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Field dynamics on the light cone: Compact versus continuum quantization
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Compact canonical quantization on the light cone is examined in the limit of infinite periodicity length
Pauli-Jordan commutators are found to approach continuum expressions with marginal noncausal terms of
orderL =% traced back to the handling of the IR divergence through the elimination of zero modes. In contrast
direct quantization in the continuum in terms of field operator valued distributions is shown to provide the
standard causal result while at the same time ensuring consistent IR and UV renormalization.
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Light front quantization has emerged as an important tootimensior} the particle sector field is written as
in the study of nonperturbative aspects of field theofigs
However, a major problem in this approach resides in the i .
infrared behavior of the continuum theory. Recently this is- ¢(X)=n§=‘,l (1/amn) [age” " +aje ] (1)
sue was clarified on the basis of a mathematically well-
defined procedurg2]. In the early attempts to deal with these with [a,,a,]= Sam,» N,M=1 andk,=n=/L, neZ. The
infrared problems, discretized light front quantization CLCQ approach relies on the introduction of field operator-
(DLCQ) [3] played an important role. The popularity of valued distributions defined with respect@3-test functions
DLCQ resides in the easy and conceptually simple treatmemnith compact suppoit5]. Apart from formal considerations
of the infrared regularization: zero modes in the expansion ofhere exists a fundamental physical argument which demon-
the fields were simply eliminated and later on understood astrates that it is compelling to treat the field amplitudes in the
the LC counterpart of the nontrivial ground state of equal-distributional sense in order to guarantee that the LC quan-
time (ET) quantization. The study of critical phenomena in tization procedure by itself is correct. Due to the hyperbolic
the framework of effective theories requires using a conform of the LC Laplacian, initial field values have to the
tinuum version of the quantum field theory on the light front. prescribed on characteristics, i.e., ®h=0 andx™=0. In
Indeed critical points, critical exponents, etc., are accessiblerder to be able to transform this characteristic value prob-
only from a complete knowledge of the cutoff dependence ofem into a problem with per|o<_j|c boundary_ conditions, test
the critical mass, which can only be given by the continuumfunctionsf(p™,p™) have to be introduced with the property
theory. In DLCQ the limit of infinite periodicity length.
cannot be achieved in a straightforward manner without fur- 1
t_her insight bpth on the handllng pf zero m.o.des and restora- lim _+f(p+’m2/p+) =0 2)
tion of covariance and causality in the limiting procé4$ b0
Our approach2] was to propose a genuine continuum treat-
ment(CLCQ) in which fields are treated as operator valued[see Eq.(3.20 of Ref.[6]].
distributions, thereby leading to a well-defined handling of ~This is exactly what happens automatically with the test
ultraviolet and light cone induced infrared divergences andunctions defined below. Conditiaf2) ensures, as discussed
of their renormalization. We focused in RE2] on the com-  in detail in Ref[6], that the field values on the characteristic
parison of the critical coupling in the LC and ET framework, X =0 become dependent quantities and, as a consequence,
showing that the continuum nonperturbative LC approach i€h€ quantization can be performed prescribing boundary val-

+ __ - -
no more complex than usual perturbation theory in lowest€S forx”=0 atx™=—L andx” =L, whereL—x. The
order. The LC-critical coupling is in essential agreementi€ld can be expressed in a chart independent way as a sur-

with the renormalization-grouptRG-) improved perturba- fa_\ce integral over a manifold,_thereby_showing th_at the ultra-
tive result at fourth order. Here we want to report on a de-Violet (UV) behavior on the Minkowski manifold dictates the
tailed comparison between DLCQ and CLCQ treatments ofV @nd IR behavior on the LC manifold. This is due to the
important quantities such as Pauli-Jordan commutator fundgularization properties of the test function which are auto-
tions, which, due to necessary concision and lack of Spacépatlcally transferred from the first to the second case.
could not be treated therein.

Within the particle sector in DLCQ, periodic boundary
conditions are imposed, being the periodicity length, lead-  For massive field the IR problematics can be discussed indepen-
ing to the usual Fock expansion. Restricting tor1  dently of higher dimensionalities.
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FIG. 1. The DLCQ functiorga(x™).

In this context the field is written as
i~ [ (ap1amp raip e
0

+at(pHePfdpt.p (ph)] (3)

with [a(p*),a”(p'")]=4mp"é(p"—p'"). In Eq. (3
p~(p") stands for the on-shell conditian?/p™ andf, ¢ is
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FIG. 2. The CLCQ functiorgg(x ™) at different spatial scales.

with A=100, and calculatgg(x~) numerically. The results
are plotted in Fig. 2 at three different spatial scales. Near the
origin gg(x ™) rises to 1 over distances shorter with increas-
ing A. It is followed by an oscillatory fall-off with an aver-
age slope in 1, corresponding to the straight line of

the test function in momentum space which falls off with all ga(x~) in DLCQ. Finally for large values ofx™
its derivatives sufficiently fast as a function of the (=10A) gg(x~) remains oscillating around zero.

Minkowski argument,,p, [pT=3 (p°+p%), p =3(p°
—p?)]. Its behavior as a function gf " is discussed in Ref.
[2]: the singular behavior of @/ in Eq. (2) is completely
damped out by the behavior 6fc for p*—0, eliminating

Hence in both cases the decay zone and the asymptotic
region whereg(x ™) is null or quasinull, reflect the elimina-
tion of the zero moden=0 for DLCQ and a halo around
p"=0 for CLCQ. However, it is the presence of the UV

p™=0 as an accumulation point. The ensuing renormalizaregularization in CLCQ which is responsible for the smeared

tion is independent of the particular choicefeg .
We examine first the Pauli-Jordan commutatd(x)

=[#(x),#(0)] evaluated ak™ =0. In the DLCQ case one

finds

Aplco(x™=0,x")= >

(1/47n) e (nm /L)
n=-—oo,#0

=—(i/4)[sgr(x”)— (x"/L)],

where sgn¥)= =1 if x=0, sgn(0)=0.
Within CLCQ, with f(p™)=f [p*.p (p*)], the corre-
sponding expression is

(4)

dp* ..
pp+ f2(p*)sin(p*x7). (5

N (=
Acicg(x"=0,x ):_Efo

The test functionf is strictly one in the interval 1/A, A
—1/A], varies between 0 and 1 in the intervf®1/A] and
[A—1/A,A], and is zero outside.

The behavior of ga(x")=4iAp co(x"=0,x") is
sketched in Fig. 1. To evaluatgg(x )=4iAc co(X”
=0,x"), we choose

f 1 ! 1 0 !
— — g J—
1 1 A 1
, —=ps=A——,
f(p)=1{ A P A
| ! 1, A-S<p=a
— - — =
eX AZ(p_A)2_1+ 1 A<p 1
\0, p>A
(6)

out rise neax™ =0 and small short wave length oscillations
for small x™, at variance with DLCQ where no such regu-
larization is present. Clearly the summation can be arbi-
trarily cut off to deal with the UV divergence but the ap-
proach to the continuum is not under control since the
limiting procedure of infinite cut off and infinite periodicity
length compatible with causality is not known. To discuss
these points we examine now the commutator for space or
timelike separation.

For DLCQ we have

A L %1. n7-rx‘+lm2Lx+ .
pLcQ(X, X7)= PPl y— (7)
and for CLCQ the corresponding expression is
. i (=dp' . [1m3*
AcieqX™, X ):_ﬂfo P Vs
+p x| F2(p"). ®)

The integral in Eq(8) is convergent even f=1 every-
where and a straightforward change of the integration vari-
able shows thaf\¢ ¢ depends only on the produgt x ™.
The limit A—oo can be taken safely with the result

AcicgX" X7) =~ %[SQF(XW+SgF(X’)]Jo(m\/X+X’),
9

which is the correct causal covariant expression, Witx)
the Bessel function of order zero.
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Clearly for Ap  cq the limit L—<o cannot be taken before
the sum is carried out, as the sinus becomes ill defined. As
shown in the Appendix this limit requires some care. Using
Eqg. (Al4) one finds

X

ApLco(X, X)L oe=— (i/4)[sgn(x ") +sgr(x )] e e i tre are
i FIG. 3. A functiong(x) decomposing unity.
X Jo(myxFx )+ m\/x+x‘ +2Lx"sgn(x")
This constitutes a decomposition of unity since by construc-
X Jq[myx x~+2Lx sgn(x*)]+O(L 4. (10)  tion
Hence the causal covariant expression is retrieved in the o
limit L—oo. However, the marginal noncausal termJinin _
. ’ e . Xx+p)=1, Vx. A3
Eq. (10) originates from the elimination of the zero mode in p;w ¢(x+p) (A3)

the infinite sum of Eq(7) [for x* =0 it is just (i/4)(x /L),
cf., Eq.(4)]. Its disappearance &s—« indicates that in the )
continuum the infrared problems would remain at variance! "€ Fourier transformg(k) of ¢(x) has the property
with CLCQ. Thus in DLCQ,L has to be kept finite to
achieve IR_regyIari_zation, at the expense of the appearance #(0)=1, ¢(2pm)=0, Vp integer #0. (A4)
of a causality violating term of ordet.( *. Unfortunately
this does not mean that the two versions coincide in the limit
L—co since in this limit the infrared regularization of DLCQ The coefficieniC, in the expansion of (x) is then given by
is lost. Due to the regularization properties of the test func-
tions, the situation in CLCQ is far more satisfactory since the 1 (=
approach provides a well defined handling of UV and IR =_

. . . C, J f(X)e
divergences and of their renormalization. N

To conclude we want to add a remark concerning the

LC-lattice method introduced by Destri and de Vé@aand . ) : . .
elaborated by Faddeev and c)(;-work@a?@. This a%%}aroach ,If f(x) isa standar.d '”tegr‘?‘t?'e funct|on of periad Cy, is
works on a LC-space-time lattice. The basic building blockdUSt the usual Fourier coefficient singgx/\) +¢(x/A—1)
of field dynamics being causal transfer matrices between ) o
neighboring points along lightlike directions, problems with W€ consider now, forg,b) e it, the distribution
causality are avoided by construction in this discretization

X inKx
Xe dx. (A5)

scheme. However, the main argument in favor of this ap- 1 = eilaxtbix) sin(x)
proach lies in the integrability properties in closest connecT,, (x)= — ( — S(x—p). (AB)
tion to those of the continuum. 2i p==a X X

We thank Dr. G. Mennessier for clarifying discussions.
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APPENDIX
1 o ei(ax+b/x) Sin(7TX)
In this appendix we derive the expression of the periodic T, ,(x)(Q)= o7 > J (1— )
Pauli-Jordan function in the limit of infinite periodicity Pp==ee Jooo X X
length L. Consider the periodic distribution with period X 8(x—p)Q(x)dx
=27/K
1 & el@ptbp) sinmp
oo =57 2 (1— - )Q(p)
f(x)= >, C,enkx (A1) p=-= P P
n=-—o .
1
=D, —sin ap+ — A7
and the class o€”-test functiong(x) with the properties ,)Z‘l pSln ap (A7)
xe[0,1]; o(X)+e(x—=1)=1; sinceQ)(p)=1, Vp integer or zergsee Fig. 3.
On the other hand the periodic distribution
dPo(x) f(x)zE;":,mé(x—p) also admits the Fourier expansion

¢(0)= 1’¢(1):O’T =0 szl}. (A2)  (Al) with K=27 andC,=1, directly from Eq.(A5). Hence

x=1 we have the well-known representation
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~ . * edXx b|sinmx
p;w e |pwx:p;m S(x—p). (A8) . ~Sin (a+2pm)x+ o
T.p(X)(Q) is then also given by =—({sgr[a+(2p+1)7-r]+sgr(b VWat (2pt Db
an(X) p_Zm “(dx/x) Q(x)sin{ (a+2pm)x xJ,{2\[a+(2p+1)7]b}
+ (b/x)]( 1= sinmx/mx). (A9) —{sgria+(2p—1)7]+sgnb)}V[a+(2p—1)m]b
Q(x) is a decomposition of unity and since the integral is xJi{2\[a+(2p—1)m]b}). (A11)
well defined withQ2(x) =1 on the whole integration domain,
we have
edX b| Here sgnk)=*+1 x=0, sgn(0)=0, andJ,(x) is the ordi-
J; 75|r{(a+2p7-r)x+ 3|~ zlsgna+2pm)+sgr(b)] nary Bessel function of orden.
Specializing to the discretized light-cone variablas
X Jo[2V(a+2pm)b], (A10) =ax"/L, b=(m?4)(Lx" /), we have

nmwx- +

=[sgnx™)+sgnx")]Jo(myx x7)+ lim ZSgr(x+)2 Jo[myx x™ +2pLx*sgnx™)]

N—

1
4 0o

m
4n71'

2
XX+ (2N+1)Lx T sgrix ) Iy [myxFx™ +(2N+1)Lx sgrix )] . (A12)
X

The limit N—< in Eq. (A12) is still elusive because the compensation between the two diverging teivris imot explicit.
However, the remaining sum in EGA12) can be given in an integral form using a contour integral representatiog( of.
Then the sum ovep becomes geometric and can be performed. We have the result

N
2 sgr(x*)pz1 Jolmyx x™ +2pLx*sgnx’)]=—

— VXX +Lx T sgnx ) I [myx x™ +Lx sgnx™)]

+ VXX +(2N+1)Lx T sgrix ") I [myx x™ +(2N+1)Lx sgrix )]+ O(L ~>4). (A13)

mLx"

Now the limit N— can be taken in EQA12) as the diverging term ilN in Eq. (A12) is cancelled exactly by the one in Eq.
(A13), leaving the result

+

2 & 1_(n77x‘ m? Lx

+ 2
3 TF) =[sgr(x ") +sgrix™)1Jo(myx"x") = VX X~ +2Lx" sgr(x")

X J[myx x~+2Lx sgn(x )]+ O(L 4. (A14)
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