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Quark-composites approach to QCD: The nucleons
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We present a new perturbative approach to QCD based on the use of quark composites with hadronic
quantum numbers as fundamental variables. We apply it to the case of the nucleons by performing a nonlinear
change of variables in the Berezin integral which defines the partition function of QCD. The nucleon compos-
ites are thereby assumed as new integration variables. We evaluate the Jacobian and certain transformation
functions which appear in the change of variables. We show that the free action of the nucleon composites is
the Dirac action, and we evaluate the first perturbative contributions to their electroweak effective action,
which turn out to be a pure renormalization. Our expansion is compatible with a perturbative as well as
nonperturbative regime of the gluons and it has the characteristic feature that the confinement of the quarks is
built in. @S0556-2821~99!02317-6#

PACS number~s!: 12.39.Ki, 12.60.Rc
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I. INTRODUCTION AND SUMMARY

‘‘After nineteen years of study we still lack reliable, an
lytic tools for treating~the large distance region! of QCD.
This remains one of the most important, and woefully n
glected, areas of theoretical particle physics’’@1#. We can
indeed divide the actual calculations in this field into tw
classes: Those which aim at clarifying the confining mec
nism, and those devoted to the description of hadronic ph
ics, and the difficulty stems from the fact that the form
calculations are done in a framework where it would be v
awkward, if not impossible, to perform the latter. In oth
words, the actual understanding of the theory requires a n
perturbative approach for low energy and perturbative me
ods for high energy, which until now has been impossible
unify in a unique scheme.

The direction which we take in the hope of overcomi
this impasse is to use quark composites with hadronic qu
tum numbers as integration variables@2# in Berezin integrals.
This possibility was considered a few years ago and the n
essary formalism was developed@3#. The relations which
define the physical hadronic fields in terms of the qua
cannot obviously be inverted, and therefore the quarks c
not be eliminated. But we will see that an ‘‘effective inve
sion’’ can be achieved in a precise way, allowing us to p
form the physical calculations. One can then hope that
will help in connection with our problem, which turns ou
indeed to be the case.

The strategy we adopt is to add to the standard action
irrelevant operator containing the free action of the hadro
composites and perform a perturbative expansion by ass
ing these composites as new variables of integration. Th
is a fundamental difference between trilinear and bilin
composites. Surprisingly enough for some trilinear comp
ites, in particular the nucleon fields, the change of variab
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preserves the form of the Berezin integral. As a conseque
the free action of such composites is the Dirac action.

Also the mesonic composites can be introduced as i
gration variables, but the resulting integral does not reduc
general to a Berezin or to an ordinary integral, and it is su
that the propagatoris not the inverse of the wave operator. It
then required some effort to construct an irrelevant opera
containing the free action of the pions, but this was even
ally done, along with the first investigation of the relate
perturbative expansion, which reproduced the interaction
the chiral models. Although identical in spirit and in its di
tinctive features, this expansion differs significantly in t
technicalities from that for the barions, and it is the subj
of separate works@4#.

Our approach is compatible with a perturbative as well
nonperturbative regime of the gluons. Therefore, ev
though its applicability is in no way restricted to a speci
regularization, we adopt a regularization on a Euclidean
tice, which is the only one suitable for both cases, a cho
which seems also natural dealing with composites.

In this paper we consider the case of the nucleons.
main results are the evaluation of the Jacobian and of cer
transformation functions, necessary to perform the chang
variables. Then we evaluate the first perturbative contri
tion to the partition function. We expect that, since the ph
ics of the nucleons is dominated by the exchange of
pions, unless the fields of these particles are included, a
alistic application in the field of strong interactions is n
possible. A unified treatement of nucleons and pions will
presented in a forthcoming paper, where the pion-nucl
interaction is investigated@5#. Here we restrict ourselves t
the electroweak interactions of the nucleons, evaluating o
the first order terms originating from the quarks, where
pions cannot contribute. In the presence of these interacti
the free action of the nucleons must be gauge invariant,
it must therefore contain the appropriate electroweak c
plings. The first order corrections turn out to be a mere ren
malization of the electroweak action of the nucleons. T
©1999 The American Physical Society08-1
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G. DE FRANCESCHI AND F. PALUMBO PHYSICAL REVIEW D60 074008
result is nontrivial and it provides a significant test of t
consistency of our perturbative expansion.

A distinctive feature of our approach is that the qua
confinement is built in both for the nucleons and the pio
This is due to the fact that our expansion is of weak coupl
for the hadrons, but of strong coupling for the quarks. To a
finite order, the quarks can then move only by a finite nu
ber of lattice spacings, and therefore they can never be
duced in the continuum limit, so that our expansion is o
compatible with quark confinement. In this connection o
can wonder whether the Wilson term to avoid spurio
quarks is necessary in our approach: Since the quarks
no poles whatsoever to finite order, should we worry ab
the spurious ones? The actual settlement of this issue
quires the study of the anomaly, which is presently un
way.

To conclude a few words about the parameter of exp
sion. This is the inverse of a dimensionless constant ente
the definition of the nucleon composites, which is, howev
accompanied by the inverse of large numerical factors
lated to the number of quark components, which is 24 for
and down quarks. A similar situation occurs with the pio
but in the latter case the role of the number of quark co
ponents is more transparent@4#, being the asymptotic param
eter of a saddle point expansion. Since we have not evalu
any physical quantity, we cannot fix the value of the exp
sion parameter, and therefore at the present stage the
nothing we can say about the rate of convergence.

One can wonder about the apparent absense of a s
characterizing the dynamical region where the use of co
posites as fundamental variables will be physically con
nient. Such a scale is hidden in the dimensionless expan
parameter, which, to obtain sensible results, must scale
proper way with the lattice spacing@5#.

The paper is organized as follows. In Sec. II we report,
the convenience of the reader, the formalism for nonlin
change of variables in Berezin integrals. In Sec. III we defi
the quark composites with the quantum numbers of
nucleons, in Sec. IV we evaluate the Jacobian, and in Se
the transformation functions of the change of variables.
Sec. VI we show that the the free action for the nucle
composites is the Dirac action.

In Sec. VII we couple the nucleons to the electromagne
field and evaluate the first perturbative contribution to th
effective action by assuming as unperturbed action the D
action and the quark actionSq as the perturbation. As alread
stated, the first perturbative contribution, which comes fr
(Sq)3, turns out to be simply a renormalization of the ele
tromagnetic action. It would not be difficult to evalua
higher order terms. One can indeed deduce by inspection
we will get a nucleon-nucleon interaction, namely, a fou
order term in the composites, from (Sq)6. In such a term
there can be no contribution from the gluons. Such a con
bution will appear from (Sq)12 in a configuration where ther
are nucleon composites at the vertices of a plaque
Whether such terms give a finite contribution in the co
tinuum limit or not, depends on how the parameterk scales
with the lattice spacing, but again this dependence canno
fixed without taking into account the pions which will giv
07400
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comparable or even more important contributions. We c
clude this section by showing that our expansion of the qu
propagator is of strong coupling.

In Sec. VIII we consider the weak couplings of the nuc
ons. Because of the well known difficulties with chiralit
our results can only be regarded as a further illustration
the potentiality of our formalism in the generation of th
structures appearing in the composite action starting from
constituents. Again we find that the first order correctio
where the pions cannot contribute, is a pure renormalizat

II. BARIONIC COMPOSITES AS INTEGRATION
VARIABLES

In this section all the fields are defined at one and
same lattice site. We assume the convention of summa
over repeated indices.

Let us consider cubic quark composites

c I5cI
i 1 ,i 2 ,i 3l i 1

l i 2
l i 3

. ~2.1!

We want to assume these composites as new integra
variables in the Berezin integral which appears in the pa
tion function. The above equations define indeed a nonlin
change of variables. Of course they cannot be inverted,
we will specify below in which sense the quark fields can
expressed in terms of the barionic composites.

We want to define the integral of a function of thec in
such a way that its value be equal to that obtained by
pressing these variables in terms of thel, and performing the
Berezin integral over the latter

E @dl#g@c~l!#5E @dc#g~c!. ~2.2!

We remind the reader that the above integral involves
field components at a given site. Let us restrict ourselve
functions g which have a Taylor expansion. The Berez
integral is a linear functional which associates to any fu
tion g the coefficient of the~unique! monomial containing all
the l in a given order in its expansion. Let us denote th
monomial by

L5l1l2•••l3N . ~2.3!

To define the integral ofg(c) overc we must determine al
the monomials of thec which, when expressed in terms o
the l, are proportional toL ~with nonzero coefficient!. To
this end we introduce the generic monomials

C I5c1
I 1c2

I 2
•••cN

I N , ~2.4!

with degree

dI5(
k

I k , ~2.5!

whereI is a vector with componentsI 1 , . . . ,I N . It is under-
stood that ifdI50, x I51. Since all the odd composites hav
index of nilpotency 1,I k50,1. Notice that
8-2
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QUARK-COMPOSITES APPROACH TO QCD: THE NUCLEONS PHYSICAL REVIEW D60 074008
C I5ck , if I k51, I h50 for hÞk. ~2.6!

We call fundamental, with weightJ, those monomials which
are proportional toL with nonzero coefficient

C I5JIL, JIÞ0. ~2.7!

We can expand any functiong(c) in terms of fundamenta
monomials plus irrelevant terms~in the sense that they d
not contribute to the integral!

g5 (
dI5N

gIC I1 irrelevant terms. ~2.8!

The definition of the integral over thec we are looking for is
therefore

E @dc#g~c!5 (
dI5N

gIJI . ~2.9!

Note that, although in general different expansions

g~c!5 (
dI5N

gIC I1 irrelevant terms5 (
dI5N

gI8C I

1 irrelevant terms ~2.10!

can exist, the above equality implies

(
dI5N

gIJI5 (
dI5N

gI8JI , ~2.11!

since both the left and right hand sides are equal to the
efficient ofL in the expansion ofg in terms of the generating
elements, so that the value of the integral does not depen
the particular expansion ofg.

It is remarkable that if the composites are chosen in s
a way that there is only one fundamental monomial, the
tegral becomes identical, apart from the weight, to the
rezin integral over the constituents. In this case it is con
nient to define the integral over the composites exactly a
Berezin integral

E @dc#C51, ~2.12!

and regard the weightJ as the Jacobian of the transform
tion. Accordingly we will replace the definition~2.9! by

E @dl#g@c~l!#5JE @dc#g~c!. ~2.13!

We will restrict ourselves to this case, which is also rema
able because more general integrals, depending on thec as
well as thel can be simply evaluated according to the eq
tion

E @dl#g~c!l i 1
l i 2

•••l i 3n
5 f Ii 1i 2••• i 3n

JE @dc#g~c!C I ,

~2.14!
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where the transformation functionsf are defined below. The
proof follows.

By hypotesis the product of ourN composites is different
from zero:

c1•••cN5C. ~2.15!

We define the complementary monomials

CI5e IC Î , ~2.16!

where

Î k50,1 for I k51,0, ~2.17!

ande is chosen to be61 in such a way that the equation

CICJ5d I ,JC, ;I ,J, dI5dJ , ~2.18!

be satisfied. This equation implies that

E @dc#CICJ5d I ,J , ;I ,J, ~2.19!

since, if dIÞdJ , CICJ is never a nonzero multiple ofC 1
irr. terms. Consider now the integral

I5E @dl#g~c!l i 1
•••l i m

. ~2.20!

It is obviously zero ifm.3N, the total number of quarks
but also ifmÞ3n, with n integer. We then set, by definitio

E @dc#g~c!l i 1
•••l i m

50, mÞ3n. ~2.21!

Whenm53n,

I5E @dl#g(N2n)~c!l i 1
•••l i 3n

, ~2.22!

g(N2n)(c) being the homogeneous portion ofg of degree
N2n in the expansion ofg in products of thec8. Since

g(N2n)~c!5 (
dI5n

gI
(N2n)CI ~2.23!

with uniquely determined coefficients

I5J (
dI5n

gI
(N2n) f Ii 1••• i 3n

, ~2.24!

which requires the following definition of the transformatio
functions:

CIl i 1
•••l i 3n

5 f Ii 1••• i 3n
C. ~2.25!

But, of course,

E @dc#g~c! (
dI5n

f Ii 1••• i 3n
C I5 (

dI5n
gI

(N2n) f Ii 1••• i 3n
.

~2.26!
8-3
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G. DE FRANCESCHI AND F. PALUMBO PHYSICAL REVIEW D60 074008
Hence

E @dl#g~c!l i 1
•••l i m

5JE @dc#g~c!l i 1
•••l i m

5dm,3n (
dI5n

f Ii 1••• i 3n
JC I ,

~2.27!

namely,

l i 1
•••l i m

;dm,3n (
dI5n

f Ii 1••• i 3n
E @dc#g~c!C I

~2.28!

as far as the Berezin integral is concerned. It is perh
worthwhile recalling that in the above equation all the fie
are defined at the same site.

In our physical applications the quark variables appea
two setsl i and l̄ i , and in the Grassmann algebra they ge
erate we have the antilinear conjugationl i˜l̄ i , l̄ i˜l i sat-
isfying, for generic elementsjh̄5h̄ j̄. So we have to extend
the previous formulas to include the conjugate variables.
basic Berezin integrals are

E @dl#@dl̄ #L̄L51, E @dc#@dc̄#C̄C51 ~2.29!

the ordering ofL̄,L andC̄,C being immaterial if, as is the
case in our physical applications,N543 integer, since these
monomials contain an even number of quark fields. T
compositesc I are now accompanied by the compositesc̄ I
obtained by conjugation. Corresponding to Eqs.~2.18! and
~2.25! we have by conjugation

C K̄ CĪ5dK,IC̄, dI5dK , ~2.30!

l̄ i 3m
•••l̄ i 1

C̄I5 f Ii 1••• i 3m
C̄̄, ~2.31!

and fromC5JL, C̄5JL̄, if J is real, as it turns out to be
the case. It can then be easily checked that, if we se
definition

E @dc̄#@dc#g~ c̄,c!l̄ i 1
•••l̄ i m

lk1
•••lkm8

50,

mÞ33 integer, m8Þ33 integer, ~2.32!

we have
07400
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E @dl̄ #@dl#g~ c̄,c!l̄ i 1
•••l̄ i m

lk1
•••lkm8

5J2E @dc̄#@dc#g~ c̄,c!l̄ i 1
•••l̄ i m8

lk1
•••lkm8

5dm,3ndm8,3n8 (
dI5n,dK5n8

f Ii 3n••• i 1
f̄ Kk1•••k3n8

J2

3E @dc̄#@dc#g~ c̄,c!C̄ ICK . ~2.33!

The conclusion is that

l̄ i 1
•••l̄ i m

lk1
•••lkm8

;dm,3ndm8,3n8 (
dI5n,dK5n8

f Ii 3n••• i 1
f̄ Kk1•••k3n8

C̄ ICK

~2.34!

is the substitution rule in the Berezin integral in the gene
case.

It should now be clear in which sense we can talk o
change of variables. Even though the constituents canno
expressed in terms of the composites, we only need to in
trilinear expressions in the quark and antiquark fields, a
this can be done according to Eq.~2.34!.

III. THE NUCLEON COMPOSITES

We assume the nucleon composites to be@6#

cta52
2

3
k1/2a3dtt2

et1t3
~g5gm!aa1

3~Cgm!a2a3
~lt1a1

lt2a2
lt3a3

!. ~3.1!

In the above equation and in the following the summat
over repeated indices is understood,C is the charge conju-
gation matrix, and

~lt1a1
lt2a2

lt3a3
!5ea1a2a3

lt1a1

a1 lt2a2

a2 lt3a3

a3 . ~3.2!

The fieldslta
a have color, isospin and Dirac indicesa, t, and

a, respectively, and are related to the up and down qua
according to

l1a
a 5ua

a , l2a
a 5da

a . ~3.3!

Correspondinglyc1a ,c2a are the proton, neutron fields. It i
easy to check that with the above definition they transfo
like the quarks under isospin and O~4! transformations.

Finally we should explain why we have included in th
definition the cubic power of the lattice spacinga and the
parameterk. The cubic power of a parameter with the dime
sion of a length, sayl 3, is necessary to give the nucleon fie
the canonical dimension of a fermion field. At the same tim
a power of the lattice spacing at least cubic is necessar
make the kinetic term irrelevant. We have written for lat
8-4
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QUARK-COMPOSITES APPROACH TO QCD: THE NUCLEONS PHYSICAL REVIEW D60 074008
conveniencel 3 in the formk1/2a3, wherek is dimensionless
and it must not diverge with vanishing lattice spacing.

There are altogether 8c. Since monomials of less than
c cannot obviously contain all thel, there can be at mos
one fundamental monomialC

C5c1,1•••c1,4c2,1•••c2,45JL. ~3.4!

We have chosen for the productL of all the quark field
components at a given site the following ordering

L5P~l11!•••P~l14!P~l21!•••P~l24!, ~3.5!

where

P~lta!5lta
1 lta

2 lta
3 . ~3.6!

The Jacobian is obviously proportional tok4a24. The non-
trivial factor of proportionality will be evaluated in the nex
section.

IV. EVALUATION OF THE JACOBIAN

The weight of nonrelativistic nucleon composites w
evaluated in the second of Ref.@3#. In this section we con-
sider the relativistic case. For simplicity we will omit th
trivial factor k4a24 which will be reinstated at the end of th
section.

The functionC is a homogeneous polynomial of degr
24 in the quark fields. But many terms vanish because t
contain some component of the quark field to a power hig
than 1, and the remaining terms are proportional toL. In
order to identify the vanishing terms and to get rid of the
we find convenient the following representation of theg ma-
trices:

gk5 i S 0 sk

2sk 0 D , g452S 0 1

1 0D , g55S 1 0

0 21D
~4.1!

and of the charge conjugation matrix

C52 i S s2 0

0 2s2
D ~4.2!

which satisfy the equations

C21gm
TC52gm . ~4.3!

In such a representation the nucleon composites take the
pler form

c1i524d i i 2
e i 1i 2

~u1 i 2
u2 i 3

d2 i 1
!,

c1i 12524d i i 2
e i 1i 2

~u2 i 2
u1 i 3

d1 i 1
!, i 51,2,

c2a52c1a~u↔d!, ~4.4!

where the indices1 and 2 refer to the upper and lowe
components of Dirac spinors.
07400
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To make the following formulas more readable we intr
duce the notations

u1 i
a 5xi

a , u2 i
a 5yi

a ,

d1 i
a 5zi

a , d2 i
a 5wi

a , ~4.5!

@xa,yb#5x1
ay2

b2x2
ay1

b . ~4.6!

Therefore, if we remember the convention~3.2!

~xi@y,z# !5eabc@xi
ay1

bz2
c2xi

ay2
bz1

c# ~4.7!

the nucleon composites become

c1,i54~xi@y,w# !, c1,i 1254~yi@x,z# !,

c2,i54~zi@y,w# !, c2,i 1254~wi@x,z# !. ~4.8!

The calculation ofC is now straightforward and it is base
on the following identities:

~up!~uAB!~uCD!5P~u!@~pC!~ABD!1~pD !~ABC!#,

~uuA!~up!522P~u!~Ap!, p5ab,@a,b#, ~4.9!

u,a,b,A,B,C,D being any of the quark fieldsxi ,yi ,zi ,wi ,
and

P~u!5
1

6
~xxx!. ~4.10!

To avoid unnecessary proliferation of terms, as a guid
rule, it is convenient to express the@a,b# in terms ofa andb
in the variousc only as far as to be able to use the previo
identities. Let c11•••c14544P, c21•••c24544N, so that
C5216PN, and

P5~x1@y,w# !~x2@y,w# !~y1@x,z# !~y2@x,z# !. ~4.11!

If we explicitate@x,z#, and use Eq.~4.9! we get

P5
1

4
P~x1!$~y2@y,w# !~y1z2z2!1c1c22%c122

1

4
P~x2!

3$~y2@y,w# !~y1z1z1!1c2c21%c11

2
1

16
c11c12$~x1y1z2!~x2y2z1!2~x1y2z2!~x2y1z1!%.

~4.12!

Sincec2a52c1a(x↔z,y↔w) it follows that

N5
1

4
P~z1!$~w2@y,w# !~w1x2x2!1c18c12%c222

1

4
P~z2!

3$~w2@y,w# !~w1x1x1!1c28c11%c21

2
1

16
c21c22$~z1w1x2!~z2w2x1!2~z1w2x2!~z2w1x1!%.

~4.13!
8-5
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Observe now that in the productPN the terms with coeffi-
cientsc1,2,c1,28 do not contribute. Consider, for example, th
one with coefficientc1. Its factorc22, in PN, will be multi-
plied either with itself or withP(z2) giving zero, in the
second case, becauseP(z2) is the monomial of maximum
degree inz2, andc22 is linear inz2. For this same reason
is evident that nonzero contribution can arise only from
products P(xi)$•••%P(zi)$•••%, i 51,2, ~no summation!,
and from the product of the last two terms inP andN. Work-
ing out the details with the help of Eq.~4.9!, we obtain

PN524P~x1!P~x2!P~z1!P~z2!R, ~4.14!

where

R5~y1@y,w# !~y2@y,w# !~w1@y,w# !~w2@y,w# !.
~4.15!

Using the same procedure, explicitating, say, first the v
ables in the ‘‘links’’ with y1 ,y2, we get

R52333235P~y1!P~y2!P~w1!P~w2!, ~4.16!

so that, if we reinstate the factork4a24, we get

J5k4a2422233335. ~4.17!

V. EVALUATION OF THE TRANSFORMATION
FUNCTIONS

Also in this section we omit the factorsk anda which will
be reinstated at the end. According to Eqs.~2.18! ~2.25! the
monomialCta complementary toCta must satisfy

Ctact8a85daa8dtt8C, ~5.1!

so that

Cta5~21!ac11•••c” ta•••c24, ~5.2!

and the transformation functions are defined by

Ctalt1a1

a1 lt2a2

a2 lt3a3

a3 5 f ta,t1a1 ,t2a2 ,t3a3 ,a1 ,a2 ,a3
C.

~5.3!

As a first step to evaluate the transformation functionf we
exploit the invariance ofC under color, isospin and O~4!
transformations. We will find in this way thatf is constructed
in terms of invariant tensors. Let us start by a transformat
in color space

CtaUa1b1Ua2b2Ua3b3lt1a1

b1 lt2a2

b2 lt3a3

b3

5 f ta,t1a1 ,t2a2 ,t3a3 ,a1 ,a2 ,a3
C. ~5.4!

The above equation can be rewritten

Ua1b1Ua2b2Ua3b3f ta,t1a1 ,t2a2 ,t3a3 ,b1 ,b2 ,b3
C

5 f ta,t1a1 ,t2a2 ,t3a3 ,a1 ,a2 ,a3
C, ~5.5!
07400
e
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showing thatf is an invariant tensor in color, and therefo
factorizes according to

f ta,t1a1 ,t2a2 ,t3a3 ,a1 ,a2 ,a3
5ea1a2a3

hta,t1a1 ,t2a2 ,t3a3
.
~5.6!

Let us now come to isospin and O~4! transformations. To
ease the notation we represent the pair of indicesta by the
single indexi. If under isospin, O~4! and parity transforma-
tions,S5g4

c i85Si j c j ~5.7!

then

Ci85Si j
c Cj , ~5.8!

whereSc is the contragradient representation

Sc5~ST!21. ~5.9!

Performing such transformations in Eq.~5.3! we then find
that h must satisfy the equation

Sk j
c Si 1 j 1

Si 2 j 2
Si 3 j 3

hj j 1 j 2 j 3
5hki1i 2i 3

~5.10!

showing that it is an invariant tensor for the representat
Sc

^ S^ 3.
For isospin transformationsS5D1/2, since the quarks are

in the defining representation, andSc;S. We must therefore
look for the invariant tensors for the representation (D1/2) ^ 4.
As it is well known, the number of these invariant tensors
equal to the number of times the identity representation
contained in the reduction of (D1/2) ^ 4 into a sum of irreps,
hence it is equal to 2. We choose the following linearly i
dependent tensors:

Ett1t2t3

(1) 5dtt1
et2t3

, Ett1t2t3

(2) 5dtt2
et1t3

. ~5.11!

In the following developments we will also need the tens

Ett1t2t3

(3) 5dtt3
et1t2

~5.12!

which is related to the previous ones by

E(1)2E(2)1E(3)50. ~5.13!

The tensorh can then be decomposed according to

h5E(1)
^ t (1)1E(2)

^ t. ~5.14!

The corresponding calculation for O~4! is more complicated,
since for the subgroupO(4)c connected to the identity,S
;Sc is the representationD (1/2,0)

% D (0,1/2), andS^ 4 admits
10 invariant tensors. It is then convenient to determine
form of t directly, rather than going through the intermedia
step of finding these 10 invariant tensors. For this purp
we write it in the form

t i i 1i 2i 3
5(

AB
cAB~GA! i 1i~GBC21! i 2i 3

, ~5.15!
8-6
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where

GA5I ,g5 ,g5gm ,gm ,gmgn , m,n. ~5.16!

No confusion should arise between the charge conjuga
matrix C and the complementary monomialsCI . Now we
proceed to enforce various conditions. First, as it is seen
inspection,h must be totally symmetric under the exchan
of the numbered indices. For this it is sufficient to impose
symmetry under the permutations~12!,~23!

~12!h5h, ~23!h5h. ~5.17!

The first of these equations yields

t (1)5~12!t, ~5.18!

which allows us to write

h5~12!E(2)
^ ~12!t1E(2)

^ t. ~5.19!

The second one, using Eq.~5.13!, gives two conditions ont

~23!t5t, @ I 1~12!1~13!#t50. ~5.20!

Since

~GBC21!T5eBGBC21, ~5.21!

where

eB521 for GB5I ,g5 ,g5gm ,

eB511, for GB5gm ,gmgn , m,n, ~5.22!

the first of the above conditions implies

cAB50, for eB521. ~5.23!

Next we requiret to be an invariant tensor

Sc
^ S^ 3t5t ~5.24!

for S the said representation ofO(4)c andS5g4, namely,

(
AB

cABSGAS21
^ SGBC21ST5(

AB
cABGA^ GBC21.

~5.25!

Using the relations

C21ST5S21C21, C21g4
T52g4C21, ~5.26!

the above conditions reducet to the form

t5b1g5gm ^ gmC211b2emnrsgmgn ^ grgsC21.
~5.27!

The second of the symmetry conditions~5.20!, is actually
implied by the first one and Eq.~5.24!, for group theoretical
reasons. To determinet completely we then need two mor
conditions. The first one is

Cta~l11lt2a2
l11!50. ~5.28!
07400
n
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e

This follows from the observation that, in the representat
whereg5 is diagonal,Cta contains at least 5 out of the
factors c1,a ,c2,i 12 , a51, . . . ,4, i 51,2. Since according
to Eq. ~4.8! each of these factors is linear inl1,i5xi , each
monomial in the lhs of the above equation contains at lea
of these factors and must therefore vanish. Hence

hta,11,t2a2 ,1150 ~5.29!

which yields

b250. ~5.30!

The second condition, which determinesb1 is

1

4
dtt8daa852dt8t2

et1t3
~g5gm!a8a1

3~Cgm!a2a3
htat1a1t2a2t3a3

. ~5.31!

It is obtained by multiplying both sides of Eq.~5.3! by

22/3ea1a2a3
dt8t2

et1t3
~g5gm!a8a1

~Cgm!a2a3
~5.32!

and by summing over repeated indices. The resulting va
of b1 is

b15
1

96
, ~5.33!

so that finally, inserting the factora23k21 we have

htat1a1t2a2t3a3

5
1

96
a23k21/2@dtt2

et1t3
~g5gm!a1a~gmC21!a2a3

1dtt1
et2t3

~g5gm!a2a~gmC21!a1a3
#. ~5.34!

VI. THE FREE ACTION OF THE NUCLEON
COMPOSITES

Since the integral over thec is equal to the Berezin inte
gral, we can assume for the nucleon the Dirac action

SN~r N ,mN ,V!5a4(
xy

c̄~x!Q~r N ,mN ,V!x,yc~y!,

~6.1!

where

Q~r N ,mN ,V!x,y52
1

2a (
m

~r N2gm!Vm~x!dy,x1m

1S mN1
4r N

a D dx,y . ~6.2!

In the above equationr N is the Wilson parameter

0,r N<1, ~6.3!
8-7
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Vm is the link variable associated to the em field, andmN is
the mass of the nucleon. ObviouslyVm andmN are diagonal
matrices in isospin space. We have adopted the standard
ventions

mP$24, . . . ,4%,

g2m52gm ,

V2m~x!5Vm
1~x2m!. ~6.4!

Notice that the above range of values ofm holds only for
the wave operatorQ. In the sums occurring in the definitio
of the nucleon composites, and therefore of the transfor
tion functionsmP$1, . . . ,4%.

Let us consider the free correlation functions

^c̄~x!c~y!&5
1

ZN
E @dl̄dl#c̄~x!c~y!

3exp@2SN~r N ,mN,1!#, ~6.5!

where the partition function is

ZN5E @dl̄dl#exp@2SN~r N ,mN,1!#. ~6.6!

Of course here

@dl̄dl#5)
x

@dl̄~x!dl~x!#. ~6.7!

Introducing thec as new integration variables we immed
ately see that the nucleon composites have a canon
propagator

^c̄~x!c~y!&52
1

a4 @Q~r N ,mN,1!#yx
21 . ~6.8!

It is perhaps worth while noticing that nothing depends
this stage on the parameterk appearing in their definition, bu
this constant will become the inverse parameter of expan
when we will take into account the QCD action.

VII. PERTURBATION THEORY AND QUARK
CONFINEMENT

In this section we use our formalism to set up a pertur
tive expansion in QCD. SinceSN is an irrelevant operator, i
can freely be added to the standard QCD action. We th
fore assume as the total action

S5SN1SG1Sq~r ,mq ,Uv !, ~7.1!

whereSG is the pure gluon and em action,

Sq~r ,mq ,Uv !5a4(
x

l̄~x!Q~r ,mq ,Uv !x,yl~y!,

~7.2!
07400
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mq is the quark mass,r the Wilson parameter, which nee
not in general be equal to that of the nucleonsr N , but it is
obviously subject to the same restriction~6.3!, Um and vm
are the link variables associated to the gluon and em field
the quarks, respectively, under the conventions~6.4!.

Accordingly the partition function is

Z5E @dU#@dv#@dl̄dl#exp@2~SN1SG1Sq!#

5JE @dU#@dv#@dc̄dc#exp@2~SN1SG1Sq!#,

J5S)
x

JD 2

. ~7.3!

In the last equality we have assumed the nucleons as
integration variables and the quark fields must be underst
their functions in the sense specified in Sec. V. The qu
actionSq must now be treated as a perturbation

Z5JE @dU#@dv#exp~2SG!E @dc̄dc#

3 (
n50

`
1

~3n!!
~2Sq!3n exp~2SN!. ~7.4!

It should by now be obvious why non cubic powers ofSq do
not contribute. Since the factor (Sq)3n yields a factork2n,
because of the dependence onk of the transformation func-
tions, we have an expansion in inverse powers ofk. We
should emphasize that we are not treating the gauge fi
perturbatively.

We will evaluate only the first order contribution to th
partition function, where the pions cannot contribute. T
splits into two parts

2
1

3!
Sq

35T11T2 . ~7.5!

T1 comes from the hopping term andT2 from the ‘‘mass’’
term. Obviously there is no interference between the two

Let us start fromT1

T15
1

23

1

3!
a9(

x
(
m

l̄t1a1

a1 ~x!l̄t2a2

a2 ~x!l̄t3a3

a3 ~x!

3Um
a1b1~x!Um

a2b2~x!Um
a3b3~x!vm,t1

~x!vm,t2
~x!vm,t3

~x!

3~r 2gm!a1b1
~r 2gm!a2b2

~r 2gm!a3b3

3lt1b1

b1 ~x1m!lt2b2

b2 ~x1m!lt3b3

b3 ~x1m!, ~7.6!

which has been written using the fact that, to generat
nucleon field, the positions of the quarks must coincide w
one another. Now we will use the expressions~5.6! and
~5.34! for the transformation functions and the relations

ea1a2a3Um
a1b1Um

a2b2Um
a3b35eb1b2b3. ~7.7!
8-8
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Moreover we observe that the product of the em fields ac
over the quarks generates the electromagnetic field ac
over the nucleons according to

et2t3
vm,t1

vm,t2
vm,t3

5et2t3
Vm,t1

~no summation!.
~7.8!

Since the sum over color indices gives a factor 6, perform
also the sum over isospin indices we get

T1;
1

23

1

3!

12

962 k21a3(
x

(
m

c̄ta~x!Vm~x!ctb~x1m!

3$2~rgngr1gngmgr!Tr@gr~r 1gm!gn~r 2gm!#

1gng5~r 2gm!gr~r 1gm!gn~r 2gm!g5gr%ab .

~7.9!

We remind the reader that the sign; means equality unde
Berezin integrals. The sums overn andr finally give

T1;
3

8

1

242 ~21r 2!k21a4(
x

(
m

1

2a
c̄~x!

3~r N8 2gm!Vm~x!c~x1m!, ~7.10!

where

r N8 5r
2r 211

21r 2 . ~7.11!

Notice that alsor N8 satisfies the restriction~6.3!, and in par-
ticular r N8 50,1 for r 50,1.

In a similar way we get

T2;2
3

8

1

242 ~21r 2!k21a4(
x

c̄S mN8 1
4r N8

a Dc,

~7.12!

where

mN8 5
4

~21r 2! F2a2S mq1
4r

a D 3

2r ~2r 211!
1

aG .
~7.13!

In conclusion the total first order contribution can be writt
as a pure renormalization of the electromagnetic action of
nucleons

~SN!152
3

8

1

242 ~21r 2!k21SN~r N8 ,mN8 ,V!. ~7.14!

Some comments concerning higher order terms. One can
duce by inspection that we will get a nucleon-nucleon int
action~quartic in the composites!, to second order. In such
term there can be no contribution from the gluons. This w
appear to fourth order in a configuration where there
nucleon composites at the vertices of a plaquette. But
explained at the beginning, before going to higher order
must include the pions.
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We can also evaluate the quark-quark correlation fu
tion. It is obvious that at ordern the quarks can move only
by n lattice spacings. Consider for instance the quark pro
gator at first order

^l̄a~x!Gxy
ablb~y!&5

1

Z
JE @dU#@dv#exp~2SG!

3E @dc̄#@dc#l̄a~x!Gxy
ablb~y!

1

2
Sq

2

3exp~2SN!. ~7.15!

Notice that we have connected the quarks by a string
gluonsG, because otherwise the correlation function wou
vanish because of gauge invariance. Proceeding as in
case of the nucleons we find that this correlation funtion
different from zero only fory5x,x1m. Our perturbative
series results to be a weak coupling expansion for the nu
ons, but a strong coupling expansion for the quarks. To
tablish quark confinement in the present context, we sho
carry out this expansion to infinite order, whereas obviou
we will calculate physical processes only to finite order. O
approach, however, has the desirable property that in s
calculations quarks are never produced, a result which
only compatible with quark confinement. It follows that
the present expansion there appear no poles whatsoev
the quarks, and the situation is similar in the expansion
the pions@4#. We therefore wonder whether we can forg
altogether the Wilson term of the quarks~but not, of course,
the Wilson term of the nucleons!. A convincing assessemen
of this issue requires the study of the anomaly, a probl
which is under investigation.

VIII. THE WEAK INTERACTIONS OF THE NUCLEONS

In this section we study the electroweak interactions
the nucleons. Because of the well known difficulties w
chirality, however, in the present form our calculations c
only be regarded as a further illustration of the potentiality
our approach in the reconstruction of the structures app
ing in the action of barionic composites. For this purpose i
sufficient to restrict ourselves to the charge changing w
interactions neglecting the Wilson term for the quarks. T
corresponding action for the quarks is

Sq
ch5 i

1

2
g cosua4(

x
(

h51,2
j m
h ~x!Wm

h , ~8.1!

whereu is the Cabibbo angle,Wm are the intermediate vecto
bosons, andj m

h (x) is the charge changing quark current

j m
h ~x!5

1

2 F l̄~x!thgm

1

2
~12g5!l~x1m!

1l̄~x1m!thgm

1

2
~12g5!l~x!G . ~8.2!

The above expression for the quark current is obtained
writing an action invariant under the weak isospin and reta
8-9
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ing the first two terms in the expansion of the related li
variables. Also the~irrelevant! action of the nucleons mus
be invariant under the weak isospin transformations, so
it contains the term

Sc
ch5 i

1

2
g cosua4(

x
(

h51,2
Jm

h ~x!Wm
h , ~8.3!

with the corresponding charge changing nucleon current

Jm
h ~x!5

1

2 F c̄~x!thgm

1

2
~12g5!c~x1m!

1c̄~x1m!thgm

1

2
~12g5!c~x!G . ~8.4!

The first order QCD correction to this action comes ob
ously from a term quadratic inSq

~Sc
ch!15

1

2
@Sq~0,mq,1!#2i

1

2
g cosua4(

x
(

h51,2
j m
h ~x!Wm

h ~x!.

~8.5!

We have suppressed the em and the gluon fields for sim
ity, but it is easy to check that at this order these fields do
contribute.

Following our procedure, we find
cu
4

to

07400
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ch!1;

6

8

1

962 k21i
1

2
g cosua4

3(
x

(
h51,2

Wm
h ~x!h̄ta,t1a1t2a2t3a3

~th!t3s3

3Fgm

1

2
~12g5!G

a3b3

~gm!a1b1
~gm!a2b2

3hsbt1b1t2b2s3b3

1

2
@c̄ta~x!csb~x1m!

1c̄ta~x1m!csb~x!#. ~8.6!

By using the expression of the structure functions and
performing the sums over isospin and Dirac indices we fi
that the first order contribution to the charge changing we
interaction of the nucleons is a pure renormalization

~Sc
ch!1;

3

8

1

242 k21Sc
ch . ~8.7!
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