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Dual symmetry and the vacuum energy
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A hidden symmetry for the scale factor of the-0 Friedmann-Robertson-Walker model which is different
from the known ones is presented herein. This exact symmetry implies a zero cosmological constant and can
be interpreted as a string-type dual symmeft§0556-282(199)04016-3

PACS numbe(s): 04.20.Jb, 04.96:e, 98.80.Hw

Astronomical observations of the universe indicate thawerse described by a homogeneous and isotropic Friedmann-
the cosmological constant, if it is nonzero, is very small. TheRobertson-Walke(FRW) metric
vacuum energy density, multiplied by 87Gy= «? (where
Gy is the Newton constants usuglly called_ the cosmc_JIogi— dg?= — N2(t)d 2+ R3(t)d3Q), (1)
cal constantA [1]. The cosmological data imply that in the
present-day the vacuum energy density is not much greater
than the critical densitp.~10"%® GeV*. whered3Q) is the interval on the spatial sector with constant
Vacuum energy in quantum field theory is not zero, but itcurvaturek=0,51, corresponding to plane, hyperbolic or
has the value om* where “m” is a characteristic particle SPherical three-space, respectively.
physical mass parametf2]. For instance, the masses of in-  The metric is described by a single scale fadk¢t) and
termediate bosons of weak interactions arg-10° Gev, aS the matter source we shall conslder a homogeneous scalar
which givesp~10® GeV* and the observable vacuum en- field ¢(t) which induce the potential(¢). _
ergy densityp, is fantastically smalp, <10 %%. This fact The action for FRW interacting with the scalar fieit)
could be due to the accidental compensation of different con's described by
tributions top, , but there is a small chance for a compen-
sation with an accuracy of one part in®20t may be that the

: : Hal . RR R®.
compensation of different contributions g is secured by a S= f — i — %+ ikN R—NR3V(p)|dt,
symmetry principle. k> N 2N K2
The natural candidate is supersymmetry. Experiment (]

shows, however, that this symmetry is broken in the ob-
served universe, since the boson and fermion masses are difs = - _ 12
ferent. Therefore, vacuum energy is not exactly canceled. Ié/irrferﬁggni?d;hg Qi?,fzr?;g: do’;?h(esggl\lzir figg\(/?) kiasn%:ch
the best case the contributions to vacuum energy are propoj- 1

. 2 i I the form/ 1, while the potentiaV(¢) has dimension” 4.
tional to mg,, wherems,~10°—10° GeV (gravitino mass " " s

parameter describes the scale of supersymmetry breaking It turns out that the actio® is invariant under the time

[3]. o ; ; .
. . _ reparametrization t—t'=t+a(t), if the variables
Ideally, we would like to explain the vanishing of theol}l(t), R(t) and o(t) are transformed as

cosmological constant in the observed universe in terms
an exact symmetry principle. In the case of early stages of
the unive_rse, the s_ym_metry is broken and the_ cosmological 5N=(aN), SR=aR 5¢=a¢- 3)
constant is nonvanishing. The symmetry must include a non-
trivial new transformation on the metr'g:w,(x*), since gen- _ _
eral coordinate transformations on the metsjg, must not  In fact, under the transformatic3) the action(2) becomes
constrain the cosmological tergi—gA.

In this work we show that the minisuperspace formulation )
allows such a symmetry in any theory of gravitation, includ- 5S=f (al)dt, 4
ing Einstein theory. We consider a simple model of the uni-

wherelL is the corresponding Lagrangian. So, up to a total

*Email address: vladimir@ifugl.ugto.mx derivative, the actiors is invariant under the transformation
TEmail address: socorro@ifug2.ugto.mx ).
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$Email address: nieto@uas.uasnet.mx action (2), which are the kinetic terms for the scale factor

0556-2821/99/6(®)/0675034)/$15.00 60 067503-1 ©1999 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW D 60 067503

R(t) and the scalar fieldp(t), respectively, are invariant first-class constrainH=0. This constraint, of course ex-
under the following transformations, and in what follows we presses the invariance of the acti@ under reparametriza-

call dual transformation: tion transformations.
We note that for the cade=0 and for the effective cos-
K2 xk®N(t) mological termR®V(¢,)=0 the canonical Hamiltonian is
R(t)—R'(t)= RO N(t)—N’(t)= R0 invariant under dual transformatiok$s). In fact, since under

Eq. (3) the classical constrainH transform asH—H’
=HR5/ «®, we haveN'H' =NH.
P()—=e(t)=¢(1). (5) According to the Dirac’s constraints Hamiltonian quanti-

] ] ) o zation procedure, the wave function is annihilated by opera-
Using Eq.(3) we find that by a time reparametrization the 5 yersion of the classical constraint. In the usual fashion,

transformation law foR’ andN’ has the form . ~
the canonical momenta are replaced by operaldgs=

—i(alaR), M1 ,=—i(3l9¢).
It turns out that the commutators of the quantum operators

The term (3k2)kNR is invariant under the transformation [R.IIrI=1, [¢,1I ]=i are also invariants under the dual
(5) only for the plane three spade=0. Finally, the last term ~ (ransformations. _
in action(2), — NR®V(«), is the effective cosmological con- In order to find a correct quantum expression for the

stant term and defines the contributions to cosmological cod@Mmiltonian we must always consider factor ordering ambi-
stant from the potentia¥(e). If V() vanishes atp={¢) guities. This is true in our case because the operator Hamil-
= ¢y, for example for a potential of the formv=»\(¢? tonian contains the product noncommutating oper&tand

—a?)?2, the action(2) is invariant under the dual transforma- ITR. Thus, of the first term in the classical Hamiltonidrwe

tion (5), while for the vacuum energy(¢=0)=a*#0 the  consider the following operator fornp6]

dual symmetry is broken and the cosmological constant is

nonvanishing. K29 K
Let us find the canonical Hamiltonian of the model. The 1_2R P ﬁRpﬁ: 12

momenta conjugate tB and ¢ are defined in the usual way

SR’=aR’ and oN’'=(aN’). (6)

1 p

R mmR) MY

wherep is a real parameter that measures the ambiguity in

) 5
Mg=— 6 RR 1 _Re (7)  the factor ordering7] in the first term of Eq(10).
kN % N The quantum Hamiltonian has the form
and under the dual transformatiof® we have the following K2 9 9 1 R
relations between the old and the transformed momenta: H=-—-R P 1 _R——— —+R%(o),
12 IR IR 2R® ge?
1
HR—>H|’?: — —RZHR, T —II’ :H¢_ (8) K2 g2 K2 p J 1 g2
K2 ¢ ¢ [ - 3V(<P)
12R yR?  12R? IR 2R3 ¢?
With these relations we find, that the canonical Poisson (12

brackets are invariant under dual transformati®)s
On the other hand, under duality transformations the Hamil-

{(RIIg={R" II}=1, {o I }={¢ I }=1. (9) tonianH becomes

Thus, the Hamiltonian can be calculated in the usual way. . RS,

We have the classical canonical Hamiltonian H'=—H, (13
K

2

K 1 '
H=NH=N| - —=TI3+ EHiJF R3V(¢)|, (100  Thus, we may assume the final form

12R
. I . . K J g 1 ¢ k2
whereH is the Hamiltonian of the system. This form of the H= —RP*3—R*P+2———3 —+ —gv(¢),
canonical Hamiltonian explains the fact, that the lapse func- 12 IR IR 2R3 jge®> R
tion N is a Lagrange multiplier, which enforces the only (14)

It is straightforward to show thdt is dual invariant only if
The target space in the modular transformations of the strin he parametep=1 andV(¢o) =0. If V(¢o) # 0 the last term

contains the well-known dual transformations»1ir, wherer is " EG- (12) is broken under the dual symmetry.
the “radius” of the internal six-dimensional space of the string _ The physical stateg’) are those that are annihilated by
H:

[4,5].
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2 P Py whereA, B, andv are integration constants.

A ~, d ~ ~
H W)= RZTZ+ pR—~—6TZ—36kR4 Now, for casg(ii) the factor ordering is not fixed and we
JR dR  do obtain the solution
+12R%(¢?-2%)?||¥) V2a? -
w(ﬁ,ZD):ﬁ(l-P)’sz(—S R)
=0. (15
This equation can be identified with the Wheeler-DeWitt e
equation for minisuperspace models. Clearly, Eip) has "6 (1=p)"~(2m)%, &

many different solutions, and one of the most fundamental

uestions facing us is which of these solutions actually de- -
gcribes our uni\?erse. Y %€ here Z,[(\2a%3)R%] is the Bessel function defined as

Let us consider the following ansatz: AJ,+BY,, wherev is a real(or imaginary[8]) number with

a real argument\(2a?/3)R.
It is straightforward to generalize our procedure to all
. V(po=a)=0, Bianchi-type cosmological models. In the proposed frame-
work it is also possible to include the supersymmetric
minisuperspace model8]. Thus, as further research, it may
(i), V(p=0)=a* dual breaking invariance, be interesting to consider the close minisuperspace models.
Furthermore, these simple dual transformations may
1 be applied to the metricgw(xx) in the Arnowitt-Deser-
:’(”pzo> _ (16)  Misner(ADM) formalism[10]. According to the ADM pre-
R scription, of general relativity, they are considered as a slic-
. . ~ing of the space time by a family of spacelike hypersurfaces
Here, we~conS|derjhe scalg factor and the scalar field dimengpeled by a parametér The space-time metrigw(xx) is
sionless;R=R/k, ¢=k¢, a=«xa. Considering these two decomposed into lapde(t,x ), shift N;(t,x¥) and the three-
cases we shall find the exact solution to the quantum equanetric of the incehij(t,xk). Thus, these quantities under
tion (15) for anyp. dual transformations have the following form:
Case(i) means that we need to ensure the invariance of
the Hamiltonian(12) under dual transformation

(i) V(R ey)=V

1.
E!(PO

V(R)#= W

L hohe =g
W;, i ij_ﬁg! ( )

S| Z2

NoN'=—, N—oN/=

- 1 N(t)
R(t)»=——, N(t)—=——,
R(D) R%()
whereh=det(h;;).
P()—>p(t) k=0, and p:=1. (17) ~ A gravitational vacuum polarization correction to effec-
tive action[11] must induce new terms which will not be
Note, that in this case the values of the paramétethe invariant under the dual transformatiof®l). In fact, even if
factor orderingp, and the potential for the scalar field are V—gV(¢) vanishes at ¢)= ¢, the quantum correction to
fixed. Thus, under the duality transformatiofl§) we have V() would generate a nonzero contributiqf-gVe(@o)
and the effective action is not invariant under dual transfor-

. -, 29 5 mations(21). Therefore, the condition for such an exact dual
H|¥)=|R =0 + R_ﬁ —6—||V)=0, (18 symmetry leads to the cancellation of these two contributions
J J I¢ of the vacuum energy.
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