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Thermodynamic curvature of the BTZ black hole
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In this paper we apply the concept of thermodynamic geometry to theddsnTeitelboim-Zanell{BTZ)
black hole. We find the thermodynamic curvature diverges at the extremal limit of the black hole, which means
the extremal black hole is the critical point with the temperature zero. We also study the effective dimension-
ality of the underlying statistical model. Near the critical point, the picture is clear; the spatial dimension of the
underlying statistical model is just one, which agrees with other results. However, far from the critical point,
the dimension becomes less than one and even negative. In order to interpret this result, we resort to a
qualitative analogy with the Takahashi gas mo@8D556-282199)04516-§

PACS numbgs): 04.70.Dy, 04.60.Kz, 05.70.Jk

Over the decades the statistical interpretation of blackwherex, is a constant of order of unity is the correlation

hole entropy has been one of the most fascinating subjectfength, andd is the spatial dimension of the statistical sys-
There have been many approaches to the problem, althouglm.

nothing was completely successful. One curiosity about Another strong point of the thermodynamic curvature is
black-hole thermodynamics is that it looks different from anthat the above relation is valid even far from the critical

ordinary thermodynamical system, due to the negative he?oint. This allows one to get the effective dimensibof the

capacity. This makes it hard to compose its thermodynami nderlying statistical model for the general nonextremal

ensemble and to ma.ke_ the underlyi_ng statistical modell. ONBjack hole.(The analysis iri6], for the effective dimension,
way to study the statistical aspects is to assume the microcas | - 1id only near the critical pointin this paper, we apply

nonical ensemble for an isolated _b]ack hole. Actually, in thlsthe concept of thermodynamic geometry to the BTZ black
way one can understand the critical behavior for the ne

3hole. We find the thermodynamic curvature diverges, which
extremal black hole. The critical exponents satisfying the y ges,

. . : : . “means the extremal black hole is the critical point with the
scaling law even tells us the dimensionality of the underlylngtemperature zero. We also study the effective dimensionality
statistical model.

of the underlying statistical model. Near the critical point,

In th'.s paper, we syggest aF‘Othef tool useful for Stuqqur]e picture is clear; the spatial dimension of the underlying
the statistical properties including the fluctuation, the critical tatistical model is just one, which agrees with other results

behawor, and soon. This is the thermodynamic geometry. I owever, far from the critical point, the dimension becomes
defines a metric on th_e space of_thermodynam|c Va”able%ss than one and even negative. In order to interpret this
(Of course, it has nothing to do W'Fh the geometry . SPaC&esult, we resort to a qualitative analogy with the Takahashi
and tlmg) Here, th_e thermodynam|c potgntlal becomes the as model. Interpretation is summarized as follows: Near the
geometrical potential generating the metric components. Th ritical point, the model is defined ifl-+1)-dimensional

thermodynamw_vangbles constitute the coordinates for th‘gpacetime. Far from the critical point, it becomes the model
geometry. Details will be given below through the exampleOf the world sheet

pf the Barados-Teitelboim-ZanelliBTZ) blac!< hole[2]. As . The BTZ black hole is a solution of thé2+1)-
is known, the BTZ black hole could play an 'mportaf!t role in dimensional Einstein gravity with a negative cosmological
understanding entropy and some dynamical properties of Celonstant ~2. Its metric is
tain five- and four-dimensional black holes in supergravity '
theories, because of the U duality between the BTZ black  ds?2=—N(r)dt?+N~(r)dr2+r3(N(r)dt+d¢)%, (2)
hole and those high-dimensional black ho]&% For a re-
view see[4]. whereN(r)=—M+r?/12+J%/(4r?), N(r)=—J/(2r?), M

In general, it is technically difficult to define the zero- andJ are the mass and angular momentum of the black hole.
temperature critical point, as is the case with the black holeThe black hole has two horizons
Conventional definition for the zero-temperature critical
point is the point where at least one of the second derivatives
of some thermodynamic potential diverddsg. However, in
the language of thermodynamic geometry one can define it
unambiguously as the point where the thermodynamic curThe Hawking temperatur€ of the hole is
vature(the curvature with respect to the thermodynamic met- y s
ric) diverges. This is based on the fact that thermodynamic _ri-rt. MA
curvature is proportional to the correlation volufitg: T= 27t 12 S 2@y )

riz%MIz(liA), A=[1-(IIMI)?]*2, 3

_ and the entropy i$=2=r . . These thermodynamic quanti-
R= k&9, (1) ties obey the first law of thermodynamics
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dS=BdM— udJ, (5) One can easily see from E(Y) that at the extremal limit,

the Ruppeiner metric becomes singular. In fact, the extremal

where B=1/T, u=pQ,, and QH:J/Zri is the angular limit is a critical point, i.e., at least one of the second deriva-

velocity of the hole. Another feature of the BTZ black hole is tives of certain thermodynamic potential diverges thérde

that its heat capacityC;=(dM/dT);, is always positive Indeed if one chooses the Helmholtz free enefgyM

definite[7] — TS as the thermodynamic potential, the appropriate coor-
dinates becomeT(,J) and the Ruppeiner metric is

c Aar A ®
ITTA 1 % 9°f

dsp=5| =5 dT?+ —dJ? | =CyT 2T+ (Tl ~HdJ?,

due to 0=<A=<1. This means the temperature increases with T 9J )

the mass. Therefore, the BTZ black hole can be stable in

thermal equilibrium with an arbitrary volume of heat bath. \yherel is

WhenA=1, i.e.,,J=0, we haveC,=4=l M. And when

A=0, i.e., J=MI, we haveC;=0, corresponding to ex- 2Mr2A+J3%2  J%+2MJr2A

tremal BTZ black holes. In that case, the two horizons of the ITt= a a2 C

hole coincide, and the Hawking temperature becomes zero. AMriA AMTTLA
Recently, it was reported for some near extremal blaCK/vith

holes including the BTZ black hole, that the relevant degrees

of freedom concerned with the entropy can be described by a -1
one-dimensional ideal-gas mod®8l9]. This means that their C=— J2+4) é + (2+4)J
corresponding statistical model must {det+1)-dimensional. 4r2A |2 4aMriA

Indeed, the statistical entropy of the BTZ black-hole can be
calculated by using a two-dimensional boundary conformal T vanishes at the extreme limit, accordingly the second de-
field theory[10]. In order to understand better the statisticalfivative of the Helmholtz free energy with respect to the
origin of the black-hole thermodynamics, it is desirable to@ngular momenturd diverges. This tells us that the extremal
study the fluctuations of thermodynamic quantities of blackblack hole is a critical point and its Hawking temperature
holes, from which ondpossibly obtains some information Tn=0 is the corresponding critical temperature. The compo-
on the corresponding statistical model. Although we do nofients of the Ruppeiner metric have the meaning of the sec-
know the details of the microscopic theory, this is possibleond moments for fluctuatiorf§]. Thus we can immediately
because thermodynamic fluctuation theory can be put confead off the following second moments from E§):
pletely on a thermodynamic basis. )

The thermodynamic geometry is described by the so- (6ToT)=T7ICy, (8383)=Tls. ©
called Ruppeiner metrif5]. It is defined as the second de-

rivative of the entropy with respect to the internal energy andThese are quite different results from the ordinary critical

; ) . point at nonvanishing critical temperature. There, the fluc-
other extensive variables of a thermodynamic systéTese tuations diverge for the extensive quantities while they van-

variables are considered as the coordinat€his geometry ish for the intensive quantities at critical points
comes from the thermodynamic fluctuation theory. The de- . . q P .
As is mentioned already the thermodynamic curvature

tails of the geometry can be found in a review papgl . ; L "
Now we consider the BTZ black hole as a thermodvnamicd'VesS an unambiguous definition for the zero critical tem-
Y perature. For the BTZ black hole, we can easily calculate the

system. One can write down its Ruppeiner metric in ghe . .
=(M,J) coordinates aghe Ruppeiner metric in other coor- curvature scalar n the coqrd|r_1atem {9). The curvature sca-
' Iear of the Ruppeiner metri€7) is*

dinates may be obtained through the canonical Legendr

transformations . 1[0 (1 g N o1 gy "
(azs) 2(&28) , CJglM\ g oM | T adl g a3 ||’ (10
=—|—=| dM°~| —| dJ
2 2
M7/, EaY where g=1/(T3Cyl ), g11=1/(T2C;), ga=1/(Tly,). The
full expression for the thermodynamic curvatu(g0) in
_ 1 dM2+ 1 dJ2 (7) terms of the thermodynamic variables is somewhat compli-
T2C, Tly ’ cated. Here we do not present it explicitly. Instead we show
the numerical behavior of the thermodynamic curvature.
wherel, is defined as Figure 1 shows the behavior of the thermodynamic cur-
vature with respect to the angular momentum when mass
|1 N J? N J? M=1 and cosmological constaht=100. The thermody-
M — T .
2r2  8MriA  2M?12r2 A?
BecauseC; andl, are always positive, the line elemete 'Our conventions aréi),,, =T}, ,~T} +I5 7 ~T) 7
is positive definite. and®R,, =R}, ,, R=g"'R,,.
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FIG. 1. Thermodynamic curvatur®® of the BTZ black hole FIG. 2. The effective dimensioaversus the angular momen-
versus the angu|ar momentuhwith M=1 andl=100. tum J with M=1 andl =100. The coefficient is determined to be

3/(1250r).

namic curvature becomes smallks 0 but does not vanish.

It reflects the fact that the Ruppeiner geometry describes the §=1(2k), (12
fluctuations of the thermodynamic system; although the ther-

modynamic variablel approaches zero, its fluctuation doesWhere k=27T. We see from Eq(4) that xk~A near the
not vanish. In this sense, the fluctuation property is well€xtremal point. Combining Eq¢11) and (1), we obtain the
incorporated into the thermodynamic curvature. When th@ffectlve spatial dimension of the statistical model underly-
extremal limit is approached, the curvature diverges strongly"d the near-extremal BTZ black hole as

This is consistent with the result from thermodynamics: the _

extremal limit is a critical point. Since the divergence of the d=1. (13

thermodynamic curvature is manifest, there is no ambiguity . .
in defining the critical point even if the temperature vanishes Reference6] used the ansatg~ 1/« to discuss the scaling

The differences between the extremal and nonextremal BTZWS occurring near the extremal limit of the blaghranes.
black holes also suggest the critical nature of the point. Ir{t.W"JIS fpun_d from the scaling I.aWS that the effective gpatlal
particular, it is found that the extremal BTZ black hole pre-dimension is jusp for the nondilaton blaclp branes, which

serves some of the full supersymmetries of the supergravinFXPlains very well why the entropy may be given a simple
while the supersymmetry is absent for the nonextremal black/0rd volume interpretation only for the nondilaton blagk
hole [10]. Note that the change of symmetry of thermody- Pranes.

namic systems is a characteristic feature of critical phenom- W€ now turn to the relatioril) between the thermody-
ena in the ordinary thermodynamigg). namic curvature and the correlation volume of the corre-

Further inspection of Eq10) shows that the divergence sponding statistical system. Ngar the e_xtremal ””.‘“’ we have
near the extremal limit behaves like already found that the effective spatial dimension is one.
Note that, according to the interpretation of the thermody-

(11) namic curvature, the relatiar) still holds even far from the
critical point. We extrapolate this relation to the nonextremal

In order to study the system further near the critical point, weB1Z black hole. The spatial dimensiahis not a constant.
need to know the correlation function and correlation lengthWVith Eds.(1) and(12), we have
of the statistical system. Unfortunately, we do not have

R~A"L

d

knowledge about these. In R¢fl1], Traschen investigated IV1+A

the dynamical behavior of a scalar field propagating in the =c m ' (14
Reissner-Nordstrm (RN) black-hole background and ob-

tained the correlation function of the scalar field. It was¢qm which, we get

found that for the extremal black hole, the scalar field has

scaling symmetry and long-range correlation, i.e., the effect rere

of the source falls off likey !, while for the nonextremal E:mg—%/mﬂ_ (15)
black hole, there is no scaling symmetry and the influence of C2\2MA

the source falls off exponentially fast, lile*Y, wherex is _

the surface gravity of the black hole agyds the usual tor- The coefficientc is determined so thad=1 at the critical
toise coordinate. Therefore, the inverse surface gravity playpoint, which is clear from Eq(11).

the role of the correlation length. Considering the similarity ~ Figure 2 shows the effective spatial dimension versus the
between the geometries of the near extremal RN black holangular momentum when malss=1 and cosmological con-
and BTZ black hold 7], as an assumption, we suppose thatstantl =100. c is determined to be 3/(12%9). In this param-
this is valid for the BTZ black hole as well. Then we have eter region of Fig. 2 we see that the spatial dimension varies
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from 1 to 0.79. The numerical results show that the spatiaminology of Takahashi gas model, that the corresponding
dimension becomes less than one and even negative as we gfatistical model go into the gaslike phase from the liquidlike
off the extremal point. For instance, when the mabs 1 phase as the BTZ black hole approaches its extremal limit,
and the cosmological constant 3, the effective spatial di- and thereby the corresponding statistical model can be de-
mension decreases to the negative vati.05 near the Scribed by the one-dimensional ideal-gas model. The appear-
spinless black hole. The results are sensitive to the values @hce of the negative spatial dimension is not surprising. For
the parameters! and | but it keeps the value 1 near the InStance, the string gad2] is just of the negative spatial
extremal limit according to Eq13). On the other hand, the dimension in some cases as scaled by the ideal-gas thermo-

variation of thermodynamic curvature with respect to the an_dyn?mlcst.l Tr;a;?erlmoﬂyne}[r;ncsﬁof ihe mters?clﬁul @r?.n? di
gular momentum in Fig. 1 is insensitive to the valuehdf contiguration: also has e eflective negative spatial di-
andl. mension, which can be explained by the dynamjchtanes.

. One can understand the whole results in the spirit of the
It becomes important to understand these results through L .

: o ; correspondence principld14]. From five- and four-
the corresponding statistical model. Before doing so, let ug

first recall the Takahashi gas, which is a one-dimension glmensmnal black holes U dual to the BTZ black holes, we

system composed of rigid rods, An attractive square potentia ave learned that the entropy of the near-extremal black hole

is assumed between adjacent rods. In this model, the therm an be statistically understood by the open string gas mode|

dynamic curvature shows a sharp peak at a paionsidered iving on D branes. For the black holes far from the extremal

as the pseudophase transition point in the sense that it is st!s| rilrt{ g;?egfirga?sg fr?ens?aetis??;(lzr;)iia?/)i/o?g?I(I?\V\I)sltcr)irr]\gs is
finite; see Fig. 11 of5]). This pseudophase transition indi- ; ' g g

cates the transition from the liquidlike phase to the gaslikequ!te dlfferen.t from that' of the ideal gas, 1.€., Of. the open
gmgs. In this regard, it would be very interesting to see

phase. Note that it shows the Gaussian curvature versus t Stther the behavior of the Takahashi gas. At the inverse

inverse density and the former is definedéas —R/2. We S i
are interested in this model because, in the liquid phase, ﬂﬁeensny p "=3/2, the thermodynamic curvature shows a

dependency of the thermodynamic curvature on the inverse'g.h a:cnd na;‘rovl\'/ pgal('lc;ee E'g' 1 O[r?])’ Whll.cl:(h 'Sr? C”UC?I
density looks very similar in shape to Fig. 1 of BTZ black- point from the liquidiike phase to the gaslike phase. If one

hole case. Taking into account the fact that the shape of th rows the size of the rigid rod, the density becomes large and
graph in F.ig 1 is insensitive to the valussand! one can the system then enters the liquidlike phase. A further in-

. . crease of the rod length terminates with the zero scalar cur-
infer that the statistical model must share some common fea- : ;

. . vature at the point where the whole system is composed of
tures with the Takahashi gas model.

. . ; . . one long rigid rod. Of course, the Takahashi gas is not the
The first feature is the dimensionality of the model. In- o .
deed, there is a one-dimensional conformal field theory, withSt"J‘t'St'CE’lI model of the BTZ black hole. However, from this
nalogy we note that the entropy for the near-extremal BTZ

which the e’.“fopy of the BTZ black hole can be reprOdUCGCﬁlack hole can be described in terms of the one-dimensional
[10]. In particular, Ghostj9] recently produced the correct eal gas, while the entropy for the BTZ black hole far from

! i
expression of the entropy for the extremal and near-extrem ﬂ I ; . ;
BTZ black holes using a one-dimensional ideal gas modeft;oﬁge)s(gﬁgal limit can be matched by a single highly excited

But this model fails for the BTZ black hole far from the
extremal limit. This work was supported by the KOSEF through the CTP

We focus on the second feature of this. The gas is comat Seoul National University. J.-H.C thanks Dr. J. Lee for
posed of extended objects. We may say, employing the telhelpful discussion on the statistical models.
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