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Topological solitons in a vacuumless system
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We investigate a model for a real scalar field in bidimensional space-time, described in terms of a positive
semidefinite potential that presents no vacuum state. The system presents topological solutions of the BPS
type, with an energy density that follows a Lorentzian law. These BPS solutions differ from the standard
tanh-type kink, but they also support bosonic and fermionic zero modes.@S0556-2821~99!05016-X#

PACS number~s!: 11.10.Lm, 11.271d
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Topological defects such as domain walls, strings, a
monopoles, can appear in models of symmetry-break
phase transitions in the early universe@1#. These standard
defects appear in models where the potential presents at
two degenerate vacuum states. For instance, domain w
require a countable set of vacuum states, in models wh
one breaks some discrete symmetry, and cosmic strings
monopoles require an uncountable set of vacuum state
models where one breaks some continuum symmetry.

Despite this standard situation, however, there are o
models such as the ones considered for instance in R
@2,3#, which engender interesting features. For instance
Ref. @2# one considered the Liouville theory to offer a way
breaking spontaneously the translation invariance of the
tial portion of space-time. More recently, in Ref.@3# one
considered other forms of systems defined by vacuum
potentials. In the present work we shall be mainly concer
with the model defined by

L5
1

2
]af]af2U~f! ~1!

with the potential

U~f!5
1

2

m2

l2
sech2~lf!. ~2!

We considerm real and positive, andl real. The potential is
positive semidefinite, presents a maximum atf50 and has
no vacuum state. Despite the absence of vacuum states
system is still able to support topological defects. This mo
was recently investigated in Ref.@3#, and also in Ref.@4#,
and there attention was given mainly on issues concern
gravitational aspects of the new topological defect. In
present work, however, we shall focus attention on expos
other features of the system, considering t
(111)-dimensional Minkowski space-time:x05x05t and
x152x15x. Herel is dimensionless, andm has dimension
inverse of distance, dim(m)51/dim(x). The field f is di-
mensionless, and the system behaves standardly in bidim
sional space-time.

The equation of motion is
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]2f

]t2
2

]2f

]x2
2

1

l
m2 sech2~lf!tanh~lf!50 ~3!

and for staticf5f(x) we get

d2f

dx2
52

1

l
m2 sech2~lf!tanh~lf!. ~4!

As shown in Ref.@3#, this equation is solved by

f~x!56
1

l
arcsinh~mx! ~5!

These solutions diverge asymptotically, and their spec
forms depend onm andl. Although they are somehow simi
lar to the usual tanh-type kink and antikink that appear is
f4 model, they are much more diffuse than the stand
tanh-type defect, and have divergent amplitude.

To expose key features of this classical solution, let
consider the energy of static configurations. Here we hav

E5
1

2E2`

`

dxF S df

dx D 2

1
m2

l2
sech2~lf!G . ~6!

We can write

E5EB1
1

2E2`

`

dxS df

dx
2

m

l
sech~lf! D 2

. ~7!

EB is the value that minimizes the energy. It can be writt
asEB5DW, where

DW5W@f~x˜`!#2W@f~x˜2`!#. ~8!

It only depends on the asymptotic values of the function

W~f!5
m

l2
arctan@sinh~lf!#. ~9!

The procedure here is similar to the case of coupled fields
considered in Refs.@5,6# and in applications to condense
matter@7# and field theory itself@8#.

The functionW(f) obeys
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dW

df
5

m

l
sech~lf! ~10!

and the potential in Eq.~2! can be written as

U~f!5
1

2 S dW

df D 2

. ~11!

For static fields the energy is bounded toE5EB for field
configurations that solve the first-order equation

df

dx
5

m

l
sech~lf!. ~12!

We see that solutions of this first-order equation also so
the equation of motion. Yet, we can check explicitly that

f̄~x!5
1

l
arcsinh~mx! ~13!

solves the first-order equation~12!. This means that this so
lution is stable @6# and of the Bogomol’nyi-Prasad
Sommerfield~BPS! @9# type @8,10#. We return to the issue o
stability below, making the argument explicit.

The BPS solutions present the interesting feature of
lowing the energy to be written as

EB5E
2`

`

dxS df̄

dx
D 2

5
m2

l2E2`

`

dx sech2~lf̄!. ~14!

The energy density has the form

«~x!5
1/l2

x211/m2
. ~15!

Interestingly, the energy density of the BPS solution obey
Lorentzian law, and accordingly is more diffuse than t
standard tanh-type kink. Explictly, the tanh-type kink a
pears when the potential is

Us~f!5
1

2
l2~f22a2!2. ~16!

Herea is real and positive, and the kink solutions aref(x)
56a tanh(lax). The corresponding energy density reads

«s~x!5
1

2
l2a2 sech4~lax!. ~17!

In spite of this, however, the energy density«(x) in Eq. ~15!
is still integrable and gives the finite valueEB5mp/l2. Al-
ternatively, although the classical static solutionf̄(x) di-
verges asymptotically, the asymptotic values ofW(f) are
finite and give a well-definedDW. This fact can be used to
expose the topological aspects of the solution. In 111 di-
mensions we can introduce the topological current

Jm5emn]nW~f!. ~18!
06770
e

l-

a

-

Here we are following the first work in Ref.@7#, usingW(f)
to define the current; it makes the conserved~topological!
charge identical to the energy. This procedure of usingW(f)
is in general more appropriate than considering the fieldf
itself, as it is usually done in the case of the stand
tanh-type solution. This is evident here, since the class
solution diverges asymptotically and would make the cha
~artificially! ill defined if one usesemn]nf to define the to-
pological current.

To investigate classical or linear stability, or to compu
the first quantum corrections@11,12# introduced by the
bosonic field~13! we consider

f~x,t !5f̄~x!1(
n

hn~x!cos~wnt !. ~19!

We substitute this into the time-dependent equation of m
tion ~3!, and consider the case of small fluctuationshn(x)
about the classical fieldf̄(x) to get

S 2
d2

dx2
1V~x!D hn~x!5wn

2hn~x!, ~20!

where

V~x!5
21/m212x2

~x211/m2!2
~21!

is the potential of this Schro¨dinger-like equation.
Stability of the classical solution~13! implies thatwn in

Eq. ~19! should be real. This makeswn
2>0, and so the

Schrödinger-like Hamiltonian that appears in Eq.~20! has to
be positive semidefinite. But this is indeed the case, since
can factorize the Hamiltonian in Eq.~20! in a very specific
way. To show this explicitly we use Eqs.~10! and ~12! to
write

df

dx
5

dW

df
. ~22!

This equation can be used to introduce the operators

a656
d

dx
1Wff56

d

dx
2m sech~lf!tanh~lf!,

~23!

whereWff stands ford2W/df2. These operators obeya6
†

5a7 , and can be used to introduceH15a1
† a1 and H2

5a2
† a2 as the Hamiltonians

H652
d2

dx2
1V6 , ~24!

where

V65Wff
2 7WfWfff . ~25!

We use the classical solution~13! to write these potentials in
the explicit forms
5-2
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V1~x!5
1/m2

~x211/m2!2
, ~26!

V2~x!5
21/m212x2

~x211/m2!2
. ~27!

The potentialV2(x) is exactlyV(x), the potential that ap-
pears in the Schro¨dinger-like equation~20!. We use this re-
sult andun&5hn(x) and ^num&5dnm to write

wn
25K nUS 2

d2

dx2
1

21/m212x2

~x211/m2!2 D UnL
5 K nUS d

dx
2

x

~x211/m2!
D S 2

d

dx
2

x

~x211/m2!
D UnL

5E
2`

`

dxUzn~x!U2, ~28!

where

zn~x!5S 2
d

dx
2

x

~x211/m2!
D hn~x!. ~29!

This result shows thatwn
2 cannot be negative. This proo

follows the work in Ref.@6#, where it was done in genera
for systems of coupled real scalar fields.

The Schro¨dinger-like equation~20! has at least one boun
state, the bosonic zero mode that is present due to tran
tional invariance. The normalized eigenfunctionh0(x) is
given by

h0~x!5
A~1/mp!

A~x211/m2!
. ~30!

It is not hard to see that there is no other bound state. In
case no meson can be binded to the soliton, and only sc
ring states may appear@11,12#.

The Lagrangian density~1! can be seen as the boson
portion of a supersymmetric theory, and in the extended
persymmetric model the functionW5W(f) plays the role of
the superpotential—see, for instance, Ref.@10#. We can in-
troduce fermions with the usual Yukawa couplingf (f)c̄c.
We may considerf (f)5gf or
r
e,

06770
la-

is
er-

u-

f ~f!5g
d2W

df2
52gm sech~lf!tanh~lf!. ~31!

The possibility of introducing fermions in a sypersymmet
way requires the coupling~31!, with g561 and Majorana
spinors. In the model with fermions we search for fermion
zero modes. We consider the more general case where
spinors are Dirac spinors. Here the relevant Dirac equatio

ig1
dc

dx
1 f ~f!c50. ~32!

We usec6 as the upper (1) and lower (2) components of
the Dirac spinorc, and the representationig1

˜s3 to get

6
dc6

dx
1 f ~f!c650. ~33!

For f (f) given by Eq.~31!, for instance, the fermionic zero
mode depends onm and g, and may not exist for specific
values ofg, as for instance forugu51/2. There are fermionic
zero modes forugu.1/2. Forg.1/2 we get

c05C~m,g!AS 1

~x211/m2!
D gS 0

1D ~34!

and forg,1/2 we get

c05C~m,g!AS 1

~x211/m2!
D 2gS 1

0D , ~35!

whereC(m,g) is the normalization constant, which depen
on bothm andg. For instance,C(m,g561)5A1/mp, and
in this case the fermionic zero mode very much resemb
the bosonic zero mode~30!: this reflects the fact thatg
561 are the only two values ofg that allow the supersym
metric extension.
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