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Extracting CKM phases from angular distributions of Bd,s decays into admixtures
of CP eigenstates
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Theory Division, CERN, CH-1211 Geneva 23, Switzerland
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The time-dependent angular distributions of certainBd,s decays into final states that are admixtures of
CP-even andCP-odd configurations provide valuable information about CKM phases and hadronic param-
eters. We present the general formalism to accomplish this task, taking also into account penguin contributions,
and illustrate it by considering a few specific decay modes. We give particular emphasis to the decayBd

→J/cr0, which can be combined withBs→J/cf to extract theBd
0-B̄d

0 mixing phase and—if penguin effects
in the former mode should be sizeable—also the angleg of the unitarity triangle. As an interesting by-product,

this strategy allows us to take into account also the penguin effects in the extraction of theBs
0-B̄s

0 mixing phase
from Bs→J/cf. Moreover, a discrete ambiguity in the extraction of the CKM angleb can be resolved, and
valuable insights intoSU(3)-breaking effects can be obtained. Other interesting applications of the general

formalism presented in this paper, involvingBd→rr and Bs,d→K* K̄* decays, are also briefly noted.
@S0556-2821~99!03619-X#
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I. INTRODUCTION
Studies ofCP violation in theB-meson system and th

determination of the three anglesa, b and g of the usual
non-squashed unitarity triangle@1# of the Cabibbo-
Kobayashi-Maskawa~CKM! matrix @2# are among the cen
tral targets of futureB-physics experiments. During rece
years, several strategies were proposed to accomplish
task @3#. In this context, also quasi-two-body modesBq
→X1X2 of neutral Bq-mesons (qP$d,s%), where bothX1
and X2 carry spin and continue to decay throug
CP-conserving interactions, are of particular interest@4,5#.
In this case, the time-dependent angular distribution of
decay products ofX1 andX2 provides valuable information
For an initially, i.e. at timet50, presentBq

0-meson, it can be
written as

f ~Q,F,C;t !5(
k

O (k)~ t !g(k)~Q,F,C!, ~1!

where we have denoted the angles describing the kinem
of the decay products ofX1 andX2 generically byQ, F and
C. Note that we have to deal, in general, with an arbitra
number of such angles. The observablesO (k)(t) describing
the time evolution of the angular distribution~1! can be ex-
pressed in terms of real or imaginary parts of certain bilin
combinations of decay amplitudes. In the applications d
cussed in this paper, we will focus onBq→@X1X2# f decays,
whereX1 and X2 are both vector mesons, andf denotes a
final-state configuration withCP eigenvalueh f . It is conve-
nient to analyze such modes in terms of the linear polar
tion amplitudesA0(t), Ai(t) andA'(t) @6#. WhereasA'(t)
describes aCP-odd final-state configuration, bothA0(t) and
Ai(t) correspond toCP-even final-state configurations, i.e
to the CP eigenvalues21 and11, respectively. The observ
ables of the corresponding angular distribution are given

uAf~ t !u2 with f P$0,i ,'%, ~2!
0556-2821/99/60~7!/073008~12!/$15.00 60 0730
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as well as by the interference terms

R$A0* ~ t !Ai~ t !% and I$Af* ~ t !A'~ t !% with f P$0,i%.
~3!

This formalism is discussed in more detail in@7#, where sev-
eral explicit angular distributions can be found and approp
ate weighting functions to extract their observables in
efficient way from the experimental data are given.

In the following considerations, the main role is played
neutralBq→@X1X2# f decays, where the ‘‘unevolved’’ deca
amplitudes can be expressed, with the help of the unitarity
the CKM matrix, as

Af5Nf@12bfe
ir fe1 iv# ~4!

Āf5h fNf@12bfe
ir fe2 iv#, ~5!

where v denotes aCP-violating weak phase andNf
[uN f ueid f . Bothr f andd f areCP-conserving strong phases
In this case, the observables~2! and~3! allow us to probe the
Bq

0-B̄q
0 mixing phasefq and the weak phasev, as we will

show in this paper. Concerning practical applications,v is
given by one of the angles of the unitarity triangle. Howev
the observables specified in Eqs.~2! and~3! are not indepen-
dent from one another and do not provide sufficient inform
tion to extractfq andv, as well as the corresponding ha
ronic parameters, simultaneously. To this end, we have
use an additional input.

The reason for this feature is the fact that the parame
zations given in Eqs.~4! and ~5! are not unique. In order to
illustrate this point in more detail, let us consider the amp
tudeP of a non-leptonicb̄→d̄ penguin decay into two pseu
doscalar mesons, such asBd

0→K0K̄0:

P5lu
(d)Pu1lc

(d)Pc1l t
(d)Pt . ~6!

Here the
©1999 The American Physical Society08-1
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lq
(d)[VqdVqb* ~7!

are the usual CKM factors and thePq denote hadronic ma
trix elements, which are related to penguin topologies w
internalq-quark exchanges (qP$u,c,t%). The unitarity of the
CKM matrix implies

lu
(d)1lc

(d)1l t
(d)50, ~8!

allowing us to eliminate one of the CKM factors in Eq.~6!.
These quantities can be expressed in terms of the angle
the unitarity triangle as follows:

lu
(d)5l3ARbeig, lc

(d)52l3A, l t
(d)5l3ARte

2 ib,
~9!

where

l[uVusu50.22, A[
1

l2
uVcbu50.8160.06, ~10!

and

Rb[
1

l UVub

Vcb
U50.4160.07, Rt[

1

l UVtd

Vcb
U5O~1!. ~11!

If we eliminate thel t
(d) term in Eq.~6!, we obtain

P52l3A~Pc2Pt!F12RbeigS Pu2Pt

Pc2Pt
D G . ~12!

On the other hand, if we prefer to eliminate thelu
(d) term, we

arrive at

P52l3A~Pc2Pu!F12Rte
2 ibS Pt2Pu

Pc2Pu
D G . ~13!

Both parametrizations are related to each other through
unitarity of the CKM matrix. If we compare Eqs.~12! and
~13! with the parametrization given in Eq.~4!, we observe
that v5g in the former case, whereasv52b in the latter
one. Consequently, if it were possible to extractv by using
only the observables provided by our considered peng
decay, we would obtain different values forv for different
parametrizations of the decay amplitude, as in general2b
Þg. This point is worked out in more detail in a recent pap
@8#, where also some of the other issues discussed here
addressed.

The kind of reasoning given in the previous paragra
applies also to the observables of the angular distribution
quasi-two-bodyBq→X1X2 modes. In order to extract infor
mation from these observables, the ambiguity in the defi
tion of the decay amplitudes~4! and ~5! has to be resolved
To accomplish this goal, an additional input is require
which is usually provided by flavor-symmetry or dynamic
arguments. The particular input we are using determines
appropriate parametrization of decay amplitudes, which w
always be of the same form as that of Eqs.~4! and ~5!.

In this context, there is an interesting feature, as we w
show in this paper: if we fix the mixing phasefq separately,
07300
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it is possible to expressv—and interesting hadronic
quantities—as a function of asinglehadronic parameter in a
theoretically cleanway. If we determine this quantity, fo
instance, by comparingBq→X1X2 with an SU(3)-related
mode, all remaining parameters, includingv, can be ex-
tracted. As noted above, the input used to fix this param
determines the appropriate parametrization of decay am
tudes, in particular also the CKM phasev. If we are willing
to make more extensive use of flavor-symmetry argument
is possible to determine theBq

0-B̄q
0 mixing phasefq as well.

An example for such a strategy is given by the decayBd
→J/cr0, which can be combined withBs→J/cf to extract
the Bd

0-B̄d
0 mixing phasefd52b and—if penguin effects in

the former mode should be sizeable—also the angleg of the
unitarity triangle. As an interesting by-product, this strate
allows us to take into account also the penguin effects in
extraction of theBs

0-B̄s
0 mixing phase fromBs→J/cf,

which is an important issue for ‘‘second-generation
B-physics experiments at hadron machines. Moreover,
may resolve a discrete ambiguity in the extraction of t
CKM angle b, and may obtain valuable insights int
SU(3)-breaking effects. Other interesting applications of t
general formalism presented in this paper, involvingBd

→rr andBs,d→K* K̄* decays, are also briefly noted.
As the extraction of CKM phases with the help of the

modes involves ‘‘penguin,’’ i.e., flavor-changing neutra
current~FCNC! processes and relies moreover on the unit
ity of the CKM matrix, it may well be affected by new phys
ics. In such a case, discrepancies would show up with o
strategies to determine these phases, for example with
theoretically clean extractions ofg making use of pure
‘‘tree’’ decays such asB→DK or Bs→Ds

6K7. Since no
FCNC processes contribute to the decay amplitudes of th
modes, it is quite unlikely that they—and the extracted va
of g—are significantly affected by new physics.

The outline of this paper is as follows: in Sec. II, th
time-dependent observables of theBq→X1X2 angular distri-
bution are given. The strategies to extract CKM phases
well as interesting hadronic parameters, with the help
these observables are discussed in Sec. III. In Sec. IV,
focus on the extraction ofb and g from Bd→J/cr0 and
Bs→J/cf. Further applications of the formalism develope
in Secs. II and III are discussed in Sec. V, and the conc
sions are summarized in Sec. VI.

II. THE TIME EVOLUTION OF THE ANGULAR
DISTRIBUTIONS

In this section, we consider the general case of a neu
quasi-two-body decayBq→@X1X2# f into a final-state con-
figurationf with CP eigenvalueh f that exhibits ‘‘unmixed’’
decay amplitudes of the same structure as those given in
~4! and~5!. If we use linear polarization states to character
the final-state configurations as, for example, in@7#, we have
f P$0,i ,'%.

At this point a comment on the angular distribution of t
CP-conjugate decayB̄q

0→X1X2, which is given by
8-2
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f̄ ~Q,F,C;t !5(
k

Ō(k)~ t !g(k)~Q,F,C!, ~14!

is in order. Since the meson content of theX1X2 states is the
same whether these result from theBq

0 or B̄q
0 decays, we may

use the same generic anglesQ, F and C to describe the
angular distribution of their decay products. Within this fo
malism, the effects ofCP transformations relatingBq

0

→@X1X2# f to B̄q
0→@X1X2# f are taken into account by th

CP eigenvalueh f appearing in Eq.~5!, and do not affect the
form of g(k)(Q,F,C). Therefore the same function
g(k)(Q,F,C) are present in Eqs.~1! and~14! ~see also@5#!.

In view of applications toBs decays, we allow for a non
vanishing width differenceDGq[GH

(q)2GL
(q) between theBq

mass eigenstatesBq
H ~‘‘heavy’’ ! and Bq

L ~‘‘light’’ !. In con-
trast to theBd case, this width difference may be sizeable
theBs system@9#; it may allow studies ofCP violation with
‘‘untagged’’ Bs data samples, where one does not distingu
between initially, i.e. at timet50, presentBs

0 or B̄s
0 mesons

@10#. The time evolution of the observables corresponding
Eq. ~2! takes the following form:

uAf~ t !u25
1

2
@RL

f e2GL
(q)t1RH

f e2GH
(q)t12e2Gqt$AD

f cos~DMqt !

1AM
f sin~DMqt !%# ~15!

uĀf~ t !u25
1

2
@RL

f e2GL
(q)t1RH

f e2GH
(q)t22e2Gqt$AD

f cos~DMqt !

1AM
f sin~DMqt !%#, ~16!

where DMq[MH
(q)2ML

(q).0 denotes the mass differenc
between theBq mass eigenstates, andGq[@GL

(q)1GH
(q)#/2.

The quantitiesRL
f , RH

f , AD
f andAM

f , which are not indepen
dent from one another and satisfy the relation

~AD
f !21~AM

f !25RL
f RH

f , ~17!

are given by

RL
f 5uN f u2@~11h f cosfq!22bf cosr f

3$cosv1h f cos~fq1v!%

1bf
2$11h f cos~fq12v!%# ~18!

RH
f 5uN f u2@~12h f cosfq!22bf cosr f

3$cosv2h f cos~fq1v!%

1bf
2$12h f cos~fq12v!%# ~19!

AD
f 52uN f u2bf sinr f sinv ~20!

AM
f 5h f uN f u2@sinfq22bf cosr f sin~fq1v!

1bf
2 sin~fq12v!#. ~21!
07300
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Here the phasefq denotes theCP-violating weakBq
0–B̄q

0

mixing phase:

fq5H 2b for q5d

22dg for q5s,
~22!

where 2dg'0.03 is tiny in the standard model because o
Cabibbo suppression ofO(l2). This phase cancels in

Sf[
1

2
~ uAf~0!u21uĀf~0!u2!5

1

2
~RL

f 1RH
f !

5uN f u2~122bf cosr f cosv1bf
2!. ~23!

It is also interesting to note that there are noDMqt terms
present in the ‘‘untagged’’ combination

uAf~ t !u21uĀf~ t !u25RL
f e2GL

(q)t1RH
f e2GH

(q)t, ~24!

whereas

uAf~ t !u22uĀf~ t !u252e2Gqt@AD
f cos~DMqt !

1AM
f sin~DMqt !#. ~25!

Because of Eq.~17!, each of theuAf(t)u2 or uĀf(t)u2 ( f
P$0,i ,'%) terms of theBq→X1X2 angular distribution pro-
vides three independent observables, which we may cho
asAD

f , AM
f andSf .

The time evolution of the interference terms~3! is analo-
gous to Eqs.~24! and ~25!. Let us first give the expression
for the observables corresponding to Eq.~23!:

R[
1

2
@R$A0* ~0!Ai~0!%1R$Ā0* ~0!Āi~0!%#

5uN0uuNiu@cosD0,i2$b0 cos~r02D0,i!

1bicos~r i1D0,i!%cosv1b0bicos~r02r i2D0,i!#

~26!

I D
f [

1

2
@I$Af* ~0!A'~0!%1I$Āf* ~0!Ā'~0!%#

5uNf uuN'u@bf cos~r f2D f ,'!2b' cos~r'1D f ,'!#sinv,

~27!

where the

D f̃ , f[d f2d f̃ ~28!

denote the differences of theCP-conserving strong phases o
the amplitudesN f[eid f uNf u andN f̃[eid f̃ uN f̃ u. On the other
hand, the rate differences corresponding to Eq.~25! take the
following form:

R$A0* ~ t !Ai~ t !%2R$Ā0* ~ t !Āi~ t !%

52e2Gqt@RD cos~DMqt !1RM sin~DMqt !#

~29!
8-3
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I$Af* ~ t !A'~ t !%2I$Āf* ~ t !Ā'~ t !%

52e2Gqt@ I f cos~DMqt !2I M
f sin~DMqt !#, ~30!

where

RD5uN0uuNiu@b0 sin~r02D0,i!1bi sin~r i1D0,i!#sinv
~31!

RM5uN0uuNiu@cosD0,i sinfq2$b0 cos~r02D0,i!

1bicos~r i1D0,i!%sin~fq1v!1b0bi

3cos~r02r i2D0,i!sin~fq12v!# ~32!

and

I f5uNf uuN'u@sinD f ,'1$bf sin~r f2D f ,'!

2b' sin~r'1D f ,'!%cosv

2bfb' sin~r f2r'2D f ,'!# ~33!

I M
f 5uNf uuN'u@cosD f ,' cosfq2$bf cos~r f2D f ,'!

1b' cos~r'1D f ,'!%cos~fq1v!

1bfb' cos~r f2r'2D f ,'!cos~fq12v!#. ~34!

Note thatf P$0,i% in Eqs.~27! and ~30!. The minus sign in
the latter expression is due to the differentCP eigenvalues
of f P$0,i% and f 5'. If we set ‘‘05i ’’ in Eqs. ~31! and
~32!, we get expressions taking the same form as Eqs.~20!
and~21!, which provides a nice cross check. The expressi
given above generalize those derived in@7# in two respects:
they take into account penguin contributions, and they al
for a sizeable value of theBq

0-B̄q
0 mixing phasefq . In the

discussion ofBs→J/cf in @7#, it was assumed thatfs is a
small phase, and terms ofO(fs

2) were neglected.
Unfortunately, not all of the observablesSf , AD

f andAM
f

are independent from those of the interference terms~3!.
This can be seen by considering two different final-state c
figurationsf and f̃ . In this case, the time-dependent angu
distribution provides nine observables. To be definite, let
consider the casef 50 and f̃ 5i . Then we have six observ
ables, corresponding toSf , AD

f andAM
f ( f P$0,i%), as well as

the three observablesR, RD and RM , which are due to the
real parts in Eq.~3!. The measurement ofSf andAD

f allows

us to fix the magnitudesuA0u, uAiu and uĀ0u, uĀiu. Using in
addition the observablesR and RD , we can determine the
angles between the unmixed amplitudesA0 andAi , as well
as the angles̄ betweenĀ0 , Āi ~see Fig. 1!. So far, the
relative orientation of the amplitudes (A0 , Ai) and (Ā0 , Āi)
is not determined. However, if we use, in addition, t
mixing-inducedCP asymmetryAM

0 , we are in a position to
fix fq1c0, wherec0 denotes the angle between the amp
tudesA0 and Ā0:

AM
0 5uA0uuĀ0usin~fq1c0!. ~35!
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Since the relative orientation of the amplitudese2 ifqĀi and
Ai is also fixed this way, we can predict the values of the t
remaining mixing-inducedCP-violating observablesAM

i and
RM . Consequently, only seven of the nine observables
independent from one another.

It is convenient to introduce the following ‘‘normalized’
observables:

ÂD
f [

AD
f

Sf
, ÂM

f [
AM

f

Sf
, ~36!

R̂[
R

AS0Si
, R̂D[

RD

AS0Si
, R̂M[

RM

AS0Si
, ~37!

Î f[
I f

ASfS'

, Î D
f [

I D
f

ASfS'

, Î M
f [

I M
f

ASfS'

, ~38!

which have the advantage that they do not depend on
overall normalization factorsuNf u. The observablesÂD

f and

ÂM
f allow us to determine the hadronic parametersbf andr f

as functions ofv andfq :

bf5A1

kf
@ l f6Al f

22hfkf # ~39!

2bf cosr f5uf1v fbf
2 ~40!

2bf sinr f5@~12uf cosv!1~12v f cosv!bf
2#S ÂD

f

sinv
D ,

~41!

where

hf5uf
21D f~12uf cosv!2 ~42!

kf5v f
21D f~12v f cosv!2 ~43!

l f522ufv f2D f~12uf cosv!~12v f cosv!, ~44!

with

FIG. 1. The amplitudesA0 , Ai and Ā0 , Āi in the complex plane.
8-4
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uf5
h f ÂM

f 2sinfq

h f ÂM
f cosv2sin~fq1v!

~45!

v f5
h f ÂM

f 2sin~fq12v!

h f ÂM
f cosv2sin~fq1v!

~46!

and

D f5S ÂD
f

sinv
D 2

. ~47!

It should be emphasized that no approximations were m
in order to derive these expressions. If we consider, in a
tion to ÂD

f and ÂM
f , either the observables specified in E

~37! or those given in Eq.~38!, we obtain seven normalize
observables, which depend on five hadronic parametersbf ,
r f , bf̃ , r f̃ and D f̃ , f), as well as on the twoCP-violating
weak phasesfq and v. However, only five of the seven
observables are independent from one another, so that w
not have sufficient observables at our disposal to ext
these parameters simultaneously. This feature is due to
CKM ambiguity, as we have discussed in Sec. I. In orde
extract these parameters from the observables, we hav
make use, for example, of another decay that can be rel
to Bq→X1X2 through flavor-symmetry arguments. On th
other hand, if we usefq and the weak phasev of a specific
parametrization~4! of the decayBq→X1X2 as an input, the
corresponding hadronic parameters can be extractedwithout
any additional assumption, thereby providing valuable
sights into hadronic physics and a very fertile testing grou
for model calculations ofBq→X1X2. The measurement o
the angular distributions discussed in this paper requires
statistics and can probably only be performed at ‘‘seco
generation’’B-physics experiments at hadron machines, s
as LHCb or BTeV, where decays ofBs-mesons can also b
studied. Since several promising strategies to extract
weak phasesfq and v at such experiments were alread
proposed~see, for example,@3#!, it may indeed be an inter
esting alternative to use measurements of angular distr
tions not to extract CKM phases, but to explore hadro
physics.

In practical applications, the parametersbf typically mea-
sure the ratio of ‘‘penguin’’ to ‘‘tree’’ contributions. Apply-
ing the Bander–Silverman–Soni mechanism@11#, and fol-
lowing the formalism developed in@12,13#, which makes
use—among other things—of the ‘‘factorization hypot
esis,’’ we obtain for various classes ofB decays

bf[b, r f[r ; f P$0,i ,'%, ~48!

i.e. these quantities are independent of the final-state
figuration f in this case. The main reason for these relatio
is that the form factors, which depend on the final-state c
figuration f, cancel in the ratiosbf of ‘‘penguin’’ to ‘‘tree’’
contributions. Although non-factorizable contributions a
expected to play an important role, thereby affecting E
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~48!, it is interesting to investigate the implications of the
relations on the observables of the angular distributions
more detail. If we introduce

ÂD[
2b sinr sinv

122b cosr cosv1b2
~49!

ÂM[
sinfq22b cosr sin~fq1v!1b2 sin~fq12v!

122b cosr cosv1b2
,

~50!

we obtain

ÂD
f 5ÂD , ÂM

f 5h f ÂM , ~51!

R̂5cosD0,i , R̂D5ÂD cosD0,i , R̂M5ÂM cosD0,i ,
~52!

Î f5sinD f ,' , Î D
f 5ÂD sinD f ,' , ~53!

I[
Î M

f

cosD f ,'

5F cosfq22b cosr cos~fq1v!1b2 cos~fq12v!

122b cosr cosv1b2 G ,

~54!

where

~ÂD!21~ÂM!21I 251. ~55!

These relations provide an interesting test of whether
~48! is realized in the decayBq→X1X2. Note thatÎ M

f does
not—in contrast to Eq.~53!—vanish for trivial values of
D f ,' .

III. EXTRACTING CKM PHASES AND HADRONIC
PARAMETERS

Let us now focus on the extraction of CKM phases fro
the observables of theBq→X1X2 angular distribution. As we
have already noted, to this end, we have to employ an a
tional input, since we have only five independent normaliz
observables at our disposal, which depend on seven ‘
knowns.’’ Although it would be desirable to determinefq
andv simultaneously, usually only the CKM phasev is of
central interest.

The Bs
0-B̄s

0 mixing phasefs[22dg52arg(Vts* Vtb) is
negligibly small in the standard model. It can be probed
and in principle even determined—with the help of the dec
Bs→J/cf ~see, for example,@7#!. Large CP-violating ef-
fects in this decay would signal that 2dg is not tiny, and
would be a strong indication for new-physics contributio
to Bs

0-B̄s
0 mixing. On the other hand, theBd

0-B̄d
0 mixing phase

fd52b can be fixed in a reliable way through the ‘‘gold
plated’’ modeBd→J/cKS @14#. Strictly speaking, mixing-
induced CP violation in Bd→J/cKS probes sin(2b1fK),
8-5
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wherefK is related to the weakK0-K̄0 mixing phase and is
negligibly small in the standard model. Because of the sm
value of theCP-violating parameter«K of the neutral kaon
system,fK can only be affected by very contrived models
new physics@15#. A measurement of mixing-inducedCP
violation in Bd→J/cKS allows us to fixfd52b only up to
a twofold ambiguity. Several strategies to resolve this am
guity were proposed in the literature@16#, which should be
feasible for ‘‘second-generation’’B-physics experiments. As
we will see in the following section, also the decayBd
→J/cr0, in combination withBs→J/cf, allows us to ac-
complish this task.

If we usefq thus determined as an input and consider
addition to ÂD

f and ÂM
f , either the observables specified

Eq. ~37! or those given in Eq.~38!, we can determinev as a
function of asinglehadronic parameter. Let us, for the m
ment, focus on the latter case, i.e. on the observablesÂD

f ,

ÂM
f , ÂD

' , ÂM
' and Î f , Î D

f , Î M
f for a given final-state configu

ration f P$0,i%. SinceuNf u and uN'u cancel in these quanti
ties, they depend only on the hadronic parametersbf , r f ,
b' , r' , D f ,' , as well as on the weak phasesv and fq .
Consequently, we have seven observables at our disp
which depend on seven ‘‘unknowns.’’ However, only five
the seven observables are independent from one anothe
we have discussed in the previous section. If we usefq as an
input, we can, for instance, obtainv andbf , r f , b' , r' as
functions of the strong phase differenceD f ,' in a theoreti-
cally clean way. Although the following discussion dea
with D f ,' , we can also replace this quantity by another h
ronic parameter of our choice. If we fixD f ,' , for example,
by comparingBq→X1X2 with an SU(3)-related mode, all
parameters can be extracted. Using in addition the obs
ablesSf , we can also determine the normalization facto
uNf u. Comparing them with those of theSU(3)-related mode
used to fix D f ,' , we can obtain valuable insights int
SU(3)-breaking corrections. The observables that we h
not used so far can be used to resolve discrete ambigu
arising typically in the extraction of these parameters.

Let us now give the formulas to implement this approa
in a mathematical way. The general expression for the
servableÎ f @see Eqs.~33! and ~38!# leads to the equation

Af sinD f ,'1Bf cosD f ,'5Cf , ~56!

where

Af5
1

Nf
@12~bf cosr f1b'cosr'!cosv

1bfb'~cosr f cosr'1sinr f sinr'!# ~57!

Bf5
1

Nf
@~bf sinr f2b' sinr'!cosv

2bfb'~sinr f cosr'2cosr f sinr'!# ~58!

Cf5 Î f , ~59!
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Nf5A~122bf cosr f cosv1bf
2!~122b'cosr'cosv1b'

2 !.
~60!

The solution of Eq.~56! is straightforward, and is given a
follows:

sinD f ,'5
AfCf6A~Af

21Bf
22Cf

2!Bf
2

Af
21Bf

2
,

cosD f ,'5
Cf2Af sinD f ,'

Bf
. ~61!

If we insertbf andr f , determined as functions ofv andfq
with the help of Eqs.~39!–~41!, into the expressions given
above, we can—for a given value offq—determineD f ,' as
a function of v. It should be emphasized that the relatio
betweenD f ,' , v andfq obtained this way is validexactly.
Using Î D

f or Î M
f instead ofÎ f would lead to the same relation

since these observables are not independent fromÎ f .
Alternatively, we may use the observables~37! instead of

Eq. ~38!. The general expression forR̂ @see Eqs.~26! and
~37!# implies an equation similar to Eq.~56!, whereAf , Bf
andCf have to be replaced through

A5
1

N
@~bi sinr i2b0 sinr0!cosv1b0bi~sinr0 cosr i

2cosr0 sinr i!# ~62!

B5
1

N
@12~b0 cosr01bicosr i!cosv

1b0bi~cosr0 cosr i1sinr0 sinr i!# ~63!

C5R̂, ~64!

where

N5A~122b0 cosr0 cosv1b0
2!~122bicosr icosv1bi

2!.

~65!

Obviously, the most efficient strategy of combining the o
servables provided by theBq→X1X2 angular distribution de-
pends on their actually measured values.

If we are willing to make more extensive use of flavo
symmetry arguments than just to fix the strong phase dif
enceD f̃ , f , it is in principle possible to determine also th
Bq

0-B̄q
0 mixing phasefq . In the following section, we will

have a closer look at the decayBd→J/cr0, which can be
related toBs→J/cf throughSU(3) arguments and a certai
dynamical assumption concerning ‘‘exchange’’ and ‘‘pe
guin annihilation’’ topologies. However, before we turn
these modes, which allow the simultaneous extraction
fd52b andg, let us first give two useful expressions for th
observablesR̂ and Î f . Since the parametersbf measure typi-
cally the importance of ‘‘penguin’’ topologies in compariso
with current–current contributions, they may not be t
8-6
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large. If we eliminate the hadronic parametersbf andr f in R̂

and Î f with the help of the observablesÂD
f andÂM

f and keep
only the leading-order terms inbf , we obtain

R̂'cosD0,i2
1

2
~ÂD

0 2ÂD
i !

sinD0,i

tanv
~66!

Î f'sinD f ,'1
1

2
~ÂD

f 2ÂD
'!

cosD f ,'

tanv
, ~67!

allowing us to determinev if the strong phase difference
D0,i or D f ,' are known. Interestingly, the leading-order e
pressions~66! and ~67! do not depend on theBq

0-B̄q
0 mixing

phasefq . A possible disadvantage ofR̂ is thatv enters in
combination with sinD0,i . Since D0,i is a difference of
CP-conserving strong phases@see Eq.~28!#, it may be small,
thereby weakening the sensitivity of these observables ov.
The situation concerning this point is very different in t
case of the observablesÎ f , which allow us to determinev
even in the case ofD f ,'P$0°,180°%.

IV. EXTRACTING b AND g FROM Bd˜J/cr0

AND Bs˜J/cf

If we combine the observables describing t
time-dependent angular distribution of the dec
Bd→J/c@→ l 1l 2#r0@→p1p2# with those of
Bs→J/c@→ l 1l 2#f@→K1K2#, we may extract theBd

0-B̄d
0

mixing phasefd52b and the angleg of the unitarity tri-
angle. TheBd→J/cr0 angular distribution can be obtaine
straightforwardly from theBs→J/cf case, which has bee
discussed in detail in@7#, by performing appropriate replace
ments of kinematical variables.

The decayBd
0→J/cr0 originates fromb̄→ c̄cd̄ quark-

level transitions; the structure of its decay amplitude is co
pletely analogous to the one ofBs

0→J/cKS ~see@17#!. For a
given final-state configurationf with CP eigenvalueh f , we
have

A~Bd
0→@J/cr0# f !5lc

(d)@Acc
(c) f1Apen

(c) f #1lu
(d)Apen

(u) f

1l t
(d)Apen

(t) f , ~68!

whereAcc
(c) f is due to current–current contributions, and t

amplitudesApen
(q) f describe penguin topologies with internalq

quarks (qP$u,c,t%). These penguin amplitudes take into a
count both QCD and electroweak penguin contributio
Employing the unitarity of the CKM matrix and the Wolfen
stein parametrization@18#, generalized to include non
leading terms inl @19#, we obtain

A~Bd
0→@J/cr0# f !52lAf@12afe

iu feig#, ~69!

where

A f[l2A@Acc
(c) f1Apen

(ct) f #, ~70!

with Apen
(ct) f[Apen

(c) f2Apen
(t) f , and
07300
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afe
iu f[RbS 12

l2

2 D F Apen
(ut) f

Acc
(c) f1Apen

(ct) f G . ~71!

The quantityApen
(ut) f is defined in analogy toApen

(ct) f , and the
relevant CKM factors are given in Eqs.~10! and ~11!. It
should be emphasized that the standard-model paramet
tion ~69! of the Bd

0→@J/cr0# f decay amplitude reliesonly
on the unitarity of the CKM matrix. In particular, it take
also into account final-state-interaction effects, which can
considered as long-distance penguin topologies with inte
up- and charm-quark exchanges@20#. Comparing Eq.~69!
with Eq. ~4!, we observe that

Nf52lAf , bf5af , r f5u f , v5g. ~72!

In this parametrization, we have eliminated thel t
(d) term in

Eq. ~68! with the help of Eq.~8!, which is the appropriate
choice to relateBd

0→J/cr0 to Bs
0→J/cf. Using the same

notation as in Eq.~69!, we have

A~Bs
0→@J/cf# f !5S 12

l2

2 DAf8@11eaf8e
iu f8eig#, ~73!

whereAf8 and af8e
iu f8 take the same form as Eqs.~70! and

~71!, respectively, and

e[
l2

12l2
. ~74!

The primes remind us that we are dealing with ab̄→ s̄ tran-
sition. Consequently, if we compare Eq.~73! with Eq. ~4!,
we obtain

Nf5S 12
l2

2 DAf8 , bf5eaf8 , r f5u f81180°, v5g.

~75!

The Bs→J/cf and Bd→J/cr0 observables can be re
lated to each other through

uAf8u5A2uAf u ~76!

D f̃ , f
8 5D f̃ , f ~77!

af85af , u f85u f , ~78!

where the factor ofA2 is due to ther0 wave function. These
relations rely both on theSU(3) flavor symmetry of strong
interactions and on the neglect of certain ‘‘exchange’’ a
‘‘penguin annihilation’’ topologies. Although such topolo
gies, which can be probed, for example, throughBs
→r1r2, D* 1D* 2 decays, are usually expected to play
very minor role, they may in principle be enhanced throu
final-state-interaction effects@21#. For the following consid-
erations, it is useful to introduce the quantities

H f[
1

e S uAf8u
uAf u

D 2Sf

Sf8
5

122af cosu f cosg1af
2

112eaf8cosu f8cosg1e2af8
2

, ~79!
8-7
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which can be fixed through the ‘‘untagged’’Bd→J/cr0 and
Bs→J/cf observables with the help of Eq.~76!. Conse-
quently, each of the linear polarization statesf P$0,i ,'% pro-
vides the following three observables:

H f , ÂD
f , ÂM

f . ~80!

Applying Eq.~78! to Eq.~79!, these observables depend on
on the hadronic parametersaf and u f , as well as on the
Bd

0-B̄d
0 mixing phasefd52b and the angleg of the unitarity

triangle. If we choose two different linear polarization stat
the observables~80! allow us to determine the correspondin
hadronic parameters andb andg simultaneously.

This approach can be implemented in a mathematical
as follows: if we consider a given final-state configuratiof
and combine the observablesH f and ÂD

f , which do not de-
pend onfd , with each other, we can determineaf andu f as
functions ofg:

af5Apf6Apf
22qf ~81!

2af cosu f5
12H f1~12e2H f !af

2

~11eH f !cosg
~82!

2af sinu f5F ~11e!~11eaf
2!H f

~11eH f !
G S ÂD

f

sing
D , ~83!

where

pf5
@2~11eH f !

2 cos2g2~12H f !~12e2H f !#sin2g2e fEf

~12e2H f !
2sin2g1e2Ef

~84!

qf5
~12H f !

2sin2g1Ef

~12e2H f !
2sin2g1e2Ef

, ~85!

with

Ef5@~11e!H fÂD
f cosg#2. ~86!

These expressions allow us to eliminate the hadronic par
etersaf and u f in the mixing-inducedCP asymmetryÂM

f ,
thereby fixing a contour in theg –fd plane, which is related
to

Ãf sinfd1B̃f cosfd5C̃f , ~87!

with

Ãf5122af cosu f cosg1af
2 cos2g ~88!

B̃f522af cosu f sing1af
2 sin 2g ~89!

C̃f5~122af cosu f cosg1af
2!~h f ÂM

f !. ~90!

The solution of Eq.~87! has already been given in Eq.~61!.
If we consider two different final-state configurationsf and f̃ ,
07300
,
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we obtain two different contours in theg –fd plane; their
intersection allows us to determine bothg andfd52b. Us-
ing, in addition, the observables~37! or ~38!–depending on
which final-state configurationsf and f̃ we consider—we
may resolve discrete ambiguities, arising typically in the e
traction offd andg.

Because of the strong suppression ofaf8 throughe50.05
in Eq. ~79!, this approach is essentially unaffected by po
sible corrections to Eq.~78!, and relies predominantly on th
relation~76!. If we insert the values offd andg thus deter-
mined into the expressions for the observables of the th
linear polarization statef 8, which has not been used so fa
its hadronic parametersuAf 8u, af 8 andu f 8 can also be deter
mined. ComparinguAf 8u with the Bs→J/cf parameter
uAf 8

8 u, we can obtain valuable insights into the validity of E
~76!. Moreover, several other interesting cross checks can
performed with the many observables of the angular dis
butions. Because of our poor understanding of the hadr
zation dynamics of non-leptonicB decays, only the ‘‘factor-
ization’’ approximation can be used for the time being
estimate factorizableSU(3)-breaking corrections to Eq
~76!. Explicit expressions for theBs→J/cf observables can
be found in @7#, and SU(3)-breaking effects in the corre
sponding form factors were studied in@22#. However, also
non-factorizable effects are expected to play an import
role, and experimental insights into these issues would
very helpful to find a better theoretical description.

The simultaneous extraction offd andg discussed above
works only if the hadronic parametersaf and u f are suffi-
ciently different from each other for two different final-sta
configurationsf. If, for example, Eq.~48! should apply to
Bd→J/cr0—which seems to be quite unlikely—theBd

0-B̄d
0

mixing phase has to be fixed separately in order to determ
g. In this case, each linear polarization statef P$0,i ,'% pro-
vides a strategy to extractg that is completely analogous t
the one proposed in@17#, which makes use ofBs(d)

→J/cKS decays. If we combineH f with ÂM
f , we obtain

af5A H f211uf~11eH f !cosg

12v f~11eH f !cosg2e2H f

. ~91!

The intersection of the contours in theg –af plane described
by this expression with those related to Eq.~39! allows us to
determineg andaf .

If we usefd as an input in order to extractg from Bd
→J/cr0, it is, however, more favorable to follow the ap
proach discussed in the previous section, i.e. to use Eq.~61!,
and to fixD f ,' ~or D0,i) through the theBs→J/cf observ-
ables with the help of Eqs.~77! and ~78!. Using in addition
the observables involving the third linear polarization st
f 8 that we have not employed so far, we can also fix
hadronic parametersaf 8 andu f 8 , as well as the strong phas
differenceD f 8, f . ComparingD f 8, f with its Bs→J/cf coun-
terpartD f 8, f

8 , we may obtain valuable insights into possib
corrections to~77!.

As an interesting by-product, this strategy allows us
take into account also the penguin effects in the extraction
8-8
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the Bs
0-B̄s

0 mixing phasefs from Bs→J/cf. Although the
penguin contributions are strongly suppressed in this m
because of the tiny parametere50.05 @see Eq.~73!#, they
may well lead to uncertainties of the extracted value offs at
the level of 10%, sincefs5O(0.03) within the standard
model. A measurement offs522l2h would allow us to
determine the Wolfenstein parameterh @18#, thereby fixing
the height of the unitarity triangle. Since the decayBs
→J/cf is very accessible at ‘‘second-generation
B-physics experiments performed at hadron machines,
instance at LHCb, it is an important issue to think about
hadronic uncertainties affecting the determination offs from
the corresponding angular distribution. The approach
cussed above allows us to control these uncertainties with
help of Bd→J/cr0.

The experimental feasibility of the determination ofg
from the Bd→J/cr0 angular distribution depends strong
on the ‘‘penguin parameters’’af . It is very difficult to esti-
mate these quantities theoretically. In contrast to the ‘‘usu
QCD penguin topologies, the QCD penguins contributing
Bd→J/cr0 require a color-singlet exchange, i.e. a
‘‘Zweig-suppressed.’’ Such a comment does not apply to
electroweak penguins, which contribute in ‘‘color-allowed
form. The current–current amplitudeAcc

(c) f originates from
‘‘color-suppressed’’ topologies, and the ratioApen

(ut) f /@Acc
(c) f

1Apen
(ct) f #, which governsaf , may be sizeable. It would b

very important to have a better theoretical understanding
the quantitiesafe

iu f . However, such analyses are far beyo
the scope of this paper, and are left for further studies.

If the parametersaf should all be very small, which
would be indicated byAD

f 5RD5I D
f 50, we could still deter-

mine the Bd
0-B̄d

0 mixing phase from the observablesÂM
f

5h f sinfd . If we use, in addition,Î M
f 5cosDf,'cosfd and

fix cosDf,' through the correspondingBs→J/cf observ-
able, cosfd can be determined as well. Consequently,
Bd

0-B̄d
0 mixing phasefd can be fixedunambiguouslythis

way, thereby resolving a twofold ambiguity, which arises
the extraction offd from Bd→J/cKS. This mode probes
only sinfd . Sincefd52b, we are left with a twofold am-
biguity for bP@0°,360°#. If we assume thatbP@0°,180°#,
as implied by the measured value of«K , we can fixb un-
ambiguously. For alternative methods to deal with ambi
ities of this kind, see@16#.

Before we turn toBd→rr andBs→K* K̄* decays, let us
note that the approach presented in this section can als
applied to the angular distributions of the decay products
Bs(d)→J/c@→ l 1l 2#K* @→p0KS# and Bd(s)→Dd(s)* 1 Dd(s)* 2 .
For the Bs(d)→J/cKS and Bd(s)→Dd(s)

1 Dd(s)
2 variants of

these strategies, see@17#.

V. FURTHER APPLICATIONS

In this section, we discuss further applications of the g
eral strategies presented in Sec. III. All of the methods d
cussed below have counterparts usingBd,s decays into two
pseudoscalar mesons. If we replace the pseudoscalar
higher resonances, for example, by vector mesons, as in
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following discussion, the angular distributions of their dec
products provide interesting alternative ways to extract CK
phases and hadronic parameters, going beyond theBd,s
→PP strategies. Because of the many observables prov
by the angular distributions, we can, moreover, perfo
many interesting cross checks, for example, of certain flav
symmetry relations.

A. The decaysBd˜r1r2 and Bs˜K* 1K* 2

The decayBd
0→r1r2 originates fromb̄→ūud̄ quark-

level processes. Using the same notation as in Eq.~69!, we
have

A~Bd
0→@r1r2# f !5S 12

l2

2 D C fe
ig@12dfe

iQ fe2 ig#,

~92!

where

C f[l3ARb@Ãcc
(u) f1Ãpen

(ut) f # ~93!

and

dfe
iQ f[

1

~12l2/2!Rb
F Ãpen

(ct) f

Ãcc
(u) f1Ãpen

(ut) f G . ~94!

In order to distinguish theBd
0→r1r2 amplitudes from the

Bd
0→J/cr0 case discussed in the previous section, we h

introduced the tildes. The phase structure of theBd
0→r1r2

decay amplitude given in Eq.~92!, which is an exact param
etrization within the standard model, is completely ana
gous to the one for theBd

0→p1p2 amplitude given in@23#,
where a more detailed discussion can be found.

The expressions for the observables describing the t
evolution of the angular distribution of the decay products
Bd

0→r1@→p1p0#r2@→p2p0# can be obtained straight
forwardly from the formulas given in Sec. II, by performin
the following substitutions:

Nf5S 12
l2

2 D Cf , bf5df , r f5Q f , v52g.

~95!

Because of the factor ofeig in front of the square brackets o
the right-hand side of Eq.~92!, we have to deal with a smal
complication. Since the observables are governed by

j f5e2 ifd
Āf

Af
5h fe

2 i (fd12g)F12dfe
iQ fe1 ig

12dfe
iQ fe2 igG , ~96!

we have to do the following replacement, in addition:

fd→fd12g. ~97!

Let us now turn to the decayBs
0→K* 1K* 2, which is due

to b̄→ūus̄ quark-level transitions. For a given final-sta
configurationf of theK* 1K* 2 pair, its decay amplitude can
be parametrized as follows:
8-9
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A~Bs
0→@K* 1K* 2# f !5lCf8e

igF11S 12l2

l2 D df8e
iQ f8e2 igG ,

~98!

whereCf8 and df8e
iQ f8 take the same form as Eqs.~93! and

~94!, respectively, and the primes have been introduced
remind us that we are dealing with ab̄→ s̄ mode. The phase
structure of Eq.~98! is completely analogous to theBs

0

→K1K2 decay amplitude@23#. The observables of the time
dependentBs→K* 1@→pK#K* 2@→p̄K̄# angular distribu-
tion can be obtained straightforwardly from the formul
given in Sec. II by simply using the replacements:

Nf5lCf8 , bf5S 12l2

l2 D df8 , r f5Q f81180°,

v52g. ~99!

Moreover, we have to perform the substitution

fs→fs12g ~100!

because of the factor ofeig in front of the square brackets i
Eq. ~98!.

Explicit expressions for the Bd→r1r2 and Bs
→K* 1K* 2 angular distributions in terms of helicity ampl
tudes can be found in@13#. Since Bd

0→r1r2 and Bs
0

→K* 1K* 2 are related to each other by interchanging
down and strange quarks, theU-spin flavor symmetry of
strong interactions implies

uCf8u5uCf u, df85df , Q f85Q f , ~101!

as well as

D f̃ , f
8 5D f̃ , f . ~102!

In contrast to Eqs.~76!–~78!, these relations do not rely o
any dynamical assumption—just on theU-spin flavor sym-
metry. They can be used to combine theBd→r1r2 and
Bs→K* 1K* 2 observables with each other, thereby allo
ing the extraction of the CKM angleg and of theBd,s

0 -B̄d,s
0

mixing phasesfd52b and fs522dg. In contrast to the
Bd→p1p2, Bs→K1K2 variant of this approach propose
in @23#, both mixing phases and the CKM angleg can in
principle be determined simultaneously. However, for
extraction ofg, it is more favorable to fixfd andfs sepa-
rately. Then we are in a position to determine two conto
in theg –D f̃ , f andg –D f̃ , f

8 planes in atheoretically cleanway
with the help of Eq.~61!. Using now theU-spin relation
~102!, g and all hadronic parameters describing the dec
Bd→r1r2 and Bs→K* 1K* 2 can be determined. As w
have already noted, the hadronic parameters provide a
fertile testing ground for model calculations of the deca
Bd→r1r2 and Bs→K* 1K* 2. In particular, the penguin

parametersdfe
iQ f and df8e

iQ f8 would be very interesting
comparing their values with each other, we could obt
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valuable insights intoU-spin-breaking corrections. More
over, there is one strong phase differenceD f 8, f left, which
can be compared with itsU-spin counterpartD f 8, f

8 . If we
should find a small difference between these phases, it wo
be quite convincing to assume that ourU-spin input~102! is
also not affected by large corrections.

Whereas the parametrization ofBd
0→r1r2 given in Eq.

~92! is the appropriate one to relate this mode toBs
0

→K* 1K* 2 through theU-spin flavor symmetry of strong
interactions, there is another interesting way to paramet
theBd→r1r2 decay amplitudes~see also@24#!. If we elimi-
natelc

(d) through the unitarity of the CKM matrix—instea
of l t

(d) , as done in Eq.~92!—we obtain

A~Bd
0→@r1r2# f !5S 12

l2

2 Dl3ARbeig@Ãcc
(u) f1Ãpen

(uc) f #

3@11r fe
is fe2 i (b1g)#, ~103!

where

r fe
is f[

Rt

~12l2/2!Rb
F Ãpen

(tc) f

Ãcc
(u) f1Ãpen

(uc) f G . ~104!

The CKM factorRt has been introduced in Eq.~11!. Taking
into account that we havefd52b and b1g5180°2a
within the standard model, we arrive at

bf5r f , r f5s f , v5a, ~105!

and at the ‘‘effective’’ mixing phasef5fd12g522a.
Consequently, using the strategy presented in Sec. III,
Bd→r1r2 angular distribution allows us to probe also th
combinationa5180°2b2g directly, i.e. to determinea as
a function of aCP-conserving strong phase differenceD f̃ , f
@see also Eqs.~66! and~67!#. Needless to note that the deca
Bd→r0r0 may also be interesting in this respect. Since
normalization factorsNf of the parametrization~103! are
proportional to

Ãcc
(u) f1Ãpen

(uc) f , ~106!

which is governed by ‘‘color-allowed tree-diagram-like’’ to
pologies, it may well be thatD f̃ , f'0. This relation would
allow us to extracta, as well as theBd→r1r2 hadronic
parameters, which include also another strong phase di
enceD f 8, f , providing an important cross check.

B. The decaysBd˜K* 0K̄* 0 and Bs˜K* 0K̄* 0

The decaysBd
0→K* 0K̄* 0 and Bs

0→K* 0K̄* 0 are pure

‘‘penguin’’ modes, originating fromb̄→d̄ss̄ and b̄→ s̄dd̄
quark-level transitions, respectively. They do not rece
contributions from current–current operators at the ‘‘tre
level, and can be parametrized within the standard mode
complete analogy to Eqs.~69! and ~73!. We have just to set
the current–current amplitudes equal to zero in these exp
sions. The decaysBd

0→K* 0K̄* 0 and Bs
0→K* 0K̄* 0 are re-

lated to each other by interchanging all down and stra
8-10
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quarks, i.e. through theU-spin flavor symmetry of strong
interactions, and the strategies to probeg and theBd,s

0 -B̄d,s
0

mixing phases are analogous to those discussed in Sec
Since theBd,s→K* 0K̄* 0 decays are pure ‘‘penguin’’ modes
they represent a particularly sensitive probe for new phys

An interesting alternative to parametrize theBd
0

→@K* 0K̄* 0# f decay amplitudes within the standard mode
given as follows:

A~Bd
0→@K* 0K̄* 0# f !5l3ARtApen

(tu) fe2 ib@12gfe
iw feib#,

~107!

where

gfe
iw f[

1

Rt

Apen
(cu) f

Apen
(tu) f

~108!

may well be sizeable due to the presence of final-st
interaction effects@25#. Consequently, we have

bf5gf , r f5w f , v5b. ~109!

Because of the factor ofe2 ib in front of the square bracket
on the right-hand side of Eq.~107!, the ‘‘effective’’ mixing
phase is given byf5fd22b. Consequently, the strateg
presented in Sec. III allows us to probe theCP-violating
weak phaseb of the CKM elementVtd5uVtdue2 ib. Within
the standard model, we havef5fd22b50. However, this
relation may well be affected by new physics, and represe
a powerful test of the standard-model description ofCP vio-
lation ~for a recent discussion, see@26#!. Therefore it would
be very important to determine this combination of CK
phases experimentally. The observables of theBd

→K* 0@→p2K1#K̄* 0@→p1K2# angular distribution may
provide an important step towards this goal.

VI. CONCLUSIONS

The angular distributions of certain quasi-two-bo
modesBd,s→X1X2, where bothX1 and X2 carry spin and
continue to decay throughCP-conserving interactions, pro
vide valuable information about CKM phases and hadro
parameters. We have presented the general formalism to
Y
m

.

07300
IV.

s.

e-

ts

c
ac-

complish this task, taking into account also penguin con
butions, and have illustrated it by having a closer look a
few specific decay modes. In comparison with strategies
ing non-leptonicBd,s decays into two pseudoscalar meson
an important advantage of the angular distributions is t
they provide much more information, thereby allowing va
ous interesting cross checks, for instance, of certain flav
symmetry relations. Moreover, they provide a very fert
testing ground for model calculations of theBd,s→X1X2
modes.

We have pointed out that the decayBd→J/cr0 can be
combined withBs→J/cf to extract theBd

0-B̄d
0 mixing phase

fd52b and—if penguin effects in the former mode shou
be sizeable—also the angleg of the unitarity triangle. As an
interesting by-product, this strategy allows us to take in
account also the penguin effects in the extraction of
Bs

0-B̄s
0 mixing phase fromBs→J/cf. If penguin effects

should be very small inBd→J/cr0, fd could still be deter-
mined and it would even be possible to resolve a twof
ambiguity, arising in the extraction of this CKM phase fro
Bd→J/cKS. Other interesting applications, involvingBd

→rr andBs,d→K* K̄* decays, were also noted. Within th
standard model, these modes are expected to exhibit bra
ing ratios at the 1025 level; also the one forBd→K* 0K̄* 0

may well be enhanced, from its ‘‘short-distance’’ expectati
of O(1026) to this level, by final-state-interaction effects.

Since the formalism presented in this paper is very g
eral, it can of course be applied to many other decays.
tailed studies are required to explore which channels
most promising from an experimental point of view. A
though theBd modes listed above may already be access
at the asymmetrice1 –e2 B-factories operating at theY(4S)
resonance, which will start taking data very soon, the stra
gies presented in this paper appear to be particularly in
esting for ‘‘second-generation’’ experiments at hadron m
chines, such as LHCb or BTeV, where also the ve
powerful physics potential of theBs system can be exploited
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