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Thermodynamic curvature of the BTZ black hole
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In this paper we apply the concept of thermodynamic geometry to the Ban˜ados-Teitelboim-Zanelli~BTZ!
black hole. We find the thermodynamic curvature diverges at the extremal limit of the black hole, which means
the extremal black hole is the critical point with the temperature zero. We also study the effective dimension-
ality of the underlying statistical model. Near the critical point, the picture is clear; the spatial dimension of the
underlying statistical model is just one, which agrees with other results. However, far from the critical point,
the dimension becomes less than one and even negative. In order to interpret this result, we resort to a
qualitative analogy with the Takahashi gas model.@S0556-2821~99!04516-6#

PACS number~s!: 04.70.Dy, 04.60.Kz, 05.70.Jk
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Over the decades the statistical interpretation of bla
hole entropy has been one of the most fascinating subje
There have been many approaches to the problem, altho
nothing was completely successful. One curiosity ab
black-hole thermodynamics is that it looks different from
ordinary thermodynamical system, due to the negative h
capacity. This makes it hard to compose its thermodyna
ensemble and to make the underlying statistical model. O
way to study the statistical aspects is to assume the micr
nonical ensemble for an isolated black hole. Actually, in t
way one can understand the critical behavior for the n
extremal black hole. The critical exponents satisfying
scaling law even tells us the dimensionality of the underly
statistical model.

In this paper, we suggest another tool useful for study
the statistical properties including the fluctuation, the criti
behavior, and so on. This is the thermodynamic geometr
defines a metric on the space of thermodynamic variab
~Of course, it has nothing to do with the geometry of spa
and time.! Here, the thermodynamic potential becomes
geometrical potential generating the metric components.
thermodynamic variables constitute the coordinates for
geometry. Details will be given below through the examp
of the Bañados-Teitelboim-Zanelli~BTZ! black hole@2#. As
is known, the BTZ black hole could play an important role
understanding entropy and some dynamical properties of
tain five- and four-dimensional black holes in supergrav
theories, because of the U duality between the BTZ bl
hole and those high-dimensional black holes@3#. For a re-
view see@4#.

In general, it is technically difficult to define the zero
temperature critical point, as is the case with the black h
Conventional definition for the zero-temperature critic
point is the point where at least one of the second derivat
of some thermodynamic potential diverges@1#. However, in
the language of thermodynamic geometry one can defin
unambiguously as the point where the thermodynamic c
vature~the curvature with respect to the thermodynamic m
ric! diverges. This is based on the fact that thermodyna
curvature is proportional to the correlation volume@5#:

R5k2j d̄, ~1!
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wherek2 is a constant of order of unity,j is the correlation
length, andd̄ is the spatial dimension of the statistical sy
tem.

Another strong point of the thermodynamic curvature
that the above relation is valid even far from the critic
point. This allows one to get the effective dimensiond̄ of the
underlying statistical model for the general nonextrem
black hole.~The analysis in@6#, for the effective dimension
is valid only near the critical point.! In this paper, we apply
the concept of thermodynamic geometry to the BTZ bla
hole. We find the thermodynamic curvature diverges, wh
means the extremal black hole is the critical point with t
temperature zero. We also study the effective dimensiona
of the underlying statistical model. Near the critical poin
the picture is clear; the spatial dimension of the underly
statistical model is just one, which agrees with other resu
However, far from the critical point, the dimension becom
less than one and even negative. In order to interpret
result, we resort to a qualitative analogy with the Takaha
gas model. Interpretation is summarized as follows: Near
critical point, the model is defined in~111!-dimensional
spacetime. Far from the critical point, it becomes the mo
of the world sheet.

The BTZ black hole is a solution of the~211!-
dimensional Einstein gravity with a negative cosmologic
constantl 22. Its metric is

ds252N~r !dt21N21~r !dr21r 2~Nf~r !dt1df!2, ~2!

whereN(r )52M1r 2/ l 21J2/(4r 2), Nf(r )52J/(2r 2), M
andJ are the mass and angular momentum of the black h
The black hole has two horizons

r 6
2 5

1

2
Ml 2~16D!, D5@12~J/Ml !2#1/2. ~3!

The Hawking temperatureT of the hole is

T5
r 1

2 2r 2
2

2pr 1l 2
5

MD

2pr 1
. ~4!

and the entropy isS52pr 1 . These thermodynamic quant
ties obey the first law of thermodynamics
©1999 The American Physical Society02-1
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dS5bdM2mdJ, ~5!

where b51/T, m5bVH , and VH5J/2r 1
2 is the angular

velocity of the hole. Another feature of the BTZ black hole
that its heat capacity,CJ5(]M /]T)J , is always positive
definite @7#

CJ5
4pr 1D

22D
, ~6!

due to 0<D<1. This means the temperature increases w
the mass. Therefore, the BTZ black hole can be stable
thermal equilibrium with an arbitrary volume of heat bat
When D51, i.e., J50, we haveCJ54p lAM . And when
D50, i.e., J5Ml , we haveCJ50, corresponding to ex
tremal BTZ black holes. In that case, the two horizons of
hole coincide, and the Hawking temperature becomes ze

Recently, it was reported for some near extremal bla
holes including the BTZ black hole, that the relevant degr
of freedom concerned with the entropy can be described
one-dimensional ideal-gas model@8,9#. This means that thei
corresponding statistical model must be~111!-dimensional.
Indeed, the statistical entropy of the BTZ black-hole can
calculated by using a two-dimensional boundary conform
field theory@10#. In order to understand better the statistic
origin of the black-hole thermodynamics, it is desirable
study the fluctuations of thermodynamic quantities of bla
holes, from which one~possibly! obtains some information
on the corresponding statistical model. Although we do
know the details of the microscopic theory, this is possi
because thermodynamic fluctuation theory can be put c
pletely on a thermodynamic basis.

The thermodynamic geometry is described by the
called Ruppeiner metric@5#. It is defined as the second de
rivative of the entropy with respect to the internal energy a
other extensive variables of a thermodynamic system~these
variables are considered as the coordinates!. This geometry
comes from the thermodynamic fluctuation theory. The
tails of the geometry can be found in a review paper@5#.
Now we consider the BTZ black hole as a thermodynam
system. One can write down its Ruppeiner metric in thea
5(M ,J) coordinates as~the Ruppeiner metric in other coo
dinates may be obtained through the canonical Legen
transformations!:

dsR
2[2S ]2S

]M2D
J

dM22S ]2S

]J2D
M

dJ2

5
1

T2CJ

dM21
1

TIM
dJ2, ~7!

whereI M is defined as

I M
215

1

2r 1
2

1
J2

8Mr 1
4 D

1
J2

2M2l 2r 1
2 D2

.

BecauseCJ andI M are always positive, the line elementdsR
2

is positive definite.
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One can easily see from Eq.~7! that at the extremal limit,
the Ruppeiner metric becomes singular. In fact, the extre
limit is a critical point, i.e., at least one of the second deriv
tives of certain thermodynamic potential diverges there@1#.
Indeed if one chooses the Helmholtz free energyf 5M
2TS as the thermodynamic potential, the appropriate co
dinates become (T,J) and the Ruppeiner metric is

dsR
25

1

T S 2
]2f

]T2
dT21

]2f

]J2
dJ2D 5CJT

22dT21~TIT!21dJ2,

~8!

whereI T is

I T
215

2Mr 1
2 D1J2

4Mr 1
4 D

1
J312MJr1

2 D

4M2r 1
4 D

C

with

C52
J~21D!

4r 1
2 D

FD

2
1

~21D!J

4Mr 1
2 D

G21

.

I T vanishes at the extreme limit, accordingly the second
rivative of the Helmholtz free energy with respect to t
angular momentumJ diverges. This tells us that the extrem
black hole is a critical point and its Hawking temperatu
TH50 is the corresponding critical temperature. The com
nents of the Ruppeiner metric have the meaning of the s
ond moments for fluctuations@5#. Thus we can immediately
read off the following second moments from Eq.~8!:

^dTdT&5T2/CJ , ^dJdJ&5TIT . ~9!

These are quite different results from the ordinary critic
point at nonvanishing critical temperature. There, the fl
tuations diverge for the extensive quantities while they v
ish for the intensive quantities at critical points.

As is mentioned already the thermodynamic curvat
gives an unambiguous definition for the zero critical te
perature. For the BTZ black hole, we can easily calculate
curvature scalar in the coordinates (M ,J). The curvature sca-
lar of the Ruppeiner metric~7! is1

R5
1

Ag
F ]

]M S 1

Ag

]g22

]M D 1
]

]J S 1

Ag

]g11

]J D G , ~10!

where g51/(T3CJI M), g1151/(T2CJ), g2251/(TIM). The
full expression for the thermodynamic curvature~10! in
terms of the thermodynamic variables is somewhat com
cated. Here we do not present it explicitly. Instead we sh
the numerical behavior of the thermodynamic curvature.

Figure 1 shows the behavior of the thermodynamic c
vature with respect to the angular momentum when m
M51 and cosmological constantl 5100. The thermody-

1Our conventions areRmns
l 5Gmn,s

l 2Gms,n
l 1Gsh

l Gmn
h 2Gnh

l Gms
h ,

andRmn5Rmln
l , R5gmnRmn .
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BRIEF REPORTS PHYSICAL REVIEW D 60 067502
namic curvature becomes small asJ˜0 but does not vanish
It reflects the fact that the Ruppeiner geometry describes
fluctuations of the thermodynamic system; although the th
modynamic variableJ approaches zero, its fluctuation do
not vanish. In this sense, the fluctuation property is w
incorporated into the thermodynamic curvature. When
extremal limit is approached, the curvature diverges stron
This is consistent with the result from thermodynamics:
extremal limit is a critical point. Since the divergence of t
thermodynamic curvature is manifest, there is no ambigu
in defining the critical point even if the temperature vanish
The differences between the extremal and nonextremal B
black holes also suggest the critical nature of the point
particular, it is found that the extremal BTZ black hole pr
serves some of the full supersymmetries of the supergra
while the supersymmetry is absent for the nonextremal bl
hole @10#. Note that the change of symmetry of thermod
namic systems is a characteristic feature of critical phen
ena in the ordinary thermodynamics@1#.

Further inspection of Eq.~10! shows that the divergenc
near the extremal limit behaves like

R;D21. ~11!

In order to study the system further near the critical point,
need to know the correlation function and correlation len
of the statistical system. Unfortunately, we do not ha
knowledge about these. In Ref.@11#, Traschen investigated
the dynamical behavior of a scalar field propagating in
Reissner-Nordstro¨m ~RN! black-hole background and ob
tained the correlation function of the scalar field. It w
found that for the extremal black hole, the scalar field h
scaling symmetry and long-range correlation, i.e., the ef
of the source falls off likey21, while for the nonextrema
black hole, there is no scaling symmetry and the influence
the source falls off exponentially fast, likee2ky, wherek is
the surface gravity of the black hole andy is the usual tor-
toise coordinate. Therefore, the inverse surface gravity p
the role of the correlation length. Considering the similar
between the geometries of the near extremal RN black h
and BTZ black hole@7#, as an assumption, we suppose th
this is valid for the BTZ black hole as well. Then we hav

FIG. 1. Thermodynamic curvatureR of the BTZ black hole
versus the angular momentumJ with M51 andl 5100.
06750
he
r-

ll
e
y.
e

y
.
Z
n
-
y,
k

-
-

e
h
e

e

s
ct

of

ys

le
t

j51/~2k!, ~12!

where k52pT. We see from Eq.~4! that k;D near the
extremal point. Combining Eqs.~11! and ~1!, we obtain the
effective spatial dimension of the statistical model under
ing the near-extremal BTZ black hole as

d̄51. ~13!

Reference@6# used the ansatzj;1/k to discuss the scaling
laws occurring near the extremal limit of the blackp branes.
It was found from the scaling laws that the effective spa
dimension is justp for the nondilaton blackp branes, which
explains very well why the entropy may be given a simp
world volume interpretation only for the nondilaton blackp
branes.

We now turn to the relation~1! between the thermody
namic curvature and the correlation volume of the cor
sponding statistical system. Near the extremal limit, we h
already found that the effective spatial dimension is o
Note that, according to the interpretation of the thermod
namic curvature, the relation~1! still holds even far from the
critical point. We extrapolate this relation to the nonextrem
BTZ black hole. The spatial dimensiond̄ is not a constant.
With Eqs.~1! and ~12!, we have

R5cS lA11D

2A2MD
D d̄

, ~14!

from which, we get

d̄5 ln
R

c
/ ln

lA11D

2A2MD
. ~15!

The coefficientc is determined so thatd̄51 at the critical
point, which is clear from Eq.~11!.

Figure 2 shows the effective spatial dimension versus
angular momentum when massM51 and cosmological con
stantl 5100. c is determined to be 3/(1250p). In this param-
eter region of Fig. 2 we see that the spatial dimension va

FIG. 2. The effective dimensiond̄ versus the angular momen
tum J with M51 andl 5100. The coefficientc is determined to be
3/(1250p).
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BRIEF REPORTS PHYSICAL REVIEW D 60 067502
from 1 to 0.79. The numerical results show that the spa
dimension becomes less than one and even negative as w
off the extremal point. For instance, when the massM51
and the cosmological constantl 53, the effective spatial di-
mension decreases to the negative value21.05 near the
spinless black hole. The results are sensitive to the value
the parametersM and l but it keeps the value 1 near th
extremal limit according to Eq.~13!. On the other hand, the
variation of thermodynamic curvature with respect to the
gular momentum in Fig. 1 is insensitive to the value ofM
and l.

It becomes important to understand these results thro
the corresponding statistical model. Before doing so, let
first recall the Takahashi gas, which is a one-dimensio
system composed of rigid rods. An attractive square poten
is assumed between adjacent rods. In this model, the the
dynamic curvature shows a sharp peak at a point~considered
as the pseudophase transition point in the sense that it is
finite; see Fig. 11 of@5#!. This pseudophase transition ind
cates the transition from the liquidlike phase to the gas
phase. Note that it shows the Gaussian curvature versu
inverse density and the former is defined asjG[2R/2. We
are interested in this model because, in the liquid phase
dependency of the thermodynamic curvature on the inve
density looks very similar in shape to Fig. 1 of BTZ blac
hole case. Taking into account the fact that the shape of
graph in Fig. 1 is insensitive to the valuesM and l, one can
infer that the statistical model must share some common
tures with the Takahashi gas model.

The first feature is the dimensionality of the model. I
deed, there is a one-dimensional conformal field theory, w
which the entropy of the BTZ black hole can be reproduc
@10#. In particular, Ghosh@9# recently produced the correc
expression of the entropy for the extremal and near-extre
BTZ black holes using a one-dimensional ideal gas mo
But this model fails for the BTZ black hole far from th
extremal limit.

We focus on the second feature of this. The gas is co
posed of extended objects. We may say, employing the
s

K
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minology of Takahashi gas model, that the correspond
statistical model go into the gaslike phase from the liquidl
phase as the BTZ black hole approaches its extremal li
and thereby the corresponding statistical model can be
scribed by the one-dimensional ideal-gas model. The app
ance of the negative spatial dimension is not surprising.
instance, the string gas@12# is just of the negative spatia
dimension in some cases as scaled by the ideal-gas the
dynamics. The thermodynamics of the intersectingM-brane
configurations@13# also has the effective negative spatial d
mension, which can be explained by the dynamicalp branes.

One can understand the whole results in the spirit of
correspondence principle@14#. From five- and four-
dimensional black holes U dual to the BTZ black holes,
have learned that the entropy of the near-extremal black h
can be statistically understood by the open string gas mo
living on D branes. For the black holes far from the extrem
limit, their entropy can be matched by one~a few! long
string~s!. Of course, the statistical behavior of long strings
quite different from that of the ideal gas, i.e., of the op
strings. In this regard, it would be very interesting to s
further the behavior of the Takahashi gas. At the inve
density r2153/2, the thermodynamic curvature shows
high and narrow peak~see Fig. 11 of@5#!, which is a critical
point from the liquidlike phase to the gaslike phase. If o
grows the size of the rigid rod, the density becomes large
the system then enters the liquidlike phase. A further
crease of the rod length terminates with the zero scalar
vature at the point where the whole system is composed
one long rigid rod. Of course, the Takahashi gas is not
statistical model of the BTZ black hole. However, from th
analogy we note that the entropy for the near-extremal B
black hole can be described in terms of the one-dimensio
ideal gas, while the entropy for the BTZ black hole far fro
the extremal limit can be matched by a single highly exci
long string.

This work was supported by the KOSEF through the C
at Seoul National University. J.-H.C thanks Dr. J. Lee f
helpful discussion on the statistical models.
@1# J.M. Yeomans,Statistical Mechanics of Phase Transition
~Oxford University Press, Oxford, 1992!.
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