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Dual symmetry and the vacuum energy
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A hidden symmetry for the scale factor of thek50 Friedmann-Robertson-Walker model which is different
from the known ones is presented herein. This exact symmetry implies a zero cosmological constant and can
be interpreted as a string-type dual symmetry.@S0556-2821~99!04016-3#
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Astronomical observations of the universe indicate t
the cosmological constant, if it is nonzero, is very small. T
vacuum energy densityrv multiplied by 8pGN5k2 ~where
GN is the Newton constant! is usually called the cosmologi
cal constantL @1#. The cosmological data imply that in th
present-day the vacuum energy density is not much gre
than the critical densityrc;10248 GeV4.

Vacuum energy in quantum field theory is not zero, bu
has the value ofm4, where ‘‘m’’ is a characteristic particle
physical mass parameter@2#. For instance, the masses of i
termediate bosons of weak interactions aremz;102 GeV,
which givesr;108 GeV4 and the observable vacuum e
ergy densityrv is fantastically smallrv,10256r. This fact
could be due to the accidental compensation of different c
tributions torv , but there is a small chance for a compe
sation with an accuracy of one part in 1060. It may be that the
compensation of different contributions torv is secured by a
symmetry principle.

The natural candidate is supersymmetry. Experim
shows, however, that this symmetry is broken in the
served universe, since the boson and fermion masses ar
ferent. Therefore, vacuum energy is not exactly canceled
the best case the contributions to vacuum energy are pro
tional to m3/2

4 , wherem3/2;1022103 GeV ~gravitino mass
parameter! describes the scale of supersymmetry break
@3#.

Ideally, we would like to explain the vanishing of th
cosmological constant in the observed universe in term
an exact symmetry principle. In the case of early stages
the universe, the symmetry is broken and the cosmolog
constant is nonvanishing. The symmetry must include a n
trivial new transformation on the metricgmn(xl), since gen-
eral coordinate transformations on the metricgmn must not
constrain the cosmological termA2gL.

In this work we show that the minisuperspace formulat
allows such a symmetry in any theory of gravitation, inclu
ing Einstein theory. We consider a simple model of the u
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verse described by a homogeneous and isotropic Friedm
Robertson-Walker~FRW! metric

ds252N2~ t !dt21R2~ t !d3V, ~1!

whered3V is the interval on the spatial sector with consta
curvaturek50,71, corresponding to plane, hyperbolic o
spherical three-space, respectively.

The metric is described by a single scale factorR(t) and
as the matter source we shall consider a homogeneous s
field w(t) which induce the potentialV(w).

The action for FRW interacting with the scalar fieldw(t)
is described by

S5E F2
3

k2

R Ṙ2

N
1

R3

2N
ẇ21

3

k2
kNR2NR3V~w!Gdt,

~2!

whereṘ5dR/dt, ẇ5dw/dt andk5(8pGN)1/2 have length
dimensionsl . The dimension of the scalar fieldw(t) is of
the forml 21, while the potentialV(w) has dimensionl 24.
We assume units in whichc5\51.

It turns out that the actionS is invariant under the time
reparametrization t˜t85t1a(t), if the variables
N(t), R(t) andw(t) are transformed as

dN5~aN)̇ , dR5aṘ, dw5aẇ. ~3!

In fact, under the transformation~3! the action~2! becomes

dS5E ~aL)̇dt, ~4!

whereL is the corresponding Lagrangian. So, up to a to
derivative, the actionS is invariant under the transformatio
~3!.

We can see that the first and the second terms in
action ~2!, which are the kinetic terms for the scale fact
©1999 The American Physical Society03-1
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R(t) and the scalar fieldw(t), respectively, are invarian
under the following transformations, and in what follows w
call dual transformation:1

R~ t !˜R8~ t !5
k2

R~ t !
, N~ t !˜N8~ t !5

k6N~ t !

R6~ t !
,

w~ t !˜w~ t !5w~ t !. ~5!

Using Eq.~3! we find that by a time reparametrization th
transformation law forR8 andN8 has the form

dR85aṘ8 and dN85~aN8 )̇ . ~6!

The term (3/k2)kNR is invariant under the transformatio
~5! only for the plane three space,k50. Finally, the last term
in action~2!, 2NR3V(w), is the effective cosmological con
stant term and defines the contributions to cosmological c
stant from the potentialV(w). If V(w) vanishes atw5^w&
5w0, for example for a potential of the formV5l(w2

2a2)2, the action~2! is invariant under the dual transforma
tion ~5!, while for the vacuum energyV(w50)5a4Þ0 the
dual symmetry is broken and the cosmological constan
nonvanishing.

Let us find the canonical Hamiltonian of the model. T
momenta conjugate toR andw are defined in the usual wa

PR52
6

k2

RṘ

N
, Pw5

R3ẇ

N
, ~7!

and under the dual transformations~5! we have the following
relations between the old and the transformed momenta

PR˜PR852
1

k2
R2PR , Pw˜Pw85Pw . ~8!

With these relations we find, that the canonical Poiss
brackets are invariant under dual transformations~5!:

$R,PR%5$R8,PR8 %51, $w,Pw%5$w8,Pw8 %51. ~9!

Thus, the Hamiltonian can be calculated in the usual w
We have the classical canonical Hamiltonian

Hc5NH5NF2
k2

12R
PR

21
1

2R3
Pw

21R3V~w!G , ~10!

whereH is the Hamiltonian of the system. This form of th
canonical Hamiltonian explains the fact, that the lapse fu
tion N is a Lagrange multiplier, which enforces the on

1The target space in the modular transformations of the st
contains the well-known dual transformationsr˜1/r , where r is
the ‘‘radius’’ of the internal six-dimensional space of the stri
@4,5#.
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first-class constraintH50. This constraint, of course ex
presses the invariance of the action~2! under reparametriza
tion transformations.

We note that for the casek50 and for the effective cos
mological termR3V(w0)50 the canonical Hamiltonian is
invariant under dual transformations~5!. In fact, since under
Eq. ~3! the classical constraintH transform asH˜H8
5HR6/k6, we haveN8H85NH.

According to the Dirac’s constraints Hamiltonian quan
zation procedure, the wave function is annihilated by ope
tor version of the classical constraint. In the usual fashi
the canonical momenta are replaced by operatorsP̂R5

2 i (]/]R),P̂w52 i (]/]w).
It turns out that the commutators of the quantum opera

@R,P̂R#5 i , @w,P̂w#5 i are also invariants under the du
transformations.

In order to find a correct quantum expression for t
Hamiltonian we must always consider factor ordering am
guities. This is true in our case because the operator Ha
tonian contains the product noncommutating operatorR and
P̂R . Thus, of the first term in the classical HamiltonianH we
consider the following operator form:@6#

k2

12
R2p21

]

]R
Rp

]

]R
5

k2

12S 1

R

]2

]R2
1

p

R2

]

]RD , ~11!

wherep is a real parameter that measures the ambiguity
the factor ordering@7# in the first term of Eq.~10!.

The quantum Hamiltonian has the form

Ĥ5
k2

12
R2p21

]

]R
Rp

]

]R
2

1

2R3

]2

]w2
1R3V~w!,

5
k2

12R

]2

]R2
1

k2 p

12R2

]

]R
2

1

2R3

]2

]w2
1R3V~w!.

~12!

On the other hand, under duality transformations the Ham
tonianH becomes

Ĥ85
R6

k6
Ĥ, ~13!

Thus, we may assume the final form

Ĥ5
k2

12
Rp23

]

]R
R2p12

]

]R
2

1

2R3

]2

]w2
1

k12

R9
V~w!,

~14!

It is straightforward to show thatĤ is dual invariant only if
the parameterp51 andV(w0)50. If V(w0)Þ0 the last term
in Eq. ~12! is broken under the dual symmetry.

The physical statesuC& are those that are annihilated b
Ĥ:

g

3-2
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BRIEF REPORTS PHYSICAL REVIEW D 60 067503
ĤuC&5F R̃2
]2

]R̃2
1pR̃

]

]R̃
26

]2

]w̃2
236kR̃4

112lR̃6~ w̃22ã2!2G uC&

50. ~15!

This equation can be identified with the Wheeler-DeW
equation for minisuperspace models. Clearly, Eq.~15! has
many different solutions, and one of the most fundamen
questions facing us is which of these solutions actually
scribes our universe.

Let us consider the following ansatz:

~ i! C~R̃,w0!5CS 1

R̃
,w̃0D , V~ w̃05ã!50,

~ ii !, V~ w̃50!5ã4, dual breaking invariance,

C~R̃!ÞCS 1

R̃
,w̃50D . ~16!

Here, we consider the scale factor and the scalar field dim
sionless;R̃5R/k, w̃5kw, ã5ka. Considering these two
cases we shall find the exact solution to the quantum eq
tion ~15! for any p.

Case~i! means that we need to ensure the invariance
the Hamiltonian~12! under dual transformation

R̃~ t !˜
1

R̃~ t !
, N~ t !˜

N~ t !

R̃6~ t !
,

w̃~ t !˜w̃~ t ! kª0, and pª1. ~17!

Note, that in this case the values of the parameterk, the
factor orderingp, and the potential for the scalar field a
fixed. Thus, under the duality transformations~17! we have

ĤuC&5F R̃2
]2

]R̃2
1R̃

]

]R̃
26

]2

]w̃2G uC&50, ~18!

C~R̃,w̃ !5H A~R̃n1R̃2n!e6(n/A6)w̃, m52n2,0,

B cos~n ln R̃!e6 i (n/A6)w̃, m5n2.0,
~19!
06750
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whereA, B, andn are integration constants.
Now, for case~ii ! the factor ordering is not fixed and w

obtain the solution

C~R̃,w̃ !5R̃(12p)/2ZnS A2ã2

3
R̃3D e6 imw̃,

n5
1

6
A~12p!22~2m!2, ~20!

where Zn@(A2ã2/3)R̃3# is the Bessel function defined a
AJn1BYn , wheren is a real~or imaginary@8#! number with
a real argument (A2ã2/3)R̃3.

It is straightforward to generalize our procedure to
Bianchi-type cosmological models. In the proposed fram
work it is also possible to include the supersymmet
minisuperspace models@9#. Thus, as further research, it ma
be interesting to consider the close minisuperspace mod

Furthermore, these simple dual transformations m
be applied to the metricgmn(xl) in the Arnowitt-Deser-
Misner ~ADM ! formalism@10#. According to the ADM pre-
scription, of general relativity, they are considered as a s
ing of the space time by a family of spacelike hypersurfa
labeled by a parametert. The space-time metricgmn(xl) is
decomposed into lapseN(t,xk), shift Ni(t,x

k) and the three-
metric of the slicehi j (t,x

k). Thus, these quantities unde
dual transformations have the following form:

N˜N85
N

h
, Ni˜Ni85

Ni

h2/3
, hi j˜hi j8 5

hi j

h2/3
, ~21!

whereh5det(hi j ).
A gravitational vacuum polarization correction to effe

tive action @11# must induce new terms which will not b
invariant under the dual transformations~21!. In fact, even if
A2gV(w) vanishes at̂ w&5w0, the quantum correction to
V(w) would generate a nonzero contributionA2gVeff(w0)
and the effective action is not invariant under dual transf
mations~21!. Therefore, the condition for such an exact du
symmetry leads to the cancellation of these two contributi
of the vacuum energy.
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