PHYSICAL REVIEW D, VOLUME 60, 074016

Dispersion relations and rescattering effects irB nonleptonic decays
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Recently, the final state strong interactions in nonlept@&éecays were investigated in a formalism based
on hadronic unitarity and dispersion relations in terms of the off-shell mass squared Bfrtteson. We
consider a heuristic derivation of the dispersion relations in the mass variables using the reduction Lehmann-
Symanzik-Zimmermann formalism and find a discrepancy between the spectral function and the dispersive
variable used in recent works. The part of the unitarity sum which describes final state interactions is shown to
appear as a spectral function in a dispersion relation based on the analytic continuation in the mass squared of
one final particle. As an application, by combining this formalism with Regge theorySas@) flavor
symmetry we obtain constraints on the tree and the penguin amplitudes of the B8eayr' .
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PACS numbes): 14.40.Nd, 11.55.Fv, 13.25.Hw

[. INTRODUCTION where 7 is the transition operatorS=1—i7), which de-
scribes both the weak and strong interactions. To first order,
Final state strong interactions are known to play an im-the weak hamiltoniaft{,, can appear either in the first matrix
portant role in weak nonleptonic decays. In particular, theelement of the product in the right hand side of Ek, or in
interplay between the strong and the weak phases is requiree second. The intermediate hadronic stdteslepend of
by many signals of direcCP violation in B decays. The course on the place of,,. If H,, is acting in the matrix
presence of final state rescattering is relevant also for thglement containing, {I! denote hadronic states produced by
extraction of the Cabibbo-Kobayashi-Maskaw@KM)  the weak decay oB and connected to the final stgte;P,}
phases from time dependent asymmetries, and can modifyy a strong rescattering. It is this configuration of the gam
the magnitude of some processes suppressed in the stand@jgich describes the final state interactionsBimonleptonic
model such aB— 7K transitions, thus reducing their sensi- decays. Alternatively, the operatdt,, can be located in the
tivity to new physics. first matrix element in the unitarity sum, in which cd$eare
The effect of the final state interactiot6SI9 was as-  states produced by the strong decayBpfand connected to
sumed until recently to be small in the very energetic decay$p,p,} through a weak interaction. When all the particles
such as those oB meson to light pseudoscalar mesons,are on shell these terms vanish, sifis stable with respect
where the final particles get apart very quickly and have nqo strong interactions. The above remarks, though rather
time to interact strongly by soft multigluon exchanges. Atrivial, will be useful below for the discussion of the disper-
related argument was based on the fact that at the high egion relations.
ergy scale imposed by the mass of #eneson there is a  According to general principles, the decay amplitude
suppression of rescattering due to the specific form of thg\BﬂPle can be obtained from its discontinuity by means of

Regge amplitudes dominant at this scale. Recently, th'ﬁ dispersion relation. This approach was considered in Refs.

quall_tat|ve picture was challenged by a more c_ietalled dy[2—4], where, neglecting possible subtractions, a dispersion
namical approachl—4]. The crucial remark made in Réf] elation of the following form was used:
is that, contrary to conventional expectations, the soft fina[

state interactions do not disappear at the center of mass en- 1 (= DiscA(s+ie m2 m2)
ergy set bymg. The analysis made in Refgl—4] is based A(m2,m2,m2)= _f ds A
on hadronic unitarity and very general features of high en- o S— mé—ie

ergy soft interactions. Consider the weak de@&y: PP,

whereP; are pseudoscalar mesons, and denot@é\,gayplp2 In this relation and the similar ones written below, the limit

the amplitude of this process. In the most general way, the— 0 is implicitly assumed.
unitarity of theS matrix allows one to express the disconti- We use here the notatioAs_p p,=A(Mg,mi,m) to
nuity of Ag_.p,p, as show explicitly the dependence of the decay amplitude on
the external masses. As for the disconting#lready divided
by 2i), it was taken in Refd.2—4] as the “rescattering part”
of the unitarity sum(1) discussed above, evaluated for an
off-shell B meson of mass squared equalsto
=% E (P1P,|T T||><| |7|B), 1) _The di_sper_sion relatiof?) is base_d obviously on the ana-

[ lytic continuation of the decay matrix element with respect to

2

) 1
DiscAg_.p,p,= E[<P1P2|T| B)—(P1P,|T "[B)]
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the mass of the initial mesoB. We recall that dispersion

L O3 . R [
relations in the external mass variables were derived in the  A(m3,k? m2)=

f dx €k1Xg(x,)

frame of axiomatic field theorf5—8|, and were used in phe- V2w,
nomenological calculations of form factof8,10] (see also (P (ko) [ 71(X), Huo( 0) 1| B(P)). (4)
1 s S bw .

Ref.[11]). Heuristic derivations of such dispersion relations
are based on the Lehmann-Symanzik-Zimmerm&an®2)

. . . . . In this relation,n,(x) denotes the source of the mesBnp,
reduction formalisn8], combined with causality and had- ' ~ . .
ronic unitarity. As emphasized in Réfl1] one must be cau- defined ask, ¢ (x)=7:(x), wherek, is the Klein-Gordon

tious in using such dispersion relations, since the heuristi@Perator and,(x) the interpolating field @1= vki+mj, is

conjectures might be violated, in particular through the apn€ energy of the on shell partice,). We use here and in

pearance of anomalous thresholds. what follows the fact that the single particle states in and out

Of interest to the present work is the fact that the specifi@’€ identical. As shown in Ref$5-8], due to the factor
form of the dispersion relation and of its discontinuity de- ¢(Xo) the amplitude4) can be extended as an analytic func-

pends on which of the external particles is reduced in thdion in the upper half of the complex plane of the time com-
LSZ formula. By treating the matrix element of the decayPonentkio. A more detailed analysis’], exploiting also the
B— P, P, in the frame of this formalism, one can prove that gausazl|ty pz)ropezrtles of the retarded commutatozr ar;d tr;e rela-
the spectral function of a dispersion relation with respest to 10N Ki=kigtki, shows that the amplituda(mg ki, my)

(the mass squared of tlEmeson, as in Eq(2), is givennot ~ €an be exte2r1ded as an analytic function in the whole com-
by the “rescattering” part of Eq(1), as it was assumed in Plex planeki, cut along a part of the real axis, where its
Refs.[2—4], but by the second class terms in this sum. More-discontinuity is[5]

over, one can also prove that the terms describing the final

state interaction in the unitarity suil) appear as spectral ) 2 12 2 1 ox

function in a dispersion relation in terms of the mass squared ~ DISCA(Mg ki, m3) = N dx &%(Py(ky)|

of one of the final mesond?; or P,). Therefore, the calcu- !

lation of the whole decay amplitude from its discontinuity X[ 71(X),Huo(0)1|B(p)). (5
proceeds along a different line than that applied in Refs.
[2—-4]. This discontinuity coincides actually with the imaginary part

In the present paper, we provide arguments for the asserm A(mé3 ,k§+ie,m§) of the decay amplitude on the upper
tions made above and consider some applications. In the negtige of the cufit will be shown below that this spectral
section, using the LSZ formalism, we discuss the heuristigunction is real. The right-hand side of Ed5) is treated in
derivation of dispersion relations for the decay amplitudethe standard way by inserting a complete set of states in the
Ag_p,p,, When eitheB or one of the final mesori3; or P, two terms of the commutator. By performing the translation
are off-mass shell. We do not attempt to give rigorous ) _
proofs, but only to establish the correspondence between the m(x) =€, (0)e” P, (6)
dispersion variable and the expression of the absorbtive part.

In Sec. Il we consider in more details the approximation ofwe write Eq.(5) as

two particle unitarity combined with Regge theory for strong

interactions, and in Sec. IV we discuss some applications: 2 1o ) 1 .

first we briefly indicate how the conclusions of RE4] are Im A(mg ki+ie,m;)= 2\/2—J dx ¢

modified by the use of the adequate dispersion relation. “1

Then, by combining the formalism wit8 U(3) flavor sym- _

metry we derive constraints on the amplitudes of Bfe x 2, [/t PX(P,(ky)| 74| )
— a7~ decay. "

X(n|Hu|B(p))

IIl. DISPERSION RELATIONS IN THE EXTERNAL MASS — ! (Pn=PX(P,(ky) | HylN)
VARIABLE X(n|71|B(p))1, (7)
We consider the weak decay amplitu.elnglp2 defined

where we denoted,,=H,(0) and ;= 74(0). Thetrivial

as integral with respect tx gives
21,2 1,2y 1
A(p K ,kz) <Pl(k1) Pz(kz),OUqu(OHB(p))y (3) Im A(mé ,k§+ie,m§)= E [5(k1+ k2— pn)
2\ 2(,!)1 n
where we indicated the dependence on the Lorentz invariants X(Pa(ka)| 71[n)(n|H,|B(p))

p?, k3, and k3 (for the physical amplitudgp®=m3, k3 — 5K+ D
=m?, k3=m3). By applying the well known LSZ formal- 3ky+pn=p)(Palka) [Hulm)
ism [8] we “reduce” the particleP,, which gives X(n|n1|B(p))]. (8)
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The states contributing to the first sum have the fourshel). The lowest two particle state entering the unitarity
momentump, =k, +k,=p and the invariant mags:=m3,  sum isB* 7 which defines the normal unitarity threshold.
they correspond to what we called above the “rescattering” The spectral functiorill) enters a dispersion relation of
part of Eq.(1). It is easy to see that this sum is nonzero forthe form (2) with respect tos=p?. However, it is obvious

kZ in the allowed interval 8ck?<(mg—m;,)? (as we men- that such a dispersion relation is not useful for estimating the
tioned anomalous thresholds might be presefss the sec- rescattering effects in nonlepton® decays. As discussed
ond sum in Eq(8) is concerned, it gives a vanishing contri- above, in this way one does not describe the strong interac-
bution, since B is stable with respect to the strong tions in the final state, but rather the strong interactions in the
interactions. initial state.

We recall that by the reduction formula we obtained the The fact that a dispersion relation in the mass squared of
analytic continuation of the physical matrix element with the B meson cannot describe final state rescattering effects is
respect to the variable? (the mass squared of an off-shell Understood by simple qualitative arguments: in order to
mesonP,). Therefore, the decay amplitude can be calculatedn@ke the analytic continuation in the variatdeve must
from its discontinuity by means of a dispersion relation infeduce theB meson. Hence, the sourog; and the weak
this external mass variable. As discussed above, the integrifamiltonian’,, enter different matrix elements in the uni-

extends along a finite interval, so the dispersion relatiorfarity sum, and terms describing the weak decaf ofiulti-
reads plied by strong scattering amplitudes cannot appear. There-

fore the procedure applied in RefR2—-4], based on the
(mg—mp?  Im A( mg Z+i e,mg) analytic continuation irs combined with a discontinuity con-
z , taining rescattering terms is not consistent. As we pointed

A(mé,mi,m§)=if 7
mJo Z—my—le out above the unitarity surfl) defines the spectral function

©) in a dispersion relation with respect to the mass variable of
with the discontinuity given by the first sum in E@). one of the final mesons. The relatiot® and (9) are the

Let us see now what is the form of the dispersion relatiof"&in results we obtained in the frame of the standard LSZ
obtained in the LSZ formalism, when the analytic continua-ormalism. .
tion is done with respect to the mass squared oRineeson. _ A fgv_v comments about the above formulas are of mtere_st.
To this end, we start again from the matrix elementFirst, itis cIeay that one can repeat the procgdure by ret;iucmg
(P1(Ky) Po(ky),0ui,,(0)|B(p)), and apply the LSZ for- the mesorP, instead ofP;. The corresponding expressions

mula, reducing this time the initial mes@ We obtain can be obtained easily from those given above by permutting
the indices 1 and 2. The expressions seem different, but of

course the results should be the same when a complete set of

i .
A(p?,mZ,mj)= \/:J dx e '"P*0(—xo) states is inserted in the unitarity sum.
2wg A more subtle question, which is also connected to the
X(Py(Ky) Po(Ky), 0Ul[ Hin(0), 76(X)]|0). completeness of the set inserted in the unitarity sum is

whether the discontinuity defined in E) is real or com-
(100 plex. ForT (or CP) conserving interactions, the reality of the
spectral function was proved a long time 4d&,13. It turns
“out that the absorbtive part remains real even if the relevant
terms in the weak Hamiltonian are nGtP conserving. We
take into account the fact that these terms have the form

By exploiting the causality properties of the retarded com
mutator one can proV] that the amplitude can be extended
as a real analytic function in the complex plaste p?, with
the discontinuity across the real axis given by

Im A(p?+ie,m?,m3) Ha= 2 €0, (12
]
= ! wherec; are complex numbers art@; are products o¥ and
2\2wg A currents. Consider the spectral function
X; [8(p—pn){P1(k1)Pa(ky),0ufHy|n)(n|7g|0) o(z)=Im A(mé,z+ie,m§), (13)

— 8(pn){P1(k1)Pa(ky),ouf pgn){n|H,|0)]. (11)  defined by the first sum in Eq8), and assume that a com-
plete set ofin states is inserted in the unitarity sum. Follow-
We obtained this result in the standard w@J, replacing ing Refs.[12,13 (see also Ref.11]) we can express the two
i 0(—Xg) in Eq. (10) by 1/2, and inserting a complete set of matrix elements in this sum as
states in the commutator. Actually, the second sum in Eq.
(11) vanishes because the only intermediate states allowed

have zero four-momentum. In the first term, the allowed par- (Pa(ka) | 71[n,in)=(P,(ko) [(PT) " *(PT) 71

ticles are those connected to the final state through a weak X (PT)"X(PT)|n,in)

process and t® through a strong transitiofwe recall that

the last matrix element vanishes whénis on the mass =(Py(ky)|71|n,0ut* (14)
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and Im Ag_p,p,(Mg,2+i€,m))

1 d3k d3k
=5 2 f - —(2m)*
2 (¢ 7y ) (27m)3%205 (27)%20,

(n,in|H,|B(p))
=(n,in|(PT) "X PT)H(PT) X PT)|B(p)) X 0 (p—ks—Kq)Ag_.pp, (M5, M5, m3)

=(n,0uf,[B(p))*. (15 X Mo, pp(Si). a7

) ) In the sum we include the two particle statesP,=P,P,
We used here the transformation properties of thand A defining the elastic channel, as well BgP,# P, P, respon-
currents undeP andT transformations and the fact that un- sjple for the inelastic scattering. Let us note that the c.m.
der space-time reversal the particles conserve their MoMenignergy is set up by the mass of tfemeson (/s=mg

and the in(out) state§ bec_o_me ouin) states, respectively. _g o GeV), and the weak decay amplitudes .p.p are
Moreover, the intrinsic parities of the states and the operatorgn shell and independent on the Mandelstam v;rfabm
have a product equal te-1, and the matrix element are ' P

replaced by their complex conjugates, given the antiunitar);he rescaftering angl). Therefore Eq(17) can be written

character of the operatdr. By using the relation$14) and
(15) in Eq. (8) we obtain

Im AB*}plpz(mé ,Z+ie,mg)

L = 2 C; P,;P,P (2)Ag_p.p (mé,mg,mi),
o(2)= T > 8(ky+Ko— pr){Pa(Kp)| 74 n,in) (758, PaPaiPiPe 3P
w; N

(18)

X(n,in|H,|B(p)) where

g 8(Kq + ko= pn){P2(kz)| 71|, 0u)

1
220,

><<n,ou11HW|B<p>>r

1 d3k d3k
_f 3 4 (2m)

C . )=
PsPaiP1Pa 27 3 (2m) 3205 (27)320,

X 8M(p—ks— K)) Mpp,pp,(Sit).
=cg* (Z), (16) (19)

These coefficients depend on the masses of all the particles
where the equivalence between the complete sets of in arghrticipating in the rescattering process. To simplify the no-
out states in the definition af(z) was taken into account. tation we indicate explicitly only the dependence on the off
From Eq.(16) it follows that the discontinuity is manifestly shell mass squared of the particle P;. Following Refs.
real only if the intermediate states form a complete set. If th¢1—4] we adopt for the strong amplitude'st the parametri-
unitarity sum is truncated, this property is lost, since variougations obtained from the Regge thediy]
terms have complex phases which do not compensate each
other in an obvious way. As noticed in R¢12], in order to

_ A%
maintain the proper reality condition at all stages of approxi- Mpgp,pip,(SU= vep fg o R
mation, it is convenient to write the sum over the complete T2
set of stategn) as a combination 1/8,in)+1/2/n,out). This e ilmav(®)2] [ g\ av(t)
S : - : . < =
prescription will be applied in Sec. IV when discussing the sin[ray()/2]| 5

B— 7 decay.

LV
+ 2 |7P3P4—>P1P2(t)

= * e
I1l. TWO-PARTICLE UNITARITY AND REGGE VorK
AMPLITUDES e ilmay(®)/2] | g\ ay()
. 1)/2 <_) . (20
In this section we write down the dispersion relat{®hin cosfmay(1)/2]| s

the approximation that only two particle states are kept in th
unitarity sum(8). Denoting by{P;P,} the two meson inter-

mediate states in this sum, the off-shell imaginary part of th
decay amplitudea‘\B_@lp2 required in the dispersion relation

(9) reads ay(t)=ap+a't, (21

Svhere the first sum included=1 trajectories and the second
oneC=—1 trajectories. As usual we talsg~1 Ge\? and
Sinear trajectories
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with the standard choicd44]

@y=1.08, a'=0.25 GeV? (22
for the Pomeron, and
@y=0.45, a'=0.94 GeV? (23

for all the other trajectories. The possible divergences occur-

ing in the expressior{20) for t#0 are avoided by taking
a(t)=~aq in the denominators. We shall therefore obtain

. map(t)
in——=~1,
Cmay(t) 1
sin ~—, V=f, A, K},
2 \/E 2 2
7Tav(t) 1
cos ~—, V=p, K*. 24
5 2 p (24)

As far as the Regge residuﬁ.faP‘l;Plpz(t) are concerned,

they are supposed to satisfy the factorization relation
VoapaiP1po(D)=Vppv(D) ¥R, (1), (25

and their values at=0 will be determined using the optical

PHYSICAL REVIEW 074016
v _ Kas -1 Ry(2) _ a—Ry(2)
KP3P4;P1P2(Z)—§VMRV (2)[e —€ 1

2
’ mB . 71-
X ex%(aov*‘ avto)( In ——i _)
’ So 2

(29

I e, 30
ns—o |§ ) (30)
and &, is a numerical factor equal te-1 for the Pomeron,
iy2 for C=—1 trajectories, and-2 for C=1 physical
trajectories.

By inserting the expressidi8) of the spectral function in
the dispersion relatio®) and recalling that the decay am-
pIitudezsA,%F,gp4 do not depend oz, we obtain(for sim-

plicity we omit now the mass arguments when the ampli-
tudes are on-shell

R(2) =2aykq5(2) k34(

theorem and the phenomenological Regge-like parametriza?£nd

tions of the total cross sectioh$5,16 (details will be given
in the next section Thet dependence of these functions is,

however, poorly known and we assume they are simply con-

stants.
In order to perform the integratiofi9), the Mandelstam
variablet is expressed in terms of the scattering angle

t(z) =to(2) + 2kq5(2) k34 COSH, (26)
with
(M3+m3—m3)(m3+z—m3)
to(2)=z+mi— ,
0 3 2m3
1 7 72
klz(Z):—Zm \/(mB_Z_mZ) _42”‘5,
B
k34:—2m8\/(m§—m§—m§)2—4m§mﬁ, (27

ABHP1P2:{P32P4} U'p.p,:p,p,AB PP, (31
where
T _ Vv Y
1-"33'34?'31'32_; ’)’p3p4;p1p2(0) TP3P4iP1P, (32
v
1 ((mg-my)?2 KP:P4;P1P2(Z)
MPyP,iPiP~ o dz————— (33
0 z-mi—ie
For further use we also define
_ v v
I"33'34?’;’1'32_; 7P3P4?P1P2(O) "TP3P4:iP1P, (34
and
v
1f(m87m2)2d KP3P4;P1P2(Z) 2
b = — z——
PsPaiPIP T 1 | z-mi—ie (39

Before considering applications, let us make a few comments
about the approximations adopted when deriving the above
formulas. First, we notice that the Regge expresski) is
valid for larges andt close to 0. The valus=m3 satisfies
this condition, but the values dfappearing in the integral
upon the scattering angle in Ed.9) can be large, outside the

where we indicated explicitly only the dependence on theange of validity of the Regge theory. However, the hadronic
variable z. With these kinematic variables the integration amp”tudes decrease at |arg¢, so the contribution of the

over the moment&s; andk, in Eq. (19) is straightforward,
and the coefficientﬁ:p3p4;plp2 can be expressed as

CP3P4;P1P2(Z) - ; 7¥3P4?P1P2(0) K¥3P4?P1P2 . (29

where

large scattering angles in the unitarity integral is expected to
be small and not very sensitive to the inaccuracy of the dy-
namical model. Another difficulty is related to the fact that
the particleP; is off shell, and its mask;f:z becomes very
large at the upper limit of integration in the dispersion rela-
tion (9). Here again, one of the assumptions for the validity
of the Regge expression, namelys>m; [14] is not met.
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However, this part of the integral, which is not correctly trivial constraints. Following Ref.18] we write most gener-
evaluated, brings a small contribution in the dispersion inteally the amplitude of the decaB’— =" 7~ as a sum of
gral due to the denominator in E(®) (this statement is true diagram contributions

when the masses of the intermediate parti®lgsandP, are ) ) , )

not too large¢. We emphasize that the main advantage of the A0+ = —(Are'7+Ape” P+ Ape’+ Age'”
formalism is that it provides, with no approximation, an al- ~ip

gebraic relation involving only physical decay amplitudes. +Apae ), (36)

Indeed, as we mentioned, all the quantigs..p.p, appear- oo n - A(AL), Ag, andAp, denote the amplitudes of
ing in Eq. (31) are on shell, the dynamical approximations the tree, penguin, exchange and penguin annihilation dia-
affecting only the coefficientf'p_p,.p,p,. grams, respectively. We indicated explicitly the weak phases
defined asB=Arg(—V{y) and y=Arg(—V;) [16]. As in-
termediate stateB;P, in Eqgs.(17) and(31) we keepr* 7~
giving the elastic channel, as well as two meson states re-
sponsible for the soft inelastic scattering, enef.7%, K"K,

Unitarity and the dispersion relations were used in previk°k®, 7074, and 7g7g [ 7g is the 5,7’ superposition be-
ous works[1-4] in order to estimate the FSI corrections to Jonging to theSU(3) octei. We notice thatz®7g will not
the decay amplitudes calculated in an approximation whicleontribute finally due to isospin conservation in the strong
does not include strong rescatteriguch as, for instance, rescattering. Of course, besides these states, other inelastic
factorization. Such an evaluation was made in Ref] for  channels, like for instance multipion states can contribute.
the magnitude of final state interactionsBT —7 K% In The stateD*D~ and D°D° are not included because they
the notations used in Sec. lll, it corresponds RQP, contribute to the hard scatterifndg].
=7 KO with the intermediate stateB;P,=#°K~ and Assuming SU3) flavor symmetry we express the decay
7KC inserted in the unitarity sum. Then only physical trajec-amplitudesB— P3P, of interest a§18,19
tories V=p, K*) contribute to Eq.(20), for which the
intercept and the slope are given in EgJ3).

IV. CONSTRAINTS ON THE AMPLITUDES OF
B°— &t %~ DECAY

1 : : : :
Ago_, ,0,0= —2( —Ace' "+ Ape P+ ALE T+ ALEY),

With values of the residua extracted from the phenomeno- — 2
logical parametrization of the cross sections the authors of
Ref. [4] suggested a modification of the magnitude of the Ago_yk-=—Age?,
amplitude of the decad”— 7 K° by a factor of 10%. _ .
However, the coefficientp p,.p,p, appearing in a relation Ago_kogo=Ape P+ ALe"?,

of the type (31) were calculated in Refl4] by using the

rescattering absorbtive function in a dispersion relation with 1 . o _
— —(Ape P+ ALY —Age"),

respect to the variable [see Ref[4], Eq. (2.17)]. By per- ABO_. 70y, = 3

forming the correct calculations with the same values of the

parameters, we find that the coefficidhfoy -., o, for in- 1

stance, is larger by a factor of about 2.5 compared to the B0 = ——(Ace "+ Ape B+ ALE Y+ AzE)
. . — 7g7g C P P E ’

value reported in Ref4]. This shows that the correct treat- 32

ment can modify the conclusions about the magnitude of FSI (37
in B— K decays. i

In the present paper we consider an application of thevhereAr, Ap, Ap, andAg are the same as in E(36) and
dispersive formalism to the dec®?— =" 7. The time de- Ac denotes the amplitude of the tree color suppressed dia-
pendentC P asymmetry in this decay is considered as one ofgrams. _ _ _
the ways of extracting the angle of the unitarity triangle Because of the lack of detailed dynamical calculations,
[17]. However, the unknown strong phase difference bevarious phenomenological assumptions are made in the lit-
tween the tree and the penguin amplitudes of the procesdature about the aboye amplitudes. _The conservative bound
affects the accuracy of this determination. Additional theo-Ap/Ar|<1 for the ratio of the penguin and tree amplitudes
retical constraints on these amplitudes would be very helpfuls mentioned in Ref.[19] (a more specific estimate
for reducing the uncertainty of the method. As we shall showAp/Ar|~0.2 is also quoted in this referenc@he penguin
below, the dispersion relations can provide such a constrain@nhihilation amplitudeAp, corresponds to Okubo-Zweig-
We investigate the problem by combining the relatiohd)  lizuka- (OZI)-suppressed diagrani49], while Ac and Ag
and (31) derived above with isospin 08U(3) symmetry are color suppressed by a factor of about 0.25 with respect to
[18,19. The idea is that by unitarity and dispersion relationsthe corresponding color favored amplitude. Finally, the two
we obtain a set of correlations between exact decay ampliPenguin amplitudesA, and Ap are assumed to satisfy
tudes, containing both weak and strong phases. By imposind\r/Ap|~0.4 [19]. The presence of strong rescattering is
in addition SU(3) flavor symmetry, all the amplitudes can expected to modify these qualitative estimates based on
be expressed in terms of a small number of parameters, fajuark diagramg20,21. In particular, this conclusion was
which unitarity and the dispersion relations provide non-obtained for theB— 7K decays in a model based on isospin
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symmetry in the quasielastic approximati@®,23. A simi- TABLE |. Contributing trajectories to various hadronic pro-
lar analysis foB— 7 was not yet performed, but it is quite cesses.

possible that the contribution of the “suppressed” ampli- — : :
tudesA,, Ac, Ag, andAp, is enhanced by the rescattering ~ Process Contributing trajectories
effects. Our approach, based on unitarity and dispersion re-

. - - ke - TP P+f+f'—p
lations, aims actually to bring clarifications on the magnitude p P+f+f+p
of various amplitudes. The next step is to introduce the decay — PHf+f +ptwtdtA
amplitudesA,%F,iF,j discussed above in the dispersion rela- PP P it —ptawtd A2
. —ptoto—
tion (31). We should recall, however, that due to the trunca- pn P+f+f’—p— B +A2
tion of the unitarity sum, the imaginary part of the decay PP pro=dthy
pn P+f+f' +p—w—¢p—A,

amplitudeABﬂPlPZ obtained from Eq(31) [or equivalently
from the unitarity relation(18) evaluated on-shdlimight be

not real. In order to avoid this situation we apply the proceyheres,~1Ge\2~1/0.38 mb L. The first term represents
dure suggested in Ref12] which maintains the proper real- the pomeron contribution, the second the contributions of all

ity condition of the spectral function and simulates the effecine other trajectories. By comparing Hd0) with the Regge
of other inelastic channels. As discussed at the end of Sec. lharametrizatior(20) we obtain

this method amounts to insert in the unitarity sum the com-

plete set of states 1fR)+1/2Jout). We recall that this b v
method was applied to include inelastic effects through com- SoX= 1.1 SOYZ\Z:P Vit
plex phases in the dispersive analysis of the electromagnetic

form factors[10,11]. In our case this procedure yields, in-  Eqr the Pomeron, which contributes to the elasticr

stead of Eq(31), the modified dispersion relation channel, we assumed that the coupling constant is propor-
1 tional to the number of quarks, taking as in Ré¢l]
P _[2°\2 . .
s pp,= 5 {PEP } Top,ipp,Ab P, Yotnimtn = (3)?S0Xnn. The residua of the*physmal tra-
sha jectories(which in our case are, f, f'K*, K3, andA,)

_ were estimated by taking into account the factorization prop-
) > U'pp,:pp,ABpp,,  (38)  erty (25) combined with the experimental data on several
{P3Pa} hadron-hadron scattering processes. We used the processes
— ] ) given in Table I, for which we wrote the contributions of
wherel'p p, .p.p, andT'p p, .p p, are defined in Eqsi34)  various trajectories as in Refl4]. Using theNN channels
and(32), respectively. We notice that E(B8) can be splitin  we write in particular
two relations, one for the real part and another for the imagi- , ) ) ) )
nary part Qf thg decay amplltude. In particular, the relation SoYpp= Ynni YNy~ YN~ YNNg T YNNA,
giving the imaginary part is
YoomAR gy AR 22 2 41
So¥pn™ VNN T YNNp T~ YNNw — YNNg — YNNA, - (41)
FAK H 2 *
IAg_p,p, 1AB_PP,= PZP Cp,p,:p,p,(M)AR pp,
{P3Pal Noticing that experimentally ,,~Y,, [16] we obtain

* 2 2 2
+ {Péu} Ch,p,:p, P, (M2)AB PP, YNNA,™ YNNp (42)

(39 and further

and can be obtained also directly from the unitarity relation
(18) evaluated on shell. Concerning the real part, it is ob-
tained by taking the principal value of the dispersion inte- . _— -
grals appearing in Eq$33) and(35). Also, by replacing the contributions 6&ndf’ with the octet
We describe now briefly the determination of the ReggedMemberfs, we obtain
residuay\,éspd;PlPZ(O) which enters the expressiof&2) and
(34) of the coefficients of the dispersion relati¢d8). We
use the optical theorem and the Regge parametrization of the So(Yarpt Yot p) =2Vt VNN
total hadronic cross sectiofi$5,16], which gives 8rms

_ . 2 2 2
SO(Ypp—an)ZZ’yNﬁp-l- 27NﬁA2~47Nﬁp' (43

SO(Yﬂ'*p_ Y*rr*p) = 2777*77*p7Nﬁp )

_ _ 2
S s\ @p(0)-1 So(Ypnt Yppt Ypnt Ypp):47Nﬁfs' (44
; Im Mfﬂf(S,O)%SOO'totZSOX S_)
(0)0_1 The coupling constant$i+w,po and yfmﬂs can be easily
+50y(i) (40) calculated from these equations using the experimental val-
So ues of the parameters andY for 7N and NN scattering
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TABLE Il. The values of the Regge residua and of the coefficients entering the dispersion relation.

v v v
P3P, \ YPsP, Kpsp, PP, MPsP, PP, ;¥3p4;p1p2
ata” P 25.6 —0.0089+0.0270 —0.05470.0768 —0.00070.0946
ata p 314 —0.0005-0.0015 0.0001-0.0051 —0.0029+0.0040
ata” fg 35.3 —0.0015+0.0005 —0.005%-0.0001 —0.0040-0.0029
om0 p 314 —0.0005-0.0015 0.0001-0.0051 —0.0029+0.0040
KOKO K* 15.7 —0.0003-0.0007 —0.0004-0.0030 —0.0019+0.0024
KOKO K3 52.9 —0.0007#0.0003 —0.0030+0.0004 0.0024-0.0019
N8 Mg A, 35.3 —0.0015+0.0005 —0.0051-0.0001 —0.0040-0.0029

[16]. Other coupling constants we need are obtained from thetrong interactions are taken into account. However, in order

previous ones by usin§U(3) symmetry, namely, to illustrate the method, we shall make first a crude approxi-
5 5 mation, keeping in Eqg36) and (37) only the contribution
YaOr—p= = Yotz p0 of the tree and the penguin diagrarAs and Ap, whose
strong phases are denoted &g and 5p, respectively. A
2 1, more complete treatment exploiting both dispersion relations
YOk == 3 Vatap0 and estimates based on isospin symmetry as in [Rg2s23
will be performed in a future work. Let us write
2 _§ 2 A
Teom == 3 Vo iy e _rds, (46)
At
2 =t (45) o
Yanghy ™ Yatatg where R=|Ap/A;| and 5= 8p— 7. For simplicity, let us

In Table II ive th | f the R id | make also the additional assumption that the tree amplitude
n fable Il we give the values of the Regge residua ca “A7 is real. Then this amplitude can be factored out from the
culated with the aid of the above relations using the param

. ) dispersion relatiori38), which gives the following two con-
etgr; of thevtotal cross sectlgns qgoted in REE) Fhe €O° straints for the ratioR and the phase differencé of the
efficients «p_p,.p p, are defined in Eq.(29), while the

penguin and tree amplitudes describing Bfe— 7" 7~ de-
coeﬁicients;‘F’,sp4;p1P2, 77\P/3P4;P1P2 are given by Egqs33) cay:
and (35), respectively. We notice that the dominant contri-
bution is brought by the elastic channel, and in particular by
the Pomeron exchange. B Lo e _

With the numbers given in Table I, the real and imagi- 1.239 sity—0.0403 +R sin(9—f+1.459=0. 47)
nary parts of the dispersion relatid®8) can be completely
evaluated, yielding two algebraic relations for the decay amThese equations can be explicitely solved as
plitudes written in Eqs(36) and(37). Of course, the predic-

1.1189 sifiy+0.72D) + R sin(6— 8+ 0.686 =0,

tive power of the method is increased if it is supplemented o=p+e(y),

by some correlations among the amplitudes in the right-hand

side of these equations, or if some amplitudes are very small sin(y+0.721)

and can be neglected. As discussed above, it is most prob- R=-1.1189 sin e(y)+0.686’ (48)

able that the naive estimates for these amplitudes based on
the diagrammatic method are no longer valid when thewvhere

sin( y—0.0403sin0.686+ 0.9027sily + 0.7235in1.452l 9

e(y)= _arCta'Lin(y— 0.0403¢0s0.686-0.9027 sifiy+0.72)cos1.45

We recall that in these relatiofsand y are the angles of the allowed intervals mentioned above, and the r&ias a func-

unitarity triangle which are expectd@®4,25 to be in the tion of v, according to Eq(48). One can see that despite the

ranges 0.1% $=<0.52 and 0.34& y<2.79. crude approximations we made, the results are qualitatively
In Figs. 1 and 2 we represent the strong phase differenceeasonable. We notice that the equation #ais not restric-

S as a function ofy for two values ofg3 at the limits of the tive for the weak angles, while the expected conditRn
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8(B8.7)(deg)
R(7)

* ol vy ]
50 100 150 50 100 150

v(deg) 7(deg)
FIG. 1. The strong phase difference as functioryp$olid curve FIG. 2. The ratioR as a function ofy.

B=1°, dashed curv@=174"°.

<1 is satisfied only for a small range aboye-2.4. How- ©Of higher inelastic channels by a procedure applied in
ever, this somewhat intriguing limitation disappears if wethe study of the electromagnetic form factdrs3,10. In
relax the last approximation made above, namely that th&pite of the various dynamical assumptions mentioned in the
tree amplitudeA; is real. It can be easily seen that by allow- text our result(48) for the ratioR and the strong relative
ing a nonzeros; in the dispersion relation we get two equa- phased of the penguin and tree amplitudes in terms of the
tions of the form(47), with y replaced byy+é; and §  weak anglegrepresented in Figs. 1 and are qualitatively
replaced bysp . The two constraints similar to E¢47) now  reasonable. As we mentioned, these results can be immedi-
involve three parametelR, &7, and &p . ately modified to incorporate a nonzero strong phase for the
tree amplitude. A more complete analysis must include also
the amplitudes neglected in the present analysis, which are
V. CONCLUSIONS suppressed in the diagrammatic approach but may be en-
) ) hanced by the strong interactions. Such an investigation is in
In the present paper we investigated a recent treatment frogress. The results might be useful as additional con-
the final state interactions in the nonleptoBidecays, based  gyajnts in the extraction of the angles of the unitarity triangle

on unitarity and dispersion relatiofid—4]. By considering from the time dependerEP asymmetry in the decaf®
the analytic continuation in the external mass variable in_| ot

the frame of LSZ formalism, we established the connection
between the dispersion variable and the part of the unitarity
sum defining the spectral function. The strong rescattering
part is shown to appear as a discontinuity in a dispersion
relation in terms of the mass of one final particle. Our
results prove that the dispersion relations written in
Refs. [1-4], based on the analytic continuation in the Two of the authorgl.C. and L.M) express their thanks to
mass ofB, are not consistent. We derived the correct disperthe Center of Particle Physid€PPM and the Center of
sion relation, and showed that it modifies the conclusionsTheoretical Physics of Marseille for hospitality. Useful dis-
of Ref.[4] on the magnitude of FSI effects Br— 7K decay cussions with the members of the ATLAS group of CPPM
by a factor of approximately 2.5. We also applied theare gratefully acknowledged. This work was partly realized
formalism to derive a theoretical constraint for the ampli-in the frame of the Cooperation Agreement between IN2P3
tudes of theB— 7" 7~ decay. We included in the unitarity and NIPNE-Bucharest and the Agreement between CNRS
sum a few channels, connecting them by 818(3) symme- and the Romanian Academy. Centre de Physiqueiitjee

try [17,18 and took into account qualitatively the effect is Laboratoire propre au CNRS-UPR-7061.
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