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Field dynamics on the light cone: Compact versus continuum quantization
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~Received 12 March 1999; published 9 August 1999!

Compact canonical quantization on the light cone is examined in the limit of infinite periodicity lengthL.
Pauli-Jordan commutators are found to approach continuum expressions with marginal noncausal terms of
orderL23/4 traced back to the handling of the IR divergence through the elimination of zero modes. In contrast
direct quantization in the continuum in terms of field operator valued distributions is shown to provide the
standard causal result while at the same time ensuring consistent IR and UV renormalization.
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Light front quantization has emerged as an important t
in the study of nonperturbative aspects of field theories@1#.
However, a major problem in this approach resides in
infrared behavior of the continuum theory. Recently this
sue was clarified on the basis of a mathematically w
defined procedure@2#. In the early attempts to deal with thes
infrared problems, discretized light front quantizatio
~DLCQ! @3# played an important role. The popularity o
DLCQ resides in the easy and conceptually simple treatm
of the infrared regularization: zero modes in the expansion
the fields were simply eliminated and later on understood
the LC counterpart of the nontrivial ground state of equ
time ~ET! quantization. The study of critical phenomena
the framework of effective theories requires using a c
tinuum version of the quantum field theory on the light fro
Indeed critical points, critical exponents, etc., are access
only from a complete knowledge of the cutoff dependence
the critical mass, which can only be given by the continu
theory. In DLCQ the limit of infinite periodicity lengthL
cannot be achieved in a straightforward manner without
ther insight both on the handling of zero modes and rest
tion of covariance and causality in the limiting process@4#.
Our approach@2# was to propose a genuine continuum tre
ment ~CLCQ! in which fields are treated as operator valu
distributions, thereby leading to a well-defined handling
ultraviolet and light cone induced infrared divergences a
of their renormalization. We focused in Ref.@2# on the com-
parison of the critical coupling in the LC and ET framewor
showing that the continuum nonperturbative LC approac
no more complex than usual perturbation theory in low
order. The LC-critical coupling is in essential agreeme
with the renormalization-group-~RG-! improved perturba-
tive result at fourth order. Here we want to report on a d
tailed comparison between DLCQ and CLCQ treatments
important quantities such as Pauli-Jordan commutator fu
tions, which, due to necessary concision and lack of sp
could not be treated therein.

Within the particle sector in DLCQ, periodic bounda
conditions are imposed,L being the periodicity length, lead
ing to the usual Fock expansion. Restricting to 111
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dimension1 the particle sector field is written as

f~x!5 (
n51

`

~1/A4pn! @ane2 iknx1an
1eiknx# ~1!

with @an ,am
1#5dn,m , n,m>1 and kn5np/L , nPZ. The

CLCQ approach relies on the introduction of field operat
valued distributions defined with respect toC`-test functions
with compact support@5#. Apart from formal considerations
there exists a fundamental physical argument which dem
strates that it is compelling to treat the field amplitudes in
distributional sense in order to guarantee that the LC qu
tization procedure by itself is correct. Due to the hyperbo
form of the LC Laplacian, initial field values have to th
prescribed on characteristics, i.e., onx150 andx250. In
order to be able to transform this characteristic value pr
lem into a problem with periodic boundary conditions, te
functions f (p1,p2) have to be introduced with the proper
@6#

lim
p1

˜0

1

p1 f~p1,m2/p1!50 ~2!

@see Eq.~3.20! of Ref. @6##.
This is exactly what happens automatically with the t

functions defined below. Condition~2! ensures, as discusse
in detail in Ref.@6#, that the field values on the characteris
x250 become dependent quantities and, as a conseque
the quantization can be performed prescribing boundary
ues for x150 at x252L and x25L, whereL˜`. The
field can be expressed in a chart independent way as a
face integral over a manifold, thereby showing that the ult
violet ~UV! behavior on the Minkowski manifold dictates th
UV and IR behavior on the LC manifold. This is due to th
regularization properties of the test function which are au
matically transferred from the first to the second case.

1For massive field the IR problematics can be discussed inde
dently of higher dimensionalities.
©1999 The American Physical Society01-1
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In this context the field is written as

fLC~x!5E
0

`

~dp1/4pp1!@a~p1!e2 ipx

1a1~p1!eipx# f LC@p1,p̂2~p1!# ~3!

with @a(p1),a1(p81)#54pp1d(p12p81). In Eq. ~3!

p̂2(p1) stands for the on-shell conditionm2/p1 and f LC is
the test function in momentum space which falls off with
its derivatives sufficiently fast as a function of th
Minkowski argumentsp0 ,pz @p15 1

2 (p01p3), p25 1
2 (p0

2p3)#. Its behavior as a function ofp1 is discussed in Ref
@2#: the singular behavior of 1/p1 in Eq. ~2! is completely
damped out by the behavior off LC for p1

˜0, eliminating
p150 as an accumulation point. The ensuing renormali
tion is independent of the particular choice off LC .

We examine first the Pauli-Jordan commutatorD(x)
5@f(x),f(0)# evaluated atx150. In the DLCQ case one
finds

DDLCQ~x150 ,x2!5 (
n52`,Þ0

`

~1/4pn! e2 i (npx2/L)

52 ~ i /4! @sgn~x2!2 ~x2/L !#, ~4!

where sgn(x)561 if x:0, sgn(0)50.
Within CLCQ, with f̂ (p1)[ f LC@p1,p̂2(p1)#, the corre-

sponding expression is

DCLCQ~x150 ,x2!52
i

2pE0

`dp1

p1 f̂ 2~p1!sin~p1x2!. ~5!

The test functionf̂ is strictly one in the interval@1/L,L
21/L#, varies between 0 and 1 in the intervals@0,1/L# and
@L21/L,L#, and is zero outside.

The behavior of gA(x2)54iDDLCQ(x150 ,x2) is
sketched in Fig. 1. To evaluategB(x2)54iDCLCQ(x1

50 ,x2), we choose

f ~p!55
12expF 1

L2p221
11G , 0<p,

1

L
,

1,
1

L
<p<L2

1

L
,

12expF 1

L2~p2L!221
11G , L2

1

L
,p<L,

0, p.L
~6!

FIG. 1. The DLCQ functiongA(x2).
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with L5100, and calculategB(x2) numerically. The results
are plotted in Fig. 2 at three different spatial scales. Near
origin gB(x2) rises to 1 over distances shorter with increa
ing L. It is followed by an oscillatory fall-off with an aver-
age slope in 1/L, corresponding to the straight line o
gA(x2) in DLCQ. Finally for large values ofx2

(>10L) gB(x2) remains oscillating around zero.
Hence in both cases the decay zone and the asymp

region whereg(x2) is null or quasinull, reflect the elimina
tion of the zero moden50 for DLCQ and a halo around
p150 for CLCQ. However, it is the presence of the U
regularization in CLCQ which is responsible for the smea
out rise nearx250 and small short wave length oscillation
for small x2, at variance with DLCQ where no such reg
larization is present. Clearly then summation can be arbi
trarily cut off to deal with the UV divergence but the ap
proach to the continuum is not under control since
limiting procedure of infinite cut off and infinite periodicity
length compatible with causality is not known. To discu
these points we examine now the commutator for space
timelike separation.

For DLCQ we have

DDLCQ~x1, x2!52
i

2p (
n51

`
1

n
sinFnpx2

L
1

1

4

m2Lx1

pn G ~7!

and for CLCQ the corresponding expression is

DCLCQ~x1, x2!52
i

2pE0

`dp1

p1 sinF1

4

m2x1

p1

1p1x2G f̂ 2~p1!. ~8!

The integral in Eq.~8! is convergent even iff̂ 51 every-
where and a straightforward change of the integration v
able shows thatDCLCQ depends only on the productx1x2.
The limit L˜` can be taken safely with the result

DCLCQ~x1, x2!52
i

4
@sgn~x1!1sgn~x2!#J0~mAx1x2!,

~9!

which is the correct causal covariant expression, withJ0(x)
the Bessel function of order zero.

FIG. 2. The CLCQ functiongB(x2) at different spatial scales.
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Clearly forDDLCQ the limit L˜` cannot be taken befor
the sum is carried out, as the sinus becomes ill defined
shown in the Appendix this limit requires some care. Us
Eq. ~A14! one finds

DDLCQ~x1, x2!uL˜`52 ~ i /4!@sgn~x1!1sgn~x2!#

3J0~mAx1x2!1
i

2mLx1Ax1x212Lx1sgn~x1!

3J1@mAx1x212Lx1sgn~x1!#1O~L25/4!. ~10!

Hence the causal covariant expression is retrieved in
limit L˜`. However, the marginal noncausal term inJ1 in
Eq. ~10! originates from the elimination of the zero mode
the infinite sum of Eq.~7! @for x150 it is just (i /4)(x2/L),
cf., Eq. ~4!#. Its disappearance asL˜` indicates that in the
continuum the infrared problems would remain at varian
with CLCQ. Thus in DLCQ,L has to be kept finite to
achieve IR regularization, at the expense of the appeara
of a causality violating term of order (L23/4). Unfortunately
this does not mean that the two versions coincide in the li
L˜` since in this limit the infrared regularization of DLCQ
is lost. Due to the regularization properties of the test fu
tions, the situation in CLCQ is far more satisfactory since
approach provides a well defined handling of UV and
divergences and of their renormalization.

To conclude we want to add a remark concerning
LC-lattice method introduced by Destri and de Vega@7# and
elaborated by Faddeev and co-workers@8#. This approach
works on a LC-space-time lattice. The basic building bloc
of field dynamics being causal transfer matrices betw
neighboring points along lightlike directions, problems w
causality are avoided by construction in this discretizat
scheme. However, the main argument in favor of this
proach lies in the integrability properties in closest conn
tion to those of the continuum.

We thank Dr. G. Mennessier for clarifying discussion
This work has been completed under Nato Grant N
CRG920472.

APPENDIX

In this appendix we derive the expression of the perio
Pauli-Jordan function in the limit of infinite periodicit
length L. Consider the periodic distribution with periodl
52p/K

f ~x!5 (
n52`

`

CneinKx ~A1!

and the class ofC`-test functionw(x) with the properties

H xP@0,1#; w~x!1w~x21!51;

w~0!51,w~1!50,
dPw~x!

dxP U
x51

50 ;p>1J. ~A2!
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This constitutes a decomposition of unity since by constr
tion

(
p52`

`

w~x1p!51, ;x. ~A3!

The Fourier transformf(k) of w(x) has the property

f~0!51, f~2pp!50, ;p integer Þ0. ~A4!

The coefficientCn in the expansion off (x) is then given by

Cn5
1

lE2`

`

f ~x!wS x

l DeinKxdx. ~A5!

If f (x) is a standard integrable function of periodl, Cn is
just the usual Fourier coefficient sincew(x/l)1w(x/l21)
51.

We consider now, for (a,b)PR, the distribution

Tab~x!5
1

2i (
p52`

`
ei (ax1b/x)

x S 12
sin~px!

px D d~x2p!. ~A6!

With theC`-test functionV(x) which decomposes unity we
have

Tab~x!~V!5
1

2i (
p52`

` E
2`

` ei (ax1b/x)

x S 12
sin~px!

px D
3d~x2p!V~x!dx

5
1

2i (
p52`

`
ei (ap1b/p)

p S 12
sinpp

pp DV~p!

5 (
p51

`
1

p
sinS ap1

b

pD ~A7!

sinceV(p)51, ;p integer or zero~see Fig. 3!.
On the other hand the periodic distributio

f (x)5(p52`
` d(x2p) also admits the Fourier expansio

~A1! with K52p andCn51, directly from Eq.~A5!. Hence
we have the well-known representation

FIG. 3. A functionw(x) decomposing unity.
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(
p52`

`

e2ippx5 (
p52`

`

d~x2p!. ~A8!

Tab(x)(V) is then also given by

Tab~x!~V!5 (
p52`

` E
0

`

~dx/x! V~x!sin@~a12pp!x

1 ~b/x!#~12 sinpx/px! . ~A9!

V(x) is a decomposition of unity and since the integral
well defined withV(x)51 on the whole integration domain
we have

E
0

`dx

x
sinF ~a12pp!x1

b

xG5
p

2
@sgn~a12pp!1sgn~b!#

3J0@2A~a12pp!b#, ~A10!
gh

y,

06770
E
0

`dx

x
sinF ~a12pp!x1

b

xGsinpx

px

5
1

4b
„$sgn@a1~2p11!p#1sgn~b!%A@a1~2p11!p#b

3J1$2A@a1~2p11!p#b%

2$sgn@a1~2p21!p#1sgn~b!%A@a1~2p21!p#b

3J1$2A@a1~2p21!p#b%…. ~A11!

Here sgn(x)561 x:0, sgn(0)50, andJn(x) is the ordi-
nary Bessel function of ordern.

Specializing to the discretized light-cone variablesa
5px2/L, b5(m2/4)(Lx1/p), we have
.

2

p (
n51

`
1

n
sinFnpx2

L
1

m2

4

Lx1

np G5@sgn~x1!1sgn~x2!#J0~mAx1x2!1 lim
N˜`

H 2sgn~x1! (
p51

N

J0@mAx1x212pLx1sgn~x1!#

2
2

mLx1
Ax1x21~2N11!Lx1sgn~x1!J1@mAx1x21~2N11!Lx1sgn~x1!#J . ~A12!

The limit N˜` in Eq. ~A12! is still elusive because the compensation between the two diverging terms inN is not explicit.
However, the remaining sum in Eq.~A12! can be given in an integral form using a contour integral representation ofJ0(z).
Then the sum overp becomes geometric and can be performed. We have the result

2 sgn~x1! (
p51

N

J0@mAx1x212pLx1sgn~x1!#52
2

mLx1Ax1x21Lx1sgn~x1!J1@mAx1x21Lx1sgn~x1!#

1
2

mLx1Ax1x21~2N11!Lx1sgn~x1!J1@mAx1x21~2N11!Lx1sgn~x1!#1O~L25/4!. ~A13!

Now the limit N˜` can be taken in Eq.~A12! as the diverging term inN in Eq. ~A12! is cancelled exactly by the one in Eq
~A13!, leaving the result

2

p (
n51

`
1

n
sinS npx2

L
1

m2

4

Lx1

np D5@sgn~x1!1sgn~x2!#J0~mAx1x2!2
2

mLx1Ax1x212Lx1sgn~x1!

3J1@mAx1x212Lx1sgn~x1!#1O~L25/4!. ~A14!
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