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Superconducting cosmic string in Brans-Dicke theory
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In the present work, the gravitational field of a superconducting cosmic string has been investigated in the
context of Brans-DickéBD) theory of gravity. We have presented two kinds of solutions for the spacetime in
the far field zone of the string. When the BD scalar field is switched off, one of the solutions reduces to the
solution earlier obtained by Moss and Poletti in general relatiy$@556-282(99)06016-¢

PACS numbes): 04.50+h, 11.27+d, 98.80.Cq

Spontaneous symmetry breaking in gauge theories maglilaton gravity and BD theory arise from entirely different
give rise to some topologically trapped regions of a falsemotivations, it can be shown by a simple transformation of
vacuum, namely, domain walls, cosmic strings, or monothe scalar field that the former is a special case of the latter at
poles, depending on the dimension of the redibh Among  least formally.
these, cosmic strings have gained a lot of attention in recent The dilaton gravity is given by the action
years as a possible seed for galaxy formation. Strings arising 1
from the breaking of a (1) local symmetry are called local _ _f —qa- 26 wv 4
strings whereas those arising from the breaking ¢)\glo- A 16 V-ge *(R+ 4g $ubn)dX, (13
bal symmetry are called the global strings. The gravitational o ,
fields of both local and global strings have been investigatef/Nere no matter field is present except the massless dilaton
by many authors in the recent pdgtg|. field ¢. Now if one defines a variable

It has been demonstrated by Witte] that under certain Y=g 20 (1b)
conditions of local gauge symmtery breaking, cosmic strings '
might pehave as sgpe.rconductors Whose.motion_through afen the actior(1a) looks similar to
tronomical magnetic fields can produce interesting effects.

Peter[10] has emphasized that superconductivity is a rather 1

generic feature of cosmic string models. Massive supercon- A= Ef \/—_9
ducting strings may have an important role to play in the

generation of large scale magnetic fieldsl,12. For the which is indeed a special case of BD theory given by the
superconducting string, there is a current along the symmtenyction

axis and consequently a magnetic field in the transverse di-

rection. The geometry is no longer boost invariant. Moss and 1 by L\

Poletti[13] first investigated the gravitational field of such a A= Ef V=g ‘ﬂR_ng“ d’X, (1d)
string assuming that at large distances from the core of the

string, the energy stress tensor is dominated by the magnetier the parametew = — 1. But when matter field is present,
field alone. Later, Demianskjl4] investigated the particle then the action in the dilaton gravity is given by

motion in the spacetime given by Moss and Poletti.

Scalar tensor theories, especially the Brans-DidRB) 1 3 ,
theory of gravity[15], which is compatible with the Mach’s A= EJ V-ge *(R+4g*"$ ¢ ,+e*L)d*X,
principle, have been considerably revived in recent years. It (19
was shown by La and Steinharft6] that because of the
interaction of the BD scalar field and the Higgs type sectorwhere £ is the Lagrangian for the matter field present. The
which undergoes a strongly first-order phase transition, thaction(1e) cannot be reduced to the corrsponding action for
exponential inflation as in the Guth model7] could be the BD theory which is given by
slowed down to power law one. The “graceful exit” in in-
flation is thus resolved as the phase transition completes via
bubble nucleation.

On the other hand, it seems likely that, in the high energy
scales, gravity is not governed by the Einstein action, and i®y the transformatiorilb) and puttingw=—1 because the
modified by the superstring terms which are scalar tensor imonminimal coupling between the matter Lagrangiaand
nature. In the low-energy limit of this string theory, one re-the dilaton field¢ in the action(1e) which is not present in
covers Einstein’s gravity along with a scalar dilaton field Eq. (1f) for the BD theory.
which is nonminimally coupled to the gravifg8]. Although But fora=1 in Eqg.(1e), there is no coupling between the

L and the dilaton fieldp and one can reduce ELe) to the
corresponding BD actioiflf). The renewed interest in BD
*Email address: anjan@juphys.ernet.in theory acquires more points of interest when we observe that

YR+ —'l/”:f'“g/”) d*X, (10

1 v
A= Ef \/—_g( LpR—wlp"zf’ ghr+L|d*X, (1)
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the topological defects such as domain walls, cosmic strings, With Eq. (4b), there is an electric current densityalong
and monopoles are formed during inflation in the early phaséhe z axis, given by
of the universe and hence can interact with the BD scalar

field with remarkable change in their propertjd®,20. The J=2ejo’e %", )
implications of the dilaton gravity for the defects have also
been explored by several auth¢gs,27,. where

In the present work, we have investigated the gravita- 3
tional field of a superconducting string in Brans-DidigD) j= XL oA (6)
theory of gravity. Similar to Moss and Poletti, we have as- Jz

sumed that in the far field zone, the energy momentum tensor . . ) )
for the string is dominated by the magnetic field. We have' "€ Maxwell equation which we will need later is
found a family of solutions for the spacetime in the far field oK ANy Lo oy

zone depending upon the value of some arbitary constants. (V—ge A7) =8mejoge -9
One of our solutions reduces to the solution given by Moss

and Poletti{13] when the BD scalar field becomes con:~:tant,WhICh on integration yields a first integral

but for the other case one cannot recover the corresponding 212V
general relativity(GR) solution. A'= W (7)
The gravitational field equations in BD theory are given
by with
T, o 1 N
GMV:87T d) ? ¢,M¢,V_Egﬂv¢,a¢’ |(r):f J2 77+ _gdr (8)
+ %W,M;V—QWD ®) (23 lsate:gg the electric current along the symmetry axis of the
As one moves away from the string, all the other string
and fields drop off rapidly leaving the magnetic fiehi, on its
8T own. The energy momentum tensor then takes the form
NPT (2b)

T§=—T[=—T§:T22%A’2e’2". 9
in units wherec=1. T,,, is the energy momentum tensor

representing the contribution from any other field except theyjith Egs. (9) and (3), the BD field equationg2) take the
BD scalar field¢ and w is the constant parameter.repre-  form

sents the trace of ,, .

To describe the spacetime geometry due to an infinitely (W) =(¢p'W)" =0, (109
long static cosmic string, the line element is taken to be
general static cylindrically symmetric one given by (K'W¢)' =0, (10b
_ a2(K-U); _4+2 2 2U 452 —2U\A2H o2 ,
ds’=e (—dt?+dr?)+e?VdZ+e 2YW2d6?, (3) 2UW ) b2 2w’
. ) ] 2U" + —2K"'-2U"“=w—5+——, (100
whereK,U,W are functions of the radial coordinate ¢ w

A model for the fields of superconducting cosmic string
can be described by a U(X)U(1) gauge theory with the

gauge field#,, andB,, are coupled to the scalar fieldsand Here a prime denotes differentiation with respect.to

9,13]. The string is represented by the Nielsen-Olesen .
[123% vor]tex solutiongwith P y Solving Egs.(10@ and(10b) we get
b= o P, (113

W= W,r M, (11b)

(U'W¢)' =—4mA'%e VW, (100)

y=y(r)e’, B,=(Le)[B(r)-1]s,, (4a)

wheree is the coupling parameter. Outside the core of the

string, the U() symmetry is broken ang attains a nonzero and
expectation value at the minimum of the potentidlr, ¢).
The U(1) symmetry is unbroken away from the string ek=ar?n (110
with A, representing photon. We have cho$&8]
where ¢g, Wy, b, «, andn are constants of integration

o=ao(r)eX, A,=A(r)&, (4b)  andp=(n—1)/n.
Using Egs.(113, (11b), and (11c), one gets, from Eq.
with the phasey being a function ofz. (100,
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, UM One can also calculate in the spacetime given by(Es),
U'=U = nr + Y2 (128 {he radial accelaration® of a particle that remains stationary
(i.e., vi=v?=v3=0) in the field of the string. Now
where ) L )
1_ 0_ 0,,0
vi=vigv =gvove. (199
1], 2(1-n) 2b o
M=3lop™t —=7— |- (12 |5 our spacetimé15),
One can have three solutions ¢f2g depending on (1 Vo= 1 _ (19b)
—4C) is positive, zero, or negative, wheBe= M + 1/4n?. In ar®Cir'1+Cyr'z]
the follwing calculations, we have concentrated on the cases .
where (1-4C) is positive and zero. Using Eq.(19D), we get from Eq(199
] Case 1: 1-4C>0. In this case the solution of E¢L23 _ l_b(clri1+C2ri2)+n(clilri1+czi2ri2) i
ecomes ve= 2nr@FD[C 1t Coriz)? (20
U=—In[Cyr'1+Cyr'2], (13 _ :
Now if one assume®>0 andn>0, thenv!>0. So the
whereC,; andC, are arbitary constants and particle has to accelarate away from the string, which implies
that the gravitational force due to the string itself is attrac-
_ _1+ [1-4C 1 14 tive. It is similar to the case of superconducting string in GR
175 2 2n’ (143 [13]. But for other values ofb,n, the string may have a
repulsive effect.
1 1-4C 1 Case 2: 1-4C=0. In this case the solution dfl2) be-
=s=\ %3, (14D comes
—U_ (1/2(1-1/n)
Hence the complete line element in the far field zone of a € r [CitCalnr]. 2D
superconducting string in BD theory becomes Hence the line element becomes
ds?=a?r?P"H2(—dt?+dr?)+ H ~2d 2+ W3r2"H2d ¢?, ds?= a2r Iy A=1Np2(_ {24 (r2) 4y ~(1-U)p—2( 2
(15
+War (1 p2g g2, (22

whereH=Cr'1+Cyr'2,
Putting Egs(11a), (11b), (110, and(13) in Eq. (10d) and  with P=C,+C,Inr and dn=2w(n>—2n+1)—4n—n?
using Eq.(7) one can get the relation +5. In this case one can get after some straightforward cal-
culations, the result
C1Cy(i1—i)2poWi=16m712. (16)
16712=— C3W5¢on. (23
Now if one putsn=1 and¢,=1/G whereG is the gravita-
tional constant, it is easy to verify that the BD scalar fieldNow as ¢, should be positive to ensure the positivity &f

becomes constant and the gravitational constanty must be negative. But one can
> obs ) 5 5 . check from Eq.(119 that in order to make the BD scalar
ds’=a?r?*F?(—dt*+dr?) +F~2d 2+ Wgr?F2d 62, field ¢ a constant, i.e., to get the corresponding GR solution

(170 one should puh=1. Hence in this case one cannot recover
the corresponding GR solution.

_ Jb —\b
whereF =Cyr®+ Cor and Eq.(16) becomes In conclusion, this work extends the earlier work by Moss

47GI2 and Poletti regarding the gravitational field of a supercon-
C1C2:—W2. (18)  ducting cosmic string to the Brans-Dicke theory of gravity.
bWo The main feature of our solutions in BD theory is that one

can have a family of solutions for the spacetime of the su-
Moss and Polett[13] in GR. Comparing our result to the perconducting string depending on the choices of arbitary

result earlier obtained by Moss and Ploetti one can identiffonStams' The author is grateful to Dr. Narayan Banerjee for

the two integration constantsn to be related to the Mass valuable suggestions.
per unit length of the string and the field energy density of The author is also grateful to University Grants Commis-
the string, respectively. sion, India for the financial support.

Equations(17) and (18) are the result earlier obtained by
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