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Chern-Simons coefficient in supersymmetric non-Abelian Chern-Simons Higgs theories
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By taking into account the effect of the would be Chern-Simons term, we calculate the quantum correction
to the Chern-Simons coefficient in supersymmetric Chern-Simons Higgs theories with matter fields in the
fundamental representation of SJ( Because of supersymmetry, the corrections in the symmetric and Higgs
phases are identical. In particular, the correction is vanishingNfe8 supersymmetric Chern-Simons Higgs
theories. The result should be quite general, and have important implications for the more interesting cases
when the Higgs field is in the adjoint representatid®0556-282(199)03916-9

PACS numbsgfs): 11.10.Kk, 11.10.Gh, 11.15.Ex, 11.30.Pb

Chern-Simons theories can give rise to particle excitationd is interesting to confirm that the quantization condition is
with fractional spin and statistics, and thus have been used a®t spoiled by quantum effects. In the symmetric phase, this
effective field theories to study the fractional quantum Hallhas been shown to one lodf4]. When there is no bare
effect[1-3). They are also interesting when the Higgs fieldsChern-Simons term, it is also verified up to two loops con-
with a special sixth-order potential are included so that thesidering only the fermionic contributiofil5]. In the Higgs
systems admit a Bogomol'nyi bound in enerf§]. The phase, it has been known for some time that if there is re-
bound is saturated by solutions satisfying a set of first-ordemaining symmetry, e.g., SWj with n=3, the quantization
self-duality equation$5]. These solutions have a rich struc- condition will still be satisfied[16—18. However, if the
ture and have been under extensive study especially whegauge symmetry is completely broken, e.g.(3)J asimple-
the gauge symmetry is non-Abelian with the Higgs field inminded calculation shows that the correction is again com-
the adjoint representatiof6]. It is known that the self- plicated and not quantizedl1]. Although one may argue
duality in these systems signifies an underlyhg 2 super-  that this arises because there is no well-defined symmetry
symmetry and thus the Bogomol'nyi bound is expected to bgenerator in such a case, a better way to understand the
preserved in the quantum regini&]. Furthermore, when whole thing is again to note the effect of the would be
these theories are dimensionally reduced, an additional Nd=hern-Simons terms. They are invariant even under large
ether charge appears, which in turns yields a Bogomol'nyigauge transformation, and their coefficients need not be
Prasad-Sommerfield- type domain wil. quantized. Therefore, we must subtract out their contribution

The quantum correction to the Chern-Simons coefficiento obtain the correct result. Indeed, more careful calculation
has also attracted a lot of attention. For theories withoushows that for the Higgs being in fundamental 8Y¢the
massless charged particles and the gauge symmetry n@uantization condition is always satisfied whether the gauge
spontaneously broken, Coleman and Hill have shown in théymmetry is completely broken or npt9]. As a result, a
Abelian case that only the fermion one-loop diagram carmore or less unifying picture of the quantum correction to
contribute to the correction to the Chern-Simons coefficienthe Chern-Simons coefficient has emerged.
and yields 1/4r [9]. The quantization of the correction can  In pure non-Abelian Chern-Simons theories, there is also
be understood with a topological argument in the spinoithe so-called regularization dependence of the quantum cor-
space by making use of the Ward-Takahashi iderftlf§f.  rections to the Chern-Simons coefficient:

When there is spontaneous breaking of gauge symmetry, one

can show that there exists in the effective action the so-called Ax=sgnC,),

would be Chern-Simons terms, which induces terms similar

to the Chern-Simons terms in the Higgs phfkg. By tak- . - M :

ing into account the effect of the would be Chern-SimonsIf we introduce the Yang-Mills term as a UV regulator, while
term, it has been shown that the one-loop correction in the
Higgs phase is identical to that in the symmetric pHdsa.

On the other hand, if the charged particles are massless, both
scalars and spinors can contribute to the correction at thi# we do not [20]. Here, C, is the the quadratic Casimir
two-loop level, and it is not quantizgd 3]. operator in the adjoint representation of the gauge group.

The situation becomes even more intriguing when the&~urther studies suggest that every local regulator manifestly
gauge symmetry is non-Abelian: the Chern-Simons coeffipreserving Becchi-Rouet-Stora invariance and unitarity
cient must be an integer multiple of I#4for the systems to would give rise to the same quantum correctj@d). Inter-
be invariant under large gauge transformation; otherwise thestingly, it has been shown thidt=1 supersymmetric Yang-
theories are not quantum mechanically consistent. Therefordjills-Chern-Simons theory is finite to all orde82]. More-

over, if the regulator is supersymmetric, the corrections
become regularization independd3]. In particular, the
*Email address:hckao@mail.tku.edu.tw corrections are vanishing fot= 2,3 supersymmetric Chern-

Ak=0,
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Simons theories. Hence, we would like to know what will metric and Higgs phase because of supersymmetry. On the
happen if there is also spontaneous breaking of gauge synother hand, if we do, the result is more complicated. for
metry in the system. =3, the quantum corrections are still identical in the two

In this paper, we calculate the quantum corrections to thghases. Fon= 2, however, the quantum corrections become
Chern-Simons coefficient in supersymmetric Chern-Simonslifferent in the two phases. We conclude with some com-
Higgs theories with the Higgs being in the fundamentalments on its implication and possible future direction.
SU(n). It turns out that the result is partially regularization ~ With matter fields in the fundamental Sk, the N=3
dependent. If we do not introduce the Yang-Mills term, thesupersymmetric non-Abelian Chern-Simons Higgs theories
quantum corrections are quantized and identical in the symean be simplified td24]
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HereD ,=(d,— iAZ‘Tm) andy,= o, so that the gamma matrices satisfyy,= 6, +i€,,,y,, With €;;,=1. The generators
satisfy[ T™, T"]=if'™"T', with the normalization {T™T"}=6""2 and= n(T™ 4p(T™) 6= 3 84505, — (1/21) 8,585

We will use the background field gauge so that the effective action is explicitly gauge invariant and the gauge fields do not
get renormalized. This can be done by separafingnto the background pai, and the quantum pa@, . In the Higgs
phase®,=¢,+ ¢ with ¢To=|¢|%. As usual, the gauge fixing and the Faddeev-Popdy ghost terms are given by
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Herelf)ﬂ is the covariant derivative using the background field. Combining E¢s(2), and(3), we see the relevant quadratic
terms are
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In our case, there are two relevant would-be Chern- With these projection operators, it is now straightforward

Simons terms: to obtain the propagators ,,,¢,,#, and:
_ vp; Tom _ tm m
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. +bi 3
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in the Higgs phase, they give rise to D()={[D*(K)1Q;+[D?(K)1Q+[D*(K) Qs (®)
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respectively. We note that their transformation property un- S (k)=1TS(k +1S2(k +7S3(k _
der the SUf) symmetry are different from the quadratic part (=S (0]QuHSIQz +[S ()] Qs)

of the Chern-Simons term. Therefore, we will leave the
vacuum expectation valug in the general form so that it is Here,
easier to extract the correction to the Chern-Simons coeffi-
cient. For this purpose, we express the propagators in terms

of the following projection operators: AL (k)= €uvpK” N fk,zky
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FIG. 1. The one-loop diagrams that contribute to the parity odd 2 212 > 2
part of the vacuum polarizatiofa) involves an internal gluon loop, pk(k*+My)(k=p)
(b) involves an internal loop with both gluon and Higgs fields, and
(c) involves an internal fermion loop.

} . (12

. d3k [ My
FlP)= 3 :
)~ (K +MPL(k—p)*+M{]
D= e = Dnglel
[k*+(n=1)/né|¢|°] In the zero momentum limit,
Sk — Mg(0)= 13
= ™M o= Zalul
K
(k)= ! He(0) =g
(iy-k+M,)’ 7| «|
By throwing away¢, and y, we can also obtain the correc-
3010\ — 1 tion for N=2 supersymmetric Chern-Simons Higgs theories.
(iy-k—My) In sum, the corrections are
where  M=«g? My=|¢|%(2«), and Mz=(n Axn-3=0, (14
—1)[e¢l?/(nk).
To determine the renormalization of the Chern-Simons
coefficient, it is sufficient to calculate the parity odd part of - K _ (15)
the vacuum polarization. The three relevant diagrams are N=2" g7 k|

shown in Fig. 1: one with a gluon loop, one with a gluon-
Higgs loop, and one with a fermion lodi8]. After some . ) . .
algebra, we see that the vacuum polarization can be decorpoth results are identical to those in the symmetric phase.

posed into three parts: Therefore, the degeneracy between the symmetric and asym-
metric vacua is preserved as we have expected for supersym-
mn _ 2 2\r¢ S tpmn’ metric theories. This is confirmed by calculating the effective
[H,u,v(p)]odd G,U,Vppp{Hl(p )5mn+H2(p )[(‘P T T (P) pOtentIa| Of¢2
(@I TME) ]+ Ta(p2) (T TR) (21T )} The situation is quite different, if we introduce the Yang-

Mills term as an ultraviolet regulator. From the result in Ref.
(100 [19], we have

Since the two would-be Chern-Simons terms only contribute

to I1,(0) andII3(0), we only need to calculatél,(0) to n-1) . 1

find the correction to the Chern-Simons coefficient. In the lg(p)= ——11"(p)+ 5 1P(p), (16)
Landau gauge,

IT,(p)=1Ig(p)+2I1£(p), (11 in the Landau gauge. Here,
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They come from the unbroken and broken sectors, respecompletely broken, and there is no such thing as an unbroken

tively. In the zero momentum limit, we see part in the Higgs phase. As a result, the first terms in(E6).
should not have been there. Sindé°(0)=0 and thus the
bosonic part is vanishing, the quantum correction to the

11'3(0) = K Chern-Simons coefficient comes from the fermionic part
(0= 2m|k|’ only and is
11'°(0)=0. 18 K
(0) (18 S gt
It is obvious that taking the limit thaj— > does not change
the above result.
Forn=3, there is remaining gauge symmetry and K
AKN 2= 87T| | (21)
(n—1)k
g(0)=———. (19 , , :
|| Both results are different from those in the symmetric phase.

This indicates that the supersymmetry is broken when the

gauge group is fundamental 8). Since the Yang-Mills
Consequently, term itself does not respect supersymmetry, it is hardly sur-
prising. The confusing part is why this happens only for the
SU(2) case. One possible way to clarify the above confusion
is to do a derivative expansion-type calculation as in Ref.
[12].

The results that the quantum correction to the Chern-
Simons coefficient in supersymmetric Chern-Simons Higgs
(n—=1/2)x 20 theories are identical in the symmetric and Higgs phases is
(20 interesting and have important implications. It is well known

that non-Abelian self-dual Chern-Simons Higgs theories,
with the Higgs in the adjoint representation, have rich
Again, both the above results are identical to those in thevacuum structure. It has been quite a challenge to verify that
symmetric phase. In the $P) case the gauge symmetry is the quantum correction to the Chern-Simons coefficient is

Nk
AKN34||

KN=27 47| K|
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guantized in these systems. If the results obtained above ca&hern-Simons Higgs theories, we believe the results also ap-
be generalized to the adjoint representation, we can calculafdy to supersymmetric Yang-Mills Chern-Simons Higgs
the quantum correction in self-dual Chern-Simons Higggheories based on our experience from R28].

theories by calculating the fermionic part in the correspond-  This work is supported in part by the National Science

ing supersymmetric Chern-Simons Higgs theories. FinallyCouncil of R.O.C. under Grant No. NSC88-2112-M-032-
although the calculation done here is only for supersymmtri®©03.
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