate states allo
have zero four-momentum. In the first term, the allowed p
ticles are those connected to the final state through a w
process and toB through a strong transition~we recall that
the last matrix element vanishes whenB is on the mass
07401
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shell!. The lowest two particle state entering the unitar
sum isB* p which defines the normal unitarity threshold.

The spectral function~11! enters a dispersion relation o
the form ~2! with respect tos5p2. However, it is obvious
that such a dispersion relation is not useful for estimating
rescattering effects in nonleptonicB decays. As discusse
above, in this way one does not describe the strong inte
tions in the final state, but rather the strong interactions in
initial state.

The fact that a dispersion relation in the mass square
theB meson cannot describe final state rescattering effec
understood by simple qualitative arguments: in order
make the analytic continuation in the variables we must
reduce theB meson. Hence, the sourcehB and the weak
HamiltonianHw enter different matrix elements in the un
tarity sum, and terms describing the weak decay ofB multi-
plied by strong scattering amplitudes cannot appear. Th
fore the procedure applied in Refs.@2–4#, based on the
analytic continuation ins combined with a discontinuity con
taining rescattering terms is not consistent. As we poin
out above the unitarity sum~1! defines the spectral functio
in a dispersion relation with respect to the mass variable
one of the final mesons. The relations~8! and ~9! are the
main results we obtained in the frame of the standard L
formalism.

A few comments about the above formulas are of intere
First, it is clear that one can repeat the procedure by redu
the mesonP2 instead ofP1. The corresponding expression
can be obtained easily from those given above by permut
the indices 1 and 2. The expressions seem different, bu
course the results should be the same when a complete s
states is inserted in the unitarity sum.

A more subtle question, which is also connected to
completeness of the set inserted in the unitarity sum
whether the discontinuity defined in Eq.~8! is real or com-
plex. ForT ~or CP) conserving interactions, the reality of th
spectral function was proved a long time ago@12,13#. It turns
out that the absorbtive part remains real even if the relev
terms in the weak Hamiltonian are notCP conserving. We
take into account the fact that these terms have the form

Hw5(
j

cjOj , ~12!

wherecj are complex numbers andOj are products ofV and
A currents. Consider the spectral function

s~z!5Im A~mB
2 ,z1 i e,m2

2!, ~13!

defined by the first sum in Eq.~8!, and assume that a com
plete set ofin states is inserted in the unitarity sum. Follow
ing Refs.@12,13# ~see also Ref.@11#! we can express the two
matrix elements in this sum as

^P2~k2!uh1un, in&5^P2~k2!u~PT!21~PT!h1

3~PT!21~PT!un, in&

5^P2~k2!uh1un,out&* ~14!
6-3
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and

^n, inuHwuB~p!&

5^n, inu~PT!21~PT!Hw~PT!21~PT!uB~p!&

5^n,outuHwuB~p!&* . ~15!

We used here the transformation properties of theV and A
currents underP andT transformations and the fact that u
der space-time reversal the particles conserve their mome
and the in~out! states become out~in! states, respectively
Moreover, the intrinsic parities of the states and the opera
have a product equal to11, and the matrix element ar
replaced by their complex conjugates, given the antiunit
character of the operatorT. By using the relations~14! and
~15! in Eq. ~8! we obtain

s~z!5
1

2A2v1
(

n
d~k11k22pn!^P2~k2!uh1un, in&

3^n, inuHwuB~p!&

5
1

2A2v1
F(

n
d~k11k22pn!^P2~k2!uh1un,out&

3^n,outuHwuB~p!&G*
5s* ~z!, ~16!

where the equivalence between the complete sets of in
out states in the definition ofs(z) was taken into account
From Eq.~16! it follows that the discontinuity is manifestly
real only if the intermediate states form a complete set. If
unitarity sum is truncated, this property is lost, since vario
terms have complex phases which do not compensate
other in an obvious way. As noticed in Ref.@12#, in order to
maintain the proper reality condition at all stages of appro
mation, it is convenient to write the sum over the compl
set of statesun& as a combination 1/2un, in&11/2un,out&. This
prescription will be applied in Sec. IV when discussing t
B→pp decay.

III. TWO-PARTICLE UNITARITY AND REGGE
AMPLITUDES

In this section we write down the dispersion relation~9! in
the approximation that only two particle states are kept in
unitarity sum~8!. Denoting by$P3P4% the two meson inter-
mediate states in this sum, the off-shell imaginary part of
decay amplitudeAB→P1P2

required in the dispersion relatio
~9! reads
07401
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Im AB→P1P2
~mB

2 ,z1 i e,m2
2!

5
1

2 (
$P3P4%

E d3k3

~2p!32v3

d3k4

~2p!32v4

~2p!4

3d (4)~p2k32k4!AB→P3P4
~mB

2 ,m3
2 ,m4

2!

3MP3P4→P1P2
* ~s,t !. ~17!

In the sum we include the two particle statesP3P45P1P2
defining the elastic channel, as well asP3P4ÞP1P2 respon-
sible for the inelastic scattering. Let us note that the c
energy is set up by the mass of theB meson (As5mB
55.2 GeV), and the weak decay amplitudesAB→P3P4

are
on shell, and independent on the Mandelstam variablet ~or
the rescattering angleu). Therefore Eq.~17! can be written
as

Im AB→P1P2
~mB

2 ,z1 i e,m2
2!

5 (
$P3P4%

CP3P4 ;P1P2
* ~z!AB→P3P4

~mB
2 ,m3

2 ,m4
2!,

~18!

where

CP3P4 ;P1P2
~z!5

1

2E d3k3

~2p!32v3

d3k4

~2p!32v4

~2p!4

3d (4)~p2k32k4!MP3P4→P1P2
~s,t !.

~19!

These coefficients depend on the masses of all the part
participating in the rescattering process. To simplify the n
tation we indicate explicitly only the dependence on the
shell mass squaredz of the particle P1. Following Refs.
@1–4# we adopt for the strong amplitudesM the parametri-
zations obtained from the Regge theory@14#

MP3P4 ;P1P2
~s,t !52 (

V5P, f ,A2 ,K2* •••
gP3P4 ;P1P2

V ~ t !

3
e2 i [paV(t)/2]

sin[paV(t)/2]S s

s0
D aV(t)

1 (
V5r,K* •••

igP3P4→P1P2

V ~ t !

3
e2 i [paV(t)/2]

cos[paV(t)/2]S s

s0
D aV(t)

, ~20!

where the first sum includesC51 trajectories and the secon
oneC521 trajectories. As usual we takes0'1 GeV2 and
linear trajectories

aV~ t !5a01a8t, ~21!
6-4
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with the standard choices@14#

a051.08, a850.25 GeV22 ~22!

for the Pomeron, and

a050.45, a850.94 GeV22 ~23!

for all the other trajectories. The possible divergences oc
ing in the expression~20! for tÞ0 are avoided by taking
a(t)'a0 in the denominators. We shall therefore obtain

sin
paP~ t !

2
'1,

sin
paV~ t !

2
'

1

A2
, V5 f , A2, K2* ,

cos
paV~ t !

2
'

1

A2
, V5r, K* . ~24!

As far as the Regge residuagP3P4 ;P1P2

V (t) are concerned

they are supposed to satisfy the factorization relation

gP3P4 ;P1P2

V ~ t !5gP3P1V~ t !gP4P2V~ t !, ~25!

and their values att50 will be determined using the optica
theorem and the phenomenological Regge-like paramet
tions of the total cross sections@15,16# ~details will be given
in the next section!. The t dependence of these functions
however, poorly known and we assume they are simply c
stants.

In order to perform the integration~19!, the Mandelstam
variablet is expressed in terms of the scattering angleu:

t~z!5t0~z!12k12~z!k34 cosu, ~26!

with

t0~z!5z1m3
22

~mB
21m3

22m4
2!~mB

21z2m2
2!

2mB
2 ,

k12~z!5
1

2mB
A~mB

22z2m2
2!224zm2

2,

k345
1

2mB
A~mB

22m3
22m4

2!224m3
2m4

2, ~27!

where we indicated explicitly only the dependence on
variable z. With these kinematic variables the integratio
over the momentak3 andk4 in Eq. ~19! is straightforward,
and the coefficientsCP3P4 ;P1P2

can be expressed as

CP3P4 ;P1P2
~z!5(

V
gP3P4 ;P1P2

V ~0!kP3P4 ;P1P2

V , ~28!

where
07401
r-

a-

n-

e

kP3P4 ;P1P2

V ~z!5jV

k34

16pmB
R V

21~z!@eRV(z)2e2RV(z)#

3expF ~a0,V1aV8 t0!S ln
mB

2

s0
2 i

p

2 D G ,
~29!

RV~z!52aV8k12~z!k34S ln
mB

2

s0
2 i

p

2 D , ~30!

and jV is a numerical factor equal to21 for the Pomeron,
iA2 for C521 trajectories, and2A2 for C51 physical
trajectories.

By inserting the expression~18! of the spectral function in
the dispersion relation~9! and recalling that the decay am
plitudesAB→P3P4

do not depend onz, we obtain~for sim-
plicity we omit now the mass arguments when the amp
tudes are on-shell!

AB→P1P2
5 (

$P3P4%
ḠP3P4 ;P1P2

AB→P3P4
, ~31!

where

ḠP3P4 ;P1P2
5(

V
gP3P4 ;P1P2

V ~0!h̄P3P4 ;P1P2

V ~32!

and

h̄P3P4 ;P1P2

V 5
1

pE0

(mB2m2)2

dz
kP3P4 ;P1P2

V* ~z!

z2m1
22 i e

. ~33!

For further use we also define

GP3P4 ;P1P2
5(

V
gP3P4 ;P1P2

V ~0!hP3P4 ;P1P2

V ~34!

and

hP3P4 ;P1P2

V 5
1

pE0

(mB2m2)2

dz
kP3P4 ;P1P2

V ~z!

z2m1
22 i e

. ~35!

Before considering applications, let us make a few comme
about the approximations adopted when deriving the ab
formulas. First, we notice that the Regge expression~20! is
valid for larges and t close to 0. The values5mB

2 satisfies
this condition, but the values oft appearing in the integra
upon the scattering angle in Eq.~19! can be large, outside th
range of validity of the Regge theory. However, the hadro
amplitudes decrease at largeutu, so the contribution of the
large scattering angles in the unitarity integral is expected
be small and not very sensitive to the inaccuracy of the
namical model. Another difficulty is related to the fact th
the particleP1 is off shell, and its massk1

25z becomes very
large at the upper limit of integration in the dispersion re
tion ~9!. Here again, one of the assumptions for the valid
of the Regge expression, namely,As@mi @14# is not met.
6-5
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However, this part of the integral, which is not correc
evaluated, brings a small contribution in the dispersion in
gral due to the denominator in Eq.~9! ~this statement is true
when the masses of the intermediate particlesP3 andP4 are
not too large!. We emphasize that the main advantage of
formalism is that it provides, with no approximation, an a
gebraic relation involving only physical decay amplitude
Indeed, as we mentioned, all the quantitiesAB→P3P4

appear-
ing in Eq. ~31! are on shell, the dynamical approximatio
affecting only the coefficientsḠP3P4 ;P1P2

.

IV. CONSTRAINTS ON THE AMPLITUDES OF
B0

˜p1p2 DECAY

Unitarity and the dispersion relations were used in pre
ous works@1–4# in order to estimate the FSI corrections
the decay amplitudes calculated in an approximation wh
does not include strong rescattering~such as, for instance
factorization!. Such an evaluation was made in Ref.@4# for

the magnitude of final state interactions inB2→p2K̄0. In
the notations used in Sec. III, it corresponds toP1P2

5p2K̄0, with the intermediate statesP3P45p0K2 and
hK0 inserted in the unitarity sum. Then only physical traje
tories (V5r, K* ) contribute to Eq.~20!, for which the
intercept and the slope are given in Eq.~23!.

With values of the residua extracted from the phenome
logical parametrization of the cross sections the authors
Ref. @4# suggested a modification of the magnitude of t

amplitude of the decayB2→p2K̄0 by a factor of 10%.
However, the coefficientsḠP3P4 ;P1P2

appearing in a relation
of the type ~31! were calculated in Ref.@4# by using the
rescattering absorbtive function in a dispersion relation w
respect to the variables @see Ref.@4#, Eq. ~2.17!#. By per-
forming the correct calculations with the same values of
parameters, we find that the coefficientḠp0K2;p2K̄0, for in-
stance, is larger by a factor of about 2.5 compared to
value reported in Ref.@4#. This shows that the correct trea
ment can modify the conclusions about the magnitude of
in B→pK decays.

In the present paper we consider an application of
dispersive formalism to the decayB0→p1p2. The time de-
pendentCP asymmetry in this decay is considered as one
the ways of extracting the anglea of the unitarity triangle
@17#. However, the unknown strong phase difference
tween the tree and the penguin amplitudes of the proc
affects the accuracy of this determination. Additional the
retical constraints on these amplitudes would be very hel
for reducing the uncertainty of the method. As we shall sh
below, the dispersion relations can provide such a constr
We investigate the problem by combining the relations~18!
and ~31! derived above with isospin orSU(3) symmetry
@18,19#. The idea is that by unitarity and dispersion relatio
we obtain a set of correlations between exact decay am
tudes, containing both weak and strong phases. By impo
in addition SU(3) flavor symmetry, all the amplitudes ca
be expressed in terms of a small number of parameters
which unitarity and the dispersion relations provide no
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trivial constraints. Following Ref.@18# we write most gener-
ally the amplitude of the decayB0→p1p2 as a sum of
diagram contributions

AB0→p1p252~ATeig1APe2 ib1AP8eig1AEeig

1APAe2 ib!, ~36!

whereAT , AP(AP8 ), AE , andAPA denote the amplitudes o
the tree, penguin, exchange and penguin annihilation
grams, respectively. We indicated explicitly the weak pha
defined asb5Arg(2Vtd* ) and g5Arg(2Vub* ) @16#. As in-
termediate statesP3P4 in Eqs.~17! and~31! we keepp1p2

giving the elastic channel, as well as two meson states
sponsible for the soft inelastic scattering, e.g.,p0p0, K1K2,

K0K̄0, p0h8, andh8h8 @h8 is the h,h8 superposition be-
longing to theSU(3) octet#. We notice thatp0h8 will not
contribute finally due to isospin conservation in the stro
rescattering. Of course, besides these states, other ine
channels, like for instance multipion states can contribu

The statesD1D2 andD0D̄0 are not included because the
contribute to the hard scattering@1#.

Assuming SU~3! flavor symmetry we express the deca
amplitudesB→P3P4 of interest as@18,19#

AB0→p0p05
1

A2
~2ACeig1APe2 ib1AP8eig1AEeig!,

AB0→K1K252AEeig,

AB0→K0K̄05APe2 ib1AP8eig,

AB0→p0h8
52

1

A3
~APe2 ib1AP8eig2AEeig!,

AB0→h8h8
5

1

3A2
~ACeig1APe2 ib1AP8eig1AEeig!,

~37!

whereAT , AP , AP8 , andAE are the same as in Eq.~36! and
AC denotes the amplitude of the tree color suppressed
grams.

Because of the lack of detailed dynamical calculatio
various phenomenological assumptions are made in the
erature about the above amplitudes. The conservative bo
uAP /ATu,1 for the ratio of the penguin and tree amplitud
is mentioned in Ref. @19# ~a more specific estimate
uAP /ATu'0.2 is also quoted in this reference!. The penguin
annihilation amplitudeAPA corresponds to Okubo-Zweig
Iizuka- ~OZI!-suppressed diagrams@19#, while AC and AE
are color suppressed by a factor of about 0.25 with respe
the corresponding color favored amplitude. Finally, the t
penguin amplitudesAP and AP8 are assumed to satisf
uAP8 /APu'0.4 @19#. The presence of strong rescattering
expected to modify these qualitative estimates based
quark diagrams@20,21#. In particular, this conclusion wa
obtained for theB→pK decays in a model based on isosp
6-6
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symmetry in the quasielastic approximation@22,23#. A simi-
lar analysis forB→pp was not yet performed, but it is quit
possible that the contribution of the ‘‘suppressed’’ amp
tudesAP8 , AC , AE , andAPA is enhanced by the rescatterin
effects. Our approach, based on unitarity and dispersion
lations, aims actually to bring clarifications on the magnitu
of various amplitudes. The next step is to introduce the de
amplitudesAB→Pi Pj

discussed above in the dispersion re
tion ~31!. We should recall, however, that due to the trunc
tion of the unitarity sum, the imaginary part of the dec
amplitudeAB→P1P2

obtained from Eq.~31! @or equivalently
from the unitarity relation~18! evaluated on-shell# might be
not real. In order to avoid this situation we apply the proc
dure suggested in Ref.@12# which maintains the proper rea
ity condition of the spectral function and simulates the eff
of other inelastic channels. As discussed at the end of Se
this method amounts to insert in the unitarity sum the co
plete set of states 1/2u in&11/2uout&. We recall that this
method was applied to include inelastic effects through co
plex phases in the dispersive analysis of the electromagn
form factors@10,11#. In our case this procedure yields, in
stead of Eq.~31!, the modified dispersion relation

AB→P1P2
5

1

2 (
$P3P4%

GP3P4 ;P1P2
AB→P3P4

*

1
1

2 (
$P3P4%

ḠP3P4 ;P1P2
AB→P3P4

, ~38!

where GP3P4 ;P1P2
and ḠP3P4 ;P1P2

are defined in Eqs.~34!

and~32!, respectively. We notice that Eq.~38! can be split in
two relations, one for the real part and another for the ima
nary part of the decay amplitude. In particular, the relat
giving the imaginary part is

iAB→P1P2
* 2 iAB→P1P2

5 (
$P3P4%

CP3P4 ;P1P2
~mp

2 !AB→P3P4
*

1 (
$P3P4%

CP3P4 ;P1P2
* ~mp

2 !AB→P3P4
,

~39!

and can be obtained also directly from the unitarity relat
~18! evaluated on shell. Concerning the real part, it is o
tained by taking the principal value of the dispersion in
grals appearing in Eqs.~33! and ~35!.

We describe now briefly the determination of the Reg
residuagP3P4 ;P1P2

V (0) which enters the expressions~32! and

~34! of the coefficients of the dispersion relation~38!. We
use the optical theorem and the Regge parametrization o
total hadronic cross sections@15,16#, which gives

s0

s
Im Mf→ f~s,0!'s0s tot5s0XS s

s0
D aP(0)21

1s0YS s

s0
D a(0)21

, ~40!
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wheres0'1GeV2'1/0.38 mb21. The first term represent
the Pomeron contribution, the second the contributions of
the other trajectories. By comparing Eq.~40! with the Regge
parametrization~20! we obtain

s0X5g f ; f
P , s0Y5 (

VÞP
g f ; f

V .

For the Pomeron, which contributes to the elasticp1p2

channel, we assumed that the coupling constant is pro
tional to the number of quarks, taking as in Ref.@1#

gp1p2;p1p2
P

5( 2
3 )2s0XNN . The residua of the physical tra

jectories~which in our case arer, f, f 8K* , K2* , and A2)
were estimated by taking into account the factorization pr
erty ~25! combined with the experimental data on seve
hadron-hadron scattering processes. We used the proc
given in Table I, for which we wrote the contributions o
various trajectories as in Ref.@14#. Using theNN channels
we write in particular

s0Ypp5gNN̄f
2

2gNN̄r
2

2gNN̄v
2

2gNN̄f
2

1gNN̄A2

2 ,

s0Ypn5gNN̄f
2

1gNN̄r
2

2gNN̄v
2

2gNN̄f
2

2gNN̄A2

2 . ~41!

Noticing that experimentallyYpp'Ypn @16# we obtain

gNN̄A2

2
'gNN̄r

2
~42!

and further

s0~Yp̄p2Yp̄n!52gNN̄r
2

12gNN̄A2

2
'4gNN̄r

2 . ~43!

Also, by replacing the contributions off and f 8 with the octet
memberf 8, we obtain

s0~Yp2p2Yp1p!52gp1p2rgNN̄r ,

s0~Yp2p1Yp1p!52gp1p2 f 8
gNN̄f 8

,

s0~Ypn1Ypp1Yp̄n1Yp̄p!54gNN̄f 8

2 . ~44!

The coupling constantsgp1p2r0
2 andgp1p2 f 8

2 can be easily

calculated from these equations using the experimental
ues of the parametersX and Y for pN and NN scattering

TABLE I. Contributing trajectories to various hadronic pro
cesses.

Process Contributing trajectories

p2p P1 f 1 f 82r
p1p P1 f 1 f 81r

p̄p P1 f 1 f 81r1v1f1A2

p̄n P1 f 1 f 82r1v1f2A2

pp P1 f 1 f 82r2v2f1A2

pn P1 f 1 f 81r2v2f2A2
6-7
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TABLE II. The values of the Regge residua and of the coefficients entering the dispersion relatio

P3P4 V gP3P4

V kP3P4 ;P1P2

V hP3P4 ;P1P2

V
h̄P3P4 ;P1P2

V

p1p2 P 25.6 20.008910.0270i 20.054710.0768i 20.000720.0946i
p1p2 r 31.4 20.000520.0015i 0.000120.0051i 20.002910.0040i
p1p2 f 8 35.3 20.001510.0005i 20.005120.0001i 20.004020.0029i
p0p0 r 31.4 20.000520.0015i 0.000120.0051i 20.002910.0040i

K̄0K0 K* 15.7 20.000320.0007i 20.000420.0030i 20.001910.0024i

K̄0K0 K2* 52.9 20.000710.0003i 20.003010.0004i 0.002420.0019i

h8h8 A2 35.3 20.001510.0005i 20.005120.0001i 20.004020.0029i
th
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the
@16#. Other coupling constants we need are obtained from
previous ones by usingSU(3) symmetry, namely,

gp0p2r2
2

5gp1p2r0
2 ,

g K̄0p2K* 2
2

5
1

2
gp1p2r0

2 ,

g K̄0p2K
2*

2
2

5
3

2
gp1p2 f 8

2 ,

gph8A2

2 5gp1p2 f 8

2 . ~45!

In Table II we give the values of the Regge residua c
culated with the aid of the above relations using the para
eters of the total cross sections quoted in Ref.@16#, the co-
efficients kP3P4 ;P1P2

V are defined in Eq.~29!, while the

coefficientsh̄P3P4 ;P1P2

V , hP3P4 ;P1P2

V are given by Eqs.~33!

and ~35!, respectively. We notice that the dominant cont
bution is brought by the elastic channel, and in particular
the Pomeron exchange.

With the numbers given in Table II, the real and imag
nary parts of the dispersion relation~38! can be completely
evaluated, yielding two algebraic relations for the decay a
plitudes written in Eqs.~36! and~37!. Of course, the predic
tive power of the method is increased if it is supplemen
by some correlations among the amplitudes in the right-h
side of these equations, or if some amplitudes are very s
and can be neglected. As discussed above, it is most p
able that the naive estimates for these amplitudes base
the diagrammatic method are no longer valid when
n
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strong interactions are taken into account. However, in or
to illustrate the method, we shall make first a crude appro
mation, keeping in Eqs.~36! and ~37! only the contribution
of the tree and the penguin diagramsAT and AP , whose
strong phases are denoted asdT and dP , respectively. A
more complete treatment exploiting both dispersion relati
and estimates based on isospin symmetry as in Refs.@22,23#
will be performed in a future work. Let us write

AP

AT
5Reid, ~46!

where R5uAP /ATu and d5dP2dT . For simplicity, let us
make also the additional assumption that the tree amplit
AT is real. Then this amplitude can be factored out from
dispersion relation~38!, which gives the following two con-
straints for the ratioR and the phase differenced of the
penguin and tree amplitudes describing theB0→p1p2 de-
cay:

1.1189 sin~g10.721!1R sin~d2b10.686!50,

21.239 sin~g20.0403!1R sin~d2b11.452!50.
~47!

These equations can be explicitely solved as

d5b1e~g!,

R521.1189
sin~g10.721!

sin@e~g!10.686#
, ~48!

where
e~g!52arctanF sin~g20.0403!sin0.68610.9027sin~g10.721!sin1.452

sin~g20.0403!cos0.68610.9027 sin~g10.721!cos1.452G . ~49!
e
ely
We recall that in these relationsb andg are the angles of the
unitarity triangle which are expected@24,25# to be in the
ranges 0.17<b<0.52 and 0.349<g<2.79.

In Figs. 1 and 2 we represent the strong phase differe
d as a function ofg for two values ofb at the limits of the
ce

allowed intervals mentioned above, and the ratioR as a func-
tion of g, according to Eq.~48!. One can see that despite th
crude approximations we made, the results are qualitativ
reasonable. We notice that the equation ford is not restric-
tive for the weak angles, while the expected conditionR
6-8
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,1 is satisfied only for a small range aboveg52.4. How-
ever, this somewhat intriguing limitation disappears if w
relax the last approximation made above, namely that
tree amplitudeAT is real. It can be easily seen that by allow
ing a nonzerodT in the dispersion relation we get two equ
tions of the form~47!, with g replaced byg1dT and d
replaced bydP . The two constraints similar to Eq.~47! now
involve three parametersR, dT , anddP .

V. CONCLUSIONS

In the present paper we investigated a recent treatmen
the final state interactions in the nonleptonicB decays, based
on unitarity and dispersion relations@1–4#. By considering
the analytic continuation in the external mass variable
the frame of LSZ formalism, we established the connect
between the dispersion variable and the part of the unita
sum defining the spectral function. The strong rescatte
part is shown to appear as a discontinuity in a dispers
relation in terms of the mass of one final particle. O
results prove that the dispersion relations written
Refs. @1–4#, based on the analytic continuation in th
mass ofB, are not consistent. We derived the correct disp
sion relation, and showed that it modifies the conclusio
of Ref. @4# on the magnitude of FSI effects inB→pK decay
by a factor of approximately 2.5. We also applied t
formalism to derive a theoretical constraint for the amp
tudes of theB0→p1p2 decay. We included in the unitarit
sum a few channels, connecting them by theSU(3) symme-
try @17,18# and took into account qualitatively the effe

FIG. 1. The strong phase difference as function ofg, solid curve
b51 °, dashed curveb5174 °.
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of higher inelastic channels by a procedure applied
the study of the electromagnetic form factors@13,10#. In
spite of the various dynamical assumptions mentioned in
text our results~48! for the ratioR and the strong relative
phased of the penguin and tree amplitudes in terms of t
weak angles~represented in Figs. 1 and 2! are qualitatively
reasonable. As we mentioned, these results can be imm
ately modified to incorporate a nonzero strong phase for
tree amplitude. A more complete analysis must include a
the amplitudes neglected in the present analysis, which
suppressed in the diagrammatic approach but may be
hanced by the strong interactions. Such an investigation i
progress. The results might be useful as additional c
straints in the extraction of the angles of the unitarity trian
from the time dependentCP asymmetry in the decayB0

→p1p2.
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