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Quark-composites approach to QCD: The nucleons
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We present a new perturbative approach to QCD based on the use of quark composites with hadronic
guantum numbers as fundamental variables. We apply it to the case of the nucleons by performing a nonlinear
change of variables in the Berezin integral which defines the partition function of QCD. The nucleon compos-
ites are thereby assumed as new integration variables. We evaluate the Jacobian and certain transformation
functions which appear in the change of variables. We show that the free action of the nucleon composites is
the Dirac action, and we evaluate the first perturbative contributions to their electroweak effective action,
which turn out to be a pure renormalization. Our expansion is compatible with a perturbative as well as
nonperturbative regime of the gluons and it has the characteristic feature that the confinement of the quarks is
built in. [S0556-282(199)02317-9

PACS numbd(s): 12.39.Ki, 12.60.Rc

I. INTRODUCTION AND SUMMARY preserves the form of the Berezin integral. As a consequence
the free action of such composites is the Dirac action.
“After nineteen years of study we still lack reliable, ana-  Also the mesonic composites can be introduced as inte-
lytic tools for treating(the large distance regiprof QCD.  gration variables, but the resulting integral does not reduce in
This remains one of the most important, and woefully ne-general to a Berezin or to an ordinary integral, and it is such
glected, areas of theoretical particle physid€]. We can that the propagatds not the inverse of the wave operattr
indeed divide the actual calculations in this field into two then required some effort to construct an irrelevant operator
classes: Those which aim at clarifying the confining mechaeontaining the free action of the pions, but this was eventu-
nism, and those devoted to the description of hadronic physally done, along with the first investigation of the related
ics, and the difficulty stems from the fact that the formerperturbative expansion, which reproduced the interactions of
calculations are done in a framework where it would be verythe chiral models. Although identical in spirit and in its dis-
awkward, if not impossible, to perform the latter. In othertinctive features, this expansion differs significantly in the
words, the actual understanding of the theory requires a nonechnicalities from that for the barions, and it is the subject
perturbative approach for low energy and perturbative methef separate workg4].
ods for high energy, which until now has been impossible to  Our approach is compatible with a perturbative as well as
unify in a unique scheme. nonperturbative regime of the gluons. Therefore, even
The direction which we take in the hope of overcomingthough its applicability is in no way restricted to a specific
this impasse is to use quark composites with hadronic quamegularization, we adopt a regularization on a Euclidean lat-
tum numbers as integration variabl@g3 in Berezin integrals. tice, which is the only one suitable for both cases, a choice
This possibility was considered a few years ago and the neahich seems also natural dealing with composites.
essary formalism was develop¢d]. The relations which In this paper we consider the case of the nucleons. Our
define the physical hadronic fields in terms of the quarksmain results are the evaluation of the Jacobian and of certain
cannot obviously be inverted, and therefore the quarks canransformation functions, necessary to perform the change of
not be eliminated. But we will see that an “effective inver- variables. Then we evaluate the first perturbative contribu-
sion” can be achieved in a precise way, allowing us to pertion to the partition function. We expect that, since the phys-
form the physical calculations. One can then hope that thifcs of the nucleons is dominated by the exchange of the
will help in connection with our problem, which turns out pions, unless the fields of these particles are included, a re-
indeed to be the case. alistic application in the field of strong interactions is not
The strategy we adopt is to add to the standard action apossible. A unified treatement of nucleons and pions will be
irrelevant operator containing the free action of the hadronigpresented in a forthcoming paper, where the pion-nucleon
composites and perform a perturbative expansion by assunmteraction is investigatefb]. Here we restrict ourselves to
ing these composites as new variables of integration. Therghe electroweak interactions of the nucleons, evaluating only
is a fundamental difference between trilinear and bilineathe first order terms originating from the quarks, where the
composites. Surprisingly enough for some trilinear compospions cannot contribute. In the presence of these interactions,
ites, in particular the nucleon fields, the change of variableshe free action of the nucleons must be gauge invariant, and
it must therefore contain the appropriate electroweak cou-
plings. The first order corrections turn out to be a mere renor-
*Email address: palumbof@Inf.infn.it malization of the electroweak action of the nucleons. This
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result is nontrivial and it provides a significant test of thecomparable or even more important contributions. We con-

consistency of our perturbative expansion. clude this section by showing that our expansion of the quark
A distinctive feature of our approach is that the quarkpropagator is of strong coupling.

confinement is built in both for the nucleons and the pions. In Sec. VIl we consider the weak couplings of the nucle-

This is due to the fact that our expansion is of weak coupling®ns. Because of the well known difficulties with chirality,

for the hadrons, but of strong coupling for the quarks. To anyour results can only be regarded as a further illustration of

finite order, the quarks can then move only by a finite num-{he potentiality of our formalism in the generation of the

ber of lattice spacings, and therefore they can never be préiructures appearing in the composite action starting from the

duced in the continuum limit, so that our expansion is onlyconstituents. Again we find that the first order correction,

compatible with quark confinement. In this connection oneWhere the pions cannot contribute, is a pure renormalization.

can wonder whether the Wilson term to avoid spurious

quarks is necessary in our approach: Since the quarks have Il. BARIONIC COMPOSITES AS INTEGRATION

no poles whatsoever to finite order, should we worry about VARIABLES

the spurious ones? The actual settlement of this issue re-

quires the study of the anomaly, which is presently undersame lattice site. We assume the convention of summation

way. S
To conclude a few words about the parameter of expanQVer repeated _mdlces.. :
Let us consider cubic quark composites

sion. This is the inverse of a dimensionless constant entering
the definition of the nucleon composites, which is, however,
accompanied by the inverse of large numerical factors re-

lated to the number of quark components, which is 24 for up We want to assume these composites as new integration

ponents is more transparddi, being the asymptotic param- tion function. 'I_'he above equations define mdeeql a nonlinear
eter of a saddle point expans,ion Since we have not evaluatecé] ange of varlables. Qf course they cannot be _mverted, but
' we will specify below in which sense the quark fields can be

any physical quantity, we cannot fix the value of the expan xpressed in terms of the barionic composites.

sion parameter, and therefore at the present stage there s We want to define the integral of a function of thiein

nothing we can say about the rate of convergence. §uch a way that its value be equal to that obtained by ex-
One can wonder about the apparent absense of a scale ~_ . h ables i f forming th

characterizing the dynamical region where the use of Compress[ng't ese variables in terms of eand performing the
: . . . Berezin integral over the latter

posites as fundamental variables will be physically conve-

nient. Such a scale is hidden in the dimensionless expansion

parameter, which, to obtain sensible results, must scale in a f [d)\]g[l/f()\)]:f [dylg(w). (2.2

proper way with the lattice spacii§].

The paper is organized as follows. In Sec. Il we report, forfyye remind the reader that the above integral involves the
the convenience of the reader, the formalism for nonlineafie|q components at a given site. Let us restrict ourselves to
change of variables in Berezin integrals. In Sec. Ill we de‘c'n%nctionsg which have a Taylor expansion. The Berezin
the quark composites with the quantum numbers of thntegral is a linear functional which associates to any func-
nucleons, in Sec. IV we evaluate the Jacobian, and in Sec. ¥on g the coefficient of théunique monomial containing all

the transformation functions of the change of variables. Inpe )\ in a given order in its expansion. Let us denote this
Sec. VI we show that the the free action for the nucleonymonomial by

composites is the Dirac action.

In Sec. VIl we couple the nucleons to the electromagnetic A=NiNp---Agy. (2.3
field and evaluate the first perturbative contribution to their
effective action by assuming as unperturbed action the Dirago define the integral of(#) over ¢ we must determine all
action and the quark actiddy, as the perturbation. As already the monomials of thes which, when expressed in terms of
stated, the first perturbative contribution, which comes fromthe \, are proportional to\ (with nonzero coefficient To
(Sq)3, turns out to be simply a renormalization of the elec-this end we introduce the generic monomials
tromagnetic action. It would not be difficult to evaluate
higher order terms. One can indeed deduce by inspection that v, = '11 '22- x :\‘N, (2.9
we will get a nucleon-nucleon interaction, namely, a fourth
order term in the composites, fron8{)°. In such a term with degree
there can be no contribution from the gluons. Such a contri-

In this section all the fields are defined at one and the

Y= NN 2.

bution will appear from %)12 in a configuration where there di= 2 | (2.5
are nucleon composites at the vertices of a plaquette. T ke '
Whether such terms give a finite contribution in the con-

tinuum limit or not, depends on how the parametescales wherel is a vector with components, . .. . It is under-

with the lattice spacing, but again this dependence cannot b&ood that ifd, =0, y,=1. Since all the odd composites have
fixed without taking into account the pions which will give index of nilpotency 1),=0,1. Notice that

074008-2



QUARK-COMPOSITES APPROACH TO QCD: THE NUCLEONS PHYSICAL REVIEW @D 074008

W=y, if I,=1, 1,=0 for h#k. (2.6) where the transformation functiofire defined below. The
proof follows.
We call fundamental, with weighl, those monomials which By hypotesis the product of olN composites is different
are proportional to\ with nonzero coefficient from zero:

We can expand any functiog(y) in terms of fundamental We define the complementary monomials
monomials plus irrelevant term@n the sense that they do _ A
not contribute to the integral Ci=aWi, (2.19
where
g= > g,¥,+irrelevant terms. (2.9 .
dn! =01 for 1,=1,0, (2.17)

The definition of the integral over thg we are looking foris ande is chosen to be- 1 in such a way that the equation
therefore

C|\If‘]:6|y‘]q,, VI,J, d|:dJ, (218)
f [dllf]g(llf):dz_N g1d; - (2.9 be satisfied. This equation implies that
=
Note that, although in general different expansions f [dy]C\ ¥ ;=6 ;, VI.,J, (2.19
g(y)= 2 g,V +irrelevant terms- E g/, since, ifd,#d;, C,¥; is never a nonzero multiple oF +
d =N di=N

irr. terms. Consider now the integral
+irrelevant terms (2.10

m

| o 7= [ [a\gn, N, (2.20
can exist, the above equality implies

It is obviously zero ifm>3N, the total number of quarks,
> gd=2> 9d, (2.11)  but also ifm# 3n, with n integer. We then set, by definition
di=N di=N

since both the left and right hand sides are equal to the co- f [dlﬂ]g(lﬂ)?\il' -\ =0, m#3n. (2.29)
efficient of A in the expansion of in terms of the generating
elements, so that the value of the integral does not depend afyhenm=3n,
the particular expansion af.

It is remarkable that if the composites are chosen in such - (N=n)
a way that there is only one fundamental monomial, the in- I‘f [dA\]g (‘ﬁ))\il' “Nigy (2.22
tegral becomes identical, apart from the weight, to the Be-
rezin integral over the constituents. In this case it is conveg®N~"(y) being the homogeneous portion gfof degree
nient to define the integral over the composites exactly as &l—n in the expansion ofj in products of the)’. Since
Berezin integral

g™ (=X ¢ "¢ (223
f [dy]¥=1, (2.12 h=n
with uniquely determined coefficients
and regard the weight as the Jacobian of the transforma-
tion. Accordingly we will replace the definitio(2.9) by

7=32 oM ", (2.24
di=n n
f [d}‘]g[w()‘)]_‘]j [dy1g(h). (213 which requires the following definition of the transformation
functions:
We will restrict ourselves to this case, which is also remark-
able because more general integrals, depending o the Cl)\il' . ~>\i3n=f,i1..¢3n\lf. (2.2H
well as the\ can be simply evaluated according to the equa-
tion But, of course,
f [ANIg(N - -Ai3n=f.i1i2...i3naf [dylg(p)V;, f [du1g() 2 Ty, 1= 2 0 iy,
(2.149 (2.26
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Hence _ - _
J [ANILANIGCh )N - N N+ N,

m

| tnggton, - n, =9 tavtn, o, R O e T T W

=8man 2 fii.. i J¥,, -
m,3nd|:n e ! :5m,3n5m’,3n’ z /fli3n~~~i1kal~~~k3n,‘J2
(2.27) dj=n,dg=n
X f [dy]ldylg(w, ) ¥, Py . (2.33
namely,
The conclusion is that
Nig=o o N~ 5m,3nd|E:n flil-uisnf [dylg() ¥, Nip A NN

(2.28 B
~5m,3n5m’,3n/ E f|i3n'"ilkal'“kSn’q,Iq,K

.. . . di=n,dg=n’
as far as the Berezin integral is concerned. It is perhaps 1= meEn

worthwhile recalling that in the above equation all the fields (2.39

are defined at the same site. i L . o .
In our physical applications the quark variables appear irfS the substitution rule in the Berezin integral in the general

two setsh; and;, and in the Grassmann algebra they gen- It should now be clear in which sense we can talk of a

erate we have the antilinear conjugatior-\;, \i—\; sat-  change of variables. Even though the constituents cannot be
isfying, for generic elementézn= 7£. So we have to extend expressed in terms of the composites, we only need to invert
the previous formulas to include the conjugate variables. Theilinear expressions in the quark and antiquark fields, and

basic Berezin integrals are this can be done according to E.34).

IIl. THE NUCLEON COMPOSITES

[AM[ANAA =1, [dylidy]¥y=1 (2.29 We assume the nucleon composites td &l

the ordering ofA,A and¥,¥ being immaterial if, as is the Pra= 3k1/2 38,0 r( V5V acy
case in our physical applicationd=4 X integer, since these
monomials contain an even number of quark fields. The X(CV) apag(Nrya N rya N rgay)- (3.2

compositesy, are now accompanied by the composiﬁs
obtained by conjugation. Corresponding to E(s18 and In the above equation and in the following the summation
(2.25 we have by conjugation over repeated indices is understo@ljs the charge conju-

gation matrix, and

Wy Ci=6¢, V¥, d=dy, (2.30 O D U = AN Z\% (3.2

ryayNrpaN r3a3) T €ajanag Ti@q Toay' Taag

— _—— The fields\2, have color, isospin and Dirac indicasr, and

Nigp N Ci=Thip g, W, (2.3 «, respectively, and are related to the up and down quarks
according to
and fromW=JA, W=JA, if Jis real, as it turns out to be N =ud, AR =R, 3.3
the case. It can then be easily checked that, if we set by “oe “o
definition Correspondingly/,, , ., are the proton, neutron fields. It is

easy to check that with the above definition they transform
like the quarks under isospin and4) transformations.
f [dZ][dz/;]g(E, (/,)fil. ) 'Em}‘kl' i 'ka,IO, Einglly we shogld explain why we have inpluded in the
definition the cubic power of the lattice spaciagand the
parametek. The cubic power of a parameter with the dimen-
(2.3 sion of a length, sai?, is necessary to give the nucleon field
the canonical dimension of a fermion field. At the same time
a power of the lattice spacing at least cubic is necessary to
we have make the kinetic term irrelevant. We have written for later

m=+ 3Xinteger, m’# 3Xinteger,
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convenience? in the formk¥2a3, wherek is dimensionless To make the following formulas more readable we intro-

and it must not diverge with vanishing lattice spacing. duce the notations

There are altogether &. Since monomials of less than 8
¢ cannot obviously contain all thk, there can be at most
one fundamental monomia¥

a __ya a __,,a
Uri=Xpi, U=y,

dii=2ia, diizws, (45)
V=1 hrabor - hoa=IA. (3.9 A b1 ab ab
_ [X%Y°1=X1y2—X5Y1 - (4.6
We have chosen for the produdt of all the quark field
components at a given site the following ordering Therefore, if we remember the conventi®2)
A=P(\ip)---POM1)P(z) - PN, (35 (xily,z]) = e x?y 325 — x7y52] 4.7
where the nucleon composites become
P\ 7e) =AZh 7M. (3.6 Y =406y WD), gy 2=4(yilx2D),
The Jacobian is obviously proportional k8a?%. The non- Yo =4zly,W)), oiio=4(wW[x,2]). (4.9
trivial factor of proportionality will be evaluated in the next
section. The calculation of¥ is now straightforward and it is based

on the following identities:

IV. EVALUATION OF THE JACOBIAN (U (UAB)(UCD) = P(U)[(7C)(ABD) + (#D)(ABO)],

The weight of nonrelativistic nucleon composites was
evaluated in the second of R¢8]. In this section we con- (uuA)(um)=—2P(u)(Aw), w=ab,[a,b], (4.9
sider the relativistic case. For simplicity we will omit the ) )
trivial factor k*a2* which will be reinstated at the end of the U.a,b,A,B,C,D being any of the quark fields; ,y;,z; ,w;,

section. and

The functionW is a homogeneous polynomial of degree 1
24 in the quark fields. But many terms vanish because they P(U)= = (XXX). (4.10
contain some component of the quark field to a power higher 6

than 1, and the remaining terms are proportionalAtoln
order to identify the vanishing terms and to get rid of them,
we find convenient the following representation of thena-

To avoid unnecessary proliferation of terms, as a guiding
rule, it is convenient to express tha,b] in terms ofa andb
in the variousys only as far as to be able to use the previous

trices: i i =A% o =48
identities. Let iy - - 4= 4°P, g - - hs=4°N, so that
[0 oy 01 1 0 ¥ =21%PN, and
o I T Lol P Y
Tk P=(xa[y, Wl (XoLy, WD (yi[X,zD)(y2[x,2]). (4.1D)

(4.1) If we explicitate[ x,z], and use Eq(4.9 we get

and of the charge conjugation matrix 1 1
P= 1 PXOA(Y2l Y, W) (Y12525) + Crbogt h1o— 2 P(x2)

(0] O )
C=—i 4.2
0 -0 X{(Yal Y. W1)(Y12121) + Cothon} th11
which satisfy the equations 1
- Elﬂnlﬂlz{(xl)/lzz)(xzyzzl) —(X1Y2Z2)(X2Y121)}-
CflleLC:—y#. (4.3

(4.12
In such a representation the nucleon composites take the sim- .
pler form Since p,= — 1 ,(X—2z,y—w) it follows that

=45 € Ul do 1 1
. N= ZP(Zl){(Wz[y,W])(W1X2X2)+0111/12}11/22— 21P(z2)

Viie2™ 40,60 (Ui i b)), 1212, X{(Woly, W])(WiX1Xq) + Cotha} thoy
l/IZa: - lpla(u(—}d)l (44)
- Elllel/fzz{(zlwlxz)(zzwle) —(Z1W2X2)(ZaW1X1) .
where the indicest+ and — refer to the upper and lower
components of Dirac spinors. (4.13
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Observe now that in the produBXN the terms with coeffi- showing thatf is an invariant tensor in color, and therefore
cientsc »,c1 , do not contribute. Consider, for example, the factorizes according to

one with coefficient;. Its factor,,, in PN, will be multi-

plied either with itself or withP(z,) giving zero, in the f
second case, becaug¥z,) is the monomial of maximum (5.6

degree inz,, and ¢, is linear inz,. For this same reason it Let us now come to isospin and(@ transformations. To
is evident that nonzero contribution can arise only from the P :

’TCY,’Tlal ,’Tzdz ,73113,al,az,a3: Ealaza3h7a,71al ,7'2(12 ,T303'

N N : ease the notation we represent the pair of indieedy the
products P(x){-- -}P(z){---}, i=12, (no summatioh single indexi. If under isospin, @) and parity transforma-

and from the product of the last two termsRrandN. Work- :
tions, S=1vy,

ing out the details with the help of E¢4.9), we obtain
where

R=(yily,w(yaLy,wh(wily,w])(wa[y,w]).
(4.19

Using the same procedure, explicitating, say, first the vari-

ables in the “links” withy;,y,, we get

R=2%x3?X5P(y;)P(y,)P(W;)P(W,), (4.16
so that, if we reinstate the fact&fa®*, we get
J=k*a?2%?x 33x 5. (4.1

V. EVALUATION OF THE TRANSFORMATION
FUNCTIONS

Also in this section we omit the factoksanda which will
be reinstated at the end. According to E518 (2.25 the
monomialC,, complementary toV ., must satisfy

Crathrar=6aar 8-V, (5.1)
so that
Croa=(=1)%11- oo - Y2a, (5.2
and the transformation functions are defined by
Crah s N2 N = ey impag mpag g 2.2
(5.3

As a first step to evaluate the transformation functiome
exploit the invariance of’ under color, isospin and @)

transformations. We will find in this way théfs constructed
in terms of invariant tensors. Let us start by a transformation

in color space

CTaU alblU a2b2U a3b3)\b1 b2 b3
1% Tp@ 7343

=f . (5.9

TA,T1A,Tyly,T3Q3,31,35,a3
The above equation can be rewritten

ajbqpjasby jagb
Ushiy=2n2y©s SfTa,Tlal,72a2,73a3,b1,b2,b3q’

=f (5.9

Ta,Tlal ,T2(1/2 ,73&’3 ,al ,az ,as\P!

‘ﬁi’ = 31’ ‘ﬁj (5.7
then
C/=S.C;, (5.9
whereSt is the contragradient representation
se=(sh)~L (5.9

Performing such transformations in EG.3) we then find
thath must satisfy the equation

c _
Sk1Si1i1 551,31 11015 = Meigizig

showing that it is an invariant tensor for the representation
S'®Se3.

For isospin transformatior8= D', since the quarks are
in the defining representation, agt~S. We must therefore
look for the invariant tensors for the representatiort’f) ©4.
As it is well known, the number of these invariant tensors is
equal to the number of times the identity representation is
contained in the reduction of(*?)®* into a sum of irreps,
hence it is equal to 2. We choose the following linearly in-
dependent tensors:

(5.10

EW,  =6..€ EQ,  =6..€

7'7'17'27'3_ 77 S ToTy 7'7'17'27'3_ T,

(5.11

7173

In the following developments we will also need the tensor

3) —
Errirars™ Orms€iry (5.12
which is related to the previous ones by
EM-E@+EG® =0, (5.13
The tensoh can then be decomposed according to
h=EMetM+E@xt. (5.14

The corresponding calculation for(@ is more complicated,
since for the subgrou®(4). connected to the identitys
~SC is the representatioB (*20g D012 and $*4 admits

10 invariant tensors. It is then convenient to determine the
form of t directly, rather than going through the intermediate
step of finding these 10 invariant tensors. For this purpose
we write it in the form

tii1i2i3:% cas(T)ii(TeC ™Y, (5.19
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where This follows from the observation that, in the representation
where ys is diagonal,C,, contains at least 5 out of the 6
factors ¢, , 212, @=1,...,4,i=1,2. Since according

No confusion should arise between the charge conjugatioh0 Eq. (4'8). each of these factors is "”‘?af }qi:).(i’ each
monomial in the Ihs of the above equation contains at least 7

matrix C and the complementary_monomleﬂs. NO.W W€ of these factors and must therefore vanish. Hence
proceed to enforce various conditions. First, as it is seen by

inspection,h must be totally symmetric under the exchange

(5.19

FA:|1751’Y57;/,!7;/,!7M’YV! ,U,<V.

. . s . . . hT(l,ll,T @ ,11:O (529)
of the numbered indices. For this it is sufficient to impose the 272
symmetry under the permutatiofis2),(23) which yields
(12h=h, (23)h=h. (5.17 b,=0. (5.30
The first of th ti ield
© lirst ot these equations yields The second condition, which determinegis
tM= (12, (5.18
which allows us to write 7 97 Oaar = = O py€x 1 YsYua'ay
= (2) (2)
h=(12E'“®(12)t+E'“®t. (5.19 X(CVw apagNrar ayryayrsay  (5:3D)

The second one, using E(.13), gives two conditions om

(23)t=t, [I+(12+(13)]t=0. (5.20
Since
(TgC HT=¢zI'gC 1, (5.21)
where
eg=—1 for I'g=1,y5,757,,
eg=+1, for I'g=vy,,v,v,, wn<v, (522
the first of the above conditions implies
Ccag=0, for eg=—1. (5.23
Next we requiret to be an invariant tensor
S'®S*3 =t (5.29

for S the said representation 6f(4). and S= y,, namely,

E CABSFAS_:L@SFBC_]'ST:E CABFA®FBC_1'
AB AB
(5.2H
Using the relations
c isT=sic?

Clyi=—9y,C7%Y, (5.2

the above conditions redu¢do the form

t=b1Y57,87,C 1 +b2€,,,07, 7,2 7,7,C L.
(5.2

The second of the symmetry conditiofs.20), is actually
implied by the first one and E@5.24), for group theoretical
reasons. To determintecompletely we then need two more

conditions. The first one is

CTQ()\ll)\Tzaz)\ll):O' (528)

It is obtained by multiplying both sides of E¢.3) by
- 2/3€a1a2a357’ 7'267'17'3( Vs 7u)a’a1(C7M)a2a3 (532

and by summing over repeated indices. The resulting value
of by is

(5.33

so that finally, inserting the facta 3k~ we have

Tarla172a273a3

1
— -3y,—1/ -1
- 9_6a k 2[57'7267173( 757M)a1a( 7/.LC )a2a3

+ 57'7'16721'3( 75‘)/#) aza( ‘yl,LCil)ala?,]' (534)

VI. THE FREE ACTION OF THE NUCLEON
COMPOSITES

Since the integral over the is equal to the Berezin inte-
gral, we can assume for the nucleon the Dirac action

sN<rN,mN,V>=a4X2y YOQ(r N, My V) (1Y),
(6.1

where

1
QN M Vy == 5 2 (IN= 7V 8y

ary
+|my+ ? 5X,y' (6.2
In the above equationy is the Wilson parameter
0<ry=<1, 6.3
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V,, is the link variable associated to the em field, amglis m, is the quark masg, the Wilson parameter, which need
the mass of the nucleon. Obviously, andmy are diagonal not in general be equal to that of the nucleogs but it is
matrices in isospin space. We have adopted the standard combviously subject to the same restrictio®.3), U, andv,,

ventions are the link variables associated to the gluon and em fields of
the quarks, respectively, under the conventi@hg).
mwe{—4,....4, Accordingly the partition function is
[aCC z:f [dU][dv][dNd Jexp — (Sy+ S+ Sy)]
V_,()=V, (X p). (6.4)

=jf [dU[dv][dydylexd - (Sy+Se+Sy)],

Notice that the above range of valueswoholds only for
the wave operato®. In the sums occurring in the definition
of the nucleon composites, and therefore of the transforma- J=
tion functionsu e{1, ... 4.

Let us consider the free correlation functions

2
11 J) . (7.3

In the last equality we have assumed the nucleons as new
— 1 - = integration variables and the quark fields must be understood
(P P(y))= Z_Nf [ANdNJeb(X) ih(y) their functions in the sense specified in Sec. V. The quark
actionS; must now be treated as a perturbation

XeXF[_SN(rN 1mN11)]! (65)
where the partition function is Z:jj [d U][dV]eXF(—SG)J [dydy]
v C 1 3n
Zy= | [dxd\]exd —Sy(ry.my.1)]. (6.6 x> Gy~ S0* e —Sy). (7.4
Of course here It should by now be obvious why non cubic powersfdo
not contribute. Since the factolS(Q3n yields a factork™",
1 — because of the dependence loof the transformation func-

[d)\d)\]—]:[ [dA (A (X)]. 6.7 tions, we have an expansion in inverse powerskofVe

should emphasize that we are not treating the gauge fields

Introducing they as new integration variables we immedi- perturbatively.
ately see that the nucleon composites have a canonical We will evaluate only the first order contribution to the

propagator partition function, where the pions cannot contribute. This
splits into two parts
— 1
X =—=[Q(ry.my, D] 6.8 1
<l//( )’//(y)> a4[Q( N N )]yx ( ) —583=T1+T2. (75)

It is perhaps worth while noticing that nothing depends at _ . .
this stage on the parameteappearing in their definition, but |1 COMes from the hopping term ang, from the “mass
this constant will become the inverse parameter of expansiofg™M- Obviously there is no interference between the two.
when we will take into account the QCD action. Let us start fromiT,

11
VIl. PERTURBATION THEORY AND QUARK Tl:?gaQE SN OR2 (0N (x)
CONFINEMENT : X 171 292 393
aib asb aab
In this section we use our formalism to set up a perturba- XU PHO0U 220U FB0V - (XY, 7, (V7 (X)

tive expansion in QCD. Sinc8y, is an irrelevant operator, it
can freely be added to the standard QCD action. We there- XM=Yy (T~ Vi g (T~ Vi) agpy
fore assume as the total action by by bs
X)\Tlﬁl(X‘F/.L))\TZBZ(X+/.L))\TSB3(X+/_L), (7.6)
S=Sy+Sg+ Sy(r,mg,Uv), (7.0

which has been written using the fact that, to generate a
whereSg is the pure gluon and em action, nucleon field, the positions of the quarks must coincide with
one another. Now we will use the expressiaas6) and
A — (5.39) for the transformation functions and the relations
So(r,mg, UV) =a* 2 M()Q(r,mg, Uv)y\(y),

7.2 ea1a2a3Uilb1U22b2UZ3b3= €D1babs. 7.7
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Moreover we observe that the product of the em fields acting We can also evaluate the quark-quark correlation func-
over the quarks generates the electromagnetic field actingon. It is obvious that at ordem the quarks can move only
over the nucleons according to by n lattice spacings. Consider for instance the quark propa-

. gator at first order
€.V (no summatioin.

67273\//1-'7'1\/#’7'2\//%7'3: ToT3 " M, Tqp
(7.9

— 1
(ROOTENY) = 57 | TaUAvIex — o)
Since the sum over color indices gives a factor 6, performing

also the sum over isospin indices we get — — abs by o Lo
« [ raau ooty 55

1112 . —
Tl”?iWk a EX: ; VoK)V, (X) P p(X+ 1) X exp(— Sy). (7.15
X2ty Yt V¥ u Y ) TH Y (P y,) v (T =] Notice that we have connected the quarks by a string of
gluonsTI’, because otherwise the correlation function would
TV Ys(M=Y) Yo(T + 7)Y (= ¥) ¥5Yptap - vanish because of gauge invariance. Proceeding as in the

(7.9  case of the nucleons we find that this correlation funtion is
different from zero only fory=x,x+ w. Our perturbative
We remind the reader that the sign means equality under series results to be a weak coupling expansion for the nucle-
Berezin integrals. The sums overandp finally give ons, but a strong coupling expansion for the quarks. To es-
. L tablish quark confinement in the present context, we should
_ — carry out this expansion to infinite order, whereas obviously
T~ 8 ﬁ(ZHZ)k 1a4§;, 2;; de(x) we will calculate physical processes only to finite order. Our
approach, however, has the desirable property that in such
X (= Y )V () (X + ), (7.10  calculations quarks are never produced, a result which is
only compatible with quark confinement. It follows that in
where the present expansion there appear no poles whatsoever of
the quarks, and the situation is similar in the expansion for
the pions[4]. We therefore wonder whether we can forget
altogether the Wilson term of the quarksut not, of course,
the Wilson term of the nucleopsA convincing assessement
Notice that alsa | satisfies the restrictiof6.3), and in par-  of this issue requires the study of the anomaly, a problem
ticularr=0,1 forr=0,1. which is under investigation.
In a similar way we get

,2r?+1 -
"N=r57 (7.1

VIIl. THE WEAK INTERACTIONS OF THE NUCLEONS

v, In this section we study the electroweak interactions of
(7.12 the nucleons. Because of the well known difficulties with
' chirality, however, in the present form our calculations can

31 4ry
~ 2\, —1,4 2 _ N
To~—gap(2+rk 'a ; gl mi+ —

where only be regarded as a further illustration of the potentiality of
our approach in the reconstruction of the structures appear-

, ) 4r\3 ) 1 ing in the action of barionic composites. For this purpose it is

™ =252 2a%\ mg+ — | —r(2ri+1) - sufficient to restrict ourselves to the charge changing weak

(7.13 interactions neglecting the Wilson term for the quarks. The
corresponding action for the quarks is

In conclusion the total first order contribution can be written L
as a pure renormalization of the electromagnetic action of the ch_. ~ 2 h h
nucleons Sy =i 2gcos;¢9a g h;,ZJ“(X)W , (8.1

31 whered is the Cabibbo angl&yV the int diat t

__ 2+ PN b glaV, are the intermediate vector

(SV1= = g 72 (2K Sy(ry,my, V). (7.19 bosons, ang)(x) is the charge changing quark current
Some comments concerning higher order terms. One can de- h 1— 1
duce by inspection that we will get a nucleon-nucleon inter- )= 5| M) Ty, 5 (1= ys)MX+ )
action(quartic in the compositesto second order. In such a
term there can be no contribution from the gluons. This will — ho 1
appear to fourth order in a configuration where there are FAXF )T 7’#5(1_7’5)}‘(X) . (82
nucleon composites at the vertices of a plaquette. But, as
explained at the beginning, before going to higher order wéThe above expression for the quark current is obtained by
must include the pions. writing an action invariant under the weak isospin and retain-
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ing the first two terms in the expansion of the related link o 10,1 .
variables. Also thdirrelevan} action of the nucleons must (Sy)1~ g@k 15 g cosba
be invariant under the weak isospin transformations, so that

it contains the term _
h h
X; h:21,2 W”(X) T“'Tlalfzazfsas(T )7303

1
Si'=isgcosfaty > I (x)Wh, (8.3
2 x h=i2 “ y

1
7#5(1_ 75)} (7;4) alﬂl( ’Y,u,)azﬁz

with the corresponding charge changing nucleon current a3f3
h L on L xh L
Ju() =5 07y, 5 (1= ys) h(x+ ) 0By B175B03P3 5 [ Wra X) Yop(X+ 1)
+ Ura(XH 1) Pp(X)]. (8.6

— 1
+¢(X+M)T“7M§(1—75)¢(X) . (84
By using the expression of the structure functions and by
The first order QCD correction to this action comes obvi-Performing the sums over isospin and Dirac indices we find
ously from a term quadratic i that the first order contribution to the charge changing weak
d interaction of the nucleons is a pure renormalization

1 1
M1 ==[Sy(0mg,1)1% 5 g cosba* i"(x)W"(x). 31
(S))1=5[S4(0mg. )% 5 2 2 T0OWL00 s 3L cagen, o
vl g 24 v
(8.5
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