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Extracting CKM phases from angular distributions of B4 s decays into admixtures
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The time-dependent angular distributions of certByfs decays into final states that are admixtures of
CP-even andCP-odd configurations provide valuable information about CKM phases and hadronic param-
eters. We present the general formalism to accomplish this task, taking also into account penguin contributions,
and illustrate it by considering a few specific decay modes. We give particular emphasis to theBdecay
—J/yp°, which can be combined witBs— J/ ¢ to extract theBg-§2 mixing phase and—if penguin effects
in the former mode should be sizeable—also the anpgdéthe unitarity triangle. As an interesting by-product,
this strategy allows us to take into account also the penguin effects in the extractiorB@FESenixing phase
from Bs—J/¢. Moreover, a discrete ambiguity in the extraction of the CKM arglean be resolved, and
valuable insights int@&sU(3)-breaking effects can be obtained. Other interesting applications of the general
formalism presented in this paper, involviy— pp and Bsyd—>K*E* decays, are also briefly noted.
[S0556-282(199)03619-X

PACS numbd(s): 12.15.Hh, 13.25.Hw

I. INTRODUCTION as well as by the interference terms
Studies ofCP violation in the B-meson system and the . - )
determination of the three angles 8 and y of the usual ~JMAG(DA(D} and AT (DA (O} with fe{O]l}.
non-squashed unitarity trianglgl] of the Cabibbo- )
Kobayashi-Maskaw4CKM) matrix [2] are among the cen- This formalism is discussed in more detail[ifl, where sev-

tral targets of futureB-physics experiments. During recent eral explicit angular distributions can be found and appropri-

years, several_ strategies were proppsed to accomplish thé%e weighting functions to extract their observables in an
task [3]. In this context, also quasi-two-body mod

efficient way from the experimental data are given.
—X1X, of neutral B;-mesons §<1d,s}), where bothX, In the following considerations, the main role is played by
and X, carry spin and continue to decay through

L) ; : ; neutralB X;X,]s decays, where the “unevolved” deca
CP-conserving interactions, are of particular interggb]. g [XaXols Y Y

In this case, the time-dependent angular distribution of th%n;pé&;&e;;?r?xbzsxpressed, with the help of the unitarity of

decay products oK, and X, provides valuable information.

For an initially, i.e. at timeg=0, presenBg-meson, it can be Ai=N;[1—Dbse'Piet¢] (4)
written as o
A= niNf[1-Dbe'Pre™1], )
) — k K
f(G),d),\I’,t)—z 0W(1)g(e,0,v), (1) where » denotes aCP-violating weak phase andV;

=|N{|e'’. Both p; and §; areC P-conserving strong phases.

where we have denoted the angles describing the kinematid@ this case, the observable® and(3) allow us to probe the

of the decay products of, andX, generically by®, ® and BS-ES mixing phase¢, and the weak phase, as we will

. Note that we have to deal, in general, with an arbitraryshow in this paper. Concerning practical applicatio@asis
number of such angles. The observahi2¥)(t) describing given by one of the angles of the unitarity triangle. However,
the time evolution of the angular distributigf) can be ex- the observables specified in E¢8) and(3) are not indepen-
pressed in terms of real or imaginary parts of certain bilineadent from one another and do not provide sufficient informa-
combinations of decay amplitudes. In the applications distion to extract¢, and », as well as the corresponding had-
cussed in this paper, we will focus @&y —[X;X;]; decays, ronic parameters, simultaneously. To this end, we have to
where X; and X, are both vector mesons, aficienotes a use an additional input.

final-state configuration witl P eigenvaluey; . It is conve- The reason for this feature is the fact 'that the parametri-
nient to analyze such modes in terms of the linear polarizazations given in Eqsi4) and(5) are not unique. In order to
tion amplitudesAq(t), A(t) andA, (t) [6]. WhereasA (t) illustrate this point in more detail, let us consider the ampli-

describes & P-odd final-state configuration, botky(t) and  tudeP of a non-leptonido—d penguin decay into two pseu-
A|(t) correspond taCP-even final-state configurations, i.e. goscalar mesons, such B§—>K°E°:

to the CP eigenvalues 1 and+ 1, respectively. The observ-

ables of the corresponding angular distribution are given by P=ADP,+ AP +r P, (6)

|A{(1)]2  with fe{0],L}, (2)  Here the
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N§7=VqaV5p (7

are the usual CKM factors and tli&, denote hadronic ma-
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it is possible to expressw—and interesting hadronic
quantities—as a function of singlehadronic parameter in a
theoretically cleanway. If we determine this quantity, for

trix elements, which are related to penguin topologies withinstance, by comparin@®,— X, X, with an SU(3)-related

internalg-quark exchangeg(e {u,c,t}). The unitarity of the
CKM matrix implies
NRESNCESNCENY ®)

allowing us to eliminate one of the CKM factors in E@).
These quantities can be expressed in terms of the angles
the unitarity triangle as follows:

MNP=N3AREY, ND=-N3A, NP=\3ARe P,

©)

where
1
A=|V,J=0.22, AEF|Vcb|=O.81tO.06, (10

and

Vub
Vcb

=0(1). (11

R,= 041-0.07, R= —|
N Ve 04007 RETIG

If we eliminate thex(? term in Eq.(6), we obtain

PU_ Pt

PC_ Pt

P=—)\A(P.~P) - 12

1-Rye 7(

On the other hand, if we prefer to eliminate ) term, we
arrive at

(P
P=—\3A(P.—P,) 1—Rte"3< : “). (13)
P.— Py

mode, all remaining parameters, includirg can be ex-
tracted. As noted above, the input used to fix this parameter
determines the appropriate parametrization of decay ampli-
tudes, in particular also the CKM phase If we are willing
to make more extensive use of flavor-symmetry arguments, it

it possible to determine tlﬁg-gg mixing phaseg, as well.

An example for such a strategy is given by the de&ay
—J/p°, which can be combined witB,— J/ ¢ to extract

the Bg-gg mixing phasedy= 2B and—if penguin effects in
the former mode should be sizeable—also the anghé the
unitarity triangle. As an interesting by-product, this strategy
allows us to take into account also the penguin effects in the

extraction of theB2-BY mixing phase fromBs—J/yo,
which is an important issue for ‘“second-generation”
B-physics experiments at hadron machines. Moreover, we
may resolve a discrete ambiguity in the extraction of the
CKM angle 8, and may obtain valuable insights into
SU(3)-breaking effects. Other interesting applications of the
general formalism presented in this paper, involviBg

—pp andBg y—K*K* decays, are also briefly noted.

As the extraction of CKM phases with the help of these
modes involves “penguin,” i.e., flavor-changing neutral-
current(FCNC) processes and relies moreover on the unitar-
ity of the CKM matrix, it may well be affected by new phys-
ics. In such a case, discrepancies would show up with other
strategies to determine these phases, for example with the
theoretically clean extractions of making use of pure
“tree” decays such aB—DK or B¢—D K*. Since no
FCNC processes contribute to the decay amplitudes of these
modes, it is quite unlikely that they—and the extracted value
of y—are significantly affected by new physics.

Both parametrizations are related to each other through the The outline of this paper is as follows: in Sec. I, the

unitarity of the CKM matrix. If we compare Eq$12) and
(13) with the parametrization given in E@4), we observe
that o= vy in the former case, whereas= — 3 in the latter
one. Consequently, if it were possible to extracby using

time-dependent observables of BBg— XX, angular distri-

bution are given. The strategies to extract CKM phases, as
well as interesting hadronic parameters, with the help of
these observables are discussed in Sec. lll. In Sec. IV, we

only the observables provided by our considered penguifiocus on the extraction o and y from By—J/¢p° and

decay, we would obtain different values for for different
parametrizations of the decay amplitude, as in generél

Bs—J/ . Further applications of the formalism developed
in Secs. Il and Il are discussed in Sec. V, and the conclu-

# . This point is worked out in more detail in a recent papersions are summarized in Sec. VI.
[8], where also some of the other issues discussed here are

addressed.

The kind of reasoning given in the previous paragraph
applies also to the observables of the angular distributions of

quasi-two-bodyB,— X; X, modes. In order to extract infor-

mation from these observables, the ambiguity in the defini-

tion of the decay amplitude@) and (5) has to be resolved.

To accomplish this goal, an additional input is required,

Il. THE TIME EVOLUTION OF THE ANGULAR
DISTRIBUTIONS

In this section, we consider the general case of a neutral
quasi-two-body deca,—[X;X,]; into a final-state con-
figurationf with CP eigenvaluern; that exhibits “unmixed”

which is usually provided by flavor-symmetry or dynamical decay amplitudes of the same structure as those given in Egs.
arguments. The particular input we are using determines thé#) and(5). If we use linear polarization states to characterize
appropriate parametrization of decay amplitudes, which wilthe final-state configurations as, for examplef,ih we have

always be of the same form as that of E@b. and (5).

In this context, there is an interesting feature, as we will

show in this paper: if we fix the mixing phagl, separately,

fe{0),L}.
At this point a comment on the angular distribution of the

CP-conjugate decaﬁgexlxz, which is given by
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Here the phasep, denotes theCP-violating weakBg—gg

ry; 1) — (K k
f(@,@,q’,t)—g oMgh(©,2.%), (14 iing phase:

is in order. Since the meson content of KgX, states is the b= 2B forg=d 22
same whether these result from @or BY decays, we may 1 |-28y forg=s,

use the same generic angl®s ® and ¥ to describe the
angular distribution of their decay products. Within this for-
malism, the effects ofCP transformations relatinng

—[ X1 X5]; to §8—>[X1X2]f are taken into account by the

CP eigenvaluen; appearing in Eq(5), and do not affect the

form of g™(®,®,¥). Therefore the same functions ,

g (O,d, W) are present in Eq€1) and(14) (see alsd5]). = |N¢|?(1—2b; cosps cosw+by). (23
In view of applications tBg decays, we allow for a non- _ ) _

vanishing width differencal“qzl“g_?)_r(ﬂ) between thes, It is also interesting to note that there are AM t terms

mass eigenstateB{ (“heavy”) and Bj (“light” ). In con- present in the “untagged” combination

trast to theB, case, this width difference may be sizeable in

the B system[9]; it may allow studies ofC P violation with

“untagged” B data samples, where one does not distinguish h

o ) i P whereas

between initially, i.e. at tim¢=0, presenBg or B; mesons

[10]. The time evolution of the observables corresponding to |A(t)|2— |Kf(t)|2=2efrqt[AfD cogAMt)

Eq. (2) takes the following form:

where 25y~0.03 is tiny in the standard model because of a
Cabibbo suppression @(\?). This phase cancels in

1 — 1
=5 (IA(0)[2+]Ai(0)|%) =5 (R[+R})

A2+ A0 [2=Rle TRl T, (24

+Al SIN(AMgt)]. (25)
1 ©) (@
2t rnfa Tt of oo Tt o Tty af _
[Ai(D*=5[Rie™ L +Rye ™ Hi+2e  ¢{Ap cOSAMgt)  Because of Eq(17), each of the|A(t)|2 or |A(t)[? (f
o e{0/,L}) terms of theB,— X, X, angular distribution pro-
+Ay Si(AMgt)}] (15  vides three independent observables, which we may choose
asAL, Al, andS;.
— 1 (@ @ The time evolution of the interference tert® is analo-
_trpfa-T f T “Ttraf
|Af(t)|2_§[RLe U+ Rye T t=2e T Ap cog AM ) gous to Egs(24) and(25). Let us first give the expressions
. for the observables corresponding to E2R):
+ Ay SI(AM )}, (16 .
where AM,=M(?—~M{?>0 denotes the mass difference R= S IR{AG (0)A(0)}+ R{Ag (0)A(0)}]
between theB, mass eigenstates, aity=[T{"+T{]/2.

The quantitieRR| , R,, AL andAf,, which are not indepen- =[Nol|Ajl[cosAg) = {bg costpo—Ao))

dent from one another and satisfy the relation +bjcog pj+ Agy)}cosw+bob cot po— pj—Agy)]
(AD)?+ (AlD?=R[R},, (17) (26)
: 1 _
are given by 15="5[3{AT (0)A,(0)} +3{A} (0)A,(0)}]
f_ 2 _ :
RU=INHT(1+ 7 cosgq) = 2by cospy = [VGIIALIby costpy— Ay ) by costp. +Ay.)]sine,
X {cosw+ 7; COY ¢pq+ w)} (27
+bH{1+ ¢ cog g+ 20)}] (18 where the
RL=[N¢|2[(1— 5 cos¢g) — 2b¢ cospy A =0~ & (28)
X {cosw— n; cog gt w)} denote the differences of ti&P-conserving strong phases of
) the amplitudesV¢=e' | \;| and NV5=e€'%| A4|. On the other
+bf{1- 7 cod g+ 2w)}] (19 hand, the rate differences corresponding to @8) take the
following form:
AL=2| N¢|?b¢ sinps sinw (20) -
f , R{AG (DA(D}=R{AG (DA(D}
An =71\ 1| sin ¢ — 2b; cospy sin( g+ w) —2e Td[Rp oY AMt) + Ry SiNAM 1)
+b? sin(¢g+2w)]. (21) (29
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HAT (DAL} =T{AT (DAL (1}
=2e Td[1; cogAMgt) — I, si(AM )], (30)

where

Rp=|Nol[Vj|[bg sin(po—Agy) + by sin(p + Ao,\\)]Sin?

31
RM:|NO||MI|[COSAO,H Si”¢q—{b0005(Po—Ao,||) B ‘_ Ao
. A
+b||COS{p”+AOVH)}SIn(¢>q+ w)+b0b|| ! .
X €O po=p| = Aoy)SiN( g+ 20)] (32 FIG. 1. The amplitudes\,, A; andA,, A in the complex plane.
and ) _ _ ) ) R
Since the relative orientation of the amplitudes ‘7’qAH and
le=| M| |[sinA¢ | +{bssin(ps—Af |) A is also fixed this way, we can predict the values of the two
) remaining mixing-inducec P-violating observables\'lﬂ and
—by sin(p, +A¢ ;)}cosw Ru. Consequently, only seven of the nine observables are
—bib. si 0y —A 33 independent from one another.
01 Sin(pr=pr —Ar1)] 33 It is convenient to introduce the following “normalized”
observables:
Iy=IAGlIN [[cosAs , cosgq—{bycospr—Ar,1)
f f
+b, cogp, +A¢,)}cod ¢gt ) AfE%l A{"EASf_M’ (36)
+bib, cogps—p, —A¢ )coLpgt2w)].  (34)
Note thatf € {0/|} in Egs.(27) and(30). The minus sign in Re R o= Rp R o= Rm 37
the latter expression is due to the differé@P eigenvalues N N S N S
of fe{0J|} andf=L. If we set “O=|” in Egs. (31) and 3 3 3
(32), we get expressions taking the same form as E2. | I I
and(21), which provides a nice cross check. The expressions M= f , ffDE D , mz M , (39)
given above generalize those derived T in two respects: NSSH VSiS, V&S,

they take into account penguin contributions, and they allow

for a sizeable value of tth_Eg mixing phaseg,. In the ~ Wwhich have the advantage that they do not depend on the

discussion oBs—J/¢¢ in [7], it was assumed thaps is a  overall normalization factorf\;|. The observableé\fD and
small phase, and terms G¥(43) were neglected. A}, allow us to determine the hadronic parametgrsind p
Unfortunately, not all of the observabl&s, Al andAl,  as functions ofw and by
are independent from those of the interference te(Bs
This can be seen by considering two different final-state con- 1 ,
figurationsf and . In this case, the time-dependent angular b= \/k—fﬂfi VIt —heki] (39
distribution provides nine observables. To be definite, let us
consider the casé=0 andf=|. Then we have six observ-
ables, corresponding & , AL andAl, (f€{0/}), as well as
the three observable®, Ry and Ry, which are due to the Al
real parts in Eq(3). The measurement &; andAfD allows 2b; sinps=[(1—u; cosw) + (1— v COSw)b?]( D )
us to fix the magnitudepAo|, |A| and|Aq|, |A|. Using in sinw a1
addition the observableR and Ry, we can determine the (42)
angleo betwe_en the unm}ed_amplitudéxg andAj, as well
as the anglec betweenA,, A (see Fig. 1 So far, the
relative orientation of the amplitudeg\§, A)) and A,, A)) h¢= uf2+ D¢(1— u; cosw)? (42)
is not determined. However, if we use, in addition, the
mixing-inducedC P asymmetryA?, , we are in a position to
fix ¢4+ o, whereys, denotes the angle between the ampli-
tudesAq and Ag:

2b; cosp=u;+v;b? (40)

where

ki=Vv?+D¢(1—V;cosw)? (43)

lf=2—usvi—D¢(1—u;cosw)(l—v¢cosw), (44)
AY= Aol Aol SN g+ o). (35  with
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Af (48), it is interesting to investigate the implications of these
7iAM—SiNdq . T :
Up=—ry _ (45)  relations on the observables of the angular distributions in
7tApm COSw —SiN( g+ ) more detail. If we introduce
Af s 2 A 2b sinp sinw
P i sin(¢q+2w) (46) Ap= . (49)
f mA’fw C0Sw—Sin( g + @) 1-2bcosp cosw+b
. . 2 .
and A= sin¢gq—2b cosp sin(¢q+w)+b sm(¢>q+2w)'
1—2b cosp cosw + b?
( AL )2 . (50)
"\ sinw/ - @7 we obtain
It should be emphasized that no approximations were made AL=Ap, Al=nAy, (51)

in order to derive these expressions. If we consider, in addi-
tion to AL, and A}, , either the observables specified in Eq.  R=cosAg;, Rp=ApcosAg;, Ry=Aycosi,

(37) or those given in Eq(38), we obtain seven normalized (52
observables, which depend on five hadronic paramelgrs ( . L

pt, b7, p7 andA7;), as well as on the twe P-violating ly=sinA;,, Th=ApsinAg,, (53
weak phasesp, and w. However, only five of the seven

observables are independent from one another, so that we do T{vl

not have sufficient observables at our disposal to extract |=
these parameters simultaneously. This feature is due to the
CKM ambiguity, as we have discussed in Sec. I. In order to COSpy— 2b cosp cod g+ w) +b? cod g+ 2w)

extract these parameters from the observables, we have to = > ,

make use, for example, of another decay that can be related 1—2bcosp cosw+b

to By— XX, through flavor-symmetry arguments. On the (54)
other hand, if we useé, and the weak phase of a specific

parametrizatior(4) of the decayB,— X;X, as an input, the where

corresponding hadronic parameters can be extragtémbut . .

any additional assumption, thereby providing valuable in- (Ap)?+(Ay)?+17=1. (55)
sights into hadronic physics and a very fertile testing ground ) _ ) _

for model calculations 0By—X;X,. The measurement of Thes.e rela.tlons- provide an interesting test of \A/\ihether Eq.
the angular distributions discussed in this paper requires higtft8) is realized in the decaf,— X1 X,. Note thatly, does
statistics and can probably only be performed at “secondnot—in contrast to Eq(53—vanish for trivial values of
generation”’B-physics experiments at hadron machines, sucht ; -

as LHCb or BTeV, where decays 8&f,-mesons can also be

studied. Since several promising strategies to extract the |Il. EXTRACTING CKM PHASES AND HADRONIC

weak phasesp, and w at such experiments were already PARAMETERS

proposedsee, for exampld,3]), it may indeed be an inter- ,

esting alternative to use measurements of angular distriby- -t uS now focus on the extraction of CKM phases from

tions not to extract CKM phases, but to explore hadronid€ observables of thg, —X, X, angular distribution. As we
physics. have already noted, to this end, we have to employ an addi-

In practical applications, the parametérstypically mea- tional input, since we _have only fi\_/e independent normalized
sure the ratio of “penguin” to “tree” contributions. Apply- ©OPservables at our disposal, which depend on seven “un-
ing the Bander—Silverman—Soni mechanigii], and fol- knowns_.” Although it would be desirable to determndq,
lowing the formalism developed ifil2,13, which makes @ndw simultaneously, usually only the CKM phaseis of
use—among other things—of the “factorization hypoth- central interest.

COSA; |

esis,” we obtain for various classes Bfdecays The B2-BY mixing phase¢s=—28y=2argViVy,) is
negligibly small in the standard model. It can be probed—
bi=b, p;=p V fe{0).L}, (48  andin principle even determined—with the help of the decay

B,—J/ ¢ (see, for example,7]). Large CP-violating ef-
i.e. these quantities are independent of the final-state cof€Cts In this decay would signal thatsg is not tiny, and
figurationf in this case. The main reason for these relationgvould be a strong indication for new-physics contributions
is that the form factors, which depend on the final-state conto BSE‘; mixing. On the other hand, thizg-gg mixing phase
figurationf, cancel in the ratio®; of “penguin” to “tree” $4=2pB can be fixed in a reliable way through the “gold-
contributions. Although non-factorizable contributions areplated” modeBy— J/#/Kg [14]. Strictly speaking, mixing-
expected to play an important role, thereby affecting Eqinduced CP violation in By—J/¢/Kg probes sin(B+ ¢y),
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where ¢y is related to the weak®-K° mixing phase and is  With

negligibly small in the standard model. Because of the smal
value of theC P-violating parameteey of the neutral kaon
system,¢y can only be affected by very contrived models of
new physics[15]. A measurement of mixing-induce@P  The solution of Eq(56) is straightforward, and is given as
violation in B4— J/ /K5 allows us to fix¢g=2B only upto  follows:

a twofold ambiguity. Several strategies to resolve this ambi-

N;= (1= 2b; cosp; cosw+ b2)(1—2b, cosp, cosw+ b?).
(60)

guity were proposed in the literatuf&6], which should be . A(Ci= \(A?+B?—C%)B?
feasible for “second-generationB-physics experiments. As sind¢ = A2 B2 ’
£+ Bt

we will see in the following section, also the dec®y

—J/yp°, in combination withBs— J/ ¢, allows us to ac-

complish this task. cos\ | =
If we use g, thus determined as an input and consider, in ' By

addition toAl, and A, either the observables specified in If we insertb; andp;, determined as functions ef and ¢,
Eq. (37) or those given in Eq(38), we can determine as a  wijth the help of Eqs(39)—(41), into the expressions given
function of asingle hadronic parameter. Let us, for trJe mO- above, we can—for a given value gf,—determineA , as
ment, focus on the latter case, i.e. on the observahbjes a function of w. It should be emphasized that the relation
Al A5, Ay andly, 15, Tl for a given final-state configu- betweenA¢, , w and ¢, obtained this way is valigxactly
ration f e {0][}. Since|\;| and|A/,| cancel in these quanti- Usingif or I{, instead ofi; would lead to the same relation,
ties, they depend only on the hadronic paramekgrspr,  since these observables are not independent from

b,, pi, A, , as well as on the weak phasesand ¢, . Alternatively, we may use the observabl&9) instead of
Consequently, we have seven observables at our dispos@q. (38). The general expression f@ [see Eqs(26) and

which depend on seven “unknowns.” However, only five of 37)] implies an equation similar to E456), whereA, , B
the seven observables are independent from one another, dC; have to be replaced through ' '

we have discussed in the previous section. If wedigas an

Ci—AssinAg 61

input, we can, for instance, obtaim andb;, p;, b, , p, as 1

functions of the strong phase differendg , in a theoreti- A= (0 sinp|—bg sinpg) cosw + boby(sinpg CoSp)
cally cleanway. Although the following discussion deals

with A¢ , , we can also replace this quantity by another had- —c0spg Sinp))] (62

ronic parameter of our choice. If we fiX; , , for example,

by comparingB,— X;X, with an SU(3)-related mode, all

parameters can be extracted. Using in addition the observ- B= py[1~(PoCOSpo+bjcosp))cosw
ablesS;, we can also determine the normalization factors

IN¢|. Comparing them with those of tt&U(3)-related mode +bgby(cospy cosp)+sinpg sinp)) | (63
used to fix A, , we can obtain valuable insights into R
SU(3)-breaking corrections. The observables that we have C=R, (64)

not used so far can be used to resolve discrete ambiguities,

arising typically in the extraction of these parameters. where
Let us now give the formulas to implement this approach

in a mathematical way. The general expression for the ob-

N=1/(1—2bg cosp, cosw + bg) (1 2bjcospcosw + bf).

servablel; [see Eqs(33) and(38)] leads to the equation (65
Obviously, the most efficient strategy of combining the ob-
AssinA¢ | +BgcosAs  =Cy, (56)  servables provided by tH&,— X, X, angular distribution de-
pends on their actually measured values.
where If we are willing to make more extensive use of flavor-

symmetry arguments than just to fix the strong phase differ-
enceAs s, it is in principle possible to determine also the

Bg-§8 mixing phaseg,. In the following section, we will
have a closer look at the dec@®y— J/yp°, which can be
related toBs— J/ i ¢p throughSU(3) arguments and a certain
dynamical assumption concerning “exchange” and “pen-
guin annihilation” topologies. However, before we turn to
these modes, which allow the simultaneous extraction of
$q=2B andy, let us first give two useful expressions for the
observable® andi; . Since the parametebs measure typi-

R cally the importance of “penguin” topologies in comparison
Ci=ly, (590  with current—current contributions, they may not be too

1
A¢= N—f[l—(bf cosp;+b, cosp, )cosw

+b¢b, (cosps cosp, +sinp;sinp, )] (57

1
B¢= N—f[(bf sinps—Db, sinp, )cosw

—bsb, (sinp; cosp, —cosp; sinp, )] (58
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large. If we eliminate the hadronic parametefsandp; in R » A2
~ ~ ~ 10 —

andi with the help of the observables, andA}, and keep are = Rb( 1- 7)

only the leading-order terms in; , we obtain

. (71

The quantityAE,‘(’;gf is defined in analogy td\é“)f and the

H en
EQ*COSAOH— E(Ag_,&\lg)w (66) relevant CKM factors are given in Eq§10) and (11). It
2 tanw should be emphasized that the standard-model parametriza-
A tion (69) of the Bg—>[J/z//p°]f decay amplitude reliesnly
T ~sinA. 4+ E(Af _AJ_)COS fL (67)  ©On the unitarity of the CKM matrix. In particular, it takes
f it 2170 07 tany also into account final-state-interaction effects, which can be

considered as long-distance penguin topologies with internal
allowing us to determinev if the strong phase differences yp- and charm-quark exchangg20]. Comparing Eq.(69)
Apj or A¢ , are known. Interestingly, the leading-order ex- with Eq. (4), we observe that
pressiong66) and (67) do not depend on thBY-BS mixing B - B B
phases,. A possible disadvantage & is thatw enters in Mi==MA, - br=ar, pi=6;, o=y (72
combination with simdo. Since Aq is a difference of | this parametrization, we have eliminated % term in
CP-conserving strong phasgsee Eq(28)], it may be small,  £q. (68) with the help of Eq.(8), which is the appropriate
thereby weakening the sensitivity of these observables.on paice to reIateB°—>J/z,0p° to B°—>J/1,//¢. Using the same
The situation concerning this point is very different in the |1 01 as in Eqd(69) we haves
case of the observablés, which allow us to determine
even in the case dk; , €{0°,180%. \?

A(Bg—>[3/¢¢]f):(1_7 A1+ eajel"ie], (73)

IV. EXTRACTING B AND y FROM By—J/¢p° »
AND B,—J/ where A; andaje'’ take the same form as Eq&0) and

If we combine the observables describing the(71)’ respectively, and

time-dependent angular distribution of the decay A2
By—Jy[—1T1 7 1p[— 7" 7] with those of e=
B—J/y[—1717]¢[ =K K], we may extract thé33-Bj
mixing phase¢q=28 and the angley of the unitarity tri-
angle. TheBy— J/yp° angular distribution can be obtained
straightforwardly from theB;— J/ /¢ case, which has been
discussed in detail ifi7], by performing appropriate replace-
ments of kinematical variables. A2

.A/}:(l_?)flf’, bfzea{, pf=0f’+180°, w="y.

— (74)

The primes remind us that we are dealing with-a s tran-

sition. Consequently, if we compare E.3) with Eq. (4),
we obtain

The decayBg—»leppO originates fromb—ccd quark-

level transitions; the structure of its decay amplitude is com- (75)
pletely analogous to the one BE— J/ K g (see[17]). For a o
given final-state configuratiohwith CP eigenvaluer;, we The Bs—J/¢¢ and B4— J/yp” observables can be re-
have lated to each other through

+A{®AN1 (69) A7 =Af (77
whereA9" is due to current—current contributions, and the al=a;, 0,=6;, (78)

amplitudesA{d describe penguin topologies with interrl

quarks @ e {u,c,t}). These penguin amplitudes take into ac-where the factor of/2 is due to the° wave function. These

count both QCD and electroweak penguin contributionsrelations rely both on th&U(3) flavor symmetry of strong

Employing the unitarity of the CKM matrix and the Wolfen- interactions and on the neglect of certain “exchange” and

stein parametrization18], generalized to include non- “penguin annihilation” topologies. Although such topolo-

leading terms in [19], we obtain gies, which can be probed, for example, throuh

o —ptp~, D**D* "~ decays, are usually expected to play a
ABY—[Iyp°]5)=—NA[1—ae?e?], (69  very minor role, they may in principle be enhanced through
final-state-interaction effec{@1]. For the following consid-

where erations, it is useful to introduce the quantities
— f f
A= NALAR) + AT, (70) 1 ( |Af’|)zsf 1—2a; cosd; cosy+a? 79
with A=A — AW and " e\[Al] S{ 1+2¢ajcoso|cosy+ e?aj?’

pen s
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which can be fixed through the “untaggedy— J/¢p° and
Bs—J/#¢ observables with the help of E¢76). Conse-
quently, each of the linear polarization states{0,, L} pro-
vides the following three observables:

He, AL, Al (80)

Applying Eq.(78) to Eq.(79), these observables depend only .

on the hadronic parametees and 6#;, as well as on the
Bg-ﬁg mixing phasepy= 2 and the angley of the unitarity

triangle. If we choose two different linear polarization states
the observable0) allow us to determine the corresponding

hadronic parameters angland y simultaneously.

This approach can be implemented in a mathematical wa

as follows: if we consider a given final-state configuratfon

and combine the observableg andAl, which do not de-
pend ongg, with each other, we can determiagand 6; as

functions ofy:
ar= Vpr= Vp; — (81

1—H+(1—€’Hy)a?

2a; cos;= (15 eH ) cosy (82
. (1+e)(1+ea®)H¢|[ Al
2a; sing;= Ty siny)’ (83

where

[2(1+ eH¢)?2 coSy—(1—H)(1— €®H¢)]sirty— :E;

Pi= (1—62Hf)zsin2y+ 62Ef
(84)
(1—Hy)?sify+E;
ar= R o (85
(1— €%Hy)2sirty+ €°E;
with

Ei=[(1+e)HAL cosy]?. (86)

PHYSICAL REVIEW D 60 073008

we obtain two different contours in the—¢y plane; their
intersection allows us to determine boghand ¢4=28. Us-
ing, in addition, the observabld87) or (38)—depending on
which final-state configurations and f we consider—we
may resolve discrete ambiguities, arising typically in the ex-
traction of ¢4 and .

Because of the strong suppressionagfthroughe=0.05

in Eq. (79), this approach is essentially unaffected by pos-
sible corrections to Eq78), and relies predominantly on the
relation(76). If we insert the values o$4 and y thus deter-

'mined into the expressions for the observables of the third

linear polarization staté’, which has not been used so far,
its hadronic parametetsi;,|, a;» and #;, can also be deter-
thined. Comparing| A;/| with the Bs—J/¢ parameter
IAf’,l, we can obtain valuable insights into the validity of Eq.
(76). Moreover, several other interesting cross checks can be
performed with the many observables of the angular distri-
butions. Because of our poor understanding of the hadroni-
zation dynamics of non-leptonB decays, only the “factor-
ization” approximation can be used for the time being to
estimate factorizableSU(3)-breaking corrections to EQq.
(76). Explicit expressions for thB,— J/y¢p observables can

be found in[7], and SU(3)-breaking effects in the corre-
sponding form factors were studied [ig2]. However, also
non-factorizable effects are expected to play an important
role, and experimental insights into these issues would be
very helpful to find a better theoretical description.

The simultaneous extraction gfy and y discussed above
works only if the hadronic parametess and 6; are suffi-
ciently different from each other for two different final-state
configurationsf. If, for example, Eq.(48) should apply to
By— J/ hp®—which seems to be quite unlikely—tt&$-B
mixing phase has to be fixed separately in order to determine
y. In this case, each linear polarization state{0,|,L} pro-
vides a strategy to extragt that is completely analogous to
the one proposed irf17], which makes use ofBgqg)

—J/yKg decays. If we combinél; with Al,, we obtain

\/ H—1+us(1+ eH;)cosy
-

R (91
1_Vf(1+ EHf)COS’y_ € H;

These expressions allow us to eliminate the hadronic param-

etersa; and ¢; in the mixing-inducedCP asymmetryA!, ,
thereby fixing a contour in thg—¢4 plane, which is related
to

A; sin g+ B; cosgpy=C;, (87

with
A;=1-2a; cos; cosy+a? cos2y (88)
By=—2a, cosb; siny+a?sin 2y (89
Ci=(1—2a;cosb; cosy+a?)( nAl,). (90)

The solution of Eq(87) has already been given in E@1).
If we consider two different final-state configuratidrendf,

The intersection of the contours in the-a; plane described
by this expression with those related to E8Q) allows us to
determiney anda;.

If we use ¢4 as an input in order to extragt from By
—Jlyp°, it is, however, more favorable to follow the ap-
proach discussed in the previous section, i.e. to usd g,
and to fixA; ; (or Ag)) through the theBs— J/#¢ observ-
ables with the help of Eq477) and(78). Using in addition
the observables involving the third linear polarization state
f’ that we have not employed so far, we can also fix its
hadronic parameteis. and#;,, as well as the strong phase
differenceA¢, ;. ComparingA¢, ¢ with its B¢—J/ ¢ coun-
terpartAé,vf, we may obtain valuable insights into possible
corrections ta(77).

As an interesting by-product, this strategy allows us to
take into account also the penguin effects in the extraction of
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the B2-B° mixing phased from Bs—J/¥¢. Although the following discussion, the angular distributions of their decay

penglsjin scontributions are strongly suppressed in this modgroducts provide interesting alternative ways to extract CKM

because of the tiny parameter=0.05 [see Eq.(73)], they Phases and hadronic parameters, going beyondBhe

may well lead to uncertainties of the extracted valughghit PP strategies. Becgusg of the many observables provided

the level of 10%, sincap.=(0.03) within the standard by the angular distributions, we can, moreover, perform

model. A measurement st) =~ 20?5 would allow us to M2y interesting cross checks, for example, of certain flavor-
. S

determine the Wolfenstein parameter{ 18], thereby fixing symmetry relations.

the height of the unitarity triangle. Since the decBy

—Jlypp is very accessible at ‘“second-generation” A. The decaysBy—p™p~ and Bs—K* "K*~

B-physics experiments performed at hadron machines, for

instance at LHCDb, it is an important issue to think about thqeveI rocesses. Using the same notation as in(6), we

hadronic uncertainties affecting the determinatiorpgfrom have P ' 9 ’

the corresponding angular distribution. The approach dis-

cussed above allows us to control these uncertainties with the A2 . . A

help of Bg— J/p°. A(Bg—>[p+p_]f)=(l— ?)Cfe'y[l—dfe"”)fe"“/],
The experimental feasibility of the determination ef

from the B4— J/p° angular distribution depends strongly

on the “penguin parametersd; . It is very difficult to esti-  where

mate these quantities theoretically. In contrast to the “usual”

QCD penguin topologies, the QCD penguins contributing to CfEA3ARb[Z§g)f+Kg%2f] (93

Bq—J/yp°® require a color-singlet exchange, i.e. are

“Zweig-suppressed.” Such a comment does not apply to theand

electroweak penguins, which contribute in “color-allowed”

form. The current—current amplituda(®" originates from 1

10—
“color-suppressed” topologies, and the ratif''/[AOf dre f_(l—)\2/2)Rb

en cc

+ALY1], which governsay, may be sizeable. It would be
very important to have a better theoretical understanding ofn order to distinguish theBSHpﬂo‘ amplitudes from the
the quantitiesa;e'". However, such analyses are far beyondg9—. j/,° case discussed in the previous section, we have
the scope of this paper, and are left for further studles_. introduced the tildes. The phase structure of Be-p™p~

If the pargmetersaff should fall be very small, which gecay amplitude given in E492), which is an exact param-
would be indicated byAp=Rp=1p=0, we could still deter-  gtrization within the standard model, is completely analo-
mine the Bg—gg mixing phase from the observablésf\,, gous to the one for tth—> a7 amplitude given irf23],
=y singy. If we use, in additionJA,fv,zcosAfVLCOqud and Wwhere a more detailed discussion can be found.
fix cosA;, through the correspondinBs—J/#¢ observ- The expressions for the observables describing the time
able, cospy can be determined as well. Consequently, theE\é0|UtiSn of tt‘e é:mgular distrig)ution of the decay products of
BS-BY mixing phased, can be fixedunambiguouslythis ~ Ba—p [—@ 7 ]p [—a 7] can be obtained straight-
way, thereby resolving a twofold ambiguity, which arises inforwardly from the formulas given in Sec. Il, by performing
the extraction ofy from By—J/#/Ks. This mode probes the following substitutions:
only singy. Since¢y=28, we are left with a twofold am- A2
bigyity for B[0°,360. If we assume tha,Be[O‘f,180°], j\[f=<1— 7)(jf, bi=d;, pi=0;, w=-—1y.
as implied by the measured value @f, we can fix3 un-
ambiguously. For alternative methods to deal with ambigu-

ities of this kind, se¢16]. _ Because of the factor & in front of the square brackets on
Before we turn tdBy— pp andBs— K*K* decays, let us  the right-hand side of Eq92), we have to deal with a small

note that the approach presented in this section can also k@mplication. Since the observables are governed by
applied to the angular distributions of the decay products of

Bsy— /¢ =117 IK*[—-7%Ks] and Bgy—Dj§Dis -
For the Bggy—J//Ks and Byig—DggDqr Variants of
these strategies, s¢&7].

The decayBl—p*p~ originates fromb—uud quark-

(92

Al

pen

. (99

A A(ut)f
A+ A

(95

1—d,e®retiy

raeoen) %

gf:e7i¢d%: nfefi(¢d+2'}')
f

we have to do the following replacement, in addition:

V. FURTHER APPLICATIONS by dgt+27. (97)
In this section, we discuss further applications of the gen- o

eral strategies presented in Sec. IIl. All of the methods dis- L€t us now turn to the deca— K* "K*~, which is due

cussed below have counterparts usiygs decays into two to b—uus quark-level transitions. For a given final-state

pseudoscalar mesons. If we replace the pseudoscalars bgnfigurationf of the K* *K* ~ pair, its decay amplitude can

higher resonances, for example, by vector mesons, as in thee parametrized as follows:
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valuable insights intoU-spin-breaking corrections. More-
over, there is one strong phase differerice  left, which

can be compared with itE-spin counterpamf’, ¢ If we

(98 should find a small difference between these ph’ases, it would

- be quite convincing to assume that dudkspin input(102) is
/ 1 AlO
whereC; anddie'”r take the same form as Eq@3) and o ot affected by large corrections.

(94), respectively, and the primes_hav_e been introduced to Whereas the parametrization Bg—>p+p_ given in Eq.
remind us that we are dealing withba—s mode. The phase (92 is the appropriate one to relate this mode B4
structure of EQ.(98) is completely analogous to thsg —.K**K*~ through theU-spin flavor symmetry of strong

— K"K decay amplitud23]. The observables of the time- jnteractions, there is another interesting way to parametrize
dependenBs—K* [ - 7K]K* "[—#K] angular distribu- theBy—p*p~ decay amplitudetsee als§24]). If we elimi-

tion can be obtained straightforwardly from the formulasnatex(®) through the unitarity of the CKM matrix—instead

2
1+< )d{e“af'e”

A(BY—[K* TK* ] =\Cjel” N

given in Sec. Il by simply using the replacements: of {9, as done in Eq(92)—we obtain
—\? A2 e
Ni=\Ct, b= B di, pr=0;+180°, ABI—[pTp 1pn=|1- ?)VARbe'V[AQg)erAggﬁ)f]
oy 99) X[1+rel7re (BTN (103
- where
Moreover, we have to perform the substitution
R Atof
bs— st 2 (100 (el Ti= t per (104
| T (1 \22)R, | AW+ ALY |
because of the factor & in front of the square brackets in
Eqg. (99). The CKM factorR; has been introduced in E¢L1). Taking

Explicit expressions for theBy—p'p~ and By into account that we have)y=28 and g+ y=180°—«
—K**K*~ angular distributions in terms of helicity ampli- within the standard model, we arrive at
tudes can be found if13]. Since BJ—p*p~ and B?
—K**K*~ are related to each other by interchanging all
down and strange quarks, thé-spin flavor symmetry of
strong interactions implies

bi=r¢, pi=o0r, 0=a, (109

and at the “effective” mixing phasep= ¢y+2y=—2a.
Consequently, using the strategy presented in Sec. lll, the

" r_ r_ By—p*p~ angular distribution allows us to probe also the
Cil=lcd, di=dr, OF=65, (10D Smbinationa— 180°— B— v directly, i.e. to determiner as
as well as a function of aCP-conserving strong phase differende
[see also Eq966) and(67)]. Needless to note that the decay
A=At (102 B4— p°p® may also be interesting in this respect. Since the
f,f

normalization factors\; of the parametrizatio103 are

In contrast to Eqs(76)—(78), these relations do not rely on Proportional to
any dynamical assumption—just on thespin flavor sym-
metry. They can be used to combine tBg—p*p~ and

*+ ek — i
!33—>K K gbsewables with each other, theroebY_?”OW'WmCh is governed by “color-allowed tree-diagram-like” to-
ing the extraction of the CKM anglg and of theBy <-Bys  pologies, it may well be than7 (~0. This relation would
mixing phasespq=2p and ¢s=—20y. In contrast to the  zjjow us to extracte, as well as theB4—p*p~ hadronic
By—m 7, Bs—~ K" K™ variant of this approach proposed parameters, which include also another strong phase differ-

in [23], both mixing phases and the CKM angte can in  enceA;, ;, providing an important cross check.
principle be determined simultaneously. However, for the ’

extraction ofvy, it is more favorable to fixpy and ¢ sepa-
rately. Then we are in a position to determine two contours

in the y—A7 ; andy—A1{ . planes in gheoretically clearway The decaysBS—K*°K*? and B—K*°K*° are pure

with the help of Eq.(61). Using now theU-spin relation  “penguin” modes, originating fromb—dss and b—sdd
(102, v and all hadronic parameters describing the decayguark-level transitions, respectively. They do not receive
Bg—p p~ and Bs—~K* *K*~ can be determined. As we contributions from current—current operators at the “tree”
have already noted, the hadronic parameters provide a vefgvel, and can be parametrized within the standard model in
fertile testing ground for model calculations of the decayscomplete analogy to Eq$69) and(73). We have just to set
By—p p~ and Bs—K* "K* . In particular, the penguin the current—current amplitudes equal to zero in these expres-

parametersd;e'® and d/e'®f would be very interesting; sions. The decayBS—K*°K*° and B?—K*°K*? are re-
comparing their values with each other, we could obtainated to each other by interchanging all down and strange

AW+ AL (108

B. The decaysB4—K*°K*? and B —K*°K*°
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quarks, i.e. through th&-spin flavor symmetry of strong
interactions, and the strategies to propand theBg'S—gg’S

PHYSICAL REVIEW D60 073008

complish this task, taking into account also penguin contri-
butions, and have illustrated it by having a closer look at a

mixing phases are analogous to those discussed in Sec. {eW specific decay modes. In comparison with strategies us-

Since theBy «— K* °K*° decays are pure “penguin” modes,

they represent a particularly sensitive probe for new physic

An interesting alternative to parametrize thsg
H[K*OK*O]f
given as follows:

A(BI—[K*OK*0]) = N3AR AN e 1A 1 g #1e'”],
(107)
where

(cu)f

(108

ing non-leptonicBy ¢ decays into two pseudoscalar mesons,

an important advantage of the angular distributions is that

they provide much more information, thereby allowing vari-
ous interesting cross checks, for instance, of certain flavor-

decay amplitudes within the standard model issymmetry relations. Moreover, they provide a very fertile

testing ground for model calculations of thgy s— XX,
modes.

We have pointed out that the decBy— J/p° can be
combined withBs— J/ ¢ to extract theBg-§2 mixing phase
$q= 2B and—if penguin effects in the former mode should
be sizeable—also the angjeof the unitarity triangle. As an
interesting by-product, this strategy allows us to take into
account also the penguin effects in the extraction of the

B§-§2 mixing phase fromB,—J/¢¢. If penguin effects

may well be sizeable due to the presence of final-stateshould be very small iy— J/p°, ¢4 could still be deter-

interaction effect§25]. Consequently, we have
bs=0gs, w=p.

Because of the factor & '# in front of the square brackets
on the right-hand side of Eq107), the “effective” mixing
phase is given by= ¢4—2B. Consequently, the strategy
presented in Sec. Il allows us to probe t@dP-violating
weak phases of the CKM elementV,y=|V 4/e”'#. Within
the standard model, we have= ¢4—28=0. However, this

Pi= @i, (109

mined and it would even be possible to resolve a twofold

ambiguity, arising in the extraction of this CKM phase from

By—J/yKs. Other interesting applications, involvinBqy

—pp andBg — K*K* decays, were also noted. Within the

standard model, these modes are expected to exhibit branch-

ing ratios at the 10° level; also the one foBy— K*°K*©

may well be enhanced, from its “short-distance” expectation

of O(107°) to this level, by final-state-interaction effects.
Since the formalism presented in this paper is very gen-

relation may well be affected by new physics, and represent8ral, it can of course be applied to many other decays. De-

a powerful test of the standard-model descriptiolCét vio-
lation (for a recent discussion, s¢26]). Therefore it would

tailed studies are required to explore which channels are
most promising from an experimental point of view. Al-

be very important to determine this combination of CKM though theBy modes listed above may already be accessible

phases experimentally. The observables of tiBg
—K*[ -7 K" ]K*[—#*K~] angular distribution may
provide an important step towards this goal.

VI. CONCLUSIONS

The angular distributions of certain quasi-two-body

modesBg .— X;X,, where bothX; and X, carry spin and
continue to decay throug@ P-conserving interactions, pro-

vide valuable information about CKM phases and hadronic

at the asymmetrie* —e~ B-factories operating at thé(4S)
resonance, which will start taking data very soon, the strate-
gies presented in this paper appear to be particularly inter-
esting for “second-generation” experiments at hadron ma-
chines, such as LHCb or BTeV, where also the very
powerful physics potential of thBg system can be exploited.
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