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Topological solitons in a vacuumless system
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We investigate a model for a real scalar field in bidimensional space-time, described in terms of a positive
semidefinite potential that presents no vacuum state. The system presents topological solutions of the BPS
type, with an energy density that follows a Lorentzian law. These BPS solutions differ from the standard
tanh-type kink, but they also support bosonic and fermionic zero m¢86556-282199)05016-X]

PACS numbsds): 11.10.Lm, 11.27#d

Topological defects such as domain walls, strings, and Pd P
monopoles, can appear in models of symmetry-breaking —2——2—X,u2 secR(\ ¢)tanh( A ¢)=0 3)
phase transitions in the early universd. These standard ate X

defects appear in models where the potential presents at least dqf o

two degenerate vacuum states. For instance, domain walfd'd for staticd=¢(x) we get

require a countable set of vacuum states, in models where 42 1

one breaks some discrete symmetry, and cosmic strings and ¢ _ w2 secR(\¢)tanh(\ ). ()

monopoles require an uncountable set of vacuum states in dx? A
models where one breaks some continuum symmetry.

Despite this standard situation, however, there are othehs shown in Ref[3], this equation is solved by
models such as the ones considered for instance in Refs.
[2,3], which engender interesting features. For instance, in B(x)=+
Ref.[2] one considered the Liouville theory to offer a way of N
breaking spontaneously the translation invariance of the spa- ) ) ) ) -
tial portion of Space_time_ More recenﬂy, in RQB] one These solutions d|Verge asympt0t|ca||y, and their SpeCIfIC
considered other forms of systems defined by vacuumled®rms depend o and\. Although they are somehow simi-

potentials. In the present work we shall be mainly concernedftr to the usual tanh-type kink and antikink that appear is the
with the model defined by ¢* model, they are much more diffuse than the standard

tanh-type defect, and have divergent amplitude.
To expose key features of this classical solution, let us

%arcsinm uX) (5)

L= %3a¢@a¢_ U(e) (1)  consider the energy of static configurations. Here we have
1 [ dd) 2 MZ
with the potential E= Ef_wdx (& + Fsect"r()\gzs) . (6)
1 u? We can write
U(¢)=5 — sech(\¢). )
2 )\2 1 [ do u 2
E=Eg+ szdx(&—xsecm)\d;)) . @)

We consideru real and positive, andl real. The potential is

positive semidefinite, presents a maximumgat 0 and has Eg is the value that minimizes the energy. It can be written
no vacuum state. Despite the absence of vacuum states, theEg=AW, where

system is still able to support topological defects. This model

was recently investigated in Ref3], and also in Ref[4], AW=W[ ¢(x—2) ] =W[ p(Xx——)]. 8
and there attention was given mainly on issues concernin
gravitational aspects of the new topological defect. In th
present work, however, we shall focus attention on exposing
other features of the system, considering the _ M~ :

(1+1)-dimensional Minkowski space-time®=x,=t and W)= A2 arctasini(x é)]. ©

x'=—x,;=x. Here\ is dimensionless, and has dimension

only depends on the asymptotic values of the function

inverse of distance, dim{)=1/dim(x). The field ¢ is di-  The procedure here is similar to the case of coupled fields, as
mensionless, and the system behaves standardly in bidimeoensidered in Refd.5,6] and in applications to condensed
sional space-time. matter[7] and field theory itself8].

The equation of motion is The functionW(¢) obeys
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W _E sectin 10
E—XSGCN ?) (10
and the potential in Eq2) can be written as
Ul 1/dw\? "
(¢)=5 a6 (11)

For static fields the energy is bounded Ee=Eg for field
configurations that solve the first-order equation

d—¢ = %secm)\d)). (12

dx

We see that solutions of this first-order equation also solve

the equation of motion. Yet, we can check explicitly that

g(x)= %arcsinm,ux) (13

solves the first-order equatigt2). This means that this so-
lution is stable [6] and of the Bogomol'nyi-Prasad-
SommerfieldBPS [9] type[8,10]. We return to the issue of
stability below, making the argument explicit.
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Here we are following the first work in Rdf7], usingW(¢)
to define the current; it makes the consenvempologica)
charge identical to the energy. This procedure of u¥if{g)
is in general more appropriate than considering the figld
itself, as it is usually done in the case of the standard
tanh-type solution. This is evident here, since the classical
solution diverges asymptotically and would make the charge
(artificially) ill defined if one uses*"d,¢ to define the to-
pological current.

To investigate classical or linear stability, or to compute
the first quantum correction§l11,12 introduced by the
bosonic field(13) we consider

¢<x,t>=$<x>+§ Ma(X)COgW,t). (19)

We substitute this into the time-dependent equation of mo-
tion (3), and consider the case of small fluctuationgx)

about the classical fielg(x) to get

The BPS solutions present the interesting feature of al-

lowing the energy to be written as

" d 2 2 re _
Ep= f_mdx(d_f) :%f_wdxsecﬁ()@). (14

The energy density has the form

LS
X2+ 1Uu?

e(X) (15

d2
( - @ﬂLV(X) 7n(X) =W27(X), (20)
where
—Up?+2x?
V(x)= m (22)

is the potential of this Schdinger-like equation.

Stability of the classical solutiofiL3) implies thatw,, in
Eq. (19 should be real. This makewﬁzo, and so the
Schralinger-like Hamiltonian that appears in EQ0) has to
be positive semidefinite. But this is indeed the case, since we
can factorize the Hamiltonian in E§R0) in a very specific
way. To show this explicitly we use Eq&L0) and (12) to

Interestingly, the energy density of the BPS solution obeys é{vrite

Lorentzian law, and accordingly is more diffuse than the
standard tanh-type kink. Explictly, the tanh-type kink ap-

pears when the potential is

1
Us(¢)=50(¢°—a*)>. (16)
Herea is real and positive, and the kink solutions aféx)
= *+atanhfax). The corresponding energy density reads

1
es(X)= E)\Za2 seclf(rax).

17

In spite of this, however, the energy densitik) in Eq. (15)
is still integrable and gives the finite vallg= um/\2. Al-

ternatively, although the classical static solutigiix) di-
verges asymptotically, the asymptotic valuesVéf¢) are
finite and give a well-defined W. This fact can be used to
expose the topological aspects of the solution. k1l di-
mensions we can introduce the topological current

Jh= e \W( ). (18)

d¢  dw
o (22)

This equation can be used to introduce the operators

d

I+

d
Jx M seclixg)tanting),
(23

whereW,,, stands ford®W/d¢?. These operators obey.

=a-, and can be used to introduci:«ie+=a1a+ and H_

=a'a_ as the Hamiltonians

d2
Hi=—ﬁ+vi, (24)
where
V=W, F WyWo . (25)

We use the classical solutidf3) to write these potentials in
the explicit forms
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Uu?
V. (x)= m, (26)
V_(x) —1/u?+2x2 27
S X)=—F-
(X?+1/u?)?

The potentialV_(x) is exactlyV(x), the potential that ap-
pears in the Schringer-like equatior(20). We use this re-
sult and|n) = 5,(x) and(n|m)= 5, to write

s ( d?  —1u2+2x?
={n| ——+—F——5]|n
Y dx®  (x2+1/u?)?
< ‘(d X d X ‘
={n|l5=———— | —52————-||n
dx x>+ 1p?)/\  dX  (x2+1/u?) >
= f " dx{ 2002, (29)
where
>—(— 4 _x ) ) (29)
gn(x - dX (X2+1//_,L2) 7In(X .

This result shows thaw? cannot be negative. This proof
follows the work in Ref[6], where it was done in general,
for systems of coupled real scalar fields.

The Schrdinger-like equatiori20) has at least one bound

state, the bosonic zero mode that is present due to transla-

tional invariance. The normalized eigenfunctiop(x) is
given by

(30

It is not hard to see that there is no other bound state. In th

case no meson can be binded to the soliton, and only scater-

ring states may appeéti,12.
The Lagrangian densityl) can be seen as the bosonic
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d?w

f(¢)=9 =—guseclirng)taniing). (3D

de?
The possibility of introducing fermions in a sypersymmetric
way requires the coupling31), with g==1 and Majorana

spinors. In the model with fermions we search for fermionic

zero modes. We consider the more general case where the
spinors are Dirac spinors. Here the relevant Dirac equation is

d
iyld—;/:+f(¢)¢=0. (32

We usey. as the upper+{) and lower (=) components of
the Dirac spinory, and the representatian'— o5 to get

L 9¢= B
—WJFf(d))l/fi—O- (33

For f(¢) given by Eq.(31), for instance, the fermionic zero
mode depends o and g, and may not exist for specific
values ofg, as for instance fojg|=1/2. There are fermionic
zero modes fotg|>1/2. Forg>1/2 we get

e s 12

ho=C(1.9) m 1 (34
and forg<<1/2 we get

e gl o

w=Cuwd\| iz s) o) @

whereC(u,g) is the normalization constant, which depends
on bothu andg. For instanceC(u,g=*1)=+1/um, and

in this case the fermionic zero mode very much resembles
iEc,he bosonic zero mod€30): this reflects the fact thag

= +1 are the only two values af that allow the supersym-

metric extension.

The author would like to thank Roman Jackiw for dis-

portion of a supersymmetric theory, and in the extended sucussions, and the Center for Theoretical Physics, MIT, for

persymmetric model the functioW=W(¢) plays the role of
the superpotential—see, for instance, R&D]. We can in-
troduce fermions with the usual Yukawa couplih@p) ¢ .
We may considef(¢)=gq¢ or
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