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Complete next-to-leading order perturbative QCD prediction for the pion
electromagnetic form factor

B. Melić,* B. Nižić,† and K. Passek‡
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~Received 2 February 1998; revised manuscript received 25 March 1999; published 24 August 1999!

We present the results of a complete leading-twist next-to-leading order~NLO! QCD analysis of the space-
like pion electromagnetic form factor at large momentum transferQ. We have studied their dependence on the
form of the pion distribution amplitude. For a given distribution amplitude, we have examined the sensitivity
of the predictions to the choice of the renormalization and factorization scales. Compared to the renormaliza-
tion scale, the factorization scale turns out to be of secondary importance. The renormalization scale depen-
dence of the leading-order~LO! results has been significantly reduced by including the NLO corrections.
Adopting the criteria according to which a NLO prediction is considered reliable if both the ratio of the NLO
to LO contributions and the strong coupling constant are reasonably small, we find that reliable perturbative
predictions for the pion electromagnetic form factor with all distribution amplitudes considered can already be
made at a momentum transferQ of the order 5210 GeV, with corrections to the LO results being up to
;30%. The theoretical uncertainty related to the renormalization scale ambiguity has been estimated to be less
than 10%. To check our predictions and to discriminate between the distribution amplitudes, it is necessary to
obtain experimental data extending to higher values ofQ. @S0556-2821~99!03315-9#

PACS number~s!: 13.40.Gp, 12.38.Bx
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I. INTRODUCTION

Exclusive processes involving large momentum trans
are among the most interesting and challenging tests of q
tum chromodynamics~QCD!.

The framework for analyzing such processes within
context of perturbative QCD~PQCD! has been developed b
Brodsky and Lepage@1#, Efremov and Radyushkin@2#, and
Duncan and Mueller@3# ~see Ref.@4# for reviews!. They
have demonstrated, to all orders in perturbation theory,
exclusive amplitudes involving large momentum trans
factorize into a convolution of a process-independent
perturbatively incalculable distribution amplitude, one f
each hadron involved in the amplitude, with a proce
dependent and perturbatively calculable hard-scattering
plitude.

Within the framework developed in Refs.@1–3#, leading-
order ~LO! predictions have been obtained for many exc
sive processes. It is well known, however, that, unlike
QED, the LO predictions in PQCD do not have much p
dictive power, and that higher-order corrections are esse
for many reasons. In general, they have a stabilizing ef
reducing the dependence of the predictions on the sche
and scales. Therefore, to achieve a complete confronta
between theoretical predictions and experimental data,
very important to know the size of radiative corrections
the LO predictions. The list of exclusive processes at la
momentum transfer analyzed at next-to-leading order~NLO!
is very short and includes only three processes: the pion e
tromagnetic form factor@5–10#, the pion transition form fac-
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tor @10–12#, and photon-photon annihilation into two flavo
nonsinglet helicity-zero mesons,gg˜MM̄ (M5p, K)
@13#.

In leading twist, the pion electromagnetic form factor~the
simplest exclusive quantity! can be written as

Fp~Q2!5E
0

1

dxE
0

1

dy

3F* ~y,mF
2 !TH~x,y,Q2,mR

2 ,mF
2 !F~x,mF

2 !. ~1.1!

Here F(x,mF
2) is the pion distribution amplitude, i.e., th

probability amplitude for finding the valenceq1q̄2 Fock state
in the initial pion with the constituents carrying the longit
dinal momentumxP and (12x)P; TH(x,y,Q2,mR

2 ,mF
2) is

the hard-scattering amplitude, i.e., the amplitude for a pa
lel q1q̄2 pair of the total momentumP hit by a virtual photon
g* of momentumq to end up as a parallelq1q̄2 pair of
momentumP85P1q; F* (y,mF

2) is the amplitude for the

final stateq1q̄2 to fuse back into a pion;Q252q2 is the
momentum transfer in the process and is supposed to
large;mR is the renormalization~or coupling constant! scale
andmF is the factorization~or separation! scale at which soft
and hard physics factorize.

The hard-scattering amplitudeTH can be calculated in
perturbation theory and represented as a series in the Q
running coupling constantaS(mR

2). The functionF is intrin-
sically nonperturbative, but its evolution can be calcula
perturbatively.

Although the PQCD approach of Refs.@1–3# undoubtedly
represents an adequate and efficient tool for analyzing ex
sive processes at very large momentum transfer, its app
bility to these processes at experimentally accessible
mentum transfer has long been debated and attracted m
©1999 The American Physical Society04-1
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attention. The concern has been raised@14,15# that, even at
very large momentum transfer, important contributions
these processes can arise from nonfactorizing end-point
tributions of the distribution amplitudes withx;1. It has
been shown, however, that the incorporation of the Suda
suppression effectively eliminates these soft contributi
and that the PQCD approach to the pion form factor beg
to be self-consistent for a momentum transfer of aboutQ2

.4 GeV2 @16# ~see also Ref.@17#!.
To obtain the complete NLO prediction for the pion for

factor requires calculating NLO corrections to both the ha
scattering amplitude and the evolution kernel for the p
distribution amplitude.

The NLO predictions for the pion form factor obtained
Refs.@5–9# are incomplete insofar as only the NLO corre
tion to the hard-scattering amplitude has been conside
whereas the corresponding NLO corrections to the evolu
of the pion distribution amplitude have been ignored. Ap
from not being complete, the results of the calculations p
sented in Refs.@5–9# do not agree with one another.

Evolution of the distribution amplitude can be obtained
solving the differential-integral evolution equation using t
moment method. In order to determine the NLO correctio
to the evolution of the distribution amplitude, it is necessa
to calculate two-loop corrections to the evolution kern
These have been computed by different authors and the
tained results are in agreement@18#. Because of the compli
cated structure of these corrections, it is possible to ob
numerically only the first few moments of the evolution ke
nel @19#. Using these incomplete results, the first attempt
include the NLO corrections to the evolution of the distrib
tion amplitude in the NLO analysis of the pion form fact
was obtained in Ref.@10#. It has been found that the NLO
corrections to the evolution of the pion distribution amp
tude as well as to the pion form factor are tiny.

Considerable progress has recently been made in un
standing the NLO evolution of the pion distribution amp
tude @20#. Using conformal constraints, the complete form
solution of the NLO evolution equation has been obtain
Based on this result, it has been found that, contrary to
estimates given in Ref.@10#, the NLO corrections to the evo
lution of the distribution amplitude are rather large. It h
been concluded that because of the size of the discov
corrections, and their dependence upon the input distribu
amplitude, the evolution of the distribution amplitude has
be included in the NLO analysis of exclusive processes
large momentum transfer.

The purpose of this paper is to present a comp
leading-twist NLO QCD analysis of the spacelike pion ele
tromagnetic form factor at large momentum transfer.

The plan of the paper is as follows. To check and ver
the results obtained in Refs.@5–9#, in Sec. II we carefully
calculate all one-loop diagrams contributing to the NL
hard-scattering amplitude for the pion form factor. We u
the Feynman gauge, the dimensional regularization met
and the modified minimal-subtraction~MS! scheme. Our re-
sults are in agreement with those obtained in Refs.@5#
~modulo typographical errors listed in@9#! and @7#. Making
use of the method introduced in Ref.@20#, in Sec. III we
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determine NLO evolutional corrections to four available ca
didate pion distribution amplitudes. In Sec. IV we discu
several possible choices of the renormalization scalemR and
the factorization scalemF . In Sec. V we obtain complete
NLO numerical predictions for the pion form factor using th
four candidate pion distribution amplitudes. For a given d
tribution amplitude we examine the sensitivity of the pred
tions on the renormalization and factorization scales,mR and
mF , respectively. We takeL MS 50.2 GeV for the calcula-
tion presented here. Section VI is devoted to discussions
some concluding remarks.

II. NLO CORRECTION TO THE HARD-SCATTERING
AMPLITUDE

In this section we recalculate the NLO correction to t
hard-scattering amplitude for the pion form factor.

In leading twist, the hard-scattering amplitude is obtain
by evaluating the (q1q̄2)1g*˜(q1q̄2) amplitude, which is
described by the Feynman diagrams in Fig. 1, with mass
valence quarks collinear with parent mesons. In this figu
uP and (12u)P @vP8 and (12v)P8] denote the longitudi-
nal momenta of the pion constituents before the subtrac
of collinear singularities. In this evaluation, terms of ord
m2/Q2 are not included and, since the constituents are c
strained to be collinear, terms of orderk'

2 /Q2 (k' is the
average transverse momentum in the meson! are not taken
into account either. By projecting theq1q̄2 pair into a color-
singlet pseudoscalar state the amplitude corresponding to
of the diagrams in Fig. 1 can be written in terms of a trace
a fermion loop.

By definition, the hard-scattering amplitudeTH is free of
collinear singularities and has a well-defined expansion
aS(mR

2) of the form

TH~x,y,Q2,mR
2 ,mF

2 !5aS~mR
2 !TH

(0)~x,y,Q2!F1

1
aS~mR

2 !

p
TH

(1)~x,y,mR
2/Q2,mF

2/Q2!

1•••G , ~2.1!

where

FIG. 1. Feynman diagrams describing the (q1q̄2)1g*
˜(q1q̄2) transition amplitude in terms of which the hard-scatteri
amplitude for the pion form factor is obtained.
4-2
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COMPLETE NEXT-TO-LEADING ORDER PERTURBATIVE . . . PHYSICAL REVIEW D60 074004
aS~mR
2 !5

4p

b0 ln~mR
2/LQCD

2 !
, ~2.2!

and

b05112
2

3
nf , ~2.3!

with nf being the effective number of quark flavors a
LQCD is the fundamental QCD parameter.

In the LO approximation~Born approximation! there are
only four Feynman diagrams contributing to the (q1q̄2)
1g*˜(q1q̄2) transition amplitude. They are shown in Fi
2. Evaluating these diagrams, one finds that the LO ha
scattering amplitude is given by

TH
(0)~x,y,Q2!5

4

3

16p

Q2~12x!~12y!
. ~2.4!

To obtain this result, it is necessary to evaluate only one
the four diagrams. Namely, knowing the contribution of d
gram A, the contribution of diagramsB, C, and D can be
obtained by making use of the isospin symmetry and tim
reversal symmetry. In the leading-twist approximation,
isospin symmetry is exact. A consequence of this is that
contributions of diagramsA andB are related to the contri
butions of C and D, respectively. On the other hand, di
grams A and C are by time-reversal symmetry related
diagramsB andD, respectively.

At NLO there are altogether 62 one-loop Feynman d
grams contributing to the (q1q̄2)1g*˜(q1q̄2) amplitude.
They can be generated by inserting an internal gluon
into the leading-order diagrams of Fig. 2. Use of the abo
mentioned symmetries~isospin and time-reversal! cuts the
number of independent one-loop diagrams to be evalu
from 62 to 17. They are all generated from the LO diagr
A. We use the notation whereAi j is the diagram obtained
from diagramA by inserting the gluon line connecting th
lines i and j, wherei , j 51,2,•••,6. They are shown in Fig. 3

FIG. 2. Lowest-order Feynman diagrams contributing to

(q1q̄2)1g*˜(q1q̄2) amplitude.
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with the exception ofA33, A55, andA66, which give obvi-
ously the same contribution asA11. These diagrams contai
ultraviolet ~UV! singularities and, owing to the fact tha
initial- and final-state quarks are massless and onshell,
also contain both infrared~IR! and collinear singularities
We use dimensional regularization inD5422e dimensions
to regularize all three types of singularities, distinguishi
the poles 1/e by the subscripts UV and IR (D5422eUV,
412e IR). Soft singularity is always accompanied by tw
collinear singularities and, consequently, when dimensi
ally regularized, leads to the double pole 1/e IR

2 .
Before the subtraction of divergences has been perform

e

FIG. 3. Distinct one-loop Feynman diagrams contributing to

(q1q̄2)1g*˜(q1q̄2) amplitude. The total number of diagrams
62.
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TABLE I. Contributions toD (1)(u,v,mR
2/Q2,mF

2/Q2) @defined by Eq.~2.6!# of Feynman diagrams show
in Fig. 3.

A11 2
1

12
~hUV1hIR!

A22 2
1

6
~hUV2ln v̄!

A44
1

8 FS52
2

3
nfD „hUV2 ln~ūv̄!…1

16

3
2

4

9
nf G

A23 1

6
S hUV1

11 v̄
v

ln v̄D
A12 2

1

48
FhUV12hIRS11

ū

u
ln ūD232

ū

u
ln ū1ln v̄1

ū

u
ln2ū12

ū

u
ln ū ln v̄G

A56 2
1

48
@hUV12hIR„12 ln~ūv̄!…22h̃ IR251 ln~ūv̄!2ln2ū2ln2v̄22 ln ū ln v̄#

A14
3

16 F3hUV12hIRX11
lnū

u
C111 ln

ū

v̄
1

ln2ū

u
12

ln ū ln v̄
u G

A45
3

16
@3hUV14hIR211ln~ūv̄!#

A15 2
1

3

ū

u FhIR ln ū1ln ū1
1

2
ln2ū1ln ū ln v̄G

A16 2
1

24
Fh̃IR1hIRS11

ln ū

u
12 ln u1ln v̄D1 ln ū

u
12 ln u1ln v̄1

1

2

ln2ū

u
1ln2u

1
1

2
ln2v̄1

ln ū ln v̄
u

12 ln u ln v̄ G
A34 3

8
FhIRS21

ln ū

u
1

ln v̄
v D221 ln ū1ln v̄1

ū1v̄
uv

ln ū ln v̄1
1

2u
ln2ū1

1

2v
ln2v̄G

A13 1

24 Hh̃IR1hIRSūu ln ū1ln u1ln vD11

1
ū

2u
ln2ū1

1

2
ln2u1

1

2
ln2v1ln u ln v1

ū

u
ln ū ln v̄

2
1

2~u2v!2 F 4ū2uH~u,v̄ !1~4u25u21v2!~ ln u1ln v!

1~6u25u222v1v2!ū
ln ū

u
1~2u24u212v24uv15u2v2v3!

ln v̄
v GJ

A36 2
1

3
FhIRSūu ln ū1

v̄
v

ln v̄D1 ū

u
ln ū1

v̄
v

ln v̄1
ū

2u
ln2ū1

v̄
2v

ln2v̄1
ū1v̄
uv

ln ū ln v̄G
A35

2
1

24 F2h̃IR1hIRS21
11u

u
ln ū1

11v
v

ln v̄D22~12u2v!H~u,v !1
11u

u
ln ū

1
11v

v
ln v̄1

11u

2u
ln2ū1

11v
2v

ln2v̄1
ū1v̄
uv

ln ū ln v̄ G
074004-4
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the pion form factor convolution formula reads

Fp~Q2!5E
0

1

duE
0

1

dv

3F* ~v !D~u,v,mUV
2 /Q2,m IR

2 /Q2!F~u!, ~2.5!

where D(u,v,mUV
2 /Q2,m IR

2 /Q2) denotes the amplitude fo

the (q1q̄2)1g*˜(q1q̄2) quark subprocess. This amplitud
has the expansion of the form

D~u,v,mUV
2 /Q2,m IR

2 /Q2!5aSD (0)~u,v,Q2!

1
aS

2

p
D (1)~u,v,mUV

2 /Q2,m IR
2 /Q2!

1 . . . , ~2.6!

where

D (0)~u,v,Q2!5~12e!TH
(0)~u,v,Q2!. ~2.7!

The contributions of the individual diagrams
D (1)(u,v,mUV

2 /Q2,m IR
2 /Q2), with the overall factor

TH
(0)(u,v,Q2) of Eq. ~2.4! extracted, are listed in Table I. W

have used the following notation:

ū512u, v̄512v,

hUV5
1

eUV
2g2 ln

Q2

4pmUV
2

5
1

êUV

1 ln
mUV

2

Q2
,

h IR5
1

e IR
1g1 ln

Q2

4pm IR
2

5
1

ê IR

2 ln
m IR

2

Q2
,

h̃ IR5
1

e IR
2

1
1

e IR
S g1 ln

Q2

4pm IR
2 D 1

1

2 S g22
p2

6 D
1g ln

Q2

4pm IR
2

1
1

2
ln2

Q2

4pm IR
2

,

1

êUV

5
1

eUV
2g1 ln~4p!,

1

ê IR

5
1

e IR
1g2 ln~4p!. ~2.8!

The function H(u,v) appearing in Table I is given by th
expression
07400
H~u,v !5
1

12u2v FLi2S v̄
u
D 1Li2S ū

v D 1Li2S uv

ūv̄
D

2Li2S u

v̄
D 2Li2S v

ū
D 2Li2S ūv̄

uv D G , ~2.9!

where Li2(u) is the Spence function defined as

Li2~u!52E
0

u ln~12t !

t
dt. ~2.10!

Adding up the contributions of all diagrams, we find that t
NLO contribution to the (q1q̄2)1g*˜(q1q̄2) amplitude,
given in Eq.~2.6!, can be written in the form

D (1)~u,v,mUV
2 /Q2,m IR

2 /Q2!

5TH
(0)~u,v,Q2!FCUV

1

êUV

1CIR~u,v !
1

ê IR

1 f̃ UV~u,v,mUV
2 /Q2!1 f̃ IR~u,v,m IR

2 /Q2!1 f̃ C~u,v !G ,

~2.11!

where

CUV5
1

4
b0 , ~2.12a!

CIR~u,v !5
2

3
@31 ln~ ūv̄ !#, ~2.12b!

and

f̃ UV~u,v,mUV
2 /Q2!5CUVF2

3
2 ln~ ūv̄ !1 ln

mUV
2

Q2 G , ~2.13a!

f̃ IR~u,v,m IR
2 /Q2!5CIR~u,v !F1

2
ln~ ūv̄ !2 ln

m IR
2

Q2 G ,

~2.13b!

f̃ C~u,v !5
1

12
@210120 ln~ ūv̄ !1 ln u ln v

1 ln ū lnv̄2 ln u ln v̄2 ln ūln v

1~12u2v !H~u,v !1R~u,v !#.
~2.13c!

The function R(u,v) is defined as
4-5
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R~u,v !5
1

~u2v !2 F ~2uv2u2v !~ ln u1 ln v !

1~22uv222v2110uv22v24u2!
ln v̄
v

1~22vu222u2110uv22u24v2!
ln ū

u

2~vv̄21uū2!H~u,v̄ !G . ~2.14!

The contributions of the individual diagrams listed in Tabl
are in agreement with those obtained in Ref.@5# ~up to some
typographical errors listed in@9#!. Correspondence betwee
our results and those of Ref.@5# is established by multiplying
the latter by (P1P8)m/Q2.

It is easily seen from Eqs.~2.11!–~2.14! that in summing
up the contributions of all diagrams to the exclusive (q1q̄2)
1g*˜(q1q̄2) amplitude, the originally present soft singu
larities ~double 1/e IR

2 poles! cancel out, as required. The fin
result for the amplitude contains 1/eUV and only simple 1/e IR
poles.

We now proceed to treat these poles. When doing t
one has to exercise some care, since the subtractions ha
be performed in such a way that the universality of the d
tribution amplitude as well as the universality of the coupli
constant are simultaneously preserved.

The IR poles in Eq.~2.11!, related to collinear singulari
ties, are such that they can be absorbed into the pion di
bution amplitude. The universality of the distribution amp
tude requires that the poles 1/e IR should be absorbed b
some universal renormalization factor@8,21#. The
regularization-dependent terms represent ‘‘soft’’ effects a
therefore we absorb them into the distribution amplitu
along with the singularities. A crucial observation is that t
structure of the collinearly divergent terms in Eq.~2.11! is
such that one can write

V1~v,y! ^ TH
(0)~x,y,Q2! ^ d~x2u!

1d~v2y! ^ TH
(0)~x,y,Q2! ^ V1~x,u!

5CIR~u,v !TH
(0)~u,v,Q2!, ~2.15!

FIG. 4. Pictorial representation of the procedure for absorb
the collinear divergences into the pion distribution amplitu
F(x,mF

2).
07400
I

s,
e to
-

ri-

d
e

where the functionV1(x,u) is the one-loop evolution kerne
for the pion distribution amplitude~see the correspondin
expression in, for example,@5# or @22#!, while ^ denotes the
convolution symbol defined as

A~z! ^ B~z!5E
0

1

dzA~z!B~z!. ~2.16!

Based on Eq.~2.15!, the NLO expression for the (q1q̄2)
1g*˜(q1q̄2) amplitude, given by Eqs.~2.6!, ~2.11!–
~2.14!, can be written in a factorized form

aSD (0)~u,v,Q2;e IR!1
aS

2

p
D (1)~u,v,m IR

2 /Q2;1/e IR!

5F d~v2y!1
aS

p
V1~v,y!S 1

ê IR

1 ln
mF

2

m IR
2 D G

^ H aSTH
(0)~x,y,Q2!F ~12e!

1
aS

p
T̂H

(1)~x,y,mF
2/Q2;e IR!G J

^ F d~x2u!1
aS

p
V1~x,u!S 1

ê IR

1 ln
mF

2

m IR
2 D G . ~2.17!

Formula ~2.17! shows the essence of the procedure for
separation of collinear divergences, which is schematic
represented in Fig. 4. The procedure consists of summing
effects of collinear divergences contained in the shaded r
angular region in Fig. 4, as a result of which the outs
quark ~antiquark! with momentumuP (ūP) ends up on the
inside quark~antiquark! of momentumxP ( x̄P).

As for the UV poles, we renormalize them using th
modified minimal-subtraction scheme. This is carried out
stating thataS appearing in Eq.~2.6! is the bare unrenormal
ized coupling related to the renormalized physical coupl
aMS̄(mR

2) by

aS5aMS~mR
2 !F12

aMS ~mR
2 !

p

b0

4 S 1

êUV

2 ln
mR

2

mUV
2 D G . ~2.18!

It is important to note that thee˜0 limit can be taken
only after the separation of collinear divergences and
renormalization have been performed@taking thee˜0 limit
in D (0) before the subtraction of IR and UV singularities
equivalent to choosing a factorization scheme that does
respect the universality of the distribution amplitude~see@8#!
and the renormalization scheme in which the running c
pling constant is not universal#. As a result, we obtain the
following expression for the NLO hard-scattering amplitu
for the pion form factor:

g

4-6
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TH~x,y,Q2,mR
2 ,mF

2 !

5aMS~mR
2 !TH

(0)~x,y,Q2!

3F11
aMS~mR

2 !

p
TH

(1)~x,y,mR
2/Q2,mF

2/Q2!G , ~2.19!

where

TH
(1)~x,y,mR

2/Q2,mF
2/Q2!

5 f UV~x,y,mR
2/Q2!1 f IR~x,y,mF

2/Q2!1 f C~x,y!, ~2.20!

and

f UV~x,y,mR
2/Q2!5 f̃ UV~x,y,mR

2/Q2!1CUV

5
1

4
b0F5

3
2 ln~ x̄ȳ!1 ln

mR
2

Q2G , ~2.21a!

f IR~x,y,mF
2/Q2!5 f̃ IR~x,y,mF

2/Q2!

5
2

3
@31 ln~ x̄ȳ!#F1

2
ln~ x̄ȳ!2 ln

mF
2

Q2G ,

~2.21b!

f C~x,y!5 f̃ C~x,y!2CIR~x,y!

5
1

12
@234112 ln~ x̄ȳ!1 ln x ln y

1 ln x̄ ln ȳ2 ln x ln ȳ2 ln x̄ ln y

1~12x2y!H~x,y!1R~x,y!#. ~2.21c!

A few comments on the previously performed calculatio
are in order. Our final expression for the hard-scattering a
plitude TH is in agreement with Ref.@7#. The calculation of
@5# contains a few typographical errors in the diagram-b
diagram listing as well as in the final expression~which are
all listed in @9#!. Apart from this, the results from Ref.@5#
agree with ours. In Refs.@6,8# the contribution of the dia-
grams with propagator corrections on external quark li
were not taken into account. Also, in Ref.@6# the subtraction
of collinear singularities was performed in a way that is n
consistent with the universality of the distribution amplitu
~see the discussion in Ref.@8#!. Finally, a thorough analysis
of the results of Refs.@5–7# was performed in Ref.@9#, but in
obtaining the final expression for the hard-scattering am
tudeTH , collinear and UV divergences were subtracted i
way that is not consistent with the universality of both t
distribution amplitude and the running coupling constant.

III. EVOLUTIONAL CORRECTIONS TO THE PION
DISTRIBUTION AMPLITUDE

The pion distribution amplitudeF(x,mF
2), controlling ex-

clusive pion processes at large momentum transfer, is
07400
s
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basic valence wave function of the pion. Its form is not y
accurately known. It has been shown, however, that the
tonic decayp1

˜m1nm imposes onF(x,mF
2) a constraint of

the form

E
0

1

dx F~x,mF
2 !5

f p

2A2nC

. ~3.1!

Given the form ofF(x,mF
2), this relation normalizes it for

anymF
2 . In Eq. ~3.1!, f p50.131 GeV is the pion decay con

stant andnC(53) is the number of QCD colors.
Instead of usingF(x,mF

2) satisfying Eq.~3.1!, one usu-
ally introduces the distribution amplitudef(x,mF

2) normal-
ized to unity,

E
0

1

dx f~x,mF
2 !51, ~3.2!

and related toF(x,mF
2) by

F~x,mF
2 !5

f p

2A2nC

f~x,mF
2 !. ~3.3!

Although intrinsically nonperturbative, the pion distribu
tion amplitudef(x,mF

2) satisfies an evolution equation of th
form

mF
2 ]

]mF
2

f~x,mF
2 !5E

0

1

du V„x,u,aS~mF
2 !… f~u,mF

2 !,

~3.4!

in which the evolution kernel is calculable in perturbatio
theory:

V„x,u,aS~mF
2 !…5

aS~mF
2 !

p
V1~x,u!1S aS~mF

2 !

p D 2

V2~x,u!

1••• ~3.5!

and has been computed in the one- and two-loop approxi
tions using dimensional regularization and theMS scheme.

If the distribution amplitudef(x,m0
2) can be calculated a

an initial momentum scalem0
2 using QCD sum rules@23# or

lattice gauge theory@24#, then the differential-integral evolu
tion equation ~3.4! can be integrated using the mome
method to givef(x,mF

2) at any momentum scalemF
2.m0

2 .
Because of the complicated structure of the two-loop c

tribution to the evolutional kernelV2(x,y), only the first few
moments of the evolutional kernel have been computed
merically.

Recently, based on the conformal spin expansion and
conformal consistency relation, the analytical result for t
evolution of the flavor-nonsinglet meson distribution amp
tude has been determined@20#.
4-7
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To the NLO approximation, this rather complicated solution has the form

f~x,mF
2 !5fLO~x,mF

2 !1
aS~mF

2 !

p
fNLO~x,mF

2 !, ~3.6!

where

fLO~x,mF
2 !5x~12x! (

n50

`

8 Cn
3/2~2x21!

4~2n13!

~n11!~n12! S aS~m0
2!

aS~mF
2 !

D gn
(0)/b0E

0

1

dyCn
3/2~2y21!f~y,m0

2!, ~3.7!

and

fNLO~x,mF
2 !5x~12x! (

n50

`

8 S aS~m0
2!

aS~mF
2 !

D gn
(0)/b0E

0

1

dyCn
3/2~2y21!f~y,m0

2!

3FCn
3/2~2x21!

~2n13!

~n11!~n12! S 12
aS~m0

2!

aS~mF
2 !

D S gn
(1)

2b0
1

b1

b0
2
gn

(0)D
1 (

k5n12

`

8 Ck
3/2~2x21!

2~2k13!

~k11!~k12!
Skn~mF

2 !Ckn
(1)G , ~3.8!

with abbreviations

Skn~mF
2 !5

gk
(0)2gn

(0)

gk
(0)2gn

(0)1b0
F12S aS~m0

2!

aS~mF
2 !

D 11(gk
(0)

2gn
(0))/b0G , ~3.9!

Ckn
(1)5~2n13!Fgn

(0)2b014CFAkn

~k2n!~k1n13!
1

2CF~Akn2c~k12!1c~1!!

~n11!~n12!
G , ~3.10!

Akn5cS k1n14

2 D2cS k2n

2 D12c~k2n!2c~k12!2c~1!, ~3.11!

and(8 denoting the sum running only over evenn, while Cn
3/2(z) are Gegenbauer polynomials of order 3/2 andCF54/3. In

Eqs.~3.7!–~3.10!, gn
(0) are the usual anomalous dimensions:

gn
(0)5CFF31

2

~n11!~n12!
24(

i 51

n11
1

i G , ~3.12!

while b0 andb1 are the first two terms in the expansion of the QCDb-function, withb0 given by Eq.~2.3!, and

b151022
38

3
nf . ~3.13!

The functionc(z) appearing in Eqs.~3.10! and ~3.11! is defined as

c~z!5
d

dz
„ln G~z!…. ~3.14!

For nf53 and for the values ofn we are interested in, we have taken the values of the anomalous dimensiongn
(1) from @25,26#:

g0
(1)50, g2

(1)5111.03, g4
(1)5150.28. ~3.15!
074004-8
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To proceed, we expand the distribution amplitu
f(x,m0

2) in terms of the Gegenbauer polynomialsCn
3/2(2x

21) ~the eigenfunctions of the LO evolution equation!:

f~x!5f~x,m0
2!56x~12x! (

n50

`

8BnCn
3/2~2x21!.

~3.16!

Owing to the orthogonality of the Gegenbauer polynomia
the expansion coefficientsBn are given by

Bn5
1

6

4~2n13!

~n11!~n12!
E

0

1

dxCn
3/2~2x21!f~x! ~3.17!

and the normalization condition~3.2! then impliesB051.
Substituting Eq.~3.16! into Eq. ~3.7! gives

fLO~x,mF
2 !56x~12x! (

n50

`

8Bn
LO~mF

2 ! Cn
3/2~2x21!,

~3.18!

where

Bn
LO~mF

2 !5BnS aS~m0
2!

aS~mF
2 !

D gn
(0)/b0

, ~3.19!

so that, obviously,B0
LO51. Next, by taking Eq.~3.16! into

account Eq.~3.8! becomes

fNLO~x,mF
2 !56x~12x!(

k52

`

8Bk
NLO~mF

2 !Ck
3/2~2x21!,

~3.20!

where

Bk
NLO~mF

2 !5Bk
LO~mF

2 !Pk~mF
2 !1 (

n50

k22

8Bn
LO~mF

2 !Qkn~mF
2 !,

~3.21!

and

Pk~mF
2 !5

1

4 S gk
(1)

2b0
1

b1

b0
2
gk

(0)D S 12
aS~m0

2!

aS~mF
2 !

D , ~3.22!

Qkn~mF
2 !5

~2k13!

~k11!~k12!

3
~n12!~n11!

2~2n13!
Ckn

(1)Skn~mF
2 !. ~3.23!

For the purpose of our calculation, we use the following fo
candidate distribution amplitudes~shown in Fig. 5! as non-
perturbative inputs at the reference momentum scalem0

2

5(0.5 GeV)2:

fas~x![fas~x,m0
2!56x~12x!, ~3.24a!
07400
,

r

fCZ~x![fCZ~x,m0
2!56x~12x!@5~2x21!2#,

~3.24b!

fP2~x![fP2~x,m0
2!

56x~12x!@20.182115.91~2x21!2#,

~3.24c!

fP3~x![fP3~x,m0
2!

56x~12x!@0.601624.659~2x21!2

115.52~2x21!4#. ~3.24d!

Herefas(x) is the asymptotic distribution amplitude an
represents the solution of the evolution equation~3.4! for
mF

2
˜`. The double-hump-shaped distribution amplitud

fCZ(x) andfP2(x) and the three-hump-shaped distributio
amplitudefP3(x) have been obtained using the method
QCD sum rules@23,27#. As Fig. 5 shows, these distributio
amplitudes, unlikefas(x), are strongly end-point concen
trated. In the limitmF

2
˜`, they reduce to the asymptoti

form fas(x).
The pion candidate distribution amplitudes given by E

~3.24! are of the general form

f~x!5f~x,m0
2!

5fas~x!@11B2C2
3/2~2x21!1B4C4

3/2~2x21!#,

~3.25!

with the corresponding coefficients

fas~x!: Bn50, n>2 ~3.26a!

fCZ~x!: Bn50, n.2 B252/3 ~3.26b!

fP2~x!: Bn50, n.2 B250.788 ~3.26c!

fP3~x!: Bn50, n.4 B250.7582 B450.3941,

~3.26d!

FIG. 5. The four candidate pion distribution amplitudes defin
by Eq. ~3.24!, chosen as nonperturbative inputs at the refere
scalem0

25(0.5 GeV)2.
4-9
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with B051. Now, according to Eqs.~3.18! and ~3.20!, the
LO and NLO parts of the distribution amplitude~3.25! read

fLO~x,mF
2 !5fas~x!@11B2

LO~mF
2 !C2

3/2~2x21!

1B4
LO~mF

2 !C4
3/2~2x21!#, ~3.27!

fNLO~x,mF
2 !5fas~x!FB2

NLO~mF
2 !C2

3/2~2x21!

1B4
NLO~mF

2 !C4
3/2~2x21!

1 (
k56

`

8Bk
NLO~mF

2 !Ck
3/2~2x21!G ,

~3.28!

where

B2
LO~mF

2 !5B2S aS~m0
2!

aS~mF
2 !

D 250/81

,

B4
LO~mF

2 !5B4S aS~m0
2!

aS~mF
2 !

D 2364/405

, ~3.29!

and

B2
NLO~mF

2 !5B2
LO~mF

2 !P2~mF
2 !1Q20~mF

2 !,

B4
NLO~mF

2 !5B4
LO~mF

2 !P4~mF
2 !1Q40~mF

2 !

1B2
LO~mF

2 !Q42~mF
2 !,

Bk
NLO~mF

2 !5Qk0~mF
2 !1B2

LO~mF
2 !Qk2~mF

2 !

1B4
LO~mF

2 !Qk4~mF
2 !, k>6. ~3.30!

Note thatfNLO(x,mF
2) represents the infinite sum of Gege

bauer polynomials even though thef(x) distribution is de-
scribed by a finite number of terms. SinceBk

NLO decreases
with k, for the purpose of numerical calculation one can a
proximatefNLO(x,mF

2) by neglecting higher-order Gegen
bauer polynomials (k.100).

A summary of our results for the four candidate distrib
tion amplitudes with the NLO evolutional corrections i
cluded is shown in Fig. 6. The dash-dotted curves corresp
to the distribution amplitudes at the reference pointmF

2

5m0
25(0.5 GeV)2. The dashed and solid curves repres

the distribution amplitudes evoluted tomF
25(2 GeV)2, with

the difference that the former includes only LO evolution
corrections, whereas the latter includes NLO evolutional c
rections. As it is obvious from Eqs.~3.26a!, ~3.27!, and
~3.28!, althoughfas shows no LO evolution, there are tin
effects of the NLO evolution. For other distributions, the L
evolution is significant, and even the NLO evolution is no
negligible. Any distribution amplitude evolves asympto
cally ~i.e., for mF

2
˜`) into fas(x), but the highermF

2 is, the
‘‘slower’’ this approach becomes.
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IV. CHOOSING THE FACTORIZATION AND THE
RENORMALIZATION SCALES

In this section we discuss various possibilities of choos
the renormalization scalemR and the factorization scalemF
appropriate for the process under consideration.

Before starting the discussion, let us now, with the help
Eqs.~1.1!, ~2.1!, and~3.6!, write down the complete leading
twist NLO QCD expression for the pion electromagne
form factor with themR andmF dependence of all the term
explicitly indicated.

Generally, for the NLO form factor we can write

Fp~Q2,mR
2 ,mF

2 !5Fp
(0)~Q2,mR

2 ,mF
2 !1Fp

(1)~Q2,mR
2 ,mF

2 !.
~4.1!

The first term in Eq.~4.1! is the LO contribution and is given
by

Fp
(0)~Q2,mR

2 ,mF
2 !5E

0

1

dxE
0

1

dy aS~mR
2 !

3FLO* ~y,mF
2 !TH

(0)~x,y,Q2!FLO~x,mF
2 !.

~4.2!

The second term in Eq.~4.1! is the NLO contribution and
can be written as

Fp
(1)~Q2,mR

2 ,mF
2 !5Fp

(1a)~Q2,mR
2 ,mF

2 !1Fp
(1b)~Q2,mR

2 ,mF
2 !,

(4.3)

where

Fp
(1a)~Q2,mR

2 ,mF
2 !

5E
0

1

dxE
0

1

dy
aS

2~mR
2 !

p
FLO* ~y,mF

2 !

3TH
(0)~x,y,Q2!TH

(1)~x,y,mR
2/Q2,mF

2/Q2!

3FLO~x,mF
2 ! ~4.4!

is the contribution coming from the NLO correction to th
hard-scattering amplitude, whereas

Fp
(1b)~Q2,mR

2 ,mF
2 !

5E
0

1

dxE
0

1

dy
aS~mR

2 !aS~mF
2 !

p

3@FNLO* ~y,mF
2 !TH

(0)~x,y,Q2!FLO~x,mF
2 !

1FLO* ~y,mF
2 !TH

(0)~x,y,Q2!FNLO~x,mF
2 !# ~4.5!

is the contribution arising from the inclusion of the NL
evolution of the distribution amplitude. Now, if Eq.~2.4! is
taken into account, the expression for the LO contribution
Eq. ~4.2! can be written in the form
4-10
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FIG. 6. Evolution of the four candidate pion distribution amplitudes:fas(x,mF
2), fCZ(x,mF

2), fP2(x,mF
2), and fP3(x,mF

2), with the
running coupling constantaS(mF

2) and three active flavors. The dash-dotted curves correspond to the distribution amplitudes given
~3.24! and taken as nonperturbative input at the reference momentum scalem0

25(0.5 GeV)2. The dashed curves correspond to the dis
bution amplitudes at the momentum scalemF

25(2 GeV)2 with the LO evolutional corrections included according to~3.27!. The solid curves
correspond to the distribution amplitudes at the momentum scalemF

25(2 GeV)2 with the NLO evolutional corrections taken into accou
according to Eqs.~3.6!, ~3.27! and ~3.28!.
e
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Fp
(0)~Q2,mR

2 ,mF
2 !5

8

9
p

f p
2

Q2E0

1

dxE
0

1

dyaS~mR
2 !

3
fLO~x,mF

2 !

x̄

fLO* ~y,mF
2 !

ȳ
. ~4.6!

Next, before going on to perform the remainingx and y
integrations, we have to choose the renormalization scalemR
and the factorization scalemF . In doing this, however, there
is considerable freedom involved.

If calculated to all orders in perturbation theory, th
physical pion form factorFp(Q2), represented at the suffi
ciently highQ2 by the factorization formula~1.1!, would be
independent of the renormalization and factorization sca
mR andmF , and so they are arbitrary parameters. Truncat
of the perturbative expansion ofFp(Q2) at any finite order
causes a residual dependence on these scales. Althoug
best choice for these scales remains an open question~the
scale ambiguity problem!, one would like to choose them i
such a way that they are of an order of some physical sca
07400
s,
n

the

in

the problem, and, at the same time, to reduce the size
higher-order corrections as much as possible. Choosing
specific value for these scales leads to a theoretical un
tainty of the perturbative result.

In our calculation we approximateFp(Q2) only by two
terms of the perturbative series and hope that we can m
mize higher-order corrections by a suitable choice ofmR and
mF , so that the LO termFp

(0)(Q2,mR
2 ,mF

2) gives a good ap-
proximation to the complete sumFp(Q2).

It should be noted that inFp
(0)(Q2,mR

2 ,mF
2), given by Eq.

~4.2!, mR appears only throughaS(mR
2), whereasmF enters

into the distribution amplitude f(x,mF
2). In

Fp
(1)(Q2,mR

2 ,mF
2), given by Eqs.~4.3!–~4.5!, a logarithmic

dependence on the scalesmR and mF appears also through
TH

(1)(x,y,mR
2/Q2,mF

2/Q2). As seen from Eqs.~2.21! and
~2.20!, this dependence is contained in the terms

f UV~x,y,Q2/mR
2 !5

1

4
b0F5

3
2 ln~ x̄ȳ!1 ln

mR
2

Q2G , ~4.7!
4-11
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f IR~x,y,Q2/mF
2 !5

2

3
@31 ln~ x̄ȳ!#F1

2
ln~ x̄ȳ!2 ln

mF
2

Q2G .

~4.8!

Being independent of each other, the scalesmR andmF can
be expressed in terms ofQ2 as

mR
25a~x,y!Q2, ~4.9!

mF
25b~x,y!Q2, ~4.10!

wherea(x,y) and b(x,y) are some linear functions of th
dimensionless variablesx andy ~quark longitudinal momen-
tum fractions!.

We next discuss various possibilities of choosing
scalesmR andmF separately. The simplest and widely us
choice for the scalemR is

mR
25Q2, ~4.11!

the justification for the use of which is mainly pragmatic.
Physically, however, the more appropriate choice formR

2

would be that one corresponding to the characteristic vi
alities of the particles in the parton subprocess, which
considerably lower than the overall momentum transferQ2

~i.e., virtuality of the probing photon!.
It follows from Figs. 1 and 2 that the virtualities of th

gluon line ~line 4! and the internal quark line~line 2! of
diagramA in Fig. 2 are given byx̄ȳQ2 and ȳQ2, respec-
tively. Now, if instead of using Eq.~4.11! we choosemR to
be equal to the gluon virtuality, i.e.,

mR
25 x̄ȳQ2, ~4.12!

then the logarithmic terms in Eq.~4.7! vanish.
As it is well known, unlike in an Abelian theory~e.g.,

QED!, where the effective coupling is entirely renormaliz
by the corrections of the vector particle propagator, in QC
the coupling is renormalized not only by the gluon propa
tor, but also by the quark-gluon vertex and quark-propaga
corrections. It is thus possible to choosemR

2 as the geometri-
cal mean of the gluon and quark virtualities@6#:

mR
25A~ x̄ȳQ2!~ ȳQ2!. ~4.13!

Alternatively, we can make a choice

mR
25e25/3x̄ȳQ2, ~4.14!

as a result of which the functionf UV , given by Eq.~4.7!,
vanishes identically. In this case,TH

(1)(x,y,mR
2/Q2,mF

2/Q2)
defined by Eq.~2.20! becomesnf independent. This is an
example of choosing the renormalization scale according
the Brodsky-Lepage-Mackenzie~BLM ! procedure@28#. In
this procedure, the renormalization scalemR

2 best suited to a
particular process in a given order can be determined
computing vacuum-polarization insertions in the diagrams
that order. The essence of the BLM procedure is that
07400
e
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to
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vacuum-polarization effects from the QCDb function are
resummed into the running coupling constant.

Let us just mention at this point that in addition to th
BLM procedure, two more renormalization scale-setting p
cedures in PQCD have been proposed in the literature:
principle of fastest apparent convergence~FAC! @29#, and
the principle of minimal sensitivity~PMS! @30#. The appli-
cation of those three quite distinct methods can give st
ingly different results in practical calculations@31#.

As for the factorization scalemF
2 , it basically determines

how much of the collinear term given in Eq.~4.8!, is ab-
sorbed into the distribution amplitude. A natural choice f
this scale would be

mF
25Q2, ~4.15!

which eliminates the logarithms ofQ2/mF
2 . More preferable

to Eq. ~4.15! is the choice

mF
25Ax̄ȳQ2, ~4.16!

which makes the functionf IR , given by Eq.~4.8!, vanish.
A glance at Eqs.~4.1!–~4.5!, where the coupling constant

aS(mR
2) andaS(mF

2) appear under the integral sign, revea
that any of the choices ofmR given by Eqs.~4.12!–~4.14!,
and the choice ofmF given by Eq.~4.16!, leads immediately
to the problem if the usual one-loop formula~2.2! for the
effective QCD running coupling constant is employe
Namely, then, regardless of how largeQ2 is, the integration
of Eqs.~4.1!–~4.5! allows aS(mR

2) to be evaluated near zer
momentum transfer. Two approaches are possible to circ
vent this problem. First, one can choosemR

2 and mF
2 to be

effective constants by takingmR
25^mR

2& and mF
25^mF

2&, re-
spectively. Second, one can introduce a cutoff in form
~2.2! with the aim of preventing the effective coupling from
becoming infinite for vanishing gluon momenta.

If the first approach is taken, Eqs.~4.12!–~4.14! and
~4.16! get replaced by the averages

mR
25^x̄ȳQ2&, ~4.17a!

mR
25A^x̄ȳQ2&^ ȳQ2&,

~4.17b!

mR
25^e25/3x̄ȳQ2&, ~4.17c!

and

mF
25A^x̄ȳ&Q2, ~4.18!

respectively. Taking into account the fact that^x̄ȳ&
5^x̄&^ ȳ& and^ x̄&5^ ȳ&, it is possible to write Eqs.~4.17! and
~4.18! in the respective forms

mR
25^x̄&2Q2, ~4.19a!

mR
25^x̄&3/2Q2, ~4.19b!
4-12
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mR
25e25/3^x̄&2Q2, ~4.19c!

and

mF
25^x̄&Q2. ~4.20!

The key quantity in the above considerations is^x̄&, the av-
erage value of the momentum fraction. It depends on
form of the distribution amplitude, and there is no uniq
way of defining it. A possible definition is

^ x̄&~mF
2 !5

E
0

1

dxf~x,mF
2 !x̄

E
0

1

dxf~x,mF
2 !

. ~4.21!

Owing to the fact that all distribution amplitudes under co
sideration are centered around the valuex50.5, it follows
trivially from Eq. ~4.21! that for all of them

^ x̄&~mF
2 !50.5. ~4.22!

An alternative way of defininĝx̄&, motivated by the form of
the LO expression for the pion form factor~4.6!, is

^x̄&~mF
2 !5

E
0

1

dx
fLO~x,mF

2 !

x̄
x̄

E
0

1

dx
fLO~x,mF

2 !

x̄

5
1

3@11B2
LO~mF

2 !1B4
LO~mF

2 !1 . . . #
. ~4.23!

It should be noted, however, that this formula can
straightforwardly applied only ifmF

25Q2. On the other hand
if instead ofmF

25Q2 one chooses the factorization scale
be as given by Eq.~4.20!, then Eqs.~4.20! and~4.23! form a
nontrivial system of simultaneous equations. According
Eq. ~4.23!, one obtainŝ x̄&as(Q

2)51/3 for any Q2, while
0.242<^x̄&CZ(Q2)<0.262 for 4 GeV2<Q2<100 GeV2

~similar values are obtained forfP2 andfP3).
When using thefas(x,mF

2) distribution it appears reason

able to takê x̄&(mF
2)5^x̄&as51/2. This can be justified on

the grounds that this distribution is concentrated arounx
50.5, and is characterized by a very weak evolution. On
other hand, for the end-point concentrated distributio
fCZ(x,mF

2), fP2(x,mF
2) andfP3(x,mF

2), which exhibit siz-
able evolutional effects, it is more appropriate to ta

^x̄&(mF
2) as given by Eq.~4.23!.

As stated above, the divergence of the effective QCD c
pling aS(mR

2), as given by Eq.~2.2!, is the reason that it is
not possible to use the choices ofmR

2 given by Eqs.~4.12!–
~4.14! andmF

2 given by Eq.~4.16!. Equation~2.2! does not
represent the nonperturbative behavior ofaS(mR

2) for small
07400
e
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e
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e
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-

mR
2 , and a number of proposals have been suggested fo

form of the coupling constant in this regime@32#. The most
exploited parametrization of the effective QCD couplin
constant at low energies has the form

aS~mR
2 !5

4p

b0lnS mR
21C2

L2 D , ~4.24!

where the constantC encodes the nonperturbative dynami
and is usually interpreted as an ‘‘effective dynamical glu
mass’’mg . For mR

2@C2, the effective coupling in Eq.~4.24!
coincides with the one-loop formula~2.2!, whereas at low
momentum transfer this formula ‘‘freezes’’ to some fini
but not necessarily small value.

In view of the confinement phenomenon, the modificati
~4.24! is very natural: the lower bound on the particle m
menta is set by the inverse of the confinement radius. Th
equivalent to a strong suppression for the propagation
particles with small momenta. Thus, in a consistent calcu
tion in which Eq.~4.24! is assumed a modified gluon prop
gator should be used:

1

k2
˜

1

k22mg
2

. ~4.25!

However, if one attempts to calculate the LO prediction
the pion form factor making use of Eqs.~4.24! and ~4.25!,
and takingmg53002500 MeV, the result obtained is by
factor of 10 lower than the experimental value, question
the applicability of such an approach@15#.

It has recently been shown that spontaneous chiral s
metry breaking imposes rather a severe restriction on
idea of freezing@33#. The authors of@33# argue that before
any argument based on a particular form of the freezing c
pling constant is put forward, one should check that the
namical origin ~mechanism! of the freezing is such tha
enough chiral symmetry breaking can be produced.

Considering the discussion above, calculations with
frozen coupling constant seem to need a more refined tr
ment and will not be considered in this paper.

V. COMPLETE NLO NUMERICAL PREDICTIONS
FOR THE PION FORM FACTOR

Having obtained all the necessary ingredients in the p
ceding sections, now we put them together and obtain c
plete leading-twist NLO QCD numerical predictions for th
pion form factor. For a fixed distribution amplitude, we an
lyze the dependence of our results on the choice of the sc
mR andmF .

By inserting Eqs.~3.18! and ~3.20! into Eqs. ~4.2! and
~4.5!, taking into account Eq.~2.4!, taking the scalesmR

2 and
mF

2 to be effective constants~as explained in Sec. IV!, and
performing thex and y integration, we find that Eqs.~4.2!
and ~4.5! take the form
4-13
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Q2Fp
(0)~Q2,mR

2 ,mF
2 !58p f p

2 aS~mR
2 !S (

n50

`

8Bn
LO~mF

2 !D 2

, ~5.1!

and

Q2Fp
(1b)~Q2,mR

2 ,mF
2 !516f p

2 aS~mR
2 !aS~mF

2 !S (
n50

`

8Bn
LO~mF

2 !D S (
k52

`

8Bk
NLO~mF

2 !D . ~5.2!

For a distribution amplitude of the form given in Eqs.~3.25!–~3.30!, the above expression reduces to

Q2Fp
(0)~Q2,mR

2 ,mF
2 !58p f p

2 aS~mR
2 !@11B2

LO~mF
2 !1B4

LO~mF
2 !#2, ~5.3!

Q2Fp
(1b)~Q2,mR

2 ,mF
2 !516f p

2 aS~mR
2 !aS~mF

2 !@11B2
LO~mF

2 !1B4
LO~mF

2 !#

3FB2
NLO~mF

2 !1B4
NLO~mF

2 !1 (
k56

`

8Bk
NLO~mF

2 !G . ~5.4!

As for the part of the NLO contribution arising from the NLO correction to the hard-scattering amplitude, by insertin
~2.20! and ~3.27! into Eq. ~4.4! and performing thex andy integration one obtains

Q2Fp
(1a)~Q2,mR

2 ,mF
2 !58 f p

2 aS
2~mR

2 !H 9

4
@11B2

LO~mF
2 !1B4

LO~mF
2 !#2ln

mR
2

Q2
1

2

3 F25

6
B2

LO~mF
2 !1

91

15
B4

LO~mF
2 !G

3@11B2
LO~mF

2 !1B4
LO~mF

2 !# ln
mF

2

Q2
16.58124.99B2

LO~mF
2 !121.43„B2

LO~mF
2 !…2

132.81B4
LO~mF

2 !132.55„B4
LO~mF

2 !…2153.37B2
LO~mF

2 !B4
LO~mF

2 !J . ~5.5!

Then the NLO contribution to the ‘‘almost scaling’’ combinationQ2Fp(Q2) is given by

Q2Fp
(1)~Q2,mR

2 ,mF
2 !5Q2Fp

(1a)~Q2,mR
2 ,mF

2 !1Q2Fp
(1b)~Q2,mR

2 ,mF
2 !, ~5.6!

while the total NLO prediction reads

Q2Fp~Q2,mR
2 ,mF

2 !5Q2Fp
(0)~Q2,mR

2 ,mF
2 !1Q2Fp

(1)~Q2,mR
2 ,mF

2 !. ~5.7!
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For the purpose of this calculation we adopt the crite
according to which a perturbative prediction forFp(Q2) is
considered reliable provided the following two requireme
are met: first, corrections to the LO prediction are reasona
small (,30%); second, the expansion parameter~effective
QCD coupling constant! is acceptably small@aS(mR

2),0.3
or 0.5]. Of course, one more requirement should be adde
the above ones: consistency with experimental data. This
quirement, however, is not of much use here since relia
experimental data for the pion form factor exist forQ2

<4 GeV2, i.e., well outside the region in which the pertu
bative treatment based on Eq.~1.1! is justified.

Currently available experimental data for the spacel
pion electromagnetic form factorFp(Q2) are shown in Fig.
7. The data are taken from Bebeket al. @34# and Amendolia
et al. @35#. As stated in@34#, the measurements correspon
ing to Q256.30 GeV2 and Q259.77 GeV2 are somewhat
questionable. Thus, effectively, the data forFp(Q2) exist
only for Q2 in the rangeQ2<4 GeV2. The results of Ref.
07400
a

s
ly

to
e-
le

e

-

@34# were obtained from the extrapolation of theg* p
˜p1n electroproduction data to the pion pole. It shou
also be mentioned that the analysis of Ref.@34# is subject to
criticism which questions whetherFp(Q2) was truly deter-
mined for 1<Q2<4 GeV2 @36# ~but see also Ref.@37#!.
The new data in this energy region are expected from
CEBAF experiment E-93-021.

A. Predictions obtained with µR
2 5µF

2 5Q2

The first NLO prediction for the pion form factor wa
obtained in Ref.@5#. Using theMS renormalization scheme
and the choicemR

25mF
25Q2 it was found that for thefas(x)

distribution~with the evolution of the distribution amplitud
neglected!, the perturbative series took the form

Q2Fp~Q2!5~0.43GeV2!aS~Q2!@112.10aS~Q2!1•••#,

~5.8!

which is in agreement with our result given by Eqs.~5.7!,
4-14
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~5.3!, and~5.5!. The conclusion based on this result was th
a reliable result forFp(Q2) was not obtained untilaS(Q2)
'0.1, or withLMS50.5 GeV,Q2510000 GeV2. This pre-
diction has been widely cited in the literature and initiated
lot of discussion regarding the applicability of PQCD to t
calculation of exclusive processes at large momentum tr
fer. With the presently accepted value of 0.2 GeV forLMS,
we find that the criteria from Ref.@5# are satisfied forQ2

;1600 GeV2, and that forQ25700 GeV2, the corrections
to the LO prediction are of order 30%. Thus, this res
shows that for the choice of the renormalization and fac
ization scalesmR

25mF
25Q2, the region in which perturbative

predictions can be considered reliable is still well beyond
region in which experimental data exist. The inclusion of t
distribution amplitude evolution effects, although extreme
important for the end-point concentrated amplitudes, d
not change this conclusion.

Numerical results of our complete NLO QCD calculatio
obtained using the four candidate distribution amplitud
with mR

25mF
25Q2, and for Q2>4 GeV2, are displayed in

Tables II, III, IV, and V. The entries in these tables inclu
various contributions given by Eqs.~5.3!–~5.7!, comprising
the full NLO result. A comparison of our results with pre

FIG. 7. Presently available experimental data for the space
pion electromagnetic form factor.
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ently available experimental data is shown in Fig. 8. T
ratio of the NLO to the LO contribution toFp(Q2), i.e.,
Fp

(1)(Q2)/Fp
(0)(Q2), as a useful measure of the importance

the NLO corrections, is plotted as a function ofQ2 in Fig. 9.
The shaded areas appearing in Figs. 8 and 9 denote th
gion of Q2 whereaS(Q2).0.3. We take that outside of thi
region the effective coupling is acceptably small.

It is evident from Figs. 8 and 9 and Tables II–V that th
leading-twist NLO results for the pion form factor obtaine
with mR

25mF
25Q2 display the following general features

First, the results are quite sensitive to the assumed form
the pion distribution amplitude. Thus, the more end-po
concentrated distribution amplitude is, the larger result
the pion form factor is obtained, and also the NLO corre
tions are larger@which has already been obvious looking
Eqs.~5.3!–~5.7!#. Second, whereas the NLO correction ar
ing from the corrections to the hard-scattering amplitude
positive, the corrections due to the inclusion of the evo
tional corrections to the distribution amplitude are negati
with the former being generally an order of magnitude larg
than the latter. Thus, in all the cases considered, the
NLO correction to the pion form factor is positive, i.e., i
inclusion increases the LO prediction.

We now briefly comment on the results obtained w
each of the four distribution amplitudes.

Table II, which corresponds to thefas(x,Q2) distribution
amplitude, shows that the NLO correctionQ2Fp

(1)(Q2) is
rather large~36% atQ25100 GeV2). Most of the contribu-
tion to Q2Fp

(1)(Q2) is due to the NLO correction to the hard
scattering amplitudeQ2Fp

(1a)(Q2), while the contribution
Q2Fp

(1b)(Q2) arising from the NLO evolutional correction o
the distribution amplitude is rather small, being of order 1
The ratio Fp

(1)(Q2)/Fp
(0)(Q2)'30% is reached atQ2

'500 GeV2.
The results derived from thefCZ(x,Q2) distribution are

presented in Table III. The full NLO correctionQ2Fp
(1)(Q2)

is somewhat larger than forfas(x,Q2) ~and at Q2

5100 GeV2 it amounts to 46%!. The ratio
Fp

(1)(Q2)/Fp
(0)(Q2) is greater than 30% until Q2

'2400 GeV2. It is important to observe that the evolution

e

TABLE II. Complete leading-twist NLO QCD results for the pion form factor,Q2Fp(Q2), obtained using
the fas(x,mF

2) distribution amplitude and assumingmR
25mF

25Q2.

Q2 aS(mR
2) Q2Fp

(0)(Q2) Q2Fp
(1a)(Q2) Q2Fp

(1b)(Q2) Q2Fp
(1)(Q2) Fp

(1)(Q2)/Fp
(0)(Q2) Q2Fp(Q2)

@GeV2# @GeV2# @GeV2# @GeV2# @GeV2# % @GeV2#

4 0.303 0.131 0.083 -0.001 0.082 62.8 0.213
6 0.279 0.120 0.070 -0.001 0.069 57.6 0.189
8 0.264 0.114 0.063 -0.001 0.062 54.4 0.176
10 0.253 0.109 0.058 -0.001 0.057 52.2 0.166
20 0.225 0.097 0.046 -0.001 0.045 46.2 0.142
30 0.211 0.091 0.040 -0.001 0.039 43.3 0.130
40 0.202 0.087 0.037 -0.001 0.036 41.4 0.123
50 0.196 0.085 0.035 -0.001 0.034 40.1 0.118
75 0.185 0.080 0.031 -0.001 0.030 37.9 0.110
100 0.178 0.077 0.029 -0.001 0.028 36.4 0.105
4-15
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TABLE III. Same as Table II but for thefCZ(x,mF
2) distribution amplitude.

Q2 aS(mR
2) Q2Fp

(0)(Q2) Q2Fp
(1a)(Q2) Q2Fp

(1b)(Q2) Q2Fp
(1)(Q2) Fp

(1)(Q2)/Fp
(0)(Q2) Q2Fp(Q2)

@GeV2# @GeV2# @GeV2# @GeV2# @GeV2# % @GeV2#

4 0.303 0.248 0.241 -0.015 0.225 90.8 0.474
6 0.279 0.222 0.195 -0.014 0.181 81.6 0.403
8 0.264 0.206 0.170 -0.013 0.157 76.1 0.363
10 0.253 0.195 0.153 -0.012 0.141 72.2 0.336
20 0.225 0.167 0.115 -0.011 0.104 62.2 0.271
30 0.211 0.154 0.098 -0.010 0.088 57.4 0.243
40 0.202 0.146 0.089 -0.009 0.079 54.3 0.225
50 0.196 0.140 0.082 -0.009 0.073 52.2 0.213
75 0.185 0.131 0.072 -0.008 0.064 48.7 0.194
100 0.178 0.125 0.065 -0.008 0.058 46.4 0.182
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corrections, especially the LO ones, are rather significan
this case. Also, as it is seen from Table III, the NLO evo
tional correctionQ2Fp

(1b)(Q2) is of order '6%, i.e., non-
negligible. To show the importance of the correction aris
from the inclusion of the distribution amplitude evolutio
the results forQ2Fp(Q2) and the ratioFp

(1)(Q2)/Fp
(0)(Q2)

obtained using thefCZ(x), fCZ
LO(x,Q2), andfCZ(x,Q2) dis-

tributions, are exhibited in Figs. 10 and 11, respectively.
The results based on thefP2(x,Q2) andfP3(x,mF

2) dis-
tributions are listed in Tables IV and V, respectively. As
can be easily seen by looking at Figs. 8 and 9 and by c
paring the corresponding entries in Tables III and IV, t
results obtained with thefP2(x,Q2) and fCZ(x,Q2) distri-
butions are practically the same qualitatively, while diff
quantitatively by a few percent. From Table V and Figs
and 9, one can see that the behavior of the results obta
with the fP3(x,mF

2) distribution is qualitatively similar to
the behavior of the results obtained with other two end-po
concentrated distributions. For this reason, we leave
fP2(x,Q2) and fP3(x,mF

2) distributions out of our further
consideration.

In view of what has been said above, we may conclu
the following. If the pion is modeled by thefas(x,mF

2),
fCZ(x,mF

2), fP2(x,mF
2), or fP3(x,mF

2) distribution ampli-
tude, and if the renormalization and factorization scale
07400
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chosen to bemR
25mF

25Q2, one finds that the NLO correc
tions to the lowest-order prediction for the pion form fact
are large. The NLO predictions obtained cannot be m
reliable, i.e.,Fp

(1)(Q2)/Fp
(0)(Q2) less than, say, 30%, unti

the momentum transferQ@10 GeV is reached. Based o
these findings and considering the region ofQ2 in which the
data exist, it is clear that we are not in a position to rule o
any of the four distributions considered. One can only n
that the predictions forQ2Fp(Q2,mR

2 ,mF
2) obtained with the

fas(x,mF
2) distribution are below the trend indicated by th

existing experimental data, while the end-point concentra
distributionsfCZ(x,mF

2), fP2(x,mF
2), and fP3(x,mF

2) give
higher predictions. It is worth mentioning here that the th
oretical predictions for the photon-to-pion transition for
factor Fpg(Q2) are in very good agreement with the dat
assuming the pion distribution amplitude is close to t
asymptotic one, i.e.,fas(x,mF

2) @38#.

B. Predictions obtained usingµR
2 5aQ2 and µF

2 5bQ2

In this subsection we present a detailed analysis of
dependence of the complete leading-twist NLO predictio
for the pion form factor on the renormalization and facto
ization scales,mR and mF . Being a reflection of the uncal
culated higher-order contributions, this dependence is a v
TABLE IV. Same as Table II but for thefP2(x,mF
2) distribution amplitude.

Q2 aS(mR
2) Q2Fp

(0)(Q2) Q2Fp
(1a)(Q2) Q2Fp

(1b)(Q2) Q2Fp
(1)(Q2) Fp

(1)(Q2)/Fp
(0)(Q2) Q2Fp(Q2)

@GeV2# @GeV2# @GeV2# @GeV2# @GeV2# % @GeV2#

4 0.303 0.274 0.278 -0.019 0.259 94.6 0.532
6 0.279 0.244 0.224 -0.017 0.207 85.0 0.451
8 0.264 0.226 0.195 -0.016 0.179 79.1 0.404
10 0.253 0.213 0.175 -0.015 0.160 75.0 0.374
20 0.225 0.182 0.130 -0.013 0.117 64.5 0.300
30 0.211 0.167 0.111 -0.012 0.100 59.4 0.267
40 0.202 0.158 0.100 -0.011 0.089 56.2 0.247
50 0.196 0.152 0.093 -0.011 0.082 54.0 0.234
75 0.185 0.141 0.081 -0.010 0.071 50.2 0.212
100 0.178 0.134 0.074 -0.009 0.064 47.9 0.199
4-16
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TABLE V. Same as Table II but for thefP3(x,mF
2) distribution amplitude.

Q2 aS(mR
2) Q2Fp

(0)(Q2) Q2Fp
(1a)(Q2) Q2Fp

(1b)(Q2) Q2Fp
(1)(Q2) Fp

(1)(Q2)/Fp
(0)(Q2) Q2Fp(Q2)

@GeV2# @GeV2# @GeV2# @GeV2# @GeV2# % @GeV2#

4 0.303 0.335 0.402 -0.029 0.372 111.0 0.708
6 0.279 0.295 0.318 -0.026 0.292 100.0 0.587
8 0.264 0.272 0.273 -0.024 0.249 91.8 0.521
10 0.253 0.255 0.244 -0.023 0.222 86.7 0.477
20 0.225 0.215 0.178 -0.019 0.158 73.8 0.373
30 0.211 0.196 0.150 -0.017 0.133 67.7 0.328
40 0.202 0.184 0.134 -0.016 0.118 63.8 0.302
50 0.196 0.176 0.123 -0.015 0.108 61.1 0.284
75 0.185 0.163 0.106 -0.014 0.092 56.6 0.255
100 0.178 0.154 0.096 -0.013 0.083 53.7 0.237
or
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important feature of the NLO predictions, and can theref
be used as a guide to assess their accuracy.

In the following we shall restrict our attention to the tw
most exploited pion distribution amplitudesfas(x,mF

2) and
fCZ(x,mF

2).
In the preceding subsection, we have found that the N

corrections calculated using these two distributions are la
especially for the latter. The reason for this lies in the f
that the renormalization scale choicemR

25Q2 is not an ap-
propriate one. Namely, owing to the partitioning of the ov
all momentum transferQ2 among the particles in the parto
subprocess, the essential virtualities of the particles
smaller thanQ2, so that the physical renormalization sca
better suited for analyzing the process under consideratio
inevitably lower than the external scaleQ2.

A characteristic feature of the asymptotic distributi
fas(x,mF

2) is that in the LO it shows no evolution. A conse
quence of this, as it can be seen from Eqs.~5.3!–~5.7!, is that
the NLO predictions for the pion form factor based on th
distribution are essentially independent of the factorizat
scalemF . Namely, the only dependence on this scale is c
tained in the term arising from the NLO evolutional effec

FIG. 8. Comparison of the complete leading-twist NLO QC
predictions for the pion form factor,Q2Fp(Q2), obtained using the
four candidate distribution amplitudes, with the presently availa
experimental data. The shaded area denotes the region ofQ2 in
which aS(Q2).0.3.
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which are tiny, as we have seen in Sec. III. On the ot
hand, the predictions calculated with thefCZ(x,mF

2) aremF

dependent, but this dependence turns out to be very w
Thus, for a given value ofmR , variation of the value ofmF

in the rangeQ2/4<mF
2<Q2 leads to practically the sam

results.
Therefore, by examining the NLO predictions based

the fas(x,mF
2) and fCZ(x,mF

2) distributions, we find that
they depend very little on the factorization scalemF . Con-
sequently, when using these distributions one is allowed
setmF

25Q2, for all practical purposes.

1. Examining the renormalization scale dependence of the NLO
corrections

The three specific physically motivated choices ofmR ,
given by Eq.~4.19!, can be conveniently written as

mR
25aQ2, ~5.9a!

where

aP$^ x̄&3/2,^x̄&2,e25/3^x̄&2%. ~5.9b!

e
FIG. 9. The ratio of the NLO to the LO contributions to the pio

form factor,Fp
(1)(Q2)/Fp

(0)(Q2), for the four candidate distribution
amplitudes. The shaded area denotes the region ofQ2 in which
aS(Q2).0.3.
4-17
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For the purpose of the discussion of the effects of the inc
sion of the NLO corrections on the LO predictions, we ha
included Fig. 12 showing the LO predictions for the thr
different values ofmR given in Eq. ~5.9!. Our complete
leading-twist NLO predictions for the pion form factor ca
culated with thefas(x,mF

2) distribution and with the three
specific values of the renormalization scalemR are summa-
rized in Figs. 13 and 14, showing the results forQ2Fp(Q2)
and the ratioFp

(1)(Q2)/Fp
(0)(Q2), respectively. The corre

sponding results obtained assuming thefCZ(x,mF
2) distribu-

tion are displayed in Figs. 15, 16, and 17.
The solid curves in Figs. 12–17 correspond to the resu

with mR
25mF

25Q2 obtained in the preceding subsection, a
included for comparison. The other curves refer to
choices ofmR

2 given by Eq.~5.9!.
Some general comments concerning the results prese

above are in order. First of all, it is interesting to note that
predictions based on thefas(x,mF

2) and fCZ(x,mF
2) distri-

butions amplitudes almost share the qualitative features

FIG. 10. Leading-twist NLO QCD predictions for the pion for
factor, Q2Fp(Q2), obtained with thefCZ(x), fCZ

LO(x,Q2), and
fCZ(x,Q2) distributions. The shaded area denotes the region ofQ2

in which aS(Q2).0.3.

FIG. 11. The ratio of the NLO to the LO contributions to th
pion form factor, Fp

(1)(Q2)/Fp
(0)(Q2), obtained for thefCZ(x),

fCZ
LO(x,Q2), andfCZ(x,Q2) distributions. The shaded area denot

the region ofQ2 in which aS(Q2).0.3.
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though these two distributions are quite different in sha
Next, by looking at Figs. 13 and 16, one notices that the
NLO result for Q2Fp(Q2) shows a very weak dependenc
on the value ofmR

2 , and that it increases with decreasingmR
2 .

As far as the ratioFp
(1)(Q2)/Fp

(0)(Q2) is concerned, as evi
dent from Figs. 14 and 17, the situation is quite different
is rather sensitive to the variation ofmR

2 , and decreases asmR
2

decreases. The choicemR
25Q2, represented by solid curves

when compared with the other possibilities considered, le
to the lowest value forQ2Fp(Q2), and to the highest value
for the ratio Fp

(1)(Q2)/Fp
(0)(Q2). In contrast to that, the

choice of the BLM scale, represented by the dashed-do
curve, leads to somewhat higher values ofQ2Fp(Q2), but to
considerably lower values of the ratioFp

(1)(Q2)/Fp
(0)(Q2).

FIG. 12. The numerical results forQ2Fp
(0)(Q2) obtained with

the fas(x,mF
2) distribution amplitude and the choices ofmR

2 given

by Eq. ~4.19!, with mF
25Q2 and ^x̄&as51/2. The solid curve~in-

cluded for comparison! corresponds to the casemR
25mF

25Q2 con-
sidered in the preceding subsection. The shaded area denote

range of the LO predictionQ2Fp
(0)(Q2) for mR

2/Q2P@e25/3^x̄&2,1#.

FIG. 13. Leading-twist NLO QCD results forQ2Fp(Q2) ob-
tained with thefas(x,mF

2) distribution amplitude and the choices o

mR
2 given by Eq.~4.19!, with mF

25Q2 and ^x̄&as51/2. The solid
curve ~included for comparison! corresponds to the casemR

25mF
2

5Q2 considered in the preceding subsection. The shaded area
notes the range of the total NLO predictionQ2Fp(Q2) where the
upper limit corresponds tomR

25mPMS
2 obtained from Eq.~5.11!.
4-18
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Adopting the previously stated criteria, we now comme
on the reliability of the NLO predictions forQ2Fp(Q2) dis-
played in Figs. 13 and 16. Imposing the requireme
uFp

(1)(Q2)/Fp
(0)(Q2)u,0.3, andaS(mR

2),0.3, we find from
Fig. 14 that for thefas(x,mF

2) distribution the results corre

sponding toa5^x̄&3/2, ^ x̄&2, ande25/3^x̄&2, become reliable
for the momentum transferQ2.50, 25, and 90 GeV2, re-
spectively. The requirementaS(mR

2),0.3 might be~unnec-
essarily! too stringent. Thus, by relaxing it and takin
aS(mR

2),0.5 instead, we find that the results correspond

to a5^x̄&3/2, ^x̄&2, and e25/3^x̄&2, become reliable for the
momentum transferQ2.50, 25, and 15 GeV2, respectively.

Applying the same criteria to the case of thefCZ(x,mR
2)

distribution, we find from Fig. 17 that the results fo

FIG. 14. The ratio Fp
(1)(Q2)/Fp

(0)(Q2) obtained with the
fas(x,mF

2) distribution amplitude and the choices ofmR
2 given by

Eq. ~4.19!, with mF
25Q2 and^x̄&as51/2. The solid curve~included

for comparison! is for the result corresponding tomR
25mF

25Q2

obtained in the preceding subsection, and the shaded area de
the region of the predictions which correspond toaS(mR

2),0.5
„aS(mR

2),0.3…, while uFp
(1)(Q2)/Fp

(0)(Q2)u,0.3.

FIG. 15. The numerical results forQ2Fp
(0)(Q2) obtained with

the fCZ(x,mF
2) distribution amplitude and the choices ofmR

2 given

by Eq.~4.19!, with mF
25Q2 and^x̄&CZ(Q2) calculated according to

Eq. ~4.23!. The solid curve~included for comparison! corresponds
to the casemR

25mF
25Q2 considered in the preceding subsectio

The shaded area denotes the range of the LO predictionQ2Fp
(0)(Q2)

for mR
2/Q2P@e25/3^x̄&2,1#.
07400
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Q2Fp(Q2), shown in Fig. 16, obtained witha5^x̄&3/2, ^ x̄&2,
and e25/3^x̄&2, become reliable for the momentum transf
Q2.95, 60, and 300 GeV2, respectively, if we demand tha
aS(mR

2),0.3, and forQ2.95, 35, and 50 GeV2, respec-
tively, if aS(mR

2),0.5 is regarded as a stringent enough
quirement.

Summarizing the above, one can say that contrary to
rather high value ofQ2'500 GeV2 required to obtain a
reliable prediction assuming thefas(x,mR

2) distribution with
mR

25Q2, one finds that by choosing the renormalizati
scale determined by the dynamics of the pion rescatte

otes

.

FIG. 16. Leading-twist NLO QCD results forQ2Fp(Q2) ob-
tained with thefCZ(x,mF

2) distribution amplitude and the choice

of mR
2 given by Eq.~4.19!, with mF

25Q2 and^x̄&CZ(Q2) calculated
according to Eq.~4.23!. The solid curve~included for comparison!
corresponds to the casemR

25mF
25Q2 considered in the precedin

subsection. The shaded area denotes the range of the total
prediction Q2Fp(Q2) where the upper limit corresponds tomR

2

5mPMS
2 obtained from Eq.~5.11!.

FIG. 17. The ratio Fp
(1)(Q2)/Fp

(0)(Q2) obtained with the
fCZ(x,mF

2) distribution amplitude and the choices ofmR
2 given by

Eq. ~4.19!, with mF
25Q2 and^x̄&CZ(Q2) calculated according to Eq

~4.23!. The solid curve~included for comparison! is for the result
corresponding tomR

25mF
25Q2 obtained in the preceding subse

tion, and the shaded area denotes the region of the predic
which correspond to aS(mR

2),0.5 „aS(mR
2),0.3…, while

uFp
(1)(Q2)/Fp

(0)(Q2)u,0.3.
4-19



re
ab

th
-

ar
re

s
l’’
y

th
f

is
u

te
m
tio

d,
e
ar
th
ib

r-
ds

he

t
-

s.
es

de
nd-

l’’
ia-
the
l
-

-

on

it of

ut

lu-
to

ects
O

us

-

hout
n
in

B. MELIĆ, B. NIŽIĆ, AND K. PASSEK PHYSICAL REVIEW D60 074004
process, the size of the NLO corrections is significantly
duced and reliable predictions are obtained at consider
lower values ofQ2, namely, forQ2,100 GeV2. The same
conclusion also applies to the results obtained with
fCZ(x,mR

2) distribution, for which choosing the renormaliza
tion scale related to the virtuality of the particles in the p
ton subprocess lowers the bound of the reliability of the
sults fromQ2'2400 GeV2 to Q2,100 GeV2.

2. Theoretical uncertainty of the NLO predictions related to the
renormalization scale ambiguity

Unfortunately, at present we do not have at our dispo
any absolutely reliable method of determining the ‘‘optima
~or ‘‘correct’’ ! value of the renormalization scale for an
particular order of PQCD. Our ignorance concerning
‘‘optimal’’ value for mR implies that any particular choice o
this scale leads to an intrinsic theoretical uncertainty~error!
of the perturbative results. Therefore, the NLO results d
played in Figs. 13 and 16, being obtained with the fo
singled-out values of the renormalization scalemR , contain
theoretical uncertainty. In what follows we try to estima
this uncertainty. In order to do that, we have to make so
assumptions, regarding the range of the renormaliza
scale ambiguity.

As already mentioned, in addition to the BLM metho
two more renormalization scale-setting methods have b
proposed: the FAC and PMS methods. All three of them
somewhat ad hoc and have no strong justification. Never
less, the principles underlying these methods are plaus
so that they give us at least a range of scalemR which should
be considered.

Let mFAC , mPMS, andmBLM designate the scales dete
mined by the FAC, PMS, and BLM scale-setting metho
respectively.

According to the FAC procedure, the scalemR is deter-
mined by the requirement that the NLO coefficient in t
perturbative expansion ofFp(Q2) vanishes, which, in our
case, effectively reduces to solving the equation

Fp
(1)~Q2,mR

25mFAC
2 !50. ~5.10!

On the other hand, in the PMS procedure, one chooses
renormalization scalemR at the stationary point of the trun
cated perturbative series forFp(Q2). Operationally, this
amounts to

dFp~Q2,mR
2 !

dmR
2 U

m
R
25m

PMS
2

50. ~5.11!

The BLM-determined scale is given by

mBLM
2 5e25/3^x̄&2Q2. ~5.12!

The explicit expressions forFp(Q2) andFp
(1)(Q2) are given

by Eqs.~5.3!–~5.7! with mF
25Q2. By solving Eqs.~5.10! and

~5.11!, and taking Eq.~5.12! into account we find that for the
fas(x,mF

2) distribution
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mBLM
2 5Q2/21, ~5.13a!

mPMS
2 'Q2/18, ~5.13b!

mFAC
2 'Q2/18, ~5.13c!

while, for thefCZ(x,mF
2) distribution,

Q2/79,mBLM
2 ,Q2/77, ~5.14a!

Q2/59,mPMS
2 ,Q2/54, ~5.14b!

Q2/53,mFAC
2 ,Q2/48, ~5.14c!

for 50 GeV2,Q2,100 GeV2. Therefore, we find that for
both distributions

mBLM
2 ,mPMS

2 ,mFAC
2 . ~5.15!

The FAC, PMS, and BLM scales, as evident from Eq
~5.13! and~5.14!, are very close to each other, and the curv
corresponding to the NLO prediction forQ2Fp(Q2) ob-
tained with the FAC and PMS scales practically coinci
with the dashed-dotted curves in Figs. 13 and 16 correspo
ing to the BLM scale.

If the renormalization scale is interpreted as a ‘‘typica
scale of virtual momenta in the corresponding Feynman d
grams, then, despite the fact that we do not know what
‘‘optimal’’ value of this scale is, it is~based on physica
grounds and on the above considerations! reasonable to as
sume that it belongs to the interval ranging frommBLM

2 to
Q2. Namely,mBLM

2 , being the lowest of the above consid
ered scales and of the order ofQ2/21 and Q2/80 for the
fas(x,mF

2) and fCZ(x,mF
2) distributions, respectively, is a

low enough to serve as the lower limit of the renormalizati
scale ambiguity interval. On the other hand,Q2 is ~too! high
a scale, and as such can safely be used for the upper lim
the same interval.

In the following, then, instead of using any singled-o
value, we vary the renormalization scale in the form

mR
25aQ2, ~5.16a!

wherea is a continuous parameter

aP@e25/3^x̄&2,1#. ~5.16b!

Doing this will enable us to draw some qualitative conc
sions concerning, first, the theoretical uncertainty related
the renormalization scale ambiguity, and, second, the eff
that the inclusion of the NLO corrections has on the L
predictions.

The LO result for the pion form factor is a monotono
function of the renormalization scalemR . Namely, all of the
mR dependence of the LO predictionQ2Fp

(0)(Q2), as it is
seen from Eq.~5.3!, is contained in the strong coupling con
stant aS(mR

2). Thus, in accordance with Eq.~2.2!, as mR

decreases the LO result increases, and it increases wit
bound. In contrast to the LO, the NLO contributio
Q2Fp

(1)(Q2), as evident from the explicit expression given
4-20
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COMPLETE NEXT-TO-LEADING ORDER PERTURBATIVE . . . PHYSICAL REVIEW D60 074004
Eq. ~5.5!, decreases~becomes more negative! with decreas-
ing mR . Upon adding up the LO and NLO contributions, w
find that the full NLO result, as a function ofmR stabilizes
and reaches a maximum value formR

25mPMS
2 . The values of

the scalemPMS are, for thefas(x,Q2) andfCZ(x,Q2) dis-
tributions given by Eqs.~5.13b! and ~5.14b!, respectively.

If the renormalization scale continuously changes in
interval defined by Eq.~5.16!, we find that the curves repre
senting the LO and NLO results forQ2Fp(Q2) fill out the
shaded regions in Figs. 12 and 13, for thefas(x,Q2), and in
Figs. 15 and 16 for thefCZ(x,Q2) distribution.

Next we turn to discuss the intrinsic theoretical unc
tainty of the NLO prediction related to the renormalizati
scale ambiguity. Regarding this uncertainty, there is in f
no consensus on how to estimate it, or how to identify w
the central value ofQ2Fp(Q2) should be.

Nevertheless, the simplest but still a good measure of
uncertainty is the quantity

DFp~Q2,mmin
2 ,mmax

2 !5Q2Fp~Q2,mmin
2 !

2Q2Fp~Q2,mmax
2 !, ~5.17!

i.e., the difference of the results forQ2Fp(Q2) correspond-
ing to the lower (mmin) and the upper limit (mmax) of the
renormalization scale ambiguity interval~5.16!. This quan-
tity, therefore, for a given value ofQ2, represents the
‘‘width’’ of the shaded regions in Figs. 12, 13, 15, and 16.
this sense, the shaded regions in these figures, limited by
curves corresponding tomR

25Q2 andmR
25mBLM

2 , essentially
determine the theoretical accuracy allowed by the LO a
NLO calculations.

A glance at Figs. 12 and 13, displaying the LO and NL
predictions forQ2Fp(Q2) calculated with thefas(x,Q2)
distribution, reveals that, compared to the LO, the NLO
sults exibit a much smaller renormalization scale dep
dence. The same holds true for the predictions depicte
Figs. 15 and 16, based on thefCZ(x,Q2) distribution.

To be more quantitative, we thus find that, if, for th
fas(x,Q2) distribution, atQ2550 GeV2 (100 GeV2), in-
stead ofmR

25Q2 one takesmR
25mBLM

2 5Q2/21, the LO re-
sult ~Fig. 12! increases by 75% (64%), whereas the NL
result ~Fig. 13! increases by 20% (16%). Analogously, f
the same values ofQ2, but for thefCZ(x,Q2) distribution
we find that takingmR

25mBLM
2 'Q2/79 insteadmR

25Q2 the
LO result increases by 158% (125%), while the NLO res
increases by 47% (34%).

Therefore, the NLO corrections improve the situation b
cause the terms in the NLO hard-scattering amplitude a
such that they cancel part of the scale dependence of the
result.

It should be pointed out that our estimate of the renorm
ization scale ambiguity interval given in Eq.~5.16! is very
conservative, overestimating the theoretical uncertainty
the calculated NLO predictions. Namely, one could, alm
at no risk, replaceQ2 by ^x̄&3/2Q2 as the upper limit of the
interval. If this is done, the dotted rather than solid curv
would then provide the lower bound of the shaded region
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Figs. 13 and 16. Then, forQ2>50 GeV2 theoretical uncer-
tainty of the NLO result forQ2Fp(Q2) turns out to be less
than 5% for thefas(x,Q2) and 8% for thefCZ(x,Q2) dis-
tribution.

Before closing this subsection, a remark is appropriate
the shaded areas in Figs. 13 and 16 are displayed in the s
figure they would not overlap. This implies that an una
biguous discrimination between thefas(x,Q2) and
fCZ(x,Q2) distributions is possible, as soon as the data
tending to higher values ofQ2 are obtained.

Based on the above considerations, we may conclude
the inclusion of the NLO corrections stabilizes the LO pr
diction for the pion form factor by considerably reducing t
intrinsic theoretical uncertainty related to the renormalizat
scale ambiguity. This uncertainty for both distributions tur
out to be less than 10%.

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented the results of a comp
leading-twist NLO QCD analysis of the spacelike electr
magnetic form factor of the pion at large momentum trans
Q.

To clarify the discrepancies in the analytical express
for the hard-scattering amplitude present in previous ca
lations, we have carefully recalculated the one-loop Fe
man diagrams shown in Fig. 3. Working in theMS renor-
malization scheme and employing the dimensio
regularization method to treat all divergences~UV, IR, and
collinear!, we have obtained results which are in agreem
with those of Refs.@5# ~up to the typographical errors liste
in @9#! and @7#.

As nonperturbative input at the reference moment
scale of 0.5 GeV, we have used the four available pion d
tribution amplitudes defined by Eq.~3.24! and plotted in Fig.
5: the asymptotic distributionfas(x,mF

2) and the three QCD
sum-rule inspired distributionsfCZ(x,mF

2), fP2(x,mF
2), and

fP3(x,mF
2). The NLO evolution of these distributions ha

been determined using the formalism developed in Ref.@20#.
By convoluting, according to Eq.~1.1!, the hard-

scattering amplitude with the pion distribution amplitud
both calculated in the NLO approximation, we have obtain
the NLO numerical predictions for the pion form factor, fo
the four candidate distributions, and for several differe
choices of the renormalization and factorization scales,mR
and mF . All the predictions have been obtained assum
nf53 andLMS50.2 GeV. We adopt the criteria according
which NLO prediction is considered reliable if, both, th
ratio of the NLO to LO contributions and the strong couplin
constant are reasonably small.

We have first used the most simple choice of the sca
wheremR

25mF
25Q2. The results are summarized in Figs.

and 9 and Tables II–V. Our numerical results based on
asymptotic distribution amplitudefas(x,mF

2) differ from
those of Ref.@5# ~the difference is due to the different valu
of LMS). Thus, in contrast to Ref.@5#, where it was con-
cluded that ‘‘reliable perturbative predictions cannot
made until momentum transfersQ of about 100 GeV are
4-21
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B. MELIĆ, B. NIŽIĆ, AND K. PASSEK PHYSICAL REVIEW D60 074004
reached,’’ we have found that reliable predictions can
ready be made at momentum transfers of the order of
GeV. It has been shown that the inclusion of the~NLO!
evolutional corrections only slightly influences the NLO pr
diction obtained assuming thefas(x,mF

2) distribution. On
the other hand, for the case of the end-point concentra
distributions, the evolutional corrections, both the LO a
the NLO, are important. For themR

25mF
25Q2 choice of

scales, the NLO corrections based on thefas(x,mF
2),

fCZ(x,mF
2) fP2(x,mF

2), and fP3(x,mF
2) distributions, are

large, which implies that one must demand that the mom
tum transferQ be considerably larger than 10 GeV before t
corresponding results become reliable.

In order to reduce the size of the NLO corrections and
examine the extent to which the NLO predictions for t
pion form factor depend on the scalesmR andmF , in addi-
tion to the simplest choicemR

25mF
25Q2 ~which certainly is

not best suited for the process of interest!, we have also
considered the choices ofmR and mF given by Eqs.~4.19!
and ~4.20!, respectively. Compared to themR dependence
themF dependence of the results turns out to be of second
importance. Making use of the physically motivated choic
for mR ~related to the average virtuality of the particles in t
parton subprocess!, and modeling the pion with the
fas(x,mF

2) andfCZ(x,mF
2) distribution amplitudes, leads t

the predictions shown in Figs. 13, 14, 16, and 17. T
fP2(x,mF

2) and fP3(x,mF
2) distributions are not separate

considered, since the corresponding results are very sim
to those obtained withfCZ(x,mF

2).
For a given distribution amplitude, the values of the pi

form factor Q2Fp(Q2) are very stable against the variatio
of the renormalization scalemR . This is evident from Figs.
13 and 16, and is a reflection of the stabilizing effect that
inclusion of the NLO corrections has on the LO prediction
On the other hand, the ratio of the NLO corrections to
LO prediction, Fp

(1)(Q2)/Fp
(0)(Q2) is very sensitive to the
a

ys

.
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values ofmR , as can be seen from Figs. 14 and 17. Requ
ing this ratio to be less than 0.3 and taking the less string
condition on the value of the strong couplingaS(mR

2),0.5,
we find that the reliable predictions can already be made
the momentum transferQ of the order 5210 GeV.

Given the fact that we do not know what the ‘‘optimal
value of the renormalization scale is, choosing any particu
value for this scale introduces a theoretical uncertainty in
NLO predictions. Based on a reasonable guess about
renormalization scale ambiguity interval, we have estima
this uncertainty to be less than 10%.

The difference between the absolute predictions based
the fas(x,mF

2), fCZ(x,mF
2) „fP2(x,mF

2)…, and fP3(x,mF
2)

distributions is large enough to allow an unambiguous
perimental discrimination between them, as soon as the
extending to higher values ofQ become available.

In conclusion, the results of the complete leading-tw
NLO QCD analysis, which has been carried out in this pap
show that reliable perturbative predictions for the pion el
tromagnetic form factor with all distribution amplitudes co
sidered can already be made at a momentum transferQ of
the order of 5210 GeV, with corrections to the LO result
being up to 30%. Theoretical uncertainty related to t
renormalization scale ambiguity, which constitutes a reas
able range of physical values, has been estimated to be
than 10%. To check our predictions and to choose betw
the distribution amplitudes, it is necessary that experime
data at higher values ofQ2 are obtained.
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