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We present the results of a complete leading-twist next-to-leading @Wil€d) QCD analysis of the space-
like pion electromagnetic form factor at large momentum tran@féiVe have studied their dependence on the
form of the pion distribution amplitude. For a given distribution amplitude, we have examined the sensitivity
of the predictions to the choice of the renormalization and factorization scales. Compared to the renormaliza-
tion scale, the factorization scale turns out to be of secondary importance. The renormalization scale depen-
dence of the leading-ord€t.O) results has been significantly reduced by including the NLO corrections.
Adopting the criteria according to which a NLO prediction is considered reliable if both the ratio of the NLO
to LO contributions and the strong coupling constant are reasonably small, we find that reliable perturbative
predictions for the pion electromagnetic form factor with all distribution amplitudes considered can already be
made at a momentum transfér of the order 5-10 GeV, with corrections to the LO results being up to
~30%. The theoretical uncertainty related to the renormalization scale ambiguity has been estimated to be less
than 10%. To check our predictions and to discriminate between the distribution amplitudes, it is necessary to
obtain experimental data extending to higher valueQofS0556-282(199)03315-9

PACS numbds): 13.40.Gp, 12.38.Bx

[. INTRODUCTION tor [10-12, and photon-photon annihilation into two flavor-
nonsinglet helicity-zero mesonsyy—MM (M=, K)
Exclusive processes involving large momentum transfef13].
are among the most interesting and challenging tests of quan- In leading twist, the pion electromagnetic form facttive
tum chromodynamic$QCD). simplest exclusive quantifycan be written as
The framework for analyzing such processes within the
context of perturbative QCEPQCD) has been developed by 1 1
Brodsky and Lepagfl], Efremov and Radyushkifg], and ~ F(Q%)= fo dXJO dy
Duncan and Muellef3] (see Ref.[4] for reviews. They
have demonstrated, to all orders in perturbation theory, that XD*(y, u2) T(X,y,Q% ui u2)®(x, u). (1.2)
exclusive amplitudes involving large momentum transfer

factorize into a convolution of a process-independent anql—|ere<b(x,,u§) is the pion distribution amplitude, i.e., the

perturbatively incalculable distribution amplitude, one for robability amplitude for finding the valencaa, Fock state
each hadron involved in the amplitude, with a proce:ss-.p ity amplitud 9 2 ;
: . in the initial pion with the constituents carrying the longitu-

dependent and perturbatively calculable hard-scattering am. ) 259 o0,
plitude. dr:narl] m(;)mentume andl_(ld—x)_P, TH(x,y,Ql_ ,,UéR,#F) is |
Within the framework developed in Refsl—3], leading- the hard-scattering amplitude, .., the amplitude for a paral-

order (LO) predictions have been obtained for many exclu-€! 4102 pair of the total momentur hit by a virtual photon
sive processes. It is well known, however, that, unlike in¥* of momentumq to end up as a parallei;q, pair of
QED, the LO predictions in PQCD do not have much pre-momentumP’=P+q; ®*(y,uf) is the amplitude for the
dictive power, and that higher-order corrections are essentidinal stateq;q, to fuse back into a pionQ?=—q? is the
for many reasons. In general, they have a stabilizing effecmomentum transfer in the process and is supposed to be
reducing the dependence of the predictions on the scheméarge; ug is the renormalizatiottor coupling constantscale
and scales. Therefore, to achieve a complete confrontatioandur is the factorizatior{or separationscale at which soft
between theoretical predictions and experimental data, it i&nd hard physics factorize.
very important to know the size of radiative corrections to The hard-scattering amplitudé, can be calculated in
the LO predictions. The list of exclusive processes at larggoerturbation theory and represented as a series in the QCD
momentum transfer analyzed at next-to-leading oftiiO) running coupling constams(,ué). The function® is intrin-
is very short and includes only three processes: the pion elesically nonperturbative, but its evolution can be calculated
tromagnetic form factof5—10], the pion transition form fac- perturbatively.
Although the PQCD approach of Ref4—3] undoubtedly
represents an adequate and efficient tool for analyzing exclu-

*Electronic address: melic@thphys.irb.hr sive processes at very large momentum transfer, its applica-
"Electronic address: nizic@thphys.irb.hr bility to these processes at experimentally accessible mo-
*Electronic address: passek@thphys.irb.hr mentum transfer has long been debated and attracted much
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attention. The concern has been rai§gd, 15 that, even at
very large momentum transfer, important contributions to

these processes can arise from nonfactorizing end-point con- uwP v P’
tributions of the distribution amplitudes witk~1. It has
been shown, however, that the incorporation of the Sudakov
suppression effectively eliminates these soft contributions R
(1-u)P (1-v)P

and that the PQCD approach to the pion form factor begins

§4be(3?§2 ([;fg]sgfgglfgg %;ﬁ%intum transfer of at@at Fl(i 1. Egynman _ diag.rams descriping they,d,) + v* .
To obtain the complete NLO prediction for the pion form —»(q%qz) transition gmplltude in terms of WhICh the hard-scattering

factor requires calculating NLO corrections to both the hard@Mplitude for the pion form factor is obtained.

scattering amplitude and the evolution kernel for the pion

distribution amplitude. determine NLO evolutional corrections to four available can-
The NLO predictions for the pion form factor obtained in didate pion distribution amplitudes. In Sec. IV we discuss

Refs.[5—9] are incomplete insofar as only the NLO correc- several possible choices of the renormalization spaleind

tion to the hard-scattering amplitude has been consideredhe factorization scalg:.e. In Sec. V we obtain complete

whereas the corresponding NLO corrections to the evolutioNLO numerical predictions for the pion form factor using the

of the pion distribution amplitude have been ignored. Apartfour candidate pion distribution amplitudes. For a given dis-

from not being complete, the results of the calculations pretribution amplitude we examine the sensitivity of the predic-

sented in Refs.5-9] do not agree with one another. tions on the renormalization and factorization scalgsand
Evolution of the distribution amplitude can be obtained by ¢, respectively. We také\ s =0.2 GeV for the calcula-

solving the differential-integral evolution equation using thetion presented here. Section VI is devoted to discussions and

moment method. In order to determine the NLO correctionssome concluding remarks.

to the evolution of the distribution amplitude, it is necessary

to calculate two-loop corrections to the evolution kernel.

These have been computed by different authors and the ob- Il. NLO CORRECTION TO THE HARD-SCATTERING

tained results are in agreemégi8]. Because of the compli- AMPLITUDE

cated structure of these corrections, it is possible to obtain |n this section we recalculate the NLO correction to the

numerically only the first few moments of the evolution ker- hard-scattering amplitude for the pion form factor.

nel [19]. Using these incomplete results, the first attempt to  |n |eading twist, the hard-scattering amplitude is obtained
include the NLO corrections to the evolution of the distribu- by evaluating the q,qs) + y* — (q10,) amplitude, which is

tion amplitude in the NLO analysis of the pion form factor o rinad b : PR :
. . y the Feynman diagrams in Fig. 1, with massless
was obtained in Ref.10]. It has been found that the NLO valence quarks collinear with parent mesons. In this figure,

corrections to the evolution of the pion distribution ampli- uP and (1-u)P [vP’ and (1-v)P’] denote the longitudi-

tudg as )(/jvell EIS to the plonhform fact?lr age tny. de | q nal momenta of the pion constituents before the subtraction
onsigeraple progress nas recently béen made In Undegz . jinear singularities. In this evaluation, terms of order

standing the NLO evolution of the pion distribution ampli- m2/Q2 are not included and, since the constituents are con-

tude[20]. Using conformal constraints, the complete formal _, _. . 5 )
solution of the NLO evolution equation has been obtainedfs'tralneOI to be collinear, terms of ordef/Q* (k, is the

Based on this result, it has been found that, contrary to thgverage transverse momentum in the mgsoe not taken

estimates given in Ref10], the NLO corrections to the evo- INto account either. By projecting tftgq, pair into a color-
lution of the distribution amplitude are rather large. It hasSinglet pseudoscalar state the amplitude corresponding to any

been concluded that because of the size of the discovered the diagrams in Fig. 1 can be written in terms of a trace of
corrections, and their dependence upon the input distributio@ férmion loop. _ _ _
amplitude, the evolution of the distribution amplitude has to  BY definition, the hard-scattering amplitudg, is free of
be included in the NLO analysis of exclusive processes aq;olhn;aar singularities and has a well-defined expansion in
large momentum transfer. as(ug) of the form

The purpose of this paper is to present a complete
leading-twist NLO QCD analysis of the spacelike pion elec-
tromagnetic form factor at large momentum transfer. TH(x,y,QZ,,ué,,uﬁ)zas(ﬂé)T,(f)(x,y,Qz)[l

The plan of the paper is as follows. To check and verify
the results obtained in Reff5-9], in Sec. Il we carefully as(M%)
calculate all one-loop diagrams contributing to the NLO + ———TWD(x,y, u3/Q?, u2/Q?)
hard-scattering amplitude for the pion form factor. We use ™
the Feynman gauge, the dimensional regularization method,
and the modified minimal-subtractiqgiMS) scheme. Our re- +..
sults are in agreement with those obtained in REH.
(modulo typographical errors listed [®]) and[7]. Making
use of the method introduced in R¢R0], in Sec. Il we  where

) (2.1
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FIG. 2. Lowest-order Feynman diagrams contributing to the
(0192) + ¥* —(d102) amplitude.

as(ﬂ§)=#, (2.2 “Al4 T a5
Bo IN(ur/Agep)
and )
B(,:ll—gnf, (2.3
with n; being the effective number of quark flavors and “A13 AL

Agcp is the fundamental QCD parameter.
In the LO approximatior{Born approximatiohthere are
only four Feynman diagrams contributing to thq;g,)
+ y*—(g40,) transition amplitude. They are shown in Fig.
2. Evaluating these diagrams, one finds that the LO hard- Al6 A34
scattering amplitude is given by

<)

N

4

T (x,y,Q?%) = 4 tom (2.4)
3 Q%(1-x)(1-y)

To obtain this result, it is necessary to evaluate only one of
the four diagrams. Namely, knowing the contribution of dia-
gram A, the contribution of diagramB, C, andD can be

obtained by making use of the isospin symmetry and time- F|G. 3. Distinct one-loop Feynman diagrams contributing to the

reversal symmetry. In the leading-twist approximation, the(q q.)+ 4* —(q,q,) amplitude. The total number of diagrams is
isospin symmetry is exact. A consequence of this is that thgs

contributions of diagram# andB are related to the contri-
butions of C and D, respectively. On the other hand, dia- . ) . , )
gramsA and C are by time-reversal symmetry related to With the exception 0A33, AS5, andAE6, which give obvi-
diagramsB and D, respectively. ously the same contribution #l1. These diagrams contain
At NLO there are altogether 62 one-loop Feynman dia-Ultraviolet (UV) singularities and, owing to the fact that
grams contributing to the%az)ﬂL 7*—>(q152) amplitude. initial- and final-state quarks are massless and onshell, they
They can be generated by inserting an internal gluon liné/SO contain both infrarediR) and collinear singularities.
into the leading-order diagrams of Fig. 2. Use of the above/Ve use dimensional regularizationn=4— 2e dimensions
mentioned symmetriefisospin and time-reversatuts the to regularize all three types of singularities, distinguishing
number of independent one-loop diagrams to be evaluatelfle poles 1¢ by the subscripts UV and IR(=4—2¢€yy,
from 62 to 17. They are all generated from the LO diagram?+2¢€jr). Soft singularity is always accompanied by two
A. We use the notation whemij is the diagram obtained collinear singularities and, consequently, when dimension-
from diagramA by inserting the gluon line connecting the ally regularized, leads to the double poleZ/.
linesi andj, wherei,j=1,2, - -,6. They are shown in Fig. 3 Before the subtraction of divergences has been performed,
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TABLE 1. Contributions toA™®(u,v, u2/Q? 12/Q?) [defined by Eq(2.6)] of Feynman diagrams shown

in Fig. 3.
All !
_1_2(7/UV+7]|R)
1 _
A22 6 (muy—Inv)
1 2 16 4
Ad4 g{(5_§ nf) (ﬂuv"n(UV))"‘? ~g N
1 1+v
A23 é 77UV+T|nV)
Al2 ! +2 1+U| 3 UI utl _+U| 2_+2UI ul
48 uv /1= ul"lu unu nv uﬂu unu nv
A56 ! w) P w) —InZu—In?v- ulnvl
—4—8[77UV+2n,R(1—In(uv))—27,|R—5+In(uv)—|n u—In>v—2Inulnv]
ALd 3, (Han)HHU+|n2U+2|nU|nv
16|V AR o n? e u
3 —
A45 E[Snuv+47;|Rfl+ln(uv)]
1u] N N
Al5 __ Zn2
35 nrINu+in u+2In u+|nulnd
Al6 =l A 1+InU+2| +1 +InU+2| +1 _+1|n2U+| 2
zl 7Rt MR T nu+inv T nu+inv ET n=u
1 — Inulnv —
+§In2v+ +2Inulnv
3 Inu Inv —  _—utv — — 1 1
A34 z R B - In2u+ —
5| 7= 2+ y + vj 2+ Inu+Inv+ W InuInv+2uIn u+2vln2ﬁ
1~ u —
Al3 ﬁ[’]wﬁﬂm SInutinutiny +1
u 1 1 [T
+ =—In2u+= Inu+= INA+Inulnv+=Inulnv
2u 2 2 u
- AWPuH(u,v) + (4u—5u2+v2)(Inu+Inv)
2(u—v)? 8
) ,—inu ) sinv
+(Bu—5U7 = 2v+vAu— - +(2u—4u +2v—4uv+5utv—v v
1l (u — v Uu — v —u v - utv —
A36 _Z Z - _ — — 1IN0+ — In2y+ ——
3 n,R(uInu+Vlnﬁ+ulnu+vlnv+2uln u+2vln v+ Ty Inulnj
A35 . ) 1+uI — 1+vI o1 H 1+uI —
- + +—Inu+— —2(1-u— +—
52| 27MRT MR U nu v nv|—2(1—u—v)H(u,v) a nu
1+v. — 1+u — 1+v — utv — _—
+—Inv+——Inu+ ——In®v+—1Inulnv
v 2u 2v uv
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ARTOREE
— +L|2 — +L|2 —
1 1 u \ uv
2:
F.(Q9) fodufodv Ty v W
—Li,| =| —Liy| =| —Li, b (2.9
Y,

X D* (V)A(U,V, 1d/Q% ui/ Q2@ (u), (2.5 u

the pion form factor convolution formula reads

1 .
H(u,v)= m{l_lz

where A(u,v, u3,/Q? u%/Q?) denotes the amplitude for Where Lb(u) is the Spence function defined as

the (qlaz)+ v*—(q192) quark subprocess. This amplitude
has the expansion of the form LiL(u) fu In(1—-1)
|2 u)=—

dt. (2.10

AU, wiy Q% ui/ Q%) = ash @ (u,v,Q%) _ o _ ,
Adding up the contributions of all diagrams, we find that the
NLO contribution to the ¢:0,) + y*—(qg10,) amplitude,

CLléA(l) 2 / 2 2 / 2 3 N 2 )
+ . (U, Vv, migy/ Q% wir/ Q%) given in Eg.(2.6), can be written in the form

T 2.6 AD(u,v,ud/Q? ui/Q?)

where 1 1
:Tf-io)(qu,Qz) Cuv=—+Cr(u,v) —

€uv €IR
AOu,v,Q)=(1- ) TP (u,v,Q?). (2.7)
_— o . + (U, 15/ Q%) +Tir(U,v, u{m/ Q) +Te(u,v) |,
The contributions of the individual diagrams to
AOu,v,u8y/Q% uk/Q?, with the overall factor (2.1
Tff)(u,v,Qz) of Eq. (2.4) extracted, are listed in Table |. We
have used the following notation:

where
u=1-u, v=1-v, 1
Cuv= ZBO, (2.123
1 Q? 1 why
V= —In4 7= tin—/, 2 L
uv Tuoy €y Q Cir(uv)=3[3+In(uv)], (2.120
1 2 1 Z
mr=—+7y+In > =,\——|nm, and
€IR drug er Q7
- 2 udy
~ 1 Q? 1 ) ? fuv(U,V,Mtsz/Qz):CUV §_|n(UV)+|n_2 ) (2.133
77|R:T+6— y+|n > +§ Y —F Q
€ir IR Amupig
2 1 2 _ 1 o ,U/Z
+yIn > +§In2 Q > f,R(u,v,MfR/Q2)=C,R(u,v) Eln(uv)—ln—lzR ,
THIR AT iR Q
(2.13b
! ! +In(4) 1
~ - — n il r3 TN
eyy €uv ’ T fC(u,v)z1—2[—10+20In(uv)+lnulnv
1 1 +Inulnv—Inulnv—Inuinv
—=—+vy—In(4m). 2.8
€r €IR v~ In(4m) 29 +(1—-u—v)H(u,v)+R(u,v)].
(2.130
The function H(,v) appearing in Table | is given by the
expression The function R(,v) is defined as
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where the functiorV,(x,u) is the one-loop evolution kernel
for the pion distribution amplitudésee the corresponding

=P _-P
! , expression in, for exampl€5] or [22]), while ® denotes the
yP yP' . .
— convolution symbol defined as
P P
1
She A B(z)= B(2). 2.1
(1-u)P (1-2)P 1-y)P 1-v)P (2)©B(2) JO dzAZ)B(2) 218

FIG. 4. Pictorial representation of the procedure for absorbing o
the collinear divergences into the pion distribution amplitudeBased on Eq(2.15, the NLO expression for theqgqs,)
2 —
D (X, ug). +y*—(0,0,) amplitude, given by Egs(2.6), (2.11)-
(2.14), can be written in a factorized form

R(u,v)= 5 (2uv—u—v)(Inu+Inv) 9
- ) A(O) 2. a_SA(l) 2/ 21/
o ag (U!V!Q ’6IR)+ = (uquU“IR Q ’ 6IR)
) ) , Inv
+(—2uv°—2v°+10uv—2v—4u ) — 2
v as 1 ME
= 5(v—y)+—V1(v,y)(A—+In—2
nu ™ €R MR
+(—2vu?-2u%+ 10uv—2u—4v2)T
®{asT<H°><x,y,Q2>[<1—e)
—(v72+uU2)H(u,7) . (2.19 o
“Ssz) 2/~2.
+ p TH (XY, ue/ Q% €r) ]
The contributions of the individual diagrams listed in Table | 1 2
. . . . ag ME
are in agreement with those obtained in R&f.(up to some ®| 8(x—u)+ —V;(x,u) A—+In—2 (2.17
typographical errors listed if@]). Correspondence between 77 €IR MR

our results and those of R¢B] is established by multiplying

the latter by P+P")*/Q”. Formula(2.17 shows the essence of the procedure for the
Itis easn){ se.en from Eq$:2.113—(2.14) that in sqmnlng separation of collinear divergences, which is schematically
up the contributions of all diagrams to the exclusieedz)  represented in Fig. 4. The procedure consists of summing the
+v*—(0.02) amplitude, the originally present soft singu- effects of collinear divergences contained in the shaded rect-
larities (double 1é|2R poles cancel out, as required. The final angular region in Fig. 4, as a result of which the outside

result for the amplitude containsel/, and only simple g quark (antiquark with momentumuP (uP) ends up on the

poles. , _inside quark(antiquark of momentumxP (xP).
We now proceed to treat these poles. When doing this, aq for the UV poles, we renormalize them using the

one has to exercise some care, since the subtractions haved, jified minimal-subtraction scheme. This is carried out by

be performed in such a way that the universality of the dis'stating thaiwg appearing in Eg(2.6) is the bare unrenormal-

tribution amplit_ude as well as the universality of the coupling;,.q coupling related to the renormalized physical coupling
constant are simultaneously preserved. as(ii2) by
R

The IR poles in Eq(2.11), related to collinear singulari-
ties, are such that they can be absorbed into the pion distri-

bution amplitude. The universality of the distribution ampli- s (MZR) Bol 1 ,uﬁ
tude requires that the poleseld should be absorbed by as= ayis( 1) 1—77 ~— —In— (2.18
some universal renormalization factof8,21]. The €uv Muv

regularization-dependent terms represent “soft” effects and
therefore we absorb them into the distribution amplitude |t js important to note that the—0 limit can be taken

along with the singularities. A crucial observation is that thegn|y after the separation of collinear divergences and UV
structure of the collinearly divergent terms in E@.11 is  renormalization have been performgking thee—0 limit

such that one can write in A(®) before the subtraction of IR and UV singularities is
equivalent to choosing a factorization scheme that does not
V1 (v,y) @ TO(x,y,Q2) @ 8(x—u) respect the univer_sali_ty of the distr_ibution amplitL(deg[S])
and the renormalization scheme in which the running cou-
+8(v—y)®T(x,y,Q%) @V (x,u) pling constant is not universalAs a result, we obtain the
following expression for the NLO hard-scattering amplitude
=Cir(uv)TP(u,v,Q?), (219 for the pion form factor:
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TH(X,y.QZ,Mﬁ,Mﬁ) basic valence wave function of the pion. Its form is not yet
_— accurately known. It has been shown, however, that the lep-
= aps( A TH(x,y,Q%) tonic decayr* — u* v, imposes onb (x, u£) a constraint of
S the form
MS\MR
X| 1+ = TRy ufl QA ulQ%) |, (219
1 f
dx @ (x,ud)=—m—=. 3.1
where fo (O pE) =2 2ne 3.

1) 2/A2 2/(2
T Oy, prl QT e Q) Given the form ofd(x,u2), this relation normalizes it for
= fuv(X,Y, n2/Q) + fir(X,y, n21Q2) +fe(x,y), (2.20  anyuZ.InEq.(3.D), f,=0.131 GeV is the pion decay con-
stant andh(=3) is the number of QCD colors.

and Instead of usingb(x,,uﬁ) satisfying Eq.(3.1), one usu-
~ ally introduces the distribution amplitudﬁ(x,,uﬁ) normal-
fuv(X,yuU«ZR/QZ): fUV(nyvl'LZR/QZ)+CUV ized to unity,
15— uR .
=7 5o §—|n(xy)+|n&], (2.213 fodx Sxu2)=1, 3.2

fIR(nyaMIZZ/QZ) :?IR(Xay”u’Iz:/QZ) and related tGD(X M,Z:) by

B 2
—5[3+In(xy)]

1  pf
Eln(xy)—lng ,

- D(x,uf)= ﬁwx,ué). (3.3
et =Teo) -G o st sl rarperaathe, e pon g
= %2[—34+ 12In(xy)+InxIny form
+InxIny—InxIny—InxIny M,%%q&(x,yﬁ):Jldu V(X,u,as(u2)) (u,ul),
FL-x—yYHOY) FROGY)] (2.219 e i 3.4

A fe_w comments on the prev!ously performed calcu'lat|onsm which the evolution kernel is calculable in perturbation
are in order. Our final expression for the hard-scattering amfheory'
plitude Ty is in agreement with Ref7]. The calculation of '
[5] contains a few typographical errors in the diagram-by- )
diagram listing as well as in the final expressigvhich are VU, e 12)) = as(uE)
all listed in[9]). Apart from this, the results from Ref5] hASKE T
agree with ours. In Ref46,8] the contribution of the dia-
grams with propagator corrections on external quark lines T 3.9
were not taken into account. Also, in RE8] the subtraction
of collinear singularities was performed in a way that is notand has been computed in the one- and two-loop approxima-
consistent with the universality of the distribution amplitudetions using dimensional regularization and & scheme.
(see the discussion in RgB]). Finally, a thorough analysis I the distribution amplitudep(x,3) can be calculated at
of the results of Ref§5—7] was performed in Ref9], butin  ap initial momentum scalg? using QCD sum rulef23] or
obtaining the final expression for the hard-scattering amplijattice gauge theorf24], then the differential-integral evolu-
tudeTy, collinear and UV divergences were subtracted in ajon equation(3.4) can be integrated using the moment
W_ay_tha_t is not (_;on5|stent with the_ unlversa_hty of both the jethod to giverﬁ(x,,uﬁ) at any momentum scale§>,ué.
distribution amplitude and the running coupling constant. Because of the complicated structure of the two-loop con-
tribution to the evolutional kernél,(x,y), only the first few
moments of the evolutional kernel have been computed nu-
IIl. EVOLUTIONAL CORRECTIONS TO THE PION merically. , ,
DISTRIBUTION AMPLITUDE Recently, based on the conformal SpIin expansion and the
conformal consistency relation, the analytical result for the
The pion distribution amplitud@(x,,uﬁ), controlling ex-  evolution of the flavor-nonsinglet meson distribution ampli-
clusive pion processes at large momentum transfer, is thiide has been determing20].

2

013(#:2:) V(X u)
2(X,

Vi(X,u)+
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To the NLO approximation, this rather complicated solution has the form

( 2)
B(X, 12) = PHO(X, ) + T GNLO(x 1, 2), (3.6
where
LO(x 4 2)=x(1— ir 32 ox—1 4(2n+3) [ as(pnd) y"O)IB()fld oy 1 2 3
¢ (XHU'F)_X( X)n:0 n ( X ) (n+1)(n+2) as(/j,lzz) 0 y n ( y )¢(yllu’0)’ ( 7)
and
% 20\ Wi,
HNOx, uB) =x(1-x) >, asipio) f 1dy03’2(2y—1>¢<y,ué>
=0\ ag(uf) 0
w2 . (20+3) Casud) | A LB O
XS PV | Y e ) 280 27
=, 3 oy 2(2k+3)
t 2 G D) i ) Sal#ICK |, (3.8
with abbreviations
S ()= 7() W | [ asrd) 1”7(0)7"))/,80]
T Y- v+ B, as(uf) ’ @9
NOR
Bot4CrAy  2CE(Axn— (k+2)+ (1))
(1) _
Cla=(2n+3)| = a3y (T 1)(n+2) } (310
k+n+4 k—n
A=t — —w( 5| +2¢(k=m) =k +2) = (D), (3.1

andX’ denoting the sum running only over evenwhile Cﬁ’z(z) are Gegenbauer polynomials of order 3/2 &y=4/3. In
Egs.(3.7)-(3.10, 1) are the usual anomalous dimensions:

n+1

2

1
(0) - - z _
=Cr|3 (n+1)(n+2) 4i=1 i} (312

while B, and B, are the first two terms in the expansion of the Q@Bunction, with 8, given by Eq.(2.3), and

38
B1=102- n;. (3.13

The functiony(z) appearing in Eqs3.10 and(3.1)) is defined as

d
H2)= (T (2). (314

Forn;=3 and for the values af we are interested in, we have taken the values of the anomalous dimeﬁ@iﬁmm [25,28:

yP=0, 9M=111.03, »{M=150.28. (3.19

074004-8



COMPLETE NEXT-TO-LEADING ORDER PERTURBATIVE ...

To proceed, we expand the distribution amplitude

#(x,ud) in terms of the Gegenbauer polynomidlg’%(2x
—1) (the eigenfunctions of the LO evolution equation

d(X) = p(X,ud) = 6x(1—x)n20’ B,C3%2x—1).
(3.16

Owing to the orthogonality of the Gegenbauer polynomials,

the expansion coefficienB,, are given by

1 4(2n+3)
6 (n+1)(n+2)

n=—

jdx§’2(2x 1p(x) (3.17)

and the normalization conditio(8.2) then impliesBy=1.
Substituting Eq(3.16) into Eq.(3.7) gives

OO pE) =6x(1-x) 2, "BrO(pf) CA2x-1),
(3.18

where

n )/BO

as(0) , (3.19

as(/—LF)

By (1f) =By

so that, obviouslyB5°=1. Next, by taking Eq(3.16) into
account Eq(3.8 becomes

BN-O(x, ) =6x(1~ x)Z B O(ud)CRA(2x—1),

(3.20
where
k—2
BRO(1f) =B (mf) Pl pf) + go’ BrC(12) Qunl 12),
(3.21)
and
(l) 2
_ :81 (O))(l S(MO) 3.2
k(ﬂF) (2'8 ,3 as(MF) (322
_(2k+3)
Qun(ud)= k1) (k+2)
(n+2)(n+1) cw
W (HSen(ud). (3.23

For the purpose of our calculation, we use the following four
candidate distribution amplitudéshown in Fig. % as non-
perturbative inputs at the reference momentum sqﬁe
=(0.5 GeVY:

¢as(X)E¢as(XrMS):6X(1_X): (3.243

PHYSICAL REVIEW B0 074004

ber(X)=peX, 1f)=6x(1—x)[5(2x—1)?],

(3.24b
Bpa(X)= bpa(X, 1)
=6x(1—x)[ —0.1821 5.91(2x—1)?],
(3.249
bp3(X)= ¢P3(Xaﬂg)
=6x(1—x)[0.6016-4.6592x—1)?
+15.532x—1)4]. (3.240

Here ¢,4(X) is the asymptotic distribution amplitude and
represents the solution of the evolution equatiB) for
,u,ﬁ—mo. The double-hump-shaped distribution amplitudes
dcz(X) and ¢ppo(x) and the three-hump-shaped distribution
amplitude ¢p3(x) have been obtained using the method of
QCD sum ruleg23,27]. As Fig. 5 shows, these distribution
amplitudes, unlikeg,4(x), are strongly end-point concen-
trated. In the |imit,u,2:—>00, they reduce to the asymptotic
form ¢,4(X).

The pion candidate distribution amplitudes given by Eq.
(3.24) are of the general form

B(X)= (X, 1)
= ad X)[14B,C34(2x— 1)+ B,CY42x—1)],

(3.29
with the corresponding coefficients
bas(X): Bp=0, n=2 (3.263
¢cz(X): B,=0, n>2 B,=2/3 (3.26h
¢p3(x): B,=0, n>4 B,=0.7582 B,=0.3941,
(3.260
2.5
- ¢BS RN
20 /' XN D e
/ II/T\\\\ _____ ¢P2 ////?‘\\\ .“
;1 N, o ¢p3 174 / \\\ )
15 -1 \ 7 A\
| l;/ / \;‘ \
E 10 Hi L7\ B y ¥
!/ NN '
05 ! N W NG/ %
' l' N, "}\\\ / /7\ 3 ‘%
N\ 7
v\ > s
0.0 \ N : 4
-0.5 : : ‘
0.0 0.2 0.4 0.6 08 1.0

FIG. 5. The four candidate pion distribution amplitudes defined

by Eq. (3.24), chosen as nonperturbative inputs at the reference
scaleu3=(0.5 GeVy.
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with Bo=1. Now, according to Eqg3.18 and (3.20, the
LO and NLO parts of the distribution amplitud8.25 read

¢L°<x,u§>=¢as<x>[1+BLowé)CS’Z(zx—l)

B;O(u2)CiA2x—1)], (3.27)
ANO(X, ) = pad(X)| BY-O(n2)CIH2x—1)
+By (k) CiA(2x—1)
+ 2 B G x-1) ),
=6
(3.28
where
o (,U«z) —50/81
BLO( ,2)=B s\”*o '
2 (MF) 2 as(lu'z:)
o (Mz) —364/405
BIJO(ME):B4 S—g ) (3.29
as(uE)
and
BY“O(uf)=B5°(uf)Pa(uf) + Qao 1f),
By O(12) =B4O(ud)Pa(ud)+ Quo nd)
+B5°(u?)Qual 12),
B O(ud) = Quo( uf) +B5O(18) Qual f)
+B;%(1f)Qua(nf), k=6. (3.30

Note thatgN-O(x, u2) represents the infinite sum of Gegen-
bauer polynomials even though tlggx) distribution is de-
scribed by a finite number of terms. SinB§'-© decreases

with k, for the purpose of numerical calculation one can ap-

proximate ¢N-O(x,u2) by neglecting higher-order Gegen-
bauer polynomialsk>100).

A summary of our results for the four candidate distribu-
tion amplitudes with the NLO evolutional corrections in-

cluded is shown in Fig. 6. The dash-dotted curves correspon

to the distribution amplitudes at the reference po,uﬁ

=,u(2)=(0.5 GeVY. The dashed and solid curves represent

the distribution amplitudes evoluted pﬁz (2 GeVy, with
the difference that the former includes only LO evolutional

corrections, whereas the latter includes NLO evolutional cor-

rections. As it is obvious from Eqg3.263, (3.27), and
(3.28, althoughg,s shows no LO evolution, there are tiny
effects of the NLO evolution. For other distributions, the LO

evolution is significant, and even the NLO evolution is non-

negligible. Any distribution amplitude evolves asymptoti-
cally (i.e., fOI‘,u,,Z:—mc) into ¢,4(x), but the highe;uﬁ is, the
“slower” this approach becomes.

PHYSICAL REVIEW D60 074004

IV. CHOOSING THE FACTORIZATION AND THE
RENORMALIZATION SCALES

In this section we discuss various possibilities of choosing
the renormalization scalgr and the factorization scaleg
appropriate for the process under consideration.

Before starting the discussion, let us now, with the help of
Egs.(1.1), (2.1), and(3.6), write down the complete leading-
twist NLO QCD expression for the pion electromagnetic
form factor with theug and ur dependence of all the terms
explicitly indicated.

Generally, for the NLO form factor we can write

Fo(Q% ) =FO(Q i 1) + FO(QP ,Mﬁ()- )
4.1

The first term in Eq(4.1) is the LO contribution and is given
by

FO(Q2, u2, u?)= def dy as(ug)

X DL (y, u2) T (x,y,Q2) ®LO(x, u2).
(4.2

The second term in Eq4.1) is the NLO contribution and
can be written as

FO(Q2 ki, 1) =FI(Q% u&, n2) +FI(Q2 uE, u?),

(4.3)
where
FOD(Q? ui . ud)
f f S(”R OLO* (y, u2)
xT<H°><x,y,Q2>T<H”(x,y,u§/Q2,ué/Q2>
X DLO(x, u2) (4.9

is the contribution coming from the NLO correction to the
hard-scattering amplitude, whereas

Egb)(Qz,Mﬁ,Mﬁ)

-yl

><[chLO*(y,M,%)T(H(’)(x,y,Q%chO(x,ué)
OO (y, ) TR (XY, Q1 PN Ox, )]

aS(MR aS(IU'F)

(4.5

is the contribution arising from the inclusion of the NLO
evolution of the distribution amplitude. Now, if E¢2.4) is
taken into account, the expression for the LO contribution of
Eq. (4.2 can be written in the form

074004-10
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2.0 : ——y . :

15 —

1.0 .

05 -

0.0 1 | 1 | 1 | 1 | L
0.0 0.2 04 0.6 0.8 1.0

25 —————— 17— 17—

- ~ Lo |
20 - 77N Dp, AN
15

1.0 ; \ /' —
0.5 \ =/

0.0 \ ;!

L -~ 4
1 | 1 OO 1 1 1

5 | | ol | g
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

FIG. 6. Evolution of the four candidate pion distribution amplitudeégs(x, x2), dcz(X,u2), dpr(X,u2), and dps(X,us), with the
running coupling constants(,uﬁ) and three active flavors. The dash-dotted curves correspond to the distribution amplitudes given by Eq.
(3.24 and taken as nonperturbative input at the reference momentum;s@:al(d).S GeVY. The dashed curves correspond to the distri-
bution amplitudes at the momentum sc,a%= (2 GeVY with the LO evolutional corrections included accordind3®7). The solid curves
correspond to the distribution amplitudes at the momentum $£§\1€(2 GeV) with the NLO evolutional corrections taken into account
according to Egs(3.6), (3.27) and(3.28.

8 f2 (1 1 the problem, and, at the same time, to reduce the size of
FSTO)(QZ,M?M%):—W_ZJ dxf dyag(us) higher-order corrections as much as possible. Choosing any
9 Q%o 0 specific value for these scales leads to a theoretical uncer-
Lo 2\, LO% 2 tainty of the perturbative result.
><¢ (i"“F) ¢ (_y"“F). (4.6) In our calculation we approximate,.(Q?) only by two
X y terms of the perturbative series and hope that we can mini-
mize higher-order corrections by a suitable choice.gfand
Next, before going on to perform the remainimgandy  ar. SO that the LO ternFP(Q?, u% 1) gives a good ap-
integrations, we have to choose the renormalization seale proximation to the complete suf,(Q?).
and the factorization scaler . In doing this, however, there It should be noted that if(9(Q?, u3,x2), given by Eq.
is considerable freedom involved. (4.2), ur appears only throughs(,ué), whereasur enters
If calculated to all orders in perturbation theory, theinto the distribution  amplitude ¢(x,u2). In
physical pion form factoF ,(Q?), represented at the suffi- Fng)(Qz,Mé,,uﬁ), given by Egs.(4.3—(4.5), a logarithmic
ciently highQ? by the factorization formuldl.1), would be  dependence on the scalgg and ur appears also through
independent of the renormalization and factorization Sca_'eSF.(f)(X,y,,U«EQ/QZ,MQQZ)- As seen from Egs(2.2) and
ugr andug, and so they are arbitrary parameters. Truncatlor‘(z_ZQ, this dependence is contained in the terms
of the perturbative expansion & _(Q?) at any finite order
causes a residual dependence on these scales. Although the
best choice for these scales remains an open quetien 1
scale ambiguity problejnone would like to choose_ them in _ fUV(vaaQZ//L%): = B,
such a way that they are of an order of some physical scale in 4

5  _—  pi
§—In(xy)+InQ—], 4.7
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2

1 u? vacuum-polarization effects from the QCP function are
Eln(xy)—lng

resummed into the running coupling constant.

Let us just mention at this point that in addition to the
(4.9 BLM procedure, two more renormalization scale-setting pro-
cedures in PQCD have been proposed in the literature: the
principle of fastest apparent convergen&AC) [29], and
the principle of minimal sensitivitftPMS) [30]. The appli-
cation of those three quite distinct methods can give strik-

2 —
fir(xy, Q% ug) = 3[3+In(xy)]

Being independent of each other, the scalgsand ug can
be expressed in terms 2 as

2 _ 2
Hr=a(x.y)Q% (4.9 ingly different results in practical calculatiofi31].
As for the factorization scalg?, it basically determines
2 _ 2 F
Hme=b(x,y)Q7, (4.10 how much of the collinear term given in E®.9), is ab-

sorbed into the distribution amplitude. A natural choice for

wherea(x,y) andb(x,y) are some linear functions of the this scale would be

dimensionless variablesandy (quark longitudinal momen-

tum fractions. 2_A2 41
We next discuss various possibilities of choosing the He= Q% 4.19

scalesur and up separately. The simplest and widely used,yich eliminates the logarithms @2 u2 . More preferable

choice for the scaleg is to Eq. (4.1 is the choice

2_~2
HREQS (10 uE=\xyQ? (4.16

the justification for the use of which is mainly pragmatic. ) . . .
Physically, however, the more appropriate choice,dér which makes the functiofir, given by Eq.(4.8), vanish.

would be that one corresponding to the characteristic virtu- A gzlancz at Eq23(4.1)—(4.5), vx(/jher?hthg ct:ouplllng_ constantsl,
alities of the particles in the parton subprocess, which i*s(#r) and as(ug) appear under the integral sign, reveals

considerably lower than the overall momentum tran€)ér that any of 'the ChOiC?S Qkr given by Eqs.(4.'12)—(4.'14),
(i.e., virtuality of the probing photdn and the choice ofir given by Eq.(4.16), leads immediately

It follows from Figs. 1 and 2 that the virtualities of the 1 the problem if the usual one-loop formua.2) for the
gluon line (line 4) and the internal quark lindine 2) of  ©ffective QCD running coupling constant is employed.
diagramA in Fig. 2 are given byyQ? and yQZ, respec- Namely, then, regardless of how lar@é is, the integration

2
el Now, e of s EA4 1w chocsaue 1 1 )49 I0vS ) (o be usited e oo
be equal to the gluon virtuality, i.e., ’ PP P

vent this problem. First, one can choog@ and 2 to be

W= Xy Q2 (413  effective constants by taking&=(ug) and ug=(ug), re-
spectively. Second, one can introduce a cutoff in formula

(2.2) with the aim of preventing the effective coupling from

As it is well known, unlike in an Abelian theorje.g., P&coming infinite for vanishing gluon momenta.
QED), where the effective coupling is entirely renormalized !f the first approach is taken, Eq#4.12—(4.14 and
by the corrections of the vector particle propagator, in QCD(4-16 get replaced by the averages
the coupling is renormalized not only by the gluon propaga-

then the logarithmic terms in E@4.7) vanish.

tor, but also by the quark-gluon vertex and quark-propagator na=(xyQ?, (4.173

corrections. It is thus possible to choqcsé as the geometri- _

cal mean of the gluon and quark virtualitigs: wa=V(xyQ>(yQ?),

_ (4.17H
1E=VxyQ*)(yQ?). (4.13 A

ug={e"**yQ?), (4.179

Alternatively, we can make a choice

L and
2 _ A5/ 2
ua=e""xyQ?, (4.14 _

pE=\(xy)Q?, (418

as a result of which the functiofiy,, given by Eq.(4.7),

vanishes identically. In this casél'ﬁ)(x,y,Mﬁ/Qz,M_ﬁle) respectively. Taking into account the fact th&ky)
defined by Eq.(2.2_0) becomesn; m_dependent. This is an = (x)(y) and(x)=(y), it is possible to write Eq4.17) and
example of choosing the renormalization scale according t?4 18 in the respective forms

the Brodsky-Lepage-Mackenzi@BLM) procedure[28]. In '
this procedure, the renormalization scajé best suited to a

2 _ 1202
particular process in a given order can be determined by rR=(¥)"Q", (4.193
computing vacuum-polarization insertions in the diagrams of 2 aima
that order. The essence of the BLM procedure is that all pr=(x)>"Q?, (4.199
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nd=e5%x)2Q2, (4.190 u&, and a number of proposals have been suggested for the
form of the coupling constant in this reginhd2]. The most
and exploited parametrization of the effective QCD coupling
. constant at low energies has the form
pE=(0Q% (4.20
. . . . Ty 2 A
The key quantity in the above considerationgx$, the av- as(uR)= PR, (4.29
; up+C
erage value of the momentum fraction. It depends on the Boln R
form of the distribution amplitude, and there is no unique 0 G

way of defining it. A possible definition is
where the constan encodes the nonperturbative dynamics

1dX¢(X,,u,2:); and is usually interpreted as an “effective dynamical gluon
<;>(M2)= 4.21) mass”my. For u2sC?, the effective coupling in Eq4.24)
F 1 - ' coincides with the one-loop formule.2), whereas at low
fo dXe(X, ui) momentum transfer this formula “freezes” to some finite

but not necessarily small value.

Owing to the fact that all distribution amplitudes under con- In view of the confinement phenomenon, the modification
sideration are centered around the vaxse0.5, it follows ~ (4.24) is very natural: the lower bound on the particle mo-

trivially from Eq. (4.21) that for all of them menta is set by the inverse of the confinement radius. This is
equivalent to a strong suppression for the propagation of
<;>(M§):o,5, (4.22 particles with small momenta. Thus, in a consistent calcula-

tion in which Eq.(4.29) is assumed a modified gluon propa-

An alternative way of definingx), motivated by the form of ~gator should be used:
the LO expression for the pion form fact6t.6), is
1 1

K k—m2
g

(4.2
1 ¢Ox,ud) —
dXx ——— X
—, 0 X However, if one attempts to calculate the LO prediction for
() (ui)= L $O(x.u2) the pion form factor making use of Eqgt.24) and (4.25),
dx and takingmy=300—-500 MeV, the result obtained is by a
0 X factor of 10 lower than the experimental value, questioning
the applicability of such an approa¢h5].
_ 1 4.23 It has recently been shown that spontaneous chiral sym-
3[1+ BEO(MﬁHBio(MﬁH ] ' metry breaking imposes rather a severe restriction on the
idea of freezing 33]. The authors of33] argue that before

It should be noted, however, that this formula can bednY argument based on a particular form of the freezing cou-

. . o o pling constant is put forward, one should check that the dy-
.Stfa'gh”"rwa“;”y a‘;p"ed only ifg=Q". On th-e ot.her hand, namical origin (mechanism of the freezing is such that
if instead of ug=Q< one chooses the factorization scale to

: enough chiral symmetry breaking can be produced.
be as given by Eq4.20, then Eqs(4.20 and(4.23 form a Considering the discussion above, calculations with the

nontrivial system of simultaneous equations. According ;q,en coupling constant seem to need a more refined treat-
Eq. (4.23, one obtains(x),{(Q%) =1/3 for anyQ? while  ment and will not be considered in this paper.
0.242<(x)c(Q?)<0.262 for 4 Ge¥=Q?<100 Ge\?
(similar values are obtained febp, and ¢p3).

When using theﬁas(ijﬁ) distribution it appears reason- V. COMPLETE NLO NUMERICAL PREDICTIONS
able to take(x)(u2)=(x),s=1/2. This can be justified on FOR THE PION FORM FACTOR
the grounds that this distribution is concentrated aroxnd

=0.5, and is characterized by.a very weak evqut!on: Oq th%eding sections, now we put them together and obtain com-
other haznd, for th% end-point cozncentr_ated d.'s.mb_unonsplete leading-twist NLO QCD numerical predictions for the
bcz(X.ie), bpa(X, pe) and dps(x, u), which exhibit siz- o5 ¢rm factor. For a fixed distribution amplitude, we ana-
aﬁle evolutional effects, it is more appropriate to takeIyze the dependence of our results on the choice of the scales
(x)(uf) as given by Eq(4.23. g and u .

As stated above, the divergence of the effective QCD cou- By inserting Egs.(3.19 and (3.20 into Egs.(4.2) and
pling a.s(uf). as given by Eq(2.2), is the reason that it is  (4.5), taking into account Eq2.4), taking the scaleg2 and
not possible to use the choices of given by Eqs(4.12— 42 to be effective constant@s explained in Sec. IV and
(4.14 and u given by Eq.(4.16. Equation(2.2 does not  performing thex andy integration, we find that Eqg4.2)
represent the nonperturbative behavioracg,(ﬂﬁ) for small and(4.5 take the form

Having obtained all the necessary ingredients in the pre-
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o0 2
QPFON(Q? ui, ud) =8mfag(ud) go’show.%) : (5.0
and
QFIVN(Q i uf) = 162 as( R as(uf)| 2 "BrO(kd) gz’BEL"(u%)). (5.2

For a distribution amplitude of the form given in Ed8.25—(3.30, the above expression reduces to
QFONQ? i ud) =8 e wR)[ 1+ B5O(uf) +BEO(uf) 12, (5.3

QFUD(Q?, u2, ud) = 16f2 ag( ud) as( ud)[ 1+ B5O(ud) +B5O(1d)]

X BQL%%HB§L°<M.%>+k§6’BEL°w%> : (5.4)

As for the part of the NLO contribution arising from the NLO correction to the hard-scattering amplitude, by inserting Egs.
(2.20 and(3.27 into Eq. (4.4) and performing thex andy integration one obtains

2

9 MR 2
Q2F533><Q2,Mé,ué>=8fiaé<ué>[Z[HBé°<né>+8h°w%>]2|n§+ 3

25 91
gBéoméwl—SBkOw%)}

2
ME
X[1+B5°(ud)+ Bko(ﬂé)]lng +6.58+24.9B5°(u2)+21.43B5°(ul))?

+32-8Bk°<ué>+32.55(Bk°<u§>)2+53.3B5°<ué)85°w§>} : (5.5

Then the NLO contribution to the “almost scaling” combinati@fF .(Q?) is given by

QPFM(Q?, 3, ud)=Q?FU(Q?, nd, ud) + QPFID(Q?, ua, ud), (5.6
while the total NLO prediction reads
Q%F (Q% u&, ud)=QFO(Q? u, u?) + QFI(Q?, uZ, u2). (5.7

For the purpose of this calculation we adopt the criterig34] were obtained from the extrapolation of thg p
according to which a perturbative prediction #r.(Q?%) is — =" n electroproduction data to the pion pole. It should
considered reliable provided the following two requirementsalso be mentioned that the analysis of R&8#] is subject to
are met: first, corrections to the LO prediction are reasonablyriticism which questions whethdt_(Q?) was truly deter-
small (<30%); second, the expansion parametdfective  mined for 1I=Q?<4 Ge\? [36] (but see also Ref{37]).
QCD coupling constantis acceptably smalﬂas(,qu)<0.3 The new data in this energy region are expected from the
or 0.5]. Of course, one more requirement should be added tGEBAF experiment E-93-021.
the above ones: consistency with experimental data. This re-
qguirement, however, is not of much use here since reliable A. Predictions obtained with p3=u2=Q?

expenmentfal data for the pion form .faCtof exist Q- The first NLO prediction for the pion form factor was
<4 Gel?, i.e., well outside the region in which the pertur- btained | f . heMS lizati h
bative treatment based on Ed.1) is justified. obtained in Ref[5]. Using theMS renormalization scheme

; 2_..2_M"2;
Currently available experimental data for the spacelike2Nd the choicig=uf=Q it was found that for thebaq(x)
pion electromagnetic form factd?.(Q?) are shown in Fig. distribution (with the evolution of the distribution amplitude
7. The data are taken from Bebekal.[34] and Amendolia neglected the perturbative series took the form

et al. [35]. As stated in34], the measurements correspond- A2 2\ _ 2114 24 ...

ing to Q?=6.30 GeV andQ?=9.77 Ge\f are somewhat Q*F(Q%)=(0.43GeV)ag(Q*)[1+2.1025(Q”) ],
questionable. Thus, effectively, the data for(Q?) exist (5.9
only for Q? in the rangeQ?<4 Ge\~. The results of Ref. which is in agreement with our result given by E@S.7),
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1.0 . ently available experimental data is shown in Fig. 8. The
« Bebek et al. (1978) ra(tli? o;‘ the(O)NLg) to the LO contribution t6,(Q?), i.e.,
0.8 - o Amendolia et al. (1986) . F.(Q9)/F; (Q_), asa useful measure of the |rr_1p0rtance of
the NLO corrections, is plotted as a function@®f in Fig. 9.
‘“% 06 | i The shaded areas appearing in Figs. 8 and 9 denote the re-
O, gion of Q2 whereag(Q?)>0.3. We take that outside of this
S 0 | ¥ | region the effective coupling is acceptably small.
i % i } It is evident from Figs. 8 and 9 and Tables II-V that the
‘o * leading-twist NLO results for the pion form factor obtained
0.2 1o . with u2=u2=Q? display the following general features.
® First, the results are quite sensitive to the assumed form of
o'oo s w . s 0 the pion distribution amplitude. Thus, the more end-point

concentrated distribution amplitude is, the larger result for
the pion form factor is obtained, and also the NLO correc-
FIG. 7. Presently available experimental data for the spacelikdions are largefwhich has already been obvious looking at
pion electromagnetic form factor. Egs.(5.3—(5.7)]. Second, whereas the NLO correction aris-
ing from the corrections to the hard-scattering amplitude are
tpositive, the corrections due to the inclusion of the evolu-
tional corrections to the distribution amplitude are negative,

- A 2_ ; _with the former being generally an order of magnitude larger
0.1, or with Agrs=0.5 GeV,Q°=10000 GeV. This pre than the latter. Thus, in all the cases considered, the full

diction has been widely cited in the literature and initiated ANLO correction to the pion form factor is positive. i.e.. its
lot of discussion regarding the applicability of PQCD to theinclusion increases thepLO rediction P P
calculation of exclusive processes at large momentum trans- . P ' . .

; We now briefly comment on the results obtained with
fer. With the presently accepted value of 0.2 GeV Agyis, o .

. L2 - 5 each of the four distribution amplitudes.
we find that the criteria from Ref5] are satisfied forQ bl hich q 2y distributi
~1600 GeV?, and that forQ?=700 GeV, the corrections Table II, which corresponds to thi,(x,Q") '1St” ution
’ ’ amplitude, shows that the NLO correcti@@?F‘H(Q?) is

to the LO prediction are of order 30%. Thus, this result 2 .
shows that for the choice of the renormalization and factor-r_ather large(36% atQ”=100 Ge\?). Most of the contribu-

212 i )
ization scalesu2= 2= Q?2, the region in which perturbative tion to Q“F>.’(Q¢) is due to the NLO correction to the hard

predictions can be considered reliable is still well beyond thesczatﬁfg;”g zamph_tudeQzFSTla)(Qz), while the contribution
region in which experimental data exist. The inclusion of theQ“F ~(Q®) arising from the NLO evolutional correction of
distribution amplitude evolution effects, although extremelythe distribution amplitude is rather small, being of order 1%.
important for the end-point concentrated amplitudes, doedhe ratio FE(Q?)/F{)(Q?)~30% is reached atQ?
not change this conclusion. ~500 Gel.

Numerical results of our complete NLO QCD calculation, ~The results derived from theéc,(x,Q?) distribution are
obtained using the four candidate distribution amplitudespresented in Table IIl. The full NLO correctid@?F2(Q?)
with pi=pu2=Q?, and forQ?=4 Ge\?, are displayed in is somewhat larger than forp,(x,Q% (and at Q?
Tables II, Ill, IV, and V. The entries in these tables include =100 GeV it amounts to 46% The ratio
various contributions given by Eqé5.3—(5.7), comprising  F(Q?)/F(9(Q?) is greater than 30% until Q2
the full NLO result. A comparison of our results with pres- ~2400 Ge. It is important to observe that the evolutional

4
Q*[GeV]

(5.3, and(5.5). The conclusion based on this result was tha
a reliable result folF .(Q?) was not obtained untitrg(Q?)

TABLE Il. Complete leading-twist NLO QCD results for the pion form factQfF .(Q?), obtained using
the ¢.q(x, ) distribution amplitude and assumings=u2=Q?.

Q? as(pd) QFV(QY) QFUM(Q?) QFIP(QY) QFM(QY) FI(Q)IFY(QY) QF.(Q?)

[GeV?] [GeV?] [GeV?] [GeV?] [GeV?] % [GeV?]

4 0.303 0.131 0.083 -0.001 0.082 62.8 0.213
6 0.279 0.120 0.070 -0.001 0.069 57.6 0.189
8 0.264 0.114 0.063 -0.001 0.062 54.4 0.176
10 0.253 0.109 0.058 -0.001 0.057 52.2 0.166
20 0.225 0.097 0.046 -0.001 0.045 46.2 0.142
30 0.211 0.091 0.040 -0.001 0.039 43.3 0.130
40 0.202 0.087 0.037 -0.001 0.036 41.4 0.123
50 0.196 0.085 0.035 -0.001 0.034 40.1 0.118
75 0.185 0.080 0.031 -0.001 0.030 37.9 0.110
100 0.178 0.077 0.029 -0.001 0.028 36.4 0.105
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TABLE lll. Same as Table Il but for theﬁcz(x,,uﬁ) distribution amplitude.

Q? ag(ug) Q*FYV(Q?) QF{Y(QY Q*FI(Q?) Q*F(Q?) FOQY/IFO(QY Q’F (Q?)
[GeV?] [GeV?] [GeV?] [GeV?] [GeV?] % [GeV?]

4 0.303 0.248 0.241 -0.015 0.225 90.8 0.474
6 0.279 0.222 0.195 -0.014 0.181 81.6 0.403
8 0.264 0.206 0.170 -0.013 0.157 76.1 0.363
10 0.253 0.195 0.153 -0.012 0.141 72.2 0.336
20 0.225 0.167 0.115 -0.011 0.104 62.2 0.271
30 0.211 0.154 0.098 -0.010 0.088 57.4 0.243
40 0.202 0.146 0.089 -0.009 0.079 54.3 0.225
50 0.196 0.140 0.082 -0.009 0.073 52.2 0.213
75 0.185 0.131 0.072 -0.008 0.064 48.7 0.194
100 0.178 0.125 0.065 -0.008 0.058 46.4 0.182

corrections, especially the LO ones, are rather significant ichosen to bepé:,uE:Qz, one finds that the NLO correc-
this case. Also, as it is seen from Table Ill, the NLO evolu-tions to the lowest-order prediction for the pion form factor
tional correctioanFS}b)(Qz) is of order~6%, i.e., non- are large. The NLO predictions obtained cannot be made
negligible. To show the importance of the correction arisingreliable, i.e.,F{"(Q?)/F{9(Q?) less than, say, 30%, until
from the inclusion of the distribution amplitude evolution, the momentum transfe@>10 GeV is reached. Based on
the results forQ?F .(Q?) and the ratioF Y(Q?)/F®(Q? these findings and considering the regiorQdfin which the
obtained using thec#(x), ¢e2(x,Q?), andpc-(x,Q?) dis-  data exist, it is clear that we are not in a position to rule out
tributions, are exhibited in Figs. 10 and 11, respectively. any of the four distributions considered. One can only note
The results based on this,(x,Q%) and ¢pa(x,u2) dis-  that the predictions foQ2F ,(Q?,u’,uZ) obtained with the
tributions are listed in Tables IV and V, respectively. As it anS(x,,uE) distribution are below the trend indicated by the
can be easily seen by looking at Figs. 8 and 9 and by comexisting experimental data, while the end-point concentrated
paring the corresponding entries in Tables Il and IV, thedistributions ¢cz(X, 12), dpa(X,u2), and ¢ps(x,u2) give
results obtained with thebp,(x,Q?) and ¢¢,(x,Q?) distri-  higher predictions. It is worth mentioning here that the the-
butions are practically the same qualitatively, while differ oretical predictions for the photon-to-pion transition form
guantitatively by a few percent. From Table V and Figs. 8factor FM(QZ) are in very good agreement with the data,
and 9, one can see that the behavior of the results obtainegsuming the pion distribution amplitude is close to the
with the (;')pg(X,,u,,z:) distribution is qualitatively similar to asymptotic one, i_e_¢as(x”u|2:) [38].
the behavior of the results obtained with other two end-point
concentrated distributions. For this reason, we leave the
bpa(x,Q%) and ¢ps(x,u2) distributions out of our further B. Predictions obtained usinguz=aQ* and u¢=bQ’
consideration. In this subsection we present a detailed analysis of the
In view of what has been said above, we may concludejependence of the complete leading-twist NLO predictions
the following. If the pion is modeled by theb,{(x,ug),  for the pion form factor on the renormalization and factor-
bor(X, md), Ppa(X,uE), OF dpa(x,us) distribution ampli-  ization scalesur and ur. Being a reflection of the uncal-
tude, and if the renormalization and factorization scale areulated higher-order contributions, this dependence is a very

TABLE IV. Same as Table Il but for thespz(x,,u,zz) distribution amplitude.

Q? ag(pd)  QFVQ)  QFIYQY)  QFIQH)  QFPQ)  FPQFDQ) QF.(Q)
[GeV?] [GeV?] [GeV?] [GeV?] [GeV?] % [GeV?]

4 0.303 0.274 0.278 -0.019 0.259 94.6 0.532
6 0.279 0.244 0.224 -0.017 0.207 85.0 0.451
8 0.264 0.226 0.195 -0.016 0.179 79.1 0.404
10 0.253 0.213 0.175 -0.015 0.160 75.0 0.374
20 0.225 0.182 0.130 -0.013 0.117 64.5 0.300
30 0.211 0.167 0.111 -0.012 0.100 59.4 0.267
40 0.202 0.158 0.100 -0.011 0.089 56.2 0.247
50 0.196 0.152 0.093 -0.011 0.082 54.0 0.234
75 0.185 0.141 0.081 -0.010 0.071 50.2 0.212
100 0.178 0.134 0.074 -0.009 0.064 47.9 0.199
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TABLE V. Same as Table Il but for th¢p3(x,,u§) distribution amplitude.

Q? as(nd) QFV(QY) QFIY(QY) QF!(QY) QFP(QY) FU(Q)IFP(Q?) QF (Q?)

[GeV?] [GeV?] [GeV?] [GeV?] [GeV?] % [GeV?]

4 0.303 0.335 0.402 -0.029 0.372 111.0 0.708

6 0.279 0.295 0.318 -0.026 0.292 100.0 0.587

8 0.264 0.272 0.273 -0.024 0.249 91.8 0.521

10 0.253 0.255 0.244 -0.023 0.222 86.7 0.477

20 0.225 0.215 0.178 -0.019 0.158 73.8 0.373

30 0.211 0.196 0.150 -0.017 0.133 67.7 0.328

40 0.202 0.184 0.134 -0.016 0.118 63.8 0.302

50 0.196 0.176 0.123 -0.015 0.108 61.1 0.284

75 0.185 0.163 0.106 -0.014 0.092 56.6 0.255

100 0.178 0.154 0.096 -0.013 0.083 53.7 0.237
important feature of the NLO predictions, and can thereforevhich are tiny, as we have seen in Sec. Ill. On the other
be used as a guide to assess their accuracy. hand, the predictions calculated with tb@z(x,,ué) are we

In the following we shall restrict our attention to the two dependent, but this dependence turns out to be very weak.
most exploited pion distribution amplitude;Sas(x,M,Z:) and  Thus, for a given value oftg, variation of the value ofur
bz (X, u?). in the rangeQ?/4< u2<Q? leads to practically the same

In the preceding subsection, we have found that the NLQesults.
corrections calculated using these two distributions are large, Therefore, by examining the NLO predictions based on
especially for the latter. The reason for this lies in the factthe ¢,4(x,2) and ¢cz(x,u2) distributions, we find that
that the renormalization scale choipg=Q? is not an ap- they depend very little on the factorization scale. Con-
propriate one. Namely, owing to the partitioning of the over-sequently, when using these distributions one is allowed to
all momentum transfe®? among the particles in the parton setIuE:QZ, for all practical purposes.
subprocess, the essential virtualities of the particles are
smaller thanQ?, so that the physical renormalization scale, 1. Examining the renormalization scale dependence of the NLO
better suited for analyzing the process under consideration, is corrections
inevitably lower than the external scal¥.

A characteristic feature of the asymptotic distribution
¢as(x,,u§) is that in the LO it shows no evolution. A conse-
guence of this, as it can be seen from E§s3)—(5.7), is that MﬁIan, (5.93
the NLO predictions for the pion form factor based on this
distribution are essentially independent of the factorization,pere
scaleur . Namely, the only dependence on this scale is con-
tained in the term arising from the NLO evolutional effects,

The three specific physically motivated choicesof,
given by Eq.(4.19, can be conveniently written as

W\3/2 [ \2 A—5/3/y\2
ae{(x)"5(x)%,e”"X(x)%}. (5.9b
1-0 T T T T T B
\ — X, 2 2 2
\\ ¢ﬂs( Q 2) Mg = Mg = Q
\ —_— X
0.8 09 | \\\ \, L Qz) |
—_— t\ \\ T ¢P2(XsQ )
N> \ ~
> 0.6 o 2
8 o
— €.06
S 04 W
u- o
NO ";q
0.2 TLe03 ¢ .
0.0 : L 1 b 1
0 20 40 R , 60 80 100 0.0 i j ) ;
Q [GeV] 0 20 40 60 80 100

Q*[GeV]
FIG. 8. Comparison of the complete leading-twist NLO QCD
predictions for the pion form factof?F _(Q?), obtained using the FIG. 9. The ratio of the NLO to the LO contributions to the pion
four candidate distribution amplitudes, with the presently availableform factor,FS,l)(QZ)/FSE)(QZ), for the four candidate distribution
experimental data. The shaded area denotes the regi? af amplitudes. The shaded area denotes the regio®%fn which
which ag(Q?)>0.3. as(Q%)>0.3.
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FIG. 10. Leading-twist NLO QCD predictions for the pion form
factor, Q?F .(Q?), obtained with thegcz(x), $E2(x,Q?), and
dc7(x,Q?) distributions. The shaded area denotes the regiadp?of
in which a5(Q?)>0.3.
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1=Q

0, (Xoltp)
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FIG. 12. The numerical results f@@?F(%(Q?) obtained with
the ¢,4(x, ) distribution amplitude and the choices af, given
by Eg. (4.19, with ,u,";=Q2 and (Y)as= 1/2. The solid curvdin-
cluded for comparisgncorresponds to the Ca$E,%=M,2:=Q2 con-
sidered in the preceding subsection. The shaded area denotes the

For the purpose of the discussion of the effects of the inclusange of the LO predictio®?F{?(Q?) for u/Q?*e[e %¥x)?1].
sion of the NLO corrections on the LO predictions, we have

included Fig. 12 showing the LO predictions for the threethough these two distributions are quite different in shape.
different values ofug given in Eq. (5.9. Our complete Next, by looking at Figs. 13 and 16, one notices that the full
leading-twist NLO predictions for the pion form factor cal- NLO result for QF _(Q?) shows a very weak dependence
culated with theg,(x,u2) distribution and with the three on the value ofuZ, and that it increases with decreasjaf.

specific values of the renormalization scalg are summa-
rized in Figs. 13 and 14, showing the results @F .(Q?)
and the ratioF{Y(Q?)/F(?(Q?), respectively. The corre-
sponding results obtained assuming dshez(x,,uﬁ) distribu-
tion are displayed in Figs. 15, 16, and 17.

As far as the ratidcY(Q?)/F(9(Q?) is concerned, as evi-
dent from Figs. 14 and 17, the situation is quite different. It
is rather sensitive to the variation pf, and decreases as
decreases. The choi¢é=Q2, represented by solid curves,
when compared with the other possibilities considered, leads

The solid curves in Figs. 12—17 correspond to the resultsto the lowest value foQ?F .(Q?), and to the highest value
with u&= &= Q? obtained in the preceding subsection, arefor the ratio F(M(Q?)/F{©(Q?. In contrast to that, the
included for comparison. The other curves refer to thechoice of the BLM scale, represented by the dashed-dotted
choices ofu? given by Eq.(5.9). curve, leads to somewhat higher valuesQf _(Q?), but to

Some general comments concerning the results presentednsiderably lower values of the ratid>(Q?)/F{9(Q?).
above are in order. First of all, it is interesting to note that the

predictions based on thé,(x,x2) and ¢c(x,u2) distri- 05
butions amplitudes almost share the qualitative features, al ST ST R p— E=X"0Q 2=Q
0.4
\ s \2 T
\ =u’=Q° == 0,(x) s
A S Fa=l=0 i 3 0.3
0.9 - \\ ‘\~\ - ¢CZ(X’Q) S,
~e—_ 2 o
o« N b 3Q) S o2
o TR
sj: 0.6 ‘C
L 0.1
)
e B 0-3 - = 0-0 1 1 1 L
w 0 20 40 60 80 100
Q’ [GeV]
00 = 40 50 20 100 FIG. 13. Leading-twist NLO QCD results fa?F .(Q?) ob-
Q*[GeV tained with theqsas(x,,uﬁ) distribution amplitude and the choices of

w? given by Eq.(4.19, with x2=Q? and (x),s=1/2. The solid
FIG. 11. The ratio of the NLO to the LO contributions to the curve (included for comparisoncorresponds to the cas;c-ﬁ=,u,2:
pion form factor, F{M(Q?)/F(9(Q?), obtained for thegc(x), =Q? considered in the preceding subsection. The shaded area de-
#2(x,Q?), and e (x,Q?) distributions. The shaded area denotesnotes the range of the total NLO predicti@fF .(Q?) where the
the region ofQ? in which ag(Q?)>0.3. upper limit corresponds tgazR:,ué,MS obtained from Eq(5.11.
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FIG. 14. The ratio F{Y(Q?)/F(Q? obtained with the
das(x,u2) distribution amplitude and the choices af, given by
Eq. (4.19, with x2=Q? and(x),=1/2. The solid curvéincluded
for comparisoi is for the result corresponding tp§=,u§=Q2

FIG. 16. Leading-twist NLO QCD results fa®?F,(Q?) ob-
tained with theq&cz(x,,uﬁ) distribution amplitude and the choices
of u& given by Eq.(4.19, with 2= Q? and(x)c»(Q?) calculated
fzé‘scording to Eq(4.23. The solid curveincluded for comparison

the region of the predictions which correspond dg(u3)<0.5 correspgnds to the cagek=ug=Q” considered in the preceding
(as(M§)<0-3), while |F571)(Q2)/F(;’)(Q2)\<0.3. subsection. The shaded area denotes the range of the total NLO

prediction Q%F .(Q?) where the upper limit corresponds 0%
Adopting the previously stated criteria, we now comment= ppws obtained from Eq(5.12).
on the reliability of the NLO predictions fa®?F . (Q?) dis-
played in Figs. 13 and 16. Imposing the requirementsy?F (Q2), shown in Fig. 16, obtained Wim:<;>3/2, <7>2,
|F_Sfl)(Q2)/F(:)(Q2)|<O'3' "’;ndO_‘S('f‘é)éo's' we find from 504 e-53(x)2, become reliable for the momentum transfer
Fig. 14 that for tﬂaﬁas(ﬁ#p) d|str|but|_on the results corre- Q2>95, 60, and 300 Ge¥/ respectively, if we demand that
sponding toa=(x)¥?, (x)?, ande™*%(x)?, become reliable ag(u2)<0.3, and forQ%>95, 35, and 50 Ge¥ respec-
for the momentum transfe@>50, 25, and 90 Ge¥/ re- tively, if ag(12)<0.5 is regarded as a stringent enough re-
spectively. The requiremems(ué)<0.3 might be(unnec-  quirement.
essarily too stringent. Thus, by relaxing it and taking  Summarizing the above, one can say that contrary to the
as(,uﬁ)<0.5 instead, we find that the results correspondingather high value ofQ?~500 Ge\f required to obtain a
to a=(x)¥2 (x)2, and e 5%Xx)2, become reliable for the reliable prediction assuming thg,e(x, x3) distribution with
momentum transfe®?>50, 25, and 15 Ge¥/ respectively. ,u§=Q2, one finds that by choosing the renormalization
Applying the same criteria to the case of thg (X, u3) scale determined by the dynamics of the pion rescattering
distribution, we find from Fig. 17 that the results for

10 ‘ 2 312 ‘z 7‘ 5 0.9 - | q)cz(X:l-lFl) I Ll;=Xm QZ Llli:Qz B
09 dalom) Tt w=XTQ =@ = ——- k=X
1T 2 - .} \
08 - = IJR=X Q - r \ 5 P el 2
e a ) ik | \\ —— w=e"XQ X=<1 X>(Q2
07 o —— =X Q| X=<Ix>(Q) G :
E 0.6 - 1 s
— 05 NE'\ 03 -
L 04 s 13
03" L~
G 40 | 0.0
01 | | e
0.0 ‘ : : ‘ 0 20 40 60 80 100
0 20 40 60 80 100 Q’ [GeV]

Q* [GeV]
FIG. 17. The ratio FM(Q?)/F(®(Q?) obtained with the

FIG. 15. The numerical results f@°F(?’(Q?) obtained with  ¢_(x,x2) distribution amplitude and the choices @k given by
the pc(x, uf) distribution amplitude and the choices pf given Eq.(4.19, with u2=Q? and(x),(Q?) calculated according to Eq.
by Eq.(4.19, with #&=Q? and(x)cz(Q?) calculated according to  (4.23. The solid curve(included for comparisonis for the result
Eqg. (4.23. The solid curve(included for comparisgncorresponds  corresponding tqui= 2= Q? obtained in the preceding subsec-
to the caseuf=uf=Q? considered in the preceding subsection. tion, and the shaded area denotes the region of the predictions
The shaded area denotes the range of the LO prediféi”’(Q®)  which correspond to as(u2)<0.5 (ag(x3)<0.3), while
for u3/Q2e e 55(x)?,1]. [FRQ)IFD(Q)]<03.
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process, the size of the NLO corrections is significantly re- MzBLM:QZIZ:I-' (5.133
duced and reliable predictions are obtained at considerably
lower values ofQ?, namely, forQ?<100 Ge\f. The same ulys~Q2/18, (5.13b
conclusion also applies to the results obtained with the
d)cz(x,,ué) distribution, for which choosing the renormaliza- MEAC~Q2/18' (5.139

tion scale related to the virtuality of the particles in the par-
ton subprocess lowers the bound of the reliability of the rewhile, for theq&cz(x,,ué) distribution,
sults fromQ?~2400 GeV to Q<100 Gel .

Q79< u3, y<Q¥77, (5.143

2. Theoretical uncertainty of the NLO predictions related to the 5 5 )
renormalization scale ambiguity Q/59< upys<Q/54, (5.14b
Unfortunately, at present we do not have at our disposal Q2/53< pl o< Q%48 (5.149

any absolutely reliable method of determining the “optimal”

(or “correct”) value of the renormalization scale for any for 50 Ge\?<Q2?<100 Ge\*. Therefore, we find that for
particular order of PQCD. Our ignorance concerning thenoth distributions

“optimal” value for wg implies that any particular choice of

this scale leads to an intrinsic theoretical uncertaietyor MBS Ko< KEnc: (5.19

of the perturbative results. Therefore, the NLO results dis-

played in Figs. 13 and 16, being obtained with the fourThe FAC, PMS, and BLM scales, as evident from Egs.
singled-out values of the renormalization scplg, contain  (5.13 and(5.14), are very close to each other, and the curves
theoretical uncertainty. In what follows we try to estimate corresponding to the NLO prediction fd@*F ,(Q?) ob-
this uncertainty. In order to do that, we have to make soméained with the FAC and PMS scales practically coincide
assumptions, regarding the range of the renormalizatioM/ith the dashed-dotted curves in Figs. 13 and 16 correspond-
Sca|e amb|gu|ty |ng to the BLM Scale.

As a|ready mentioned’ in addition to the BLM method, If the renormalization scale is interpreted as a “typica|”
two more renormalization scale-setting methods have beegcale of virtual momenta in the corresponding Feynman dia-
proposed: the FAC and PMS methods. All three of them ar@rams, then, despite the fact that we do not know what the
somewhat ad hoc and have no strong justification. Neverthe:optimal” value of this scale is, it is(based on physical
less, the principles underlying these methods are plausibl@rounds and on the above consideratjoreasonable to as-
so that they give us at least a range of sgalevhich should ~ sume that it belongs to the interval ranging froud, , to
be considered. Q2. Namely, 3, ,,, being the lowest of the above consid-

Let wrac, mpms, and ug v designate the scales deter- ered scales and of the order @?/21 andQ?/80 for the
mined by the FAC, PMS, and BLM scale-setting methods,¢.«(x,12) and ¢cz(x,u2) distributions, respectively, is a
respectively. low enough to serve as the lower limit of the renormalization

According to the FAC procedure, the scalg is deter-  scale ambiguity interval. On the other haqf is (too) high
mined by the requirement that the NLO coefficient in thea scale, and as such can safely be used for the upper limit of
perturbative expansion df_(Q?) vanishes, which, in our the same interval.

case, effectively reduces to solving the equation In the following, then, instead of using any singled-out
W value, we vary the renormalization scale in the form
FI(Q% ui=pfac)=0. (5.10
ui=aQ?, (5.163

On the other hand, in the PMS procedure, one chooses theh ) _
renormalization scal@g at the stationary point of the trun- wherea Is a continuous parameter
cated perturbative series fdf_(Q?). Operationally, this

amounts to ae[e *(x)?,1]. (5.16b
by 2 Doing this will enable us to draw some qualitative conclu-
dF(Q% uR) ~o (5.1 sions concerning, first, the theoretical uncertainty related to
dué . e ' the renormalization scale ambiguity, and, second, the effects
MR™Hpms that the inclusion of the NLO corrections has on the LO
) o predictions.
The BLM-determined scale is given by The LO result for the pion form factor is a monotonous
) - function of the renormalization scates. Namely, all of the
pam=e">¥x)?Q% (5.12  ug dependence of the LO predictid@’F(?(Q?), as it is

seen from Eq(5.3), is contained in the strong coupling con-
The explicit expressions fd¥ .(Q%) andFY)(Q?) are given  stant ag(ud). Thus, in accordance with Eq2.2), as ug
by Egs.(5.3—(5.7) with ,uﬁzQz. By solving Egs(5.10 and  decreases the LO result increases, and it increases without
(5.12), and taking Eq(5.12 into account we find that for the bound. In contrast to the LO, the NLO contribution
bas(X,2) distribution Q?F(Q?), as evident from the explicit expression given in
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Eq. (5.9, decreasesbecomes more negativevith decreas- Figs. 13 and 16. Then, fa@@?>50 Ge\? theoretical uncer-
ing ug . Upon adding up the LO and NLO contributions, we tainty of the NLO result forQ?F _(Q?) turns out to be less
find that the full NLO result, as a function @iy stabilizes  than 5% for therﬁas(X-Qz) and 8% for the(bcz(X,Qz) dis-
and reaches a maximum value f@g= u2,,s. The values of tribution.
the scaleupys are, for theg,(x,Q?) and ¢cz(x,Q?) dis- Before closing this subsection, a remark is appropriate. If
tributions given by Eqs(5.13b and (5.14b, respectively. the shaded areas in Figs. 13 and 16 are displayed in the same
If the renormalization scale continuously changes in thefigure they would not overlap. This implies that an unam-
interval defined by Eq(5.16), we find that the curves repre- biguous discrimination between thep,(x,Q?) and
senting the LO and NLO results f@®?F ,(Q?) fill out the  $.,(x,Q?) distributions is possible, as soon as the data ex-
shaded regions in Figs. 12 and 13, for thg(x,Q?), and in tending to higher values ad? are obtained.
Figs. 15 and 16 for thebc,(x,Q?) distribution. Based on the above considerations, we may conclude that
Next we turn to discuss the intrinsic theoretical uncer-the inclusion of the NLO corrections stabilizes the LO pre-
tainty of the NLO prediction related to the renormalization diction for the pion form factor by considerably reducing the
scale ambiguity. Regarding this uncertainty, there is in facintrinsic theoretical uncertainty related to the renormalization
no consensus on how to estimate it, or how to identify whakcale ambiguity. This uncertainty for both distributions turns
the central value 0Q%F _(Q?) should be. out to be less than 10%.
Nevertheless, the simplest but still a good measure of this

uncertainty is the quantity
VI. SUMMARY AND CONCLUSIONS

AF (Q% tinin: Mimax) = Q°F (Q? i iin) In this paper we have presented the results of a complete
leading-twist NLO QCD analysis of the spacelike electro-
—02 2 2
QF Q% kma), (517 magnetic form factor of the pion at large momentum transfer

i.e., the difference of the results fQ?F ,(Q?) correspond- To clarify the discrepancies in the analytical expression
ing to the lower funiy) and the upper limit &40 of the  for the hard-scattering amplitude present in previous calcu-
renormalization scale ambiguity intervéB.16). This quan- lations, we have carefully recalculated the one-loop Feyn-
tity, therefore, for a given value oR?, represents the man diagrams shown in Fig. 3. Working in ti@S renor-
“width” of the shaded regions in Figs. 12, 13, 15, and 16. Inmalization scheme and employing the dimensional
this sense, the shaded regions in these figures, limited by thregularization method to treat all divergend&s/, IR, and
curves corresponding o= Q? andu&=u3, v, essentially  collineay, we have obtained results which are in agreement
determine the theoretical accuracy allowed by the LO andvith those of Refs[5] (up to the typographical errors listed
NLO calculations. in [9]) and[7].

A glance at Figs. 12 and 13, displaying the LO and NLO As nonperturbative input at the reference momentum
predictions forQ?F (Q?) calculated with theg,4(x,Q?) scale of 0.5 GeV, we have used the four available pion dis-
distribution, reveals that, compared to the LO, the NLO re-tribution amplitudes defined by E(B.24) and plotted in Fig.
sults exibit a much smaller renormalization scale depenb: the asymptotic diStribUtiOﬂ)as(X,/lez) and the three QCD
dence. The same holds true for the predictions depicted iBum-rule inspired distributiongcz(x, u2), ¢pa(X,u2), and

Figs. 15 and 16, based on tie:z(x,Q?) distribution. dp3(X,u2). The NLO evolution of these distributions has
To be more quantitative, we thus find that, if, for the peen determined using the formalism developed in F2efl
bas(x,Q?) distribution, atQ*=50 GeV (100 GeV), in- By convoluting, according to Eq.(1.1), the hard-

stead ofug=Q? one takesui=pud, y=Q%/21, the LO re-  scattering amplitude with the pion distribution amplitude,
sult (Fig. 12 increases by 75% (64%), whereas the NLOboth calculated in the NLO approximation, we have obtained
result (Fig. 13 increases by 20% (16%). Analogously, for the NLO numerical predictions for the pion form factor, for
the same values d?, but for the ¢c,(x,Q?) distribution  the four candidate distributions, and for several different
we find that takingui= 3, y~Q?%79 insteadu=Q? the  choices of the renormalization and factorization scales,
LO result increases by 158% (125%), while the NLO resultand wg. All the predictions have been obtained assuming
increases by 47% (34%). ny{=3 andAys=0.2 GeV. We adopt the criteria according to
Therefore, the NLO corrections improve the situation be-which NLO prediction is considered reliable if, both, the
cause the terms in the NLO hard-scattering amplitude ariseatio of the NLO to LO contributions and the strong coupling
such that they cancel part of the scale dependence of the L&nstant are reasonably small.
result. We have first used the most simple choice of the scales
It should be pointed out that our estimate of the renormalwhereﬂﬁzuézQz. The results are summarized in Figs. 8
ization scale ambiguity interval given in E¢5.16 is very  and 9 and Tables II-V. Our numerical results based on the
conservative, overestimating the theoretical uncertainty ohsymptotic distribution amplitudep,«(X, ,U«E) differ from
the calculated NLO predictions. Namely, one could, almosthose of Ref[5] (the difference is due to the different value
at no risk, replac&? by (x)*?Q? as the upper limit of the of Ayg). Thus, in contrast to Ref5], where it was con-
interval. If this is done, the dotted rather than solid curvescluded that “reliable perturbative predictions cannot be
would then provide the lower bound of the shaded regions imade until momentum transfe@ of about 100 GeV are
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reached,” we have found that reliable predictions can alvalues ofug, as can be seen from Figs. 14 and 17. Requir-
ready be made at momentum transfers of the order of 28ng this ratio to be less than 0.3 and taking the less stringent
GeV. It has been shown that the inclusion of tthLO) condition on the value of the strong coupling(,qu)<o.5,
evolutional corrections only slightly influences the NLO pre-we find that the reliable predictions can already be made for
diction obtained assuming théas(x,,u,zz) distribution. On  the momentum transfe® of the order 5- 10 GeV.

the other hand, for the case of the end-point concentrated Given the fact that we do not know what the “optimal”
distributions, the evolutional corrections, both the LO andvalue of the renormalization scale is, choosing any particular
the NLO, are important. For thgaﬁ:,uézQz choice of value for this scale introduces a theoretical uncertainty in the
scales, the NLO corrections based on tags(x,ﬂﬁ), NLO predictions. Based on a reasonable guess about the
o (X,u2) bpa(x,u2), and ¢ps(x,u2) distributions, are renormalization scale ambiguity interval, we have estimated

large, which implies that one must demand that the momenthis uncertainty to be less than 10%. o
tum transfeiQ be considerably larger than 10 GeV before the ~ The difference between the absolute predictions based on
corresponding results become reliable. the das(X,uf), bez(X.uf) (dpa(X,uf)), and dps(X, uf)

In order to reduce the size of the NLO corrections and todistributions is large enough to allow an unambiguous ex-
examine the extent to which the NLO predictions for theperimental discrimination between them, as soon as the data
pion form factor depend on the scalgg and ur, in addi-  extending to higher values @ become available.
tion to the Simp|e3t ChOiCﬁé: MFZZ:QZ (WhICh Certain]y is In conclusion, the results of the Complete |eading-tWiSt
not best suited for the process of intejeste have also NLO QCD analysis, which has been carried out in this paper,
considered the choices @fg and ¢ given by Egs.(4.19 show that _rehable perturb_at|ve pred!cthns for th_e pion elec-
and (4.20), respectively. Compared to theg dependence, tr'omagnet|c form factor with all distribution amplitudes con-
the ¢ dependence of the results turns out to be of seconda\g‘wdered can already be made at a momentum traigfef
importance. Making use of the physically motivated choiceghe order of 5-10 GeV, with corrections to the LO results
for g (related to the average virtuality of the particles in theP€ing up to 30%. Theoretical uncertainty related to the
parton subprocess and modeling the pion with the renormalization scgle ambiguity, which cons'_ututes a reason-
¢as(X,M|2:) and ¢cz(X,M§) distribution amplitudes, leads to able range of physical values,. hgs been estimated to be less
the predictions shown in Figs. 13, 14, 16, and 17. Thé{ﬂa”d_l?o_/g' t'l_'o checlf_tOl(er pretd_lctlons and tc;hcfloose betwete?
beo(X,12) and dps(x,u2) distributions are not separately the distribution amplitudes, it is necessary that experimenta
considered, since the corresponding results are very simil&f2t@ at higher values @ are obtained.
to those obtained withhc(X, 2).

For a given distribution amplitude, the values of the pion
form factor Q%F _(Q?) are very stable against the variation
of the renormalization scalgg. This is evident from Figs. The authors would like to thank A. V. Radyushkin for
13 and 16, and is a reflection of the stabilizing effect that thepointing out an error present in the original version of the
inclusion of the NLO corrections has on the LO predictions.manuscript, and P. Kroll for useful suggestions. This work
On the other hand, the ratio of the NLO corrections to thewas supported by the Ministry of Science and Technology of
LO prediction, F(M(Q?)/F(®(Q?) is very sensitive to the the Republic of Croatia under Contract No. 00980102.
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