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Coefficient functions and open charm production in deep inelastic scattering

A. V. KisseleV*
Instituto de Fsica Gleb Wataghin, UNICAMP 13083-970, Campinasy Saulo, Brazil
and Institute for High Energy Physics, 142284 Protvino, Russia
(Received 22 January 1999; published 13 August 1999

It is shown that the problem of double counting in open charm production in deep inelastic sca¢8hg
can be solved by using the expression for DIS coefficient functions in terms of two-particle irreducible
diagrams[S0556-282(99)04415-X]
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Open charm production in deep inelastic scattefIDES) In fact, in EQ.(2) one should add another ordet, con-
is a subject of interest from both experimental and theoreticatribution of the form[4]
points of view. Recent data from H1] and ZEUS[2] Col-
laborations have shown that the charm quark contribution is C£1)®qc—C£9)® P c®0e, 3)
an important component of DIS structure functions.

One of the most predictive methods of calculating the . . . .
which is numerically less important.

open charm contribution to the structure functions is fixed Let us note that the Wilson-type coefficients in Ej.are

order perturbative QCDsee[3]). Much effort also has been ifferent from th Hicient f r¥pt| & andC.. in E '(2)

done in order to formulate a variable flavor number scheméj erent from the coetlicient Iunctions, a 9 -4s.(2)
and (3). While the former have no infrared or collinear sin-

(seel4-7). gularities, the same is not true for the latter
According to the factorization theorei9,8,10,11, the In Ref. [6] the modification of the gluon coefficient func-

- c _
contribution of charnF$ can be represented as follows: tion has been proposed:
1 crN?2 ldz crn2 ,,2 2 X ’ PGF
x2(Q%x)= | - CHQ%L% )00 1707 Cy—Cy=Cy*—AC,. @

By using the well-known PGF expression in the first order in
@ a (see, for instancd13]), ACEJl) was calculated if6]. At
Q%/m2>1 it looks like
Here C? are the process-dependent coefficient functicns (

+Cg(Q2,M2,Z)9(M2,§) :

=c,g), 9. and g being charm and gluon densities of the o 2
incoming hadron, ang. is a factorization scale. The gluon Acgl)(Q2,2)= 2—5 ch(z)ln—2+z(1—z) . 5)
coefficient functionC9 includes, in particular, a photon- ™ me

gluon fusion (PGP contribution which dominates at low

scalesQ?< mﬁ, wherem, is a mass of the charm quark. At The corresponding order§ expression was also fourfdith
high Q?, as was noted in Ref§4,6], part of the PGF cross the account of only large logarithmic terjr{€]:

section is generated by the evolution of the charm contribu-

i i i 2 0 0 0 0 0
tion [the first term in Eq(})]. . ' ACEJ )=COg[(asln QZ)Z(pgg)@) pég)+ PO Pf:g))
To avoid double counting, one has to subtract this contri- 5 L L o
bution. In Ref.[4] this subtraction has been taked into ac- +agin sz((;g)]+c((: '® aln QZP((;g)
count in lowest order inyg (in what follows a symbol® ) 25(0)
means a convolution in variab®: +aCq ®asinQPyg . ©)
Fo,=CPeq,—CPeP 29+ C{Nag+0(al). (2) Both procedures, Eqg2) and (4), treat the problem of

double countingoy handand they cannot be easily general-
If u~m., we have an approximate cancellation of theized to higher orders img. Let us note that expressids)
first two terms in Eq(2) and we arrive at the dominance of was obtained with the account of only leading logarithmic
the PGF mechanism. On the other handy#m;, the last  contributions in each subtracted term, and the factorization
two terms in Eq.(2) almost cancel and we reproduce the scale was assumed to be largeé~=Q?2.
QCD parton model in the leading order. To overcome these shortcomings, let us start from a defi-
nition of coefficient functions in terms of two-particle irre-
ducible (2PIl) amplitudes. In the following we assume that a

*Email address: kisselev@mx.ihep.su corresponding object is 2PI in the direction of the iteration

"Permanent address. (that is in thet channel. We will work in an axial gauges

! et us note that at very small values fone has to consider (n*A,=0, n, being a gauge vectpand follow a scheme
more generak, factorization[12]. developed in Ref[8].
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Let D, be a matrix of formal parton distributiofibelow

. F=A(—-V)" Yy - —oD+AA(I-AV)"D
we define physical parton distribution functiobsEq. (16)]. -

It obeys a matrix equation +A( —T/)‘1|ki:k_:0A\~/(I ~AV)"ID+F, (13
D=(1+V+V2+...)D=(1-)"1D, (7 where
whereD is the 2P| part oD, the 2PI kernelN defines the A=Al —(I—P)V] ! (14)

evolution of D andl is a unit matrix. To simplify notations,
we dropped a sum both in parton types and spins. Integratioand
in internal momenta are also assumed in &g.
It is known that in the axial gauge 2Pl aplitudes have no AZ&zR—Z&(q,ka v o)
singularities associated with a propagation of intermediate Lo

physical state§8]. For instanceV(k, k,_1) in Eq. (7) is

finite atk?_,—0, but it includes legs, corresponding to mo- AV=V=V(r,K)lg =k_=o- (19
mentumk,,, and has a pole ik2 ask?—0. s
Then the DIS structure function has the form Herek_ = (k“+kT)/kn.

In Eq. (13) we defined the quantity
F=F+A(I-V)"1D ®) ~ SR
D=[1+P,P,V(I-V) !D. (16)
with F being the 2P part of, while A is the 2PI part of the 5 5
virtual photon-parton amplitude. The quantity AA(1—AV) ! in the second term in Eq.
Following [8], let us introduce a projector operator onto (13) has no contributions of the typeg(In Q)X As far as
physical helicity statesd|,, is a tensor part of the gluon one is interested in logarithms @2, it is possible to omit
propagator this term in the coefficient function. The third term in Eqg.
(13), AV(I—AV) D, is of the oder ofA?/ 12, whereA is a
typical hadron scale. The nonperturbative schlerises as a
P — 4kn 9 result of integration of the kern& with D (which describes
h™ 1 ©) initial parton distributions inside the nucleohe quantity
0“7 (=9u), for a gluon line F in Eq. (13 is related to higher twist effects and it is sup-
pressed by a factok?/Q?.
and u?>A? we get

n~ ! ! I’:] .
(ky« 8 (—) , foraquarkline
apB

P 2
and another operator which projects onto small virtualities of So, at highQ
parton lined

F=CD, (17
P,=0(u?=K?)). (10
where

As we will see, our result22) depends on a product &}, L
andP,, Eq.(23). But at intermediate steps it is convenient to C=A(-V)"Xq,K) ¢ =k -0 (18)
consider these operators separately. *

By using matrix identities with V andA defined abovésee Eqs(12), (14)].

=) =[1-(1=P)V] Y1 -P V)L, Let us note that the_quanti@ Eq._(16) is of the sum_of
the terms which looks like the followingafter an integration

B ~ . . in transverse components of momektg
(I-P V) 1=(1-V) 1[IJrPMPhV(I—V) Yoy

. 2 2 d 1A
with J“ dkﬁfk“dkﬁ_lf -1y
Zn-1

k2—1 K2
zn_l,”k—z)f "ldk2

n

Vi=V=(1=PVT Y V=(1-P PV, (12

PN k2_ K2
| | j D2 gyt ...jldkg
we can rewrite Eq(8) in the form Zn-2 ki_»
dzy- 5\
xJ—Z‘)v zo,—Z)D<zo,k3,p2), (19
2Another possibility is to use an operat®f which extracts poles 2y ki

in £ in MS renormalization schemésee, for instance,14]). We
prefer to use the operaté, in order to have clear physical mean- wherez=k, ;n/k,n. On the other hand, from an analogous
ing for the scaleu (see below. formula in[8] we get terms of the type
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» @ dz, K2 @ Let us note that botlCP"{q,k) Eq. (26) and AC(q,k)
JM dkﬁJ ”dkﬁ,lf _lU(znl,n—;l)f K2, Eq. (27) contain, in general, singularities &f=0, while
Zn-1 k their difference,C(q,k) Eqg. (22), does not.

n

q 2 d 2 The formula(27) enables us to calculateCy in any fixed
-2 U(zn ”—l) . j —Zou( 2o, —°> , order inas. Let the coefficient functiol€ and the kerneV
z

-2
kﬁ_z % kf have, respectively, the expansions:
20
20 C=CO+cM+... (29)
where
and
U=P,P,V[I-(1-PyV] L (21) o
_ V=vO v (30)
As one can easily see from Eq46) and(19), D has the
meaning of the distribution of partons whose virtualities varyThen we get
up to u2. That is why we can consid& in Eq. (17) to be a
coefficient function. It can be represented in anotleguiva- Acél):E;(CO)K\“/glg) (31)
lent) form:
- ~ and
C=A[l—(I=K)V]"H(a,K) [k, =k_=o- (22)
Here ACP)=COKVIVED + vV ]+ CORVE+ CHK VY
CDpry(1)
K=P,Py. 23) +Cq 'KVgq - (32
So, the operatorl(-K)=(I—Py) +(I—P,)Py in Eq. (22 The kernelsV can be related with parton splitting func-

projects onto states without any coIImear singularities. It actdions @,b=q,g) [14]:
on the full expression on the right0]:

- 1 k2
~ “ “ ~ (n) 2 12y — (n—1)
[ = (1= KV t= 1+ (1= K)V+ (1= K)[V(I —K)W]+ - - - Va(21°K) =5 o0 =Pl ( ’rz)' (33
(24)
where the off-shell splitting function has the form:

The expression fo€{", calculated with the use of formula
(22), coincides with thexg order result from Reff15]. A © ag (1)

Starting from Eq.(18) or (22), we can represent the DIS Pab= 2 P o P t- (34)

coefficient functionC in a form analogous to Eq4):

ohp In particular, in the leading logarithmic approximation, we
C=(C™=AC)(q,K)[x, =k =0 (29 have

where

o vgﬁb)(z,rz,k2=0>=i PR, (35
CPPP=A(1-V) 1 (26)

O(5) i i Parisi_ splitti
is a “naive” expression for virtual photon-parton coefficient :‘,L\:?]i:s)rﬁ)ab(Z) is a leading order Altarelli-Parisi splitting

funct|or? that does. nf)t tf‘;\k(—imto account th(_a evolgtlon in- If we put M22Q2 in Eq. (32 and save . In Qz)z and
cluded in parton distribution® Eg. (16). In particular, if we a2In Q? contributions, all the terms in expressigf) for

consider a parton to be a gluon, we havg"™= CPeF. AC can be reproducedaking into account slight difference
From Eqs.(25), (22, and (26) we get the following ex-  petween our definitions o€™ and AC™ and those from
pression forAC: Ref. [6]). Indeed, from Eq.(33) we conclude that

COKVE=CcMe adn PPY, etc., where coefficient func-
tions C{" =C" (a¢(Q?)) have no logarithms o©?2.
However, the exact formul@2) results in additional con-

whereC(q,k) is given by formula(22) but without imposing tributions which are absent in E¢6). In particular, due to
a conditionk, =k_=0. In deriving Eq.(27) we used a ma-

trix identity

AC=CKV(I-V) %, 27)

power corrections inV{) [see Eg. (33)] the term
i i C(O)K[V(l)v‘l)JrV(l)V(l)] contains a nonleading contribu-
(I-V)"*=[1-(1-K)V] ! tion (a? InQ) in addltlon to a leading onf(asIn Q%2
R R R Let us note that expressid27) and, consequently, Egs.
=[1-(1-K)V] *KV(I-Vv) L (28)  (31) and(32) do not have factorized forms as the right-hand
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sides of Egs.(2) and (6) do. Namely, the integration of tion F,. However, our formulag22), (27) may be also ap-

E:(q,|) or ’é(n)(qyl) in the momentd with the nght part of plled to the |Ongitudina| deep inelastic structure funCﬂf_qn

the corresponding expression should be done. In particular, In conclusion let us note that the problem of double
due to this integration in Eq31) we get a constant term in counting should also exist for Wilson coefficients for light
AC®M(qg,k) in addition to a large logarithmic term. It de- quarksCY considered in higher orders . In such a case
pends both on a ratig?/Q? and u3/Q?, whereu2=—k?>  the double counting means that one and the same term is
[simultaneously, we have to sket= — u2 in CP"q,k)]. At~ accounted for both in the coefficient functi@f and in a

w?=Q?>m? andk?=0 we get the constant term which is distribution functionﬁq. Formula (18) [Eq. (22)] enables
different fromz(1-2z) in Eq. (5). one to separate diagrams describ@®yfrom those included
Fortunately, we are not forced to deal with the quantityj, the evolution of the quark distributidn,, . For instance, in

AC [Eq. (27)] as we have derived the formul@2) which  ihe |owest order inxs we should get a term analogous to Eq.
enables us to calculat€, and C; in any order in strong (4

coupling without getting double counting in the coefficient
functions. | would like to thank the Brazilian governmental agency
In the present paper we have studied the structure fund=APESP for financial support.

[1] H1 Collaboration, C. Adloffet al, Z. Phys. C72, 593(1996. 73B, 281(1978; S. Libby and G. Sterman, Phys. Rev.1B,

[2] ZEUS Collaboration, J. Breitweet al., Phys. Lett. B407, 402 3252 (1978; 18, 4737(1978; A. H. Mueller, ibid. 18, 3705
(1997. (1978.

[3] M. Gllck, E. Reya, and M. Stratmann, Nucl. Ph#t22 37  [10] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Ph§475,
(1994; A. V. Kisselev and V. A. Petrov, Z. Phys. @5, 277 437 (1980.
(1997). [11] J. C. Collins, D. E. Soper, and G. Sterman,Rerturbative

[4] M. A. G. Aivazis, F. I. Olness, and W.-K. Tung, Phys. Rev. D
50, 3085(1994); 50, 3102(1994).

[5] R. S. Thorne and R. G. Roberts, Phys. Re\e16871(1998;
Phys. Lett. B421, 303(1998.

[6] A. D. Martin et al, Eur. Phys. J. @, 287(1998.

[7] S. Kretzer and I. Schienbein, Phys. Rev58) 094035(1998.

[8] SlSKz 2Eg|5$(1e£t;7ag; Phys. Lett.78B, 281 (1978; Nucl. Phys. Gliick and E. Reya, Phys. LeB3B, 98 (1979,

[9] A. V. Radyushkin, Phys. Let69B, 245(1977: H. D. Politzer, L4 S- Catani and F. Hautmann, Nucl. Ph27, 475(1994.
Nucl. Phys.B129, 301(1977; D. Amati, R. Petronzio, and G, 2] P- Mathews and V. Ravindran, Int. J. Mod. Phys1# 2783

Venezianojbid. B14Q, 54 (1978; C. T. Sachrajda, Phys. Lett. (1996.

Quantum Chromodynamicedited by A. H. Mueller(World
Scientific, Singapore, 1989

[12] S. Catani, M. Ciafaloni, and F. Hautmann, Phys. LetR42,
97 (1990; Nucl. Phys.B366, 657 (1991).

[13] E. Witten, Nucl. PhysB104, 445(1976; M. A. Shifman, A. I.
Vanshtein, and V. |. Zakharovbid. B136, 157 (1978; M.

074001-4



