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Vacuum amplification of the high-frequency electromagnetic radiation
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When an electrically charged source is capable of both emitting the electromagnetic waves and creating
charged particles from the vacuum, its radiation gets so amplified that only the back reaction of the vacuum
makes it finite. The released energy and charge are calculated in the high-frequency approximation. The
technique of expectation values is advanced and empl¢$&bh56-282(199)01016-4

PACS numbd(s): 12.20.Ds

I. INTRODUCTION AND SUMMARY charged particles goes partially into the coherent electro-
magnetic radiationlndeed, the missing contribution comes
from the back reaction of the vacuum on the electromagnetic
The reaction of the vacuum on rapidly moving sources, offield. If one calculates the effective electromagnetic field that
strongly variable fields, is important for the evolution of solves the expectation-value equations, one finds that the
black holes and the early universe but is also interesting imuantum correction to the energy of the outgoing waves is
electrodynamics. We know that in electrodynamics thealso divergent, and the two divergences cancel each other.
vacuum attenuates an external charge. Suppose now that tAs a result, the total released energy is finite but is no more
external source is not a monopole but, say, a dipole, and Iéhe energy of created charged particles alone. Rather it is a
this dipole be capable of emitting the electromagnetic wave§um of the energy that goes with charged particles and the
so that the information about it reaches infinity. Then what€nergy that goes with the enhanced electromagnetic waves.
will the vacuum effect be on such a dipole? The two contributions can then be separated by calculating
The answer obtained below is that the effect is the oppoth€ released charge. _
site: the radiation of the dipole gets amplified. This effect. !t IS worth noting that the vacuum reactions on the low-
becomes noticeable as soon as the typical frequency of tHEEGUeNCy and high-frequency external fields are very differ-
dipole exceeds the threshold of pair creation. A flux of SNt Effects such as the anomalous magnetic moment in QED
charged particles that appears in this case is accompanied by e o the low-frequency electromagnetic fields and are not

anincreaseof the electromagnetic radiation. Generally, there. lated to the effect considered here. On the other hand, in
9 ' Y, the mechanism described above one easily recognizes the

X i o ﬁhysics that stands behind the so-called infrared disaster.
but, at high frequency, the effect boils down to a multiplica- & this physics actually works and, of course, there is no
tion of the classical radiation rate by a renormalization conyjisaster if one does not consider the transitions between con-

stant. Since the dipole is a nonlocal object, itscqcted states but considers the evolution of expectation val-
renormalization is finite and observable. ues.

The vacuum amplification of the electromagnetic waves The terms “high-frequency approximation” and

emitted by a source is analogous to the effect of the VaCUl.In"lstrong|y variable field” are used here as synonyms. Lie¢
gravitational waveg1]. The difference is only in the theo- the typical spatial size of the source of an external field and
retical mechanisms and in the dimensions of the coupling, pe its typical frequency. On the other hand, nete the
constants. The dimension of the coupling constant causesmass of the lightest particles interacting with this field. In the
the gravitational effect to never boil down to a mere renor-problem of the vacuum particle creation, the external field is
malization. considered as strongly variable if the energy dominates

In the case of electromagnetic waves, the mechanism byoth the rest energy of the vacuum particle and its static

which this effect emerges in theory is as follows. If oneenergy in this field. The first of these conditions is discussed
calculates the energy of charged particles created from thg Sec. IV below, and its more accurate form is

vacuum by a given nonstationary electromagnetic fi@lgl

one finds that the result can be obtained only in the case mc

where the electromagnetic field contains no outgoing waves. hu>mc2(?l ) 1D
In the general case this energy is infrared divergent with the

divergent term proportional to the energy of the outgoing-l-he second is exemplified in RéR]. Under condition(1.1)

waves. The appearing divergence is a signal that the calCyyge \acyum particles may be regarded as massless in the
lation is not complete becauske energy of the vacuum of o 0jation of their fluxes. However, the masscannot be

neglected in the calculation of the static polarization and
charge renormalization.

A. Introduction

!Residual after an infinite renormalization of the monopole. It makes sense to begin with quoting the result for the
2The main difference is, of course, in the fact that for a creation ofenergy of particles created from the vacuum by strongly vari-
the gravitational charge, there is no threshold. able fields of arbitrary configurations. The respective calcu-
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lation was carried out in Ref2] for the standard loopi.e., 2 55,
for the vacuum action of the form TR =" 2 (1.8
cl gY2 89,
i - . . -
Siac— Elog detH, 1.2 The energy of the classical electromagnetic radiation and,

in the high-frequency approximation, also the outgoing flux
of the vacuum energy can be calculated at the future null
infinity Z* [4,2]. The limit Z* is defined as the limit of
infinite luminosity distance along the null geodesic that,
when traced to the future, comes at the instaof retarded

where the operatdt is defined as acting on an arbitrary set time to the pointé of the celestial two-spher&. One has
of quantum fields. The hat over a symbol means that this

.1 .
P——Rl)—mzl, (1.3

A=g"v,v,1+ P—%

symbol is a matrix in the space of field componentss the LV VY VTEY fe=— 1 igd(u,(ﬁ) +0 1 . (1.9

unit matrix, and the matrix trace will be denoted tr. The 2du r3

external fields in Eq(1.3) are the metricg,,, the matrix

potentialP, and an arbitrary connection defining the commu- N v 19 1

tator curvature: a VIV VTl 7=~ b pivadUi )+ 0 )
(1.10

[V, V,I=R,,. (1.4
where
The sign convention for the Ricci scal&in Eq. (1.9 is

such that when acting on a scalar field, the opergitavith

P=0 andm=0 is conformal invariant. The notationd&/au is introduced to represent the energy
In the present paper, only the effect of the commutatoloss. Taken with the minus sign, eag#/ du is the density of
curvature 7‘2,w is considered, andeverthelesghe action the respective outgoing flux of energy so that the total emit-

(1.2) is needed with all the three types of external fieldsted energy is obtained by integrating- ¢£/Ju) over the
present. The dependence ®f. on the metric is needed be- two-sphereS (normalized to have the areard and the time
cause the vacuum energy-momentum tensor is obtained hy Specifically, the total released vacuum energy equals

varying the action(1.2) with respect to the metric

Vv|z+=Vu+2Vr, (Vu,Vr)|z+=-1. (1.1)

fm duf d2S( d))( - %) =§ ea(in vada fal,Jin vao
5 (112

) and equals the total energy of particles created from the in-
f(and r;%ext Lr115|ng the retarded resoIVﬁnt for thg ?pnlocal formyacuum by external fieldésee, e.g., Ref[5]). Here agu/t\,
actors). The dependence @sc ON the potential is needed a’ . are the creation and annihilation operators for the out-
because the results for various quantum field models, e.

. . : i . e
for the spinor QED, are obtained by combining the standar acuum, anc is the energy in the out-mode SinceTy

T , - is energy-dominanf4], the flux (—d&y/du) is manifestly
gggsvvlvllltl:k?v?)nera"y depending oR,,, (see Ref[3]and  pqsitive. The flux - 98,../au) is sign indefinite because of

. , the quantum uncertainty but the integrated fl{ix12 is
For the classical action of the commutator curvature On%ositive[Z].

may take the expression

pv_ 2 9Suac
vac gl/z 5g,u.v

(1.

Only the external fields generated by sources are consid-
ered in Ref[2] and the present paper. The sources of exter-

nal fields in Eq.(1.3) are
Scl

1 A
= f dxg 4R, , R*" (1.6
167 k2 1
J=P, J*=V RF’, JH'=RA'— Eg’”R, (1.13
with some coupling constant®>0. In the case of the elec-
tromagnetic connection, the? is to be chosen so that the

MLV 5 H H .
expression(1.6) be the Maxwell action whereR*" is the Ricci tensor of the external metric, and the

potential P is identified with its own source. These classical

1 sources will be referred to dmre sources. The bare sources
Sy=— Ef dxg"%F , F+ (1.7 are assumed to have their supports in a spacetime tube with

compact spatial sections and a timelike boundary. Their do-
main of nonstationarity is assumed compact in both space
and time[2].
At a large distance from a source, all its manifestations at

both classical and quantum levels are governed by a single
3see Ref[2], and references therein. quantity, itsradiation momen{2] defined as an integral of

[the matrix trace in Eq(1.6) is always negativg2]]. Denote
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the source over a spacelikgperplane The hyperplane itself

is defined as follows. One considers all timelike geodesics
that, when traced to the future, reach infinity with one and

the same value of energy per unit rest mass-() and at
one and the same point of the celestial sphere §). These

geodesics make a three-parameter congruence which is
hypersurface-orthogonal, and the hyperplanes are the hyper-

surfaces orthogonal to this congrueri@é Let
T,4(X)=const

(1.19

be the equation of these hypersurfaces. The paramedtet,
along with ¢, labels the functiorT ,,(x) is a redefined:

JE?—1
’y: E 1

0<y<1 (1.15

and the functiorT ,4(x) itself is normalized by the condition
(VT,4(x)7=—(1— 7). (1.1

The radiation moments of the sources in Ef13 are the
following integrals[2]:

1 )
D:Ef dxg"?8(T,4(x) = U)J(x), (1.17
1 -

DQZGJ dxg28(T,,4(x) — u)gEI*(x), (1.18

1 -
D = f dxgH28(T 4(X) — U)GG5IA(), (1.19

Wheregf is the propagator of the geodetic parallel transport
[6] connecting the integration point with the future end point

of the geodesic having the parameterg. The moments are

tensors at this end point depending parametrically on time
At the limit y=1 the hyperplang1.14 becomes null.

The vector and tensor moments takenyat1l govern the

classical electromagnetic and gravitational radiation. Specifi-
cally, for the energy of the electromagnetic waves one has

[2]

J
- %Ed(u,(b): -

1 ‘ ﬁba 56B
A2 Mas| 5y au

The expansion of the vector and tensor momentsy a0
gives rise to the usual multipole momefngs. The radiation
moments integrated over govern the energy of the vacuum
particle production. One hdg]
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Evad U, &) ! fld 2t ‘?Zf) ‘72[“)
R — u] — r E— [EN—
gu " (4m)2Jo 7N w2 )| au?
1 1 ( d b“)( d f)ﬁ)
3 (1_72)%‘3 au au
1 1 &’
+§) gyagvﬁ_gguvgaﬁ ED
(92
X| —D*?| [+Q.N., (1.21)
au

where the abbreviation Q.N. means quantum noise and de-
notes the sign-indefinite contribution that is present in the

vacuum energy flux because of the quantum uncertainty but
sums to zero for the whole histof®,5]:

f_lduf d*S(4)(Q.N)=0. (1.22

In the equations below the term Q.N. will often be omitted
but its presence will be tacitly assumed in all expressions for
the vacuum energy.

The significance of the resu(fL.2]) is that it brings the
quantum problem of particle creation to the level of the clas-
sical problem of radiation of waves. This is seen from a
comparison of Eq(1.21) with (1.20. The integral overy in
Eqg. (1.2]) is none other than the integral over the energies of
the outgoing particles. The integrand gives, therefore, the
energy spectrum of the vacuum radiation.

Expression(1.2]) is the starting point of the present work.

It is seen that in the case of the vector mom@mid only in
this case the validity of this expression is limited by the
condition

=0
y=1

[l
trg.p %D ED (1.23

which in view of Eq.(1.20 is a condition that the vector
source does not radiate classically:

Jd
e, $)=0. (1.24)

If it does, the integral in Eq(1.21) has a pole aty=1. The
appearance of this pole is a manifestation of the infrared
disaster that occurs when the classical and quantum radia-
tions overlap, and the back reaction of the vacuum is ne-
glected.

As pointed out in Ref[2], the calculation in this reference
is insufficient for a removal of the limitatiofl.24). If this
limitation does not hold, the calculation in R¢2] needs to
be revised. The revised calculation with all the needed
amendments is carried out in the present paper.
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B. Summary of the results verse projections of the moment is divergent but, if the
waves are emitted, the calculation of EG.25 should be
revised[2].

The result of the revised calculation is that the quantity

Below | shall consider only the contribution of the vector
source assuming that the other contributions in&®R1) are

absent:
(1.25 indeeddiverges. The pole ag=1 goes but its place is
€ mc 1 171 52 9. 9 . taken up by an infrared divergence. Only the total energy
- =— —f dy trgaﬁ(—D“)(—DB) flux
au (4m)23Jo " (1—9?) au au

_(?gtot= agcl (95vac

Ju Ju Ju

+Q.N. (1.29 (1.32

It is useful to decompose the vector moment over the vector . ] ] o
basis at infinity: is finite. The point here is that the electromagnetic field to be

inserted in EQ.(1.32 should solve the expectation-value
Gaplre=—V UV gu—(V UV gr +V,rvsu) equations. To an appropriate order in the coupling constant
d&yac! U can be calculated with the bare source &&/Ju
(1.26 should already be quantum corrected, and this correction
does not boil down to a renormalization of the coupling con-
) stant. This correction is infrared divergent, and it cancels the
wheremis the complex null vector tangent to the t\No-spherediVergence g€, ../ du. The final result for the total energy

1
+E(mam’/§+m’;m/3),

S, andm* is its complex conjugate. The projection flux (1.32 is
[V,u+(1—y)V ,r]D#=e=const (1.27 It 1 ( J. )( 7., ) 1
- =- trl —Ces|| =Ci¢| — ——
is the full conserved charge of the bare soUi2k Hence Ju 42\ ou ) guelt (4)?
.\ 11 ¥? .\ .
trg,s —D*|| DA _f _r I aa|[ Lpn
g B(au )(au *3 0d7(1_72)trg‘“ﬂ (auD )(&UD )
d J *
= I Y A8 A2 da V94
tr] (ma&uD )(mﬁauD ) +(1—7%9) _ ED )(%DB> (1.33
d . \2 o
X Var%D“) } (1.28  with the effective news function
o d . K2 25\1 9 .
The transverse projections of the moment take=atl de- —Ce(U,p)=|1— ——| c—log 2+ —| [=—C(u, ¢)
fine the complexnews functionof the electromagnetic au 24 12] Jou
wave$ W2 9 [u g
J i g —EEfﬁ@d’rlog[m(u—T)]E_C(T,d)).
S0 MaD“ly=1=2-C(u, ) (1.29 (1.39
so that, by Egs(1.20 and(1.28), Here «? is the renormalized coupling constaats the Euler
constant and, distinct from E@1.25), the result is not inde-
B %: B 1 tr(ié) (i@*) (1.30 pendent of the mass even in the high-frequency approxi-
au 47rk? \dU du ' ' mation. The quantitie®“ and C in the expressions above
_ o o pertain to the originabare source.
Finally, the longitudinal projection of the moment Expression(1.33 is to be compared with the sum of ex-
. . pressiong1.30 and (1.25. It is seen that the pole at=1
V.rD*=Dy(u,¢) (1.3)  gets eliminated but there appears a finite vacuum contribu-

. . ) tion to the energy of the electromagnetic radiation. The re-
plays no role in classical theory but, as shown in the present,qeq integral along * in Eq. (1.34 represents a nonlocal
Paper, r:t IS respon3|fblﬁ for the vacuum creation of chargey| of the electromagnetic radiation caused by the vacuum
_Upont e Insertion of the decomp03|t|(m2_8) n Eq. (1'_25) .__stress. Technically, when a point tendsZtd, its past light
it is seen that the contribution of the longitudinal projection ., a pecomes a sum of a null hyperplane and a single null

o;‘ the_mc;]ment is finite. IItfturr;]s out that tthS con;[jnbﬁnon enerator that merges with* [2]. The nonlocal radiation
alone is the correct result for the energy of created chargefl;, is a contribution of this generatésee Appendix €

particles[Eq. (1.38 below]. The contribution of the trans- The energy flux in Eq(1.33 belongs partially to charged
particles and partially to the electromagnetic waves. The fact
that only the total energy flux is calculable signifies that the
4l am using the terminology of Bondi7]. separation of the vacuum energy between the charged par-
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ticles and the electromagnetic waves is subject to the quan- k2 m
tum uncertainty. However, up to this uncertainty, the two Z=1- EIOQ?JFO
contributions should be separable since they are measurable

separately:

m 0
—) . (1.42
v

Note the sign of the quantum correction. The radiation gets
(95tot égcharge agwaves amp"ﬁed'
T ou  au au (1.39 The results above pertain to the standard loop. For other
models the vacuum fluxes are multiples of the respective
A calculation of the flux of charge helps to make this sepafluxes for the standard loofBec. VIII). Thus, for the spinor
ration. The density of the outgoing flux of charge can beQED, the flux of charge iswice the one in Eq(1.36, and
calculated from the expectation-value equations for the eledhe quantum correction to the flux of energygce the one
tromagnetic fieldSec. Ill below. The result for this density N Ed. (1.33. Only the numerical constant which in Eq.

reads (1.34 is 25/12 needs to be calculated anew but this constant
is anyway unimportant. The explicit results for the spinor
J . K2 9. QED are obtained by introducing the said factor of 2 and
o) = 3am)? £D|\|‘y=l (1.36  substituting
so that the total released charge is R,,=—igF,1, e=—iqgel, «?=4¢? trl=4,
. (1.43
" dul a2s(e)| - oe
—w u () au whereF ,, is the Maxwell tensoreg is the electric charge of
the sourceq is the electron’s charge, amdin Eq. (1.34) is
2 5 . the electron’s mass.
= 3(4W)2f d“S(#)[Dj|(u=—) In conclusion it will be noted that the result obtained can-
not be the end of the story since, obviously, it violates the
_ f)H(u: +90)][,-1- (137  energy conservation law. Indeed, the frequendg propor-

tional to the energy of the bare source and, since the factor

Hence one may infer that the portion of the total energy fluxog(¥/m) can be arbitrarily large, at a sufficiently largethe
(1.33 that goes with the charged particles is the one associource will radiate more energy than it has initially. In this

ated with the longitudinal projection of the moment respect the present case is similar to the case of charged
spherical shell considered in R¢R2]. A charged spherical
IE charge 1 11 o [ 9 A 2 shell expanding in the self field emits no electromagnetic
TR 2 §J dyy tr(—D” +Q.N. waves(neither classical nor quantyrbut it creates charged
(4) 0 Ju

particles from the vacuum and, at an ultrarelativistic energy,

(1.39 this radiation violates the energy conservation [@k The

The remaining energy in the total flud.33 goes with mzeasure of the violation is in both cases one and the same,
the electromagnetic radiation. Since expressi@&83 is  <“10g», and the cause is also one and the same: the problem
valid only in the high-frequency approximation anyway, has not been made fully self-consistent. Although in the
condition (1.1) can be used for its further simplification. It Present case the back reaction of the vacuum on the electro-
will be recalled that the domain of nonstationarity of the baremagnetic field is taken into accoufttherwise the emitted
source is assumed compact. Its temporal stialéme u) is ~ €nergy would not even be finjteits reaction on the motion

a purely classical quantity of orderil/Therefore, if in Eq.  Of the source is not. This task remains beyond the scope of
(1.34) one writes the present work but it may be conjectured that the missing

back reaction effect is nonanalytic in the coupling constant.

m Equationg1.33—(1.37) and their corollaries are the main
logim(u—m)]=log_-+loglv(u=7)],  (1.39  results of the present work. Their derivation is given below.
A reader not interested in the technical details may still want

the contribution of the second term will be of ord@(1)  to read Secs. II-IV. Section Il presents the general scheme

whereas the contribution of the first term will be large: of the calculation including the important intermediate re-
sults and displays the mechanism of the vacuum back reac-

N . tion. Section Il presents the solution of the expectation-
;) %C(U"f’)- value equations and the calculation of the emission of
(1.40  charge. In Sec. IV, creation of massive particles is consid-
ered, and a criterion of the high-frequency approximation is
As a result, fowu in the support of the bare news function, the derived.
radiation flux becomes merely a renormalized classical one: The technical details are presented in Secs. V-VIII. The
calculation required in the present work is more complicated
than in Ref[2] because the nonlocal form factors act now on
functions having noncompact spatial supports. For a test

& B PRI
S CerU, @)= 157 —log_+

_ agwaves: _ Z%

du Ju’ (1.4
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function X, compactness of the spatial support is equivalentl preserve the numbers that these invariants have in the full
to the following powers of decrease at null infiniti€$ and  list of Ref.[9].)

spatial infinityi°: For 2 in Eq. (1.6 to be the renormalized coupling con-
stant, the form factory(—[1) should satisfy the normaliza-
1 1 tion conditiony(0)=0. The normalizedy(—[) calculated
X|I:=O(r—3 ' X|i°:O(r_4)- (144 for the standard loop is

1 O
_X_
m2

The behaviors of the form factors derived or quoted in Ref. H=D)=— %fldafa(l_a)dxlog( 25
0 0

[2] are valid only under condition&l.44). For the present
calculation, critical is the behavior of the test functiorZat.
The test function that does not satisfy conditid®4 atZ*  When applied to a high-frequency field, this operator takes
will be called singular at Z*. The operators logf[]) and the form

1/0 with test functions singular af* are considered in

Appendix C. The behaviors of the third-order form factors at 118 U
I are obtained in Appendix B. Appendix A summarizes the y(=L)= 12|13 Iog( m?
structure of the one-loop form factors.

+0(m?). (2.6

(The high-frequency limit is considered in Sec.)WThe con-
Il. THE MECHANISM OF THE VACUUM BACK stant 8/3 in Eq(2.6) is observable since it accounts for the
REACTION difference between the static regime in which the total ini-
o tially stored charge is calculated and the high-frequency re-
For obtaining the vacuum energy-momentum tensor {Qyie in which the emission of charge is calculated. Neither

lowest order in the commutator curvature, one needs th§,c ~onstant nor the term in log can be discarded when
terms in the effective action quadratic in the commutator, o operatof2.6) acts on a function singular &" (cf. Ref
curvature and linear in the gravitational curvature, i.e., quary), ' o

dratic terms of orderRxR and cubic terms of order  The third-order form factor; admit the massless limit
RXRXR. Their general form i$8,9] and, in the high-frequency approximation, can be taken
massless from the outset. One can then use the results of Ref.
Siac= Svad 2) + Siad 3) + higher-order terms, (2.1)  [9] where the massled are calculated for all cubic invari-
ants including the ones in EQ.4).
1 f dxa2t B ) B For obtainingT’..atZ " one does not need the exact form
2(41)? Xgr R, ¥( ) ' factors. It suffices to have the asymptotic behaviors of
(2.2) r,(—-0d,,—0,,—0O3) with one of the arguments small and
the others fixed. The difference with R¢R] is that these
behaviors are now needed including the te@(§1°). The
j dxg? algorithms of extracting the needed terms are derived in Ap-
pendix B.
The contribution of the second-order actith?) to T/

XtrY, Ty(—Op,— 0y, — O3 Ry RoR(1) will be divided into two:
1

(2.3 2 85,d2)
g1/2 5gluv

Siad2)=

Siad3) = 2(477)2

=Tlad D+ T{d2) 2.7
with some form factorsy(—0) and I';(—0O,,—O5,

—03). In the _basis_ of nonlocal invariants of third ordé, with T/;(2) the contribution of the variation of the form
there are six invariants of the needed type:

factor
RiR,R3(7) =R RE" R,
! v e f dxg'2Ti2(2)8g,,,
RyR,R3(8)= Rgﬁ,’%ZaM,’%ﬂ%Bpﬂ L
A . . = dxg2tr R, ,8y(—O)RA". (2.8
RiRoRa(18)=RypV ,REV RE, (477)2] Iy
Ry Ry Rl lg)ZR%BVa,}A?}ZLVVﬁfQBNV1 Denoting T4,(3) the contribution of the third-order action
(2.9, one has
R1RyR3(20) =RV R3"VFRap,, Ter=TE(1)+ TE2)+ T 3). (2.9
RiR,R3(2D) =R{*V VR Raq, The vacuum energy flux in EGL.10 will then also be a sum

(2.9 of the respective three contributions:
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T{.{(2) would change their signs. This procedure is incorrect

because it amounts to varying the actiomjp), at fixedR bare
] ) ) _ whereas the energy-momentum tensor is obtained by varying
The expgctauon-value_ equations are obtained _by vVaryNéhe action ing,,, at fixedR ¢ .> This makes difference since
the total actiorS;+ S,,c With respect to the connection field. h lation bet R A7 itself d d th
These are the following equations for the source of the full '€ f€!ation DEWEETC ¢ aNC /< pare IISEIT dEPENAS ON he
metric through the operatarl. The correct procedure is

uantum-corrected, commutator curvature: \ - :
d making the substitutio2.13 in the energy-momentum ten-
2 sor.
~ K ~ ~
Yt 5 7(= D)= Iare (2.19 The dictum thafT%” at 7" is infrared divergent means
that expansior(1.10 does not hold. Rather there is an ex-

with the retarded boundary conditions fe¢—[J) [2]. Solv-  pansion of the form
ing them iteratively one obtains

&SVaC: _ agvac,( 1) _ agvac( 2) _ agvac(:g)

Ju Jdu Jdu Jdu (210

logr 1 1
- A K? A Th I+:terms—§i +terms— +0 —3) . (219
= bare™ Z'}’(_D)J%are (212 r r r
If this was the behavior of the total energy-momentum ten-
and, hence, ; . )
sor, the expectation-value spacetime would fail to be asymp-
R R K2 R totically flat. This is not the case but, in the intermediate
Rin=Rhue ﬂy(_ O) R ure (2.13  expressions, the factor logwill conventionally be included

in d&,,./du thereby considering this energy flux as diver-

For displaying the mechanism of the vacuum back reac9€nt:

tion, it suffices to write down the expressions fBf” and The contributions(2.10 to d&,,./du are calculated in
TE(1): Secs. V=-VII below. Their main ingredient is the=1 radia-
va "

tion moment

1 A a 1 PN . .
Th'=- ztr(RMRn—ZgWRaﬁR“ﬁ), (214 B,-1=D1. (220

4k

The latter notation is used everywhere below. The results are

1 A ~
Tlad1)=— —Ztr( RN y(— )R
8

Eyad 1) 1 1 8
. A A T u (4m)? 6tr|—<logmr+20—log 2+§
- Zgﬂ”Ram—D)Raﬁ). (219 o[, -
Using Eq.(2.13 one finds g %Dl)(EDM) _<%Dl)
Thyms = [T 2T D]y, (216 %= driogimiu- r)]&%ﬁ)mw} ,
The total energy-momentum tensor of the commutator cur- (2.21

vature T4+ T{. . is then

v v v v " dEyad 2) 1 1 J
Tho= [T+ T 1)+ ThU2)+ T35y , ~ Pnd?) r[(—

. d (u
U (477)2§t &UD1>%derlog(u—7—)
=[TE = Thad D+ TEad )+ Tad 3=, (2.17

Jd A d (u
X—D a(r)——f drlog(u—17)
and hence the total energy flux is gr t U ) o

0 ~ 0 .
o _[9a_08adD)  Ead2) asvac(s)> x| D5 r)) (&—TDM(r) }+Q.N., (2.22
au  \du au au au -
J=J bare
(2.18 5The effective action does not know bare fields. It is a functional

S . of just one field which after varying and solving the equatiomish
Thus the effect of the vacuum back reactiorthenging the the appropriate boundary conditions for the resolvelmésomes the

sign Of_W;c(l)- As will be seen in a moment, this effect is fy)| expectation value. Therefore, all currents in the expectation-
dramatic. value equations, including the energy-momentum tensor, are ob-

Note that if the substitutiof2.13 was made in the action, tained by varying with respect to the full fields keeping the other
then, after varying with respect tg,,,, both T{ (1) and full fields fixed.
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9Ead 3) 1 1 3\( 94, S/ad2) emerges from the purely electromagnetic coupling
T P 5” - ( logr +log 2— 5) (%D 1) whereasS,,{3) represents the vertices with the gravitational
(4) coupling. Owing to this relation, the final result is rigidly tied
to the overall coefficient of the actio®,,{2) which is

Jd J (u
X ED“‘ + %J’ drlog(u—17) merely thep function. A knowledge of this coefficient is in
o the end sufficient for obtaining the vacuum radiation fluxes.
Jd . Jd A
X a—TDf( 7) (E’Dla( T)) Ill. THE MEAN ELECTROMAGNETIC FIELD AND
EMISSION OF CHARGE
2 . : I
—2f1dy Y iA a) (if) _ if)a Since the quantum correction to the electromagnetic field
0o ~1—42[\du au—“ gu 1t cancels the infrared divergence in the vacuum energy, it
should itself be infrared divergent. This point is clarified be-
d . low but, before considering the expectation-value equations,
X ﬁDla +Q.N. (2.23 it is useful to make a general analysis of the asymptotic

properties of the commutator curvature and its source in the
case where there is an emission of both waves and charge.
To make difference with the notation already used, the quan-
'tities in this analysis will be distinguished with boldface.

The existence of a flux of charge at a large distance from

the source implies thal® falls off atZ* as

Owing to the conservation laWl.27), only the transverse

projections oflﬁf survive in these expressions. Therefore
under the limitation(1.24) the contributions’&,,{1)/du and
d&,ad2)/du vanish, and the contribution&, ,{3)/du gives
back the result of Ref2].

When the limitation(1.24) does not hold, the contribution - 1
d€ad1)/ou is infrared divergent. The contribution 3o = J(u_"ﬁ)Jro - (3.
9&,a{2)/9u is not but it has another pathology. The total- 2 rs

derivative term in Eq(2.22 does not vanish in the integral

over time. On the contrary, the behavior of this term at lateVith some coefficien{“(u, ¢). This is the most general be-
time is havior admissible for an isolated system. Although the sup-
port of the sourcel® is no more confined to a spacetime
tube, its domain of nonstationarity must remain compact in
time in order that all fluxes die out in the past and future of
Z™". More generally, the source should be asymptotically sta-
J s, d A tionary in the past and future. To account for this property in
_7.D1(7') E.Dla(T)) (224 the past, it will be assumed that the domain of nonstationar-

J
ity of J* is confined to the interior of some future light cone

J [u g N,
%f xdrlog(u—r) E’Dl(ﬂ E_Dla(T)

1 ©
Z—J dr
UJ -«

Uu—x©

so that the integrated flu@2.22 diverges: u=u_. Then
. j*(u, =0. 3.2
f duagvgjz) . (225 JU @) i< 32

The density of the flux of charge from a source is ex-
The contributiond&,,{3)/du contains the divergences of pressed through the coefficient in E.1) as follows[2]:

both types. In the sum of the three contributions the diver- 9 . 1 . 1
gence of the integral in time cancels but the infrared diver- — —e(u,¢)=s—V v(r2J%)|;+=s—V,vj*(u,¢)
Jau 8 87
gencedoubles (3.3
9Evac 1 1 A\ 94 with Vv in Eq. (1.12). The function
(2.26 =g “aul dzs e s
eu)=e—<)+ [ dufd S(¢)&—Ue(u,¢) (3.9

Only in the total sum(2.18 with the changed sign of

d&ad1)/ou both divergences cancel, and the finite resultyefined by Eq(3.3) up to an additive constaet — =) can be

(1.33 emerges. , written as an integral over the future light cof&
The cancellations outlined above do not depend on the

relative sign and coefficient betwe&y and S, [the «? in - 1 —— o —

Eq. (1.6) is in fact kept arbitrary but they depend crucially e(u)= EJ dxg " s(u—u)V,ud(x) 3.9
on the balance betwee®,,(2) andS,,{3). As seen from

the expression&2.21)—(2.23, there is a precise relation be- provided that the constant

tween the respective contributions, and this relation main- o

tains for other field model$Sec. VIIl) despite the fact that e=g(—») (3.6)
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is taken as a conserved integral over an arbitfapmplete 1. 1 .
spacelike hypersurface VanJa|I+ == Vaubi(u,¢), (3.12
o= [ dxg 2V IX),  (Vr)2<0 1. logr 1 rv —o La
Ao 9 5 ’ : Vav—J“|I+=———f duv ,vj“(u,¢) (3.13
37 O r 2J) -

A ) while for the transverse projections one has two cases:
The functione(u) may be called the Bondi charge, and the prol

constante the Arnowitt-Deser-MisnefADM) charge since ) . 1. 1 .

their meaning is the same as of the Bondi and ADM madses. () Maj“=0, m,=J%z+=——-mDi(u,¢),

The ADM charge is the total charge of the soutcen the (3.19
initial state, i.e. before the beginning of emission. The Bondi

charge is the charge that remains in a compact domain by the (i) m_,j*#0,

instantu of retarded time in the process of emission. The

ADM charge is conserved because at any instaittequals 1. logr 1 fu —

a sum of the charge emitted by this instant and the charge Ma=J%z+=— 3| dumi®(u,¢é).

remaining by this instant, Eq3.4). o

Consider the conservation equation (319
R When the support of the source is confined to a spacetime
V,J9=0. (3.8 tupe, the convergent projectioﬁauf)‘f equals the total
_ _ ) ) charge of the sourddeq. (1.27)]. This projection remains the
Inserting the expansiof8.1) in Eq. (3.8) one obtains conserved ADM charge also in the general case, even when
there is an emission of charge and despite the fact that the
%(Vauj“)=0, (3.9 integration hypersurface iﬁf is null:
a . Ay
whence, in view of Eq(3.2), %(VaUDl):O’ V.ubi=e. (3.19
Vauj“=0. (3.10  The proof uses the explicit form of the null hyperpla2d

and the stationarity of the source in the past.
The latter equation makes it possible to express the flux of The fact that the projectiol ,vD¢ is generally divergent
charge in Eq(3.3) through the longitudinal projection ¢f:  yresents no real problem since this projection drops out of
both the square of the differentiated moment in Eg29

—ié(u ¢)=iV F%(u, &) (3.1 and the commutator curvature. Indeed, solving the Jacobi
ou "’ 4o ¢ ). ' identities to lowest orddi2], one obtains for the commutator
curvature

Thus the longitudinal projectioN ,rj* of the residue in
Eq. (3.1) is responsible for the emission of charge, the pro- R =V ij _y ij (3.17)
jection V uj“ vanishes but no conclusion can be made on weetvgTe RO '
the transverse projections,j“. Their vanishing does not
follow and, at this stage, their role remains unclear. whence

For obtaining the behavior of the commutator curvature
one must first consider the question of convergence of the . d 1. 1. 1
momentD{ of the sourcel. The analysis of convergence is Roulze= ﬁ(vVUE‘]M_vﬂuEJV +0 2]
carried out in Ref[2]. When applied to the present case, it (3.19

gives the following result. The projection ﬁf on a basis o _ _
vector in Eq.(1.26 converges if and only if théike projec- ~ The projection(3.13 drops out of this expression by sym-
tion of the residug® vanishes. It follows that the projection Metry. Moreover, owing to the conservation 14816 one

v, uD? converges, the projectiol,,vD diverges, and the fIndS
behaviors of the transverse projecti0n§I5§“ remain unde-

termined. Hence using the results for the retarded operator IQM,,|I+=
1/0 in Ref.[2] and Appendix C below one obtains

N| =

1.
(V,,umﬂ—VMumV)( me —J“)

P
au @

+0[ =],
r2

1.
+(VVum;—VMum’V‘)(maiJ )

8 continue using the terminology of the theory of asymptotically
flat space$4]. (3.19
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G. A. VILKOVISKY PHYSICAL REVIEW D 60 065012

and the only projection d%w that can behave asrl{count- 2 9 1
ing only powers is |09(—D)X|z+:—r—Z%Dl(U,¢|X)+O s
3.2
R d 1., 19, 1 (3.29
VAR, |7 = Mo d +=_F%C+O 2|° which is valid under conditions(1.44 and in which
z (3.20 D,(u, ¢|X) is the y=1 moment of the test source Since
' the local terms in Eq(3.24 are O(1/r3), one obtains
where the coefficientC/ou at 1t will conventionally be 1 &2 9
called news function although in the ca&g above it is jb;u”|z+=————|5§’bare+o —. (3.26
infrared divergent. One has either r2 12m ou r3
0. a A This is Eq.(3.2) with
() mgje=0, —-C=—-[mDi(u¢)] (320 | 2 g
j%(u,)=— E %Dil bare (3.27)
or
Hence, using the conservation 14@:16) for the bare source,
J . 1 i
(i) mj"#0, ~E=(logr)5m,i*(u,d). one obtains
2
K d ~
(322 VU= = o o (VuDf =0 (3.28

127 du
At this stage there appears an argument to make a conclu- N )
sion on the transverse fluxes,j®. If one wants the news and thereby checks conditid8.10. Next, using Eq(3.11)
function to be finite, these fluxes must vanish. However, théne calculates the density of the flux of charge

only reason for insisting that the news function be finite is 5

making finite theenergyof the electromagnetic field since by _ iA ___ K i 2 a
Egs.(2.14 and(3.20 uS (U &) 3(4m)? u(VelD1bad (329
9E,, 1 R ~ and thereby obtains the resil.36). Finally, one calculates
T 16WK2tr(rV“vva“")(rVavm2§R“ﬁ)lﬁ the transverse fluxes
1 . k> 9 Be B k> d &
=1 i@)(i@), (3.23 Ml “= = 157 55 (MaP1 bard = = 757 5;C bare
Amr? \du au (3.30

This is the reason indeed but only if the energy-momentunﬁ'ind discovers that they are proporti_onal to the news functi_on
tensor of the electromagnetic field is given by expressiorPf the bare source. It folloyvs that if the bare source emits
(2.14. For a classical field it is. Therefore, for a classical aVes, then the news function of the full source diverges. By

field one has the cage) m,j*=0, i.e., the only nonvanish- Eq. (3.2,

ing flux of J* is the flux of charge in Eq3.11), and the only J . 2\ 9.

divergent projection of the moment %8,vD{. The flux of -uC fuII:<1_(|09r)%)ﬁc bare™ O(1).  (3.3D)

the electromagnetic energy is then completely determined by

the finite news function in Eq(3.21). However, if a However, one knows already that this divergence comes to
c-number electromagnetic field is an expectation value rathethe rescue. One can now check this again. From B323

than the classical field, its energy-momentum tensaros  and(3.31) one obtains

Eg.(2.14. Rather it is a sunT4”+ T4, and the same argu-

ment that the energy should be finite may now be in favor of d& 1 K? ) d .
the cas(ii) m,j“+0 where the news function is divergent. 5y '| =, 2 1= 751097+ «0(1) |tr| —-C bare
One is now ready to consider the expectation-value equa- I
tions. In the high-frequency approximation, £8.12) takes 9.
the form x| =5 *bare). (3.32
2
N A k° |8 (R On the other hand, by Eq2.26),
‘]'l;'ull :J%are_ E § - loQ( - E) Jlllgare' (3.29
& ac ( d A )( d 4
—= logr)tr] —C —C* .o/ +O(1).
Since the bare source has a compact spatial support, one can 9u 3(477)2( ar) gu e\ gu bare o
use the result from Ref2] (3.33

065012-10
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As a result, the total energy flug.32) is finite. 1
The approximate form(3.24) of the expectation-value y(—D)zl—2

equations corresponds to a neglect of the mass of the vacuum

particles and is valid only in the regiom>u_ where the

source is assumed strongly variable. This form can be used _ fmd,uz 1

for a calculation of the derivative of the Bondi charge in the 0 w2+ m?

high-frequency approximation but cannot be used for a cal-

culation of the ADM charge since the latter calculation in-in which the thresholgi?=4m? appears explicitly, and, for

volves the regiom<u_ where the source is static. Tetec-  the convergence at the upper limit, the two spectral integrals

trostatic polarization with massless vacuum particles isare to be considered as a single integral. Outside the support

infinite. Indeed, for the ADM chargé3.7) to converge, the of the sourcel ., Eq.(2.12 takes the form

full source must fall off aspatial infinity as

Jw 2(1_4m2/M2)3/2
3

4m?2 H #2_‘:‘

4.2

312

30 K2 (= L Am? 1.,
full = = 54— T T Y
u 2477 4m2 ILLZ qu_ ‘:l are

, (3.39 4.2

J|iO:O

4
r

whereas a calculation with the massless form factormtegrat'ons is importar{tl0]. The spacetime integration im-

log(—0) in Eq. (3.24 yields the behavior plied in (u?2—0) 13 Lueis to be done first, and the spectral-
mass integration next.

One is presently interested in the behavior of the full

A _ Al source at a large distance from the support tub& gf.. At
10g(~00)J pardio=0 r3 (3.39 r>| andu fixed, the retarded resolvent acting on a nonsta-
tionary source behaves as folloWk0]:
and the divergent reslt 1 . 1
2_ ElyaareocFqu_M\/f(u)r]: 4.3
u2—
~ K2 ~
€= ( 1_(|Ogr)m)ebare+ O(1), m=0. wheref(u) is a positive function of time and angles having

(3.36 the dimensions /.
' Using Egs.(4.2) and (4.3) one can estimate the fluxes

associated with created particles. Fefl one finds
The correct result for the ADM charge is obtained with the

normalized massive form factd®.5): 2

am 3/2
1- 7) exd —uVi(u)r]

A
Jun=r 4m2dM

ei=Cparer  M#O0. 3.3
full bare ( 7) - 1 1 " , 3

== dx
r2 f(Wlo ™ [x2+4m?f(u)r]¥?

IV. CREATION OF MASSIVE PARTICLES AND THE
HIGH-FREQUENCY APPROXIMATION Xexd — \/x2+4m2f(u)r]. (4.4

In spite of their apparent similarity, the divergent renor-\When projected oV r, the coefficient of 2 in the latter
malization (3.36) of the ADM charge and the divergent expression is the density of the flux of charge through a tube
renormalization(3.31) of the news function have different of radiusr. It follows that, because of the presence of the
status. The former is a result of an incorrect use of the highthreshold, the flux through the tube of radits | is sup-
frequency approximation in the static region whereas the latpressed by the factor
ter is a natural consequence of the intensive pair creation. To
show this and to derive a criterion of the high-frequency 2m\/F
approximation, the expectation-value equations are consid- exp — ek
ered below with the massive form factef — 7). v

_ The kernel of the operat@®.5) is obtained with the aid of Hence one infers that, although pair creation starts as soon

its spectral form ash v reaches the value of orderc?, the particles are cre-
ated in the support of the source with small momenta and do
not get far away. They stay in a compact spatial domain until

"The only exception is the case where the bare source has rov reaches the value

monopole momente ,=0. Then one can show that alsny,

=0. An observableelectric charge cannot be carried by massless hv~mcz(m:I ) (4.6)

particles. h

(4.5
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At this value there appears an observable flux of charged . 1 . 9.
particles outside the support tube df,. The factor RF|ze=—| VAU D= VU DY
(mcd/h)l may be interpreted as the number of created par-

ticles for which there is room in the spatial support of the o .
source. If the creation is more violent, the particles get out of It follows that for obtainingTy,{1) atZ" one needs to
the tube. Finally, the high-frequency approximation is validknow the Eehawor of logtLJ) with a test function that be-
when7iv is much bigger than the valug.6): haves atZ * as

+0

1
r—z . (5.2

mc 1
ﬁy»mc2<7l). (4W X|I+ ZFA(U,¢)+O

1
2] (5.9

Under this condition the flux of created energy and charge
stops depending on the mass of the particles. The mass term
in Eq. (4.4) can then be discarded which is equivalent to

be needed result is obtained in Appendix C:

replacing the second term of the spectral formdld) with O
—log| —— | X[z~
m
f “du? ! (4.9
© : : A(u,
0 w?=0 _ A . ¢) (logmr+2c—log 2)
Hence the approximatiof®.6) for the form factor.
Expression(4.4) holds for the transverse projections of " EJ'” drlog[m(u— T)]iA(T ¢)+O( Iogr)
I as well: rJ—o ar r2
5.4
34 ! (4.9 e
m =1, . . . .
o fulllr=| r? Substituting Eq(5.2) for Eq. (5.3 one obtains
and the coefficient of £ in this expression is nonvanishing A 0\ .
whenever there is a nonvanishing flux of created particles-*,log| — —; R™ 7+

outside the support cﬁbare. Only in the special case where

the electromagnetic radiation ofy, is absent altogether 1

may the transverse projections vanish. Thus the behavior =—2V“uV”u
(4.9 is a direct consequence of pair creation. Then, by Eq. r
(3.22, the news function of the mean field inevitably di-
verges as log. Hence relation(3.31). The normalization +
scale of the log in this relation can be read from the kernel
of the operator 171 (Appendix Q. This is log/l).

It will be emphasized once again that there is nothing
wrong about the mean electromagnetic field. When pairs are
created, its energy is no more governed by its news function
since there appears a real vacuum contribution. The newSe e and below, use is to be made of the following identity:
function diverges but the vacuum energy redistributes and
keeps the electromagnetic radiation down.

Jou

Jd . J A
(logmr+2c—log 2)(%Df) <_Dla)

d ) (v P .
%Dl)JxdTIOg[m(u_T)]ﬁDla(T)

+0

1
=l (5.5

r

d (u o .
ﬁj,wdTIOg(u_T)f(T)_j,xdTlog(u_T)a_f(T),

V. CALCULATION OF TH(1) AT T+ 5.6
There remains to be presented the calculation of the en-

ergy fluxes(2.21), (2.22, and(2.23. This is, of course, the where f(7) is supposed to provide the convergence at the

main part of the work. lower limit. The convergence of the integral in E§.5) and
TheT{;(1) is given by expressiof2.15 with y(—O) in similar integrals is provided by the assumption of asymptotic

Eg. (2.6). The commutator curvature to be insertedrify, is stationarity of the bare source. Under the simplified assump-

the one generated by the bare source. The bare source haian that the domain of nonstationarity of the source is com-

compact spatial support. Therefdid, pact, there will be time instants_ andu, such thaf?2]
1., 1., 1 9 A d
_E‘]barJI*':FDl'i'o r_2 (5.1 %D (u)|u<u_:0’ %D (u)|u>u+:0- (5.7
and hence, by Eq3.18, In this way the resul{2.21) is obtained.
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VI. CALCULATION OF TE'(2) AT T*

The T{2(2) is defined by Eq(2.8) with y(—0O) in Eq.
(2.6). Using the spectral formula

log — = J P 6.
ogl ——|=-— - .
9 m? 0 K w>—0  p?+m?
one finds
J dxg"?Tad2) 69 .,
__ 1 jdxgl’ztrfcd,u2 RP
12(47)2 0 w?—0
x 801 ! R ) (6.2
w2-0 ) '

and the operato$] can be obtained by calculating
f dxg"?tr R*A(S0) R

:f ngllzég,thr[pﬂy(Vl!VZ)ﬁfﬂlfe’Zaﬁ]! (63)
wherep#”(V,,V,) is some polynomial in the derivativé,

acting onR, and the derivativ& , acting onRR,. In terms of
this operator polynomial one obtains

PHYSICAL REVIEW D60 065012

A detailed analysis shows that the total derivatives in Eq.
(6.6) either vanish afZ * or vanish in the integrated energy
flux; i.e., their contribution tod€,,c/du is quantum noise
[Eq. (1.22]. The technigue used in this analysis is outlined
below.

In the remaining term of Eq6.6) use will be made of Eq.
(3.17 and the conservation equatid.8) to express the
commutator curvature through its source:

g 1. 1y
Rl Rzaﬁzlj —DIDZJTJZ“ —ZVQV,E; —DlDZJlJZ
1.. . 1.
- D_l‘Jl‘JZa_Jl D_Z‘JZa . (67)

The first two terms of this expression are total derivatives.
One obtains

. 1 log(4/05)

TEr(2)= r—
vad2) 6(4m2 U 01—

V{3,V

+ total derivatives, (6.8

where the indicesuv are symmetrized. Of the new total
derivatives, the contribution of the first term in E§.7) is
O(1/r3) at 7%, and the contribution of the second term is
guantum noise. The proof is given below.

The form factor in Eq(6.8) can be expressed through the
operatorH, introduced in Ref[2] and Appendix A below:

e 2=~ tr (7, V) R D s 1 log(0:/0,)
v 12(41)?2 PR OO, TR = 292y X(x)
0, 0,-0, "2
(6.9 2 1
where the nonlocal form factor results from the spectral-mass :_fo d (iH X (X ) fq @H—X X
integration in Eq.(6.2) and, up to higher orders in the cur- 94 gg 1(X) =Hq 2(X) |

vature, the operators in E¢6.4) are commutative.
The explicit form of Eq.(6.3) is

f dxgH2tr RS0 R

=f dxg"28g,,,tr| (VARP) (V'R ,p)

1 v S a B > v af
- 20 DR R )~ 2V (R V'R

—RPVRE) |, (6.5
whence
1 log(d,/O5) _ . -
TEY(2)=— r VARIBYIR .,
vac( ) 12(477)2 Dl_DZ 1V 2/%V2apB
+ total derivatives. (6.6)

6.9

The behavior of this function as—Z " is obtained in the
same way as in Ref2] by making the replacement of the
integration variable

g=r(r—u), r=r(x)—oo, (6.10

where 7 is the new integration variable and=u(x) is the
retarded time of the poinkatZ *. With q replaced as in Eq.
(6.10, one hag2]

1
HX(X)|xwz+= T Da(7.0[X), (6.1

where the quantity on the right-hand side is e moment
of the test sourc&X. As a result, for the functiorn6.9) one
obtains
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1 log(d,/0,)

1(u (4
o, O,-m, Xelr=- r_zfxdT(EDl( T,¢|X1)>

fT dr
X =

e

Using the latter result in E(6.8) one finds
u

—f dr

 dr
J —Dla(T))+QN

—or—U JT

Da(7,¢|Xy) |-

(6.12

P .
3—72Di'( 7)

1 1
Thr(2)|7+=—=V*uV'u
r2 6

(477)2“'

X +0

(6.13

The integration by parts first in the internal integral

J’r dr o
—e7—U J
2

T __ — 0° . _
70cd7'|og(u— T)ﬁDla(T)

—Dla(T) |Og(U—T) Dla(T)

(6.19

PHYSICAL REVIEW D 60 065012

ol ol

(see Appendix B Therefore, the contributiof6.15 is in-
deedO(1/r%) atZ™.

To calculate the contributiof6.16) at Z*, one may use
the following result from Ref[2]. If a symmetric tensov*?
is analytic atZ *, and its projections tangential " vanish:

(6.18

1 1
V., uVveh|,.=0 —v), VUV puved| =0 SV,
r r2
(6.19
then
Bl _ 190 B 1

By Eq. (3.16), the tensor(6.17) possesses the properties of
V8. As a result, for the contributiof6.16) one finds

1 &, 1
AzTCL;JI-#:—zV”UVV ( AZ VaC)+O(_3)'
r d r
(6.27

where the respective energy flux is a total derivative in time:

and next in the external integral yields finally the expression

(2.22.

It is now convenient to present a proof that the first two
terms in Eq.(6.7) can be discarded. Their contributions to

TLx(2) are, respectively,

AyThr=— trD( ~ 9 gugeg s )
1'vac 12(471_)2 DlDZ DI_DZ 1v1 Y 2Y2«a
(6.15
and

1 log(d,/0y) . . )
T =———trV V ( VEIOVLIE |

2 'vac 6(477)2 B Dl‘:|2 Dl_Dz 1v1VY2v2
(6.16

Using the same technique as above, one obtains

1 log(d4/05)
| P N g WP

1V“V"fud ff dr z?A()
=——V*uV”u T = T
2r —o —oT—U JdT g
rodr 9., —
X(f = —_D':[L;(T)
—o7—U JT

Note that this behavior is not evernrd/ It is 1/r. Neverthe-
less, one has

V4Vl

(6.17)

e —1  d rodr 9. —
= tr— dT f = —=Df{(7)
- 1247)? U= —er—U JT
rodr 9. —
—o7—U JT
Since

u
fdr

JT dr o _D“( ))U dr d (_))
—o7—U JdT T —wr—U 7T Lal®

u—®

1 . ~
:G[D1(+°°)_D1(_°°)]2_’0' (6.23
one obtains
o &,
fﬁ du(A2 al”j“):o. (6.24)

Thus the contributiori6.2]) is indeed quantum noise.

VIl. CALCULATION OF Th»(3) AT Z*

The T/ (3) is obtained by varying the third-order action
(2.3 Wlth respect to the metric. Only the Ricci curvature that
enters the basis invariant®.4) needs to be varied. The com-
mutator curvatures in these invariants are to be expressed
through their sources via Eq§3.17) and (3.8). The result
may be represented in the form

065012-14
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Thad3)=

ter T(—0,-0,,- 09 RyRs*"(1),
(7.7

(4m)?

where the form factorE,(— 0,—0,,—0j) are linear com-
binations of I';,(-0,—0,,—03), and the structures

R,R3s**(1) make some nonlocal tensor basis second-order i

(the source ofthe commutator curvature. The first argument

O of the form factord’, is the operator argument that in the
actionS,,{3) acts on the Ricci curvature. In the variational
derivative (7.1) it becomes aroverall operator acting at the

observation point. In the diagrammatic language, the argu-

ment[J corresponds to the external line of the curréht).
This is explained in more detail in Appendix B.

It is shown in Appendix B that only the smadll- expan-
sion of T')(— 0, —[,,—[j) in the argument] is relevant
to the behavior of the curret.1) atZ *. This expansion has
the form

T/(—0,-0,,—Og)=log(— ) A(0,,05)+ Bi(05,05)

+0(0), O—o0 (7.2

and the contribution aZ* of the termsO() is already
O(1/r3). By the results in Appendix B, botH,([J,,13) and
B(0,,03) can be expressed through the operatfyrin a
way similar to Eq.(6.9). Specifically, all.4,(,,003) are

linear combinations of the following operators
an(D21D3):
0 d m+1
an(DzyDS)x2X3:_2f7 dgg™" (ﬁ) quz}
d n+1
X E}) qua}- (7.3

Moreover, the term with log([]) in Eq. (7.2 always ap-
pears in the combination

|Og(_D)an(DZaDS)'H—mn(DZrDS) (7-4)
with

Lmn(02,03) X5X3

0 q d m+1
= —Zf_wdq gntn Iog( —5|t2c (d_q) quz}
d n+1
X (@) qu3}. (7.5

All B(O,,d3) in Eqg. (7.2 are linear combinations of
Linn(02,035) andF (05, 05).
Thus one arrives at the ansatz

PHYSICAL REVIEW D60 065012

Tad3)z+=

trEl [log(—)A(0y,03)

(4m)?

+B,(03,03) IRyRs*¥(1)+0

1
3 (7.6

'i{l which both the basis elements and the operator coeffi-
cients are presently to be determined. One can check that the
following nine structures quadratic in the source of the com-
mutator curvature make a basis:

RoRa*(1)=3%-33, (7.7)
. 1 .
RoRa"(2)= 5 V#V"(35 - J3,), (7.9
RyR3*"(3)=35-V4V 45, (7.9
S > v 1 v Ja B
RoR3* (4)=§V"V V.V(33-33),

(7.10
RoR3*(5)=V,V 435 V4V338),

(7.10)
RoRa"(6)=VU(V¥ Iz, 33, (7.12
RyR*(7)=V (I, VEIY), (7.13
7’\327’%3#1)(8):gﬂng'33a, (714)
RoR3*(9)=g""V ,V 4(35-35). (7.15

The last two structures will be omitted since they cannot
contribute to the energy flux through'.

The respective coefficientd,((J,,03) and 5(,,3)
are obtained using the algorithms of Appendix B and the
table of the third-order form factors in Rdi9]. Only the
basis element(7.10 with 1=4 has a nonvanishing
A(02,03):
A(02,05)=0,

| +4, (7.16

1 1
«44(52,53):_§m[Fzz(Dzyms)_2F11(Dzyms)]-
(7.17
This agrees with Ref[2] where only the term with

log(—0) in Eg. (7.6) was considered. The results for
B (,,05) are as follows:

B,(O,,03)=0, (7.18

B,(O,,02)= 1 1 +1 L + F..(,,]

2(Hy,05)= 60,0, 120, O, 11(02,03),
(7.19
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1 1
Bs(Lz,U3)= 12(52 D—a)[Fu(Dz,Dg) 0% = XX3|7+=—D1(U,$|Xz)D1(U, B[ Xs3).
r?
—Foo(L2,03)1, (7.20 (7.29
, , With these behaviors, the calculation of tBeterms in Eq.
B4(O2,03) = B4(0,03) + B4(0U3,Ua), (7.2)  (7.6) essentially repeats the calculation in Sec. VI. The

terms that involve the form factorg.27) are analogous to
Eqg. (6.8, and theB, terms that involve the form factors

By(02,03)=~ 30,0, = [h202,H3) (7.28 are analogous to Eq6.16. This concerns all5; ex-
ceptB;.
—2L13(05,035)], (7.22 For | #4 the results are as follows. Sind =0, there

remain two basis structures=6 and|=7, in which the
, indices of the energy-momentum tensor do not belong to
4(02,U3)=3 0,00 == Fu(U2,03), (7.23  (erivatives. Their contributions 4t* vanish by virtue of the
conservation law(3.16). This may be exemplified with just
one term

1 1
BS(DZrDS):gm[FIZ(DZvD3)_F21(DZaD3) 1
—F11(05,03)32,V333l7+

—F1(0,,03)—Fol0,,03)1, (7.24 Hs
J .
11 1 :__Va q D ) (—D" )
B6(D2'DS):_E<D_2_35_3>F11(Dzy|33) f m(r= u) 1a(7) || 5,P1(7)
1 (1
“80, —Foo(2,03), (7.25 +0 e =0 s (7.30

The contributions of the remaining structures are of the form

11
B?(Dvas)zgm_[Fll(Dz, 3)_ Foo(d2,03) | A A
Bi(O,,03)RyRe* (1) 7+

(7.26
1 1
Only B, contains the contribution df,(C],,03) because =—VAuV’u C|| Dla +Q.N.[+O| =
the latter can appear only in the combinati@m). r
The kernels for the superpositions of the operators (7.3D)

Fmn(O,,03) with /00, and 115 are given in Eqs(A.15) _
and (A.16) of Appendix A. By the same calculation as in with
Egs. (6.9—(6.12 their behaviors atZ' are expressed

through the momentB, of the test functions: 1 1 1
¢ ! C||:2=1—2, C||:3:g: C||:5zz- (7.32
1
D—gan(Dzﬂs)szdr The contribution of B is also of the form(7.31) with

c|=,=0. Thus the effect of all structures induced by the
third-order action except the basis structure withd boils
down to a finite renormalization of the classical news func-
tion.

The main contribution comes from the basis structure

1 (u aerl
—- rzf_mdm‘“)"”” D dlXa)

;[ dr
_nj, Dy(7,$/X3)

% (7.2 (7.10 with I=4. One may write
aT =7—U
[log(— ) A4(O5,03) + By(H5,03) IR, R3#7(4)
T Frn(02.03)X2Xs] 1+ = V4V Tlog(— )T+ N(x)], (7.33
2413

1 ru g odr - where
o _ m+n| -

> drte—u) (Mmfm?_uolwﬁlxz)) )

i . ix)= V Vﬁm o0, [F2A02,03)

x &—fTio(?quX) (7.28 -

)y RTOIR3 ' —2F4(0,,005)13535, (7.34
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. 1 1 —log(—O)X|7+
N(X)= ==V, V=" [Lo3,3)
6 0,0,
2A(u,¢)(I N )+B(u,¢>)+O logr (7.4
E = ogr+c .
—2L3y(0,,04)1353%. (739 T 2 =
The scalar ir(x) is the central object in Ref2]. In the same and
way as above one obtains
~ 1 u Jd . o Jd . 2
I(X)|I+:@f_wdT(u_T)<z_Dl(T))(E_Dla(T)) J d°S(¢)B(U, )|y
l 2
1 = 2 —
r

X[Q(y,¢)—Q(1,¢)]| +O(logu).  (7.42

. logr (u J . d A
N<X)|Z+:FJxdT(u_T)(E-Df(T)>(EDM(T))

1 (u The behavior of the functiofi7.33 atZ " is obtained by
+— dr(u 7-)( log(u—17) substituting Eq(7.36 for Eq. (7.39 and using Eqs(7.41)
6r? and(7.37. Summarizing the calculation above one has

N 1 0Ead3) 1
Tvac(3)|I+:r_2V uV®u _T +0 r_ ,
(7.37 (7.43

Y
Ju t

+1 &J‘Ud |
6aul . Tlog(u—17)

1
—log2+2c+ >

J A d .
a_TDl(T) E_Dla(T))

1 . R 1
+ED§’(U)D1Q(U)+O )

where Eq.(7.36) reproduces the result in R¢R]. However, 9Ead3) 1

the scalar ir(x) is needed at one more limit which [&] is ou (41r)2
calledi*. This is the limitr — along the timelike geodesic
that, when traced to the future, reaches infinity at the pgint
of the celestial sphere with the energy= (1— %) Y2 per
unit rest mass. The result obtained in Héfl. for this limit is

9.
. 2 9. X(—Df(r)
T(x)]+ = 7( 4 )J (au )(EDQ), (7.39 T

P .
—EB(U,@%—Q.N. .

1I log 2 2
5| logr+log2+ >

[7817)
a_TDla(T)

(7.449

whereD* is the full (y-dependentradiation moment of the
sourced.

It follows from the properties of (x) above that, for the The contribution of the latter total-derivative term to the ra-
calculation of the functiori7.33 atZ *, one needs to know diation energy

the behavior of logtJ) with a scalar test function that be-
haves atZ * as

fldu f d28(¢)(— ‘ggvaajg)) (7.45
><|1+—r1 AU, $) (7.39
IS
and ati *
1 5 0
x)o= 22 _V)Q(y $), Q1$)#0, (7.40 w>2"fd5(¢)58(”’¢)|“*°°' (749

where A(u,¢) and Q(v,¢) are some coefficients. The Substituting Eq.7.38 for Eq. (7.40 and using Eq(7.42
needed result is obtained in Appendix C: one obtains
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J . Of the missing term©(1°), the important ones can easily

—J d*S(¢) %B(uad’”u—»w be restored. These are the terms li,,. Since the
log(—0) in Eq. (8.3 originates from the expansion of the

. third-order form factor¢Appendix B, eachF ., in Eq. (8.4

f duf d2S( ¢){—(—Da>( m) should be accompanied by the respectiyg, to form the
11 72
3f0 dr 1-v2
(Sec. VI.

combination(7.4). With the terms inL,, added, expression
d . i i i -
_Dla)H (7.47) For the first example, consider the spinor QED. The ef

J J (8.3) becomes analogous to EF.33. The remaining terms
( )(_‘ ) _( ) 0(d% and the unspecified constants in E8.2) contribute
au au only to a numerical renormalization of the news function
fective action generated by the fermion loop in this model is
(—1) times the action for the standard loop with

In this way the resul{2.23 emerges.

.1 . .
P=Sv* YRy, v*y'+y'y*=29"1 (8.9
VIIl. OTHER MODELS

The results for quantum-field models other than the stanand
dard loop can be obtained by combining the results for the
standard loop3]. However, the results for the standard loop 7%#1»: —inﬂVi, tri=4, (8.6
should then be known in full, including the contributions of

the potentialP. The contribution of the potential to the WhereF,, is the Maxwell tensor, and is the electron’s
vacuum energy flux is given in expressioh.21) but this ~ charge.

expression implies that the potential is regulafat Since the potential in Eq8.5) is singular atZ *, one has
to resort to Eqs(8.2)—(8.4). One obtains

Pl;+=0 (8.1

- ~ A 1 . .
r3 : trP2P3=—§tI’R5V'R3#V (87)

If condition (8.1) does not hold, the contribution of the po- \hich is valid with any insertion of the forni(V,,Vs5).
tential should be calculated anew. For the starting point onghen, by Eq.(6.7),

may take the expression f&,{2) with the form factors in

the high-frequency approximatidi] . 1 - 1 oy
5 _ trP,P3=tr _ED m\lz\]:m +VQV,3 m\lz\ls
Siad2)= e )Zf dxg2tr| — Plog - —|P 1/1.. . 1. )
+§ D—2J2J3Q+J2 D_3‘]3“ . (8.9
l - D -~ Falgral - . - - .
—1—2Rwlog - R*"4+constx PP When this expression is inserted in E(3.4),(8.3), the con-
tribution of the first term vanishes #&t" because of the pres-

ence of the overalll (see Appendix B and the contribution
+ consix ﬁﬂvﬁ#vl (8.2  of the second term is pure quantum noise because it has the
same structure as thE term in Eq.(8.4) but with no form

factor F,,.8 As a result, one is left with
and the expression far(3)|;+ calculated in Ref{2] up to

termsO(0°) in the argumentd of the external line: . 11 A
[(x)= ED_SFll(DZ-D3)JgJ3a

V4V 'trlog(— )1 (x)+0(09),

1
fad 3|z += 1 1
val 2 A ek

(4) —EVaVBmFZZ(DZ,D3)J2J§+Q.N.,

(8.3
(8.9
A 1 ~ A
()= 5| F1a(D2,Hs) — Foo(Dz Us3) | P2Ps where the first term is the contribution of the potential.
! V.V ! (Fou(05,03)
6 BDZD?, s 8In each sum of,, in Eq. (8.4), only theF,,, with the highesn
Y is to be retained since the junibr,,, contribute only to the quantum
—2F14(0,,03))J335. (8.4  noise[2].
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For i(x) in Eq. (8.9 the technique of Ref[2] yields  d&,.d3)/du is then (—24) times the result for the standard
straight away loop. The contribution ofR,, is, by Eq.(8.16), four times
1 the result for the standard loop. Since the contribution of
- _ u 9 A, J A ghosts is ¢ 2) times the result for the standard loop, the
1001z =~ ?f_de(u_T)(a_rDl(T)> ((?_7-D1“(T)) grand total is (-22) times the result for the standard loop.
(8.10  The total actionS,,{2) for the Yang-Mills field is also
(—22) times the result for the standard loop as follows im-
which is (—2) times the expressiofr.36), and mediately from using Eqg8.15 and(8.16 in Eq.(8.2) and
5 adding the ghost contribution.
To0), = y(1—vy )f”“ du(ilﬁa) iﬁ ) Thus, also for the Yang-Mills coupling, all vacuum fluxes
! 6r o Jau Ju_ “ are multiples of the respective fluxes for the standard loop
(8.1)  [with the substitution(8.12)], and the multiplicity is ¢ 22)
in accord with theB function but the price for the asymptotic
which is (—2) times the expressio(7.38. In addition, there  freedom is that the radiation energyrisgative® This is not
is the overall (- 1) appropriate for fermions. It follows that surprising. Because the Yang-Mills quanta are exactly mass-
dEd3)/du for QED is twice the result for the standard |ess, a source of the Yang-Mills field would cause initially an
loop. On the other hand, using E(B.7) in Eq. (8.2 and infinite static polarization. The Yang-Mills charge is unob-
changing the overall sign, one finds tt&t{2) for QED is  servable at infinity.
also twice the result for the standard loop. Thus, up to a
numerical addition to the renormalization of the news func-
tion, all the results for QED are obtained by doubling the
respective results for the standard loop and making the sub- The work was supported in part by the Russian Founda-
stitution (8.6). Note that, since the balance betwe®gp(2) tion for Fundamental Research Grant No. 96-02-16295 and
and S,,{3) is maintained, the fact of doubling can be readINTAS Grant No. 93-493-ext.
just from theg function.
Both the standard |00p and the spinor QED have the APPENDIX A: THE ONE-LOOP FORM FACTORS
“zero-charge”[11] sign of the static vacuum polarization. It
is interesting to see what will be the results in the case of the The basic building element for all one-loop form factors
“asymptotically free” sign. For that, consider creation of the [9] is the operatdf
Yang-Mills quanta in the external Yang-Mills field. In this

consideration, it is convenient to refer to the standard loop ~/2q f—r—
with the commutator curvature Hq= ﬁKl( 2q9t), =0 (A1)

ACKNOWLEDGMENTS

fzszﬁW:C?bFLy, (8.12  depending on the parametgr with K, the order-1 Mac-
donald function. By the properties of the Macdonald func-
whereC$, are the group structure constants, aﬁg is the  tions one has also
strength of the external Yang-Mills field.
In the minimal[3] gauge, the effective action generated d
by the ghost loop is{2) times the action for the standard d_qu: Ko(v2q0) (A2)
loop with P=0 andR,,, in Eq. (8.12. The quantities per-
taining to the loop of the gauge field will be distinguished and
with a tilde and expressed through the quantity in Bql2.

The loop of the gauge field is the standard loop W&h d?
2q F'HqZ D'Hq . (A3)
P=Pf4=-2R3, 9", (8.13 a
~ " Despite its scaring appearances the operéddn has a
Rw:REEB;w:ngéﬁ (8.14 simple kernel. Its retarded kernel is
Hence, in terms of th& ,, in Eq. (8.12, 1 - _ _
HXO0=7— | dxg"(e(x ) =@)X(x), (Ad)
trPPy=—4trRE"Rs,, (8.15 past ofx

tr R R, =4 tRE Ra,,, . (8.16
This does not contradict the proof of positivity in RE2] since
Relation(8.15 differs from Eq.(8.7) only in the coefficient. the proof has been given only for the case where the potential is
Therefore, the calculation of the contribution of the potentialregular atZ *, Eq. (8.1).
repeats literally the one above; only the result SDOU|d be 1097|| operator functions are originally defined in the Euclidean
multiplied by 8. The contribution of the potenti® to  domainJ<O0.
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whereoa(x,X) is the world functior{6], and the integration is 4(—1)kFmtn ro Chmin
over the past sheet of the hyperboloid of equal geodetic did-kmn(H1,H2,H3) = mjwdq a
tance fromx. The derivation of Eq(A4) is based on the
spectral representation for the operatad):

dX dm
Xd_quO( \/ZqDl)WKO(\/ZqDZ)

1 = Ji(uV—209)
Hq=—5—¢—2qf du——75——,  (A5)
0 p—n0 dn
X—Ko(y2q03), (A12)
where J; is the Bessel function. Inserting in E¢A5) the dq
kernel of the retarded resolvefit0]
and, therefore,
X(x):i dxg? Fron(01,0,) X, X
w?—0 41 J past ofx mn( 1, 02) X1 X5(X)
0 d m+1
udi(uN—20) | — :_Zf dggm™" (d_) HX1(X)
x| 8(a)— 6(— ) ———| X, —o q
V=20

(AB) X , (A13)

d n+1
@) HeXa(X)

doing the spectral-mass integrations
Fimd(E1,82,03) X1 XoX5(X)

% 1

J dM‘]l(M /—2q)=—, 4(_1)k+m+n 0 i d k+1
0 V 2q _(k-l—m—-Hl)!Jlmdq q d_q qul(x)

« — — _ B m+1 d\n+1
| du w920 =20 = 0 -, (A7) [ &)™ [ ) s
and using that (A14)
1 1 _ _ . .
_ = - = 1/2 with HyX(x) in Eq. (A4).
O X0 4q-rfpastofxdxg S(a)X (A8) Equation(A3) makes it possible to obtain easily the su-

perpositions of the kernels above with 1L/ For example,
one obtains Eq(A4).
The kernel(A4) was used in Ref2] without pointing out 1
its relation to Eq.(A1). This relation and the technique in =~ Fmn(H1,H2)X1X;
Ref.[9] make it possible to obtain the kernels of all one-loop
form factors in the expectation-value equations. Thus, for the jo m+n( gm+1 )( d" (a dq
=—| daq f

— —HX
dg")=q
n|09(1151./j252) ’ (A15)
1Sy PSP i=ip=1

(A9)

second-order and third-order form fact¢fg

dqm+ lHle

a\m o
Fmn(O1,05)= 7 \o5,

Fmn(01,02) X1 X5

0,0
Tm(01,02,03) e

L fagnen| 9" 0 99
:—f daldazda3 5(1—a'1—a2—a3) :_Ej_wdqqm d—mf w?Hq 1
a>0
“aMag" d" (a dq
ap ay ag (A10) X( nJ :H?(z) (A16)
azazll;+ajasll+ ajaylls dq")-=q
one ha{9] which is valid including the cases=0, m=0 (cf. Ref.[2]).
o gm Similarly for the third-order form factors. The convergence
Fon(dq,00)= —Zf dg qm+“_mKo( [2q01,) of the integrals ing at the upper limit is controlled by the
—o dq behaviors
Iy J2q0 A1l 1 d
dqr oA, (ALY Moo=~ ggltala-o=0lloga)  (A17)
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following from Eg. (A1), and the convergence at the lower
limit should be provided by the properties of the test func-
tions [2]. Equation(A3) can also be obtained directly by
acting with the operatof] on Eq.(A4) and neglecting the
curvature ino, Oo=4+0O[R].

One might have introduced the kernel even more elemen-
tary than the one in EqA4):

@x<><)=i dxg20(q— o (x,X))X(X) <0
q N g7°0(q— o(X, (x), @g<o0,

47 J pasto FIG. 1. The diagram for the contributiofBl) to the

(A18) expectation-value current at poirt The argument] of the form
factorI" corresponds to the external line.

d 2
aqa=Ha: Odla=0=5 (A19) Pimel 0,52, 003) XpXa(x), (B1)
where theX’s are the commutator curvatures or their deriva-
tives, and it is assumed that fifst, acts onX,=X(x,), and
2q 03 on X3=X(x3) with subsequently making the points
G)q:EKZ(\/ZqD). (A20) andx; coincident with the observation poixt and next the
first argument] of the form factor acts on the thus obtained
function of the observation point. This nonlocal structure
corresponds to the diagram in Fig. 1.

whence

The initial condition in Eq(A19) implies that

1 1 L o By the results in Appendix A, expressidiB1l) can be
—X(X)=z— dxg'26(— o)X (A21)  represented as follows:
2 8w past ofx
and (0,05, 03) X5 X5(X)
4(_1)k+m+n 0 . dk
[ aesteon | _akg e Termenn | 99 g 20 | e
(471)7 J past ofx past ofx (B2)
1 . -
- dxg26(— a(x,x))X. (A22)  where the operatdr] acts to the right on the function of
past of x and this function is
Equation(A21) can be obtained by acting with the operator m+1 g \n+t
0 on Eq.(A18) and using Eq(A8). Itis also a limiting case  F(q,x)=g™"" (d—) HXa(X) (d_) qus(x)}_
of the formula[ 2] q q
(B3)
—X(X)= — dxg20( — ) Jo(my=20)X When theX’s are expressed as in E(6.7) through the
(m?—0)2 87 J past ofx sources]) having compact spatial supportthere occur two

(A23) essentially different cases. An example of the first case is

for the massive operator. The kerné€ls18) and (A21) do X X3=J5J8, (B4)
not decrease at the future infinity and can be used for a direct
determination of the moments. Thus, and examples of the second case are
i 1x —1D |X (A24) _ L ey al g v,V L ey
| g2 L ) 1(u, [X), X2X3—D—2J2J3 or JZD_3J3 or V,Vg m\]z% .
(BS)

where the quantity on the right-hand side is the moment

of the sourceX. The difference between the two cases is in the behaviors of

integrals with the functior¥(q,x) asx—Z *. These behav-
iors are readily obtained by the technique in R&f] (see

APPENDIX B: THE THIRD-ORDER FORM FACTORS also Sec. VI above In the first case one has

AT Z*

The form factors in the third-order actig@.3) are linear
combinations of the functions, (4 ,,,03) introduced
in Appendix A. The typical contribution of such a form fac-
tor to the energy-momentum tensor at poirtias the form  and in the second case

0
fodqf(q,X>lM+=O(r*3), (B6)
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0
|” darmaxlre-or 2. (B7)

The second case is our main concern here since the function
(B7) is singular atZ *.

Our present goal is obtaining the behavior of the current
(B2) asx—Z . The principal assertion is that this behavior

PHYSICAL REVIEW D 60 065012

is determined by the first few terms of the smallexpan-
sion of the form factod” in the argumentd of the external

line. For the proof it suffices to consider two generic terms of

the smallE] expansion of the functioiKo(y/2q0) in Eq.
(B2):

(qO)P

It will be recalled that the behaviord6) and (B7) are
obtained by making the replaceméd6it10 of the integration

and (gd)PlogqO. (B8)

variableq. From the form of this replacement, it follows that

in the casgB7) one has also

0
Lodqqpf(q,X)ItzFr”’zap(u,qs), (B9)
0
f_mdq P log(— ) F(d.X) [x— 1+
=rP2logra,(u,$)+0O(rP"%),  (B10)
and then, by the result in Appendix C,
0
Iog(—D)(f dqg qpf(q,X))
- x—I*
=—rP"%logra,(u,¢)+0O(rP7?), p=1
(B11)

with one and the same coefficiemf(u, ¢) in all the expres-
sions(B9) to (B11).

Moreover, using the following form of the operatiar at
" [2],

OX|z+=— EiX—2 ” X+0 iX , (B12
r du auar r2
one obtains

OO(rP)|;+=0(rP" 1), p#-1 (B13)

and, in the exceptional cage=—1,
OO(r H|z+=0(r3). (B14)

Owing to the latter fact, one has
DPO(rp‘2)|Z+=O(ri3 . p=1. (B15)

0 1
Dpf dqqpf(q,X)Ixﬁﬁ:O(—s, p=1, (B16)
. .
0
P log(—D)U dqg q"f(q,X))
0
+f dq ¢’ log(—q) F(q,x)
70) x—Zt
1
=O(—), p=1. (B17)
r

It follows that, in the casé€B7), the function of] in Eq.
(B2) can be truncated as follows:

1
" E(—l)k(k—l)!, k>0,
q“—Ko(v2q0)=
da —Elog—qD -c, k=0
2 2 ' '
+irrelevant terms, (B18)

where the irrelevant terms are the terms whose contributions
to the curren{B2) areO(1/r3) atZ*. By a similar analysis,
in the casgB6) this function can be truncated even more:

0, k>0,

dk
k—Ko(v/2900) = 1
| dg* o245 —5log(—=0), k=0,

+irrelevant terms, (B19)

and one recovers the algorithm used in R&f. Thus the
amendment needed in the cdB¥) as compared to the case
(B6) is retaining the term®(1°) of the form factors.

In addition to the contributions of the forrB1), the
vacuum energy-momentum tensor contains contributions in
which the form factorsl',,,(0,0,,003) are superposed
with 1/0J in the argument of the external lif@]:

1
Erkmn(DyD2uD3)X2X3(X)- (B20)

These contributions occur only &1 [9] and only in the
case(B6).!! By the same consideration as above, the opera-
tor function in Eq.(B2) can then be truncated as follows:

This fact is a matter of a direct calculatigf] but it is also

The relations above make it possible to obtain the contria necessary condition for the expectation-value spacetime to be

butions to the currentB2) of the expansion term@8):

asymptotically flat.
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1 g« rived forL n, Gmn, andM . All of them are based on Eq.
Eqk—kKO( V2g0) (A3) and the integration by parts in thgintegrals.
dq The consideration above can be summarized as follows.

1 1 For the cas€B4) one has
= (=D k=1)1—
5 (DA k=15 .

kan([]1D2!D3)JZJS|I+:O 3

, k>0, (B26

-

1
— Z(—1)k(|<—2)!q, k>1,

+ 1/ qO Lomn(0,02,03) 3233/ 7+
2 Iog7+2c—1>q, k=1, (—qymen
=———log(—O)[Fm(d,,035)JJ3]+0| = .
+irrelevant terms. (B21) (m+n)! mm 2 meieaTs r3
. . . (B27)
The effect of these truncations is that the third-order form
factors boil down to the second-order form factors. The lattefq, 5| subcases in EB5) one has
are the functiond-,, and L, introduced in Sec. VII, and
similar functions originating from expansiagB21) and dif- T, 0,,03) X5 Xa| 7+
fering fromF,, andL,, by an extra power of:
(=)™ "(k—1)!
Gmn(O2,03)X5X3 == (krm+n)! Frn(d2,03)XX3+0 )
0 d m+1
= —Zﬁxdq gntnti (d_q) quz} k>0, (B29)
d\n*t Fomn(0,02,03) XpXs| 7+
X| | == HX3/, (B22)
dq (_ )m+n
:(m+—n)!{|09(—D)[an(Dz,Ds)szs]
M mn(02,03) X2X3
0 [ q il
:_szdq grine 'Og(_i e + LD Oa) XX} +0| . (B29)
d\m*i 1[{ d\"*t For the superpositions df with 1/0 one has
)= HXo||[ =] HXs| (B23) perp
dq 2|\ dq 4
Using Eq.(A3), the latter functions can be expressed througlﬁr"""‘(D’DZ’53)‘]2‘]3|I+
FmnandL . ) (L)™K1) 1 S
Gmr(2,003) =T T krmrmr glimnH2.0s)9235]

1 (—1)™ N (k—2)!
2 (k+m+n)!

2
= D_Z[Fm+2,n(D2-D3)+(m+ DFmi1n(H2,05)]

1
Gmn(D21D3)‘J2J3+O(r_3

2
:D_g[Fm,n+2(D2rD3)+(n+ 1)Fmn+a(0z,05)], k>1, (B30)
(B24) 1
Erlmn(D1D2-D3)‘J2J3|I+
an(DZ-DB)
2 G A Y e TR AR
= S lLmzn(02, 09+ (M4 Dl yey o0, 0o)] ~ (menrny g2 He 2]
2
2 1 (_1)m+n {I ( D)
_——— 0 J—
= gollmne 202,05+ (14 L ea(02,05)]. 2 (m+n+1)1 0
(B25) X[Gmn(H2,83)3233]+Mpp(02,03) 3233
Equivalence of the two forms in E¢B24) follows from the — Gpn(O2,04) 3535} + O = . (B31)
identities forF,,, in Ref.[2]. Similar identities can be de- m r3
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The senior terms of the latter expressions, proportional to
1/0, cancel in the energy-momentum teng@f. Another
useful relation

O 1
mrkmn(DaDZ:DB)JZJ3|I+:O(_3) (B32

-

is a consequence of E(B14).
Finally, the relations(B26)—(B32) remain unchanged
when multiplied by1, /053 or 04 /0,. Indeed, replacing the

function F(q,x) with ((,/03)F(q,x) or (O3/05)F(q,X) =0

does not change the behaviaiB6) and (B7). Using Eq. FIG. 2. Penrose diagram for the Lorentzian section of a spheri-
(A3), the multiplier, /5 or (3/00, can be absorbed in cally symmetric spacetime. The timelike line=0 is the central
any second-order or third-order form factor. geodesic. The union of paths 1 and 2, and path 3 are the two radial

light rays that come to the two-dimensional observation pyit}

APPENDIX C: THE OPERATORS log () AND 1/00 FOR IS the domain bounded by the paths 1,2,3.

TEST FUNCTIONS SINGULAR AT Z* ,
one needs only the integral of E@2) over the two-sphere.

The behavion(4.3) of the resolvent is valid only for test Indeed, to lowest order in the curvature, the scalar kernel of
functions having compact spatial suppofif)]. Therefore, |og(—[) can depend on the angles only through the arc
the behaviors af * of all form factors, used in Ref2], are length between the points andgon the two-sphere. There-
also valid only under conditiond.44. For log(~LJ) this is  fgre,
the behavior(3.25. In the general case, the support of the

test function may conventionally be divided into a compact 5 — = -
domain and asymptotic domain. Ther@/behavior in Eq. d 5(¢)[|09(_D)X]:f dxgL(X,X) fd S(P)X|,
(3.29 is a contribution of the compact domain. Any behavior (C3)

of log(—)X|z+ more singular than 17 (call it just singulay -

can only be a contribution of the asymptotic domain, i.e., ofwhere the angle integrations tix concern only the kernel

X| 7+ itself. Similarly, the regular behavior of @]OXH+ IS £(x,x) and convert it into a spherically symmetric kernel.
1/r and is a contribution of the compact domain. A key 0 One case of the singular behavior considered below is
obtaining the contributions of the asymptotic domain is theynerex|, . =0O(1/r), and log-0)X|;+ is needed up to the
fact that the null hyperplane reachg$ at only one point of regular term€O(1/r2). In this case Eq(C2) works. Another
the celestial spheri2]. Therefore, the singular contributions ¢ase is where|, - =0(1/r?), and log-)X|;+ is needed
are always local in the angles although possibly nonlocal ifnc|yding the regular terms 7. This case is more difficult
time. To see why they may be nonlocal in time recall thaty, ,t s encountered only ifi(3) (Sec. VI) where the limi-
when a point tends @ *, one generator of its past light cone (aiisng implied in Eq(C3) are fulfilled. Therefore, in both

merges withZ * entirely[2]. The retarded time ranges along ases one may use the spherically symmetric kernel.
this generator to-c whereas the whole generator is labeled  ggjow y is a point of the two-dimensional Lorentzian

by a single value of the angles. section of a spherically symmetric spacetime, ig) is a

Let £(x,X) be the retarded kernel of log(J), test function restricted to this section. The spherically sym-
metric retarded kernel of the operator led() is of the form
log(—O)X(x) = J dx g 2L (x,x) X. (cy [839]
O 100 _r —
By the argument above, —log| — — Y(y):_j dr=——Y/patn1
m? Mo r+r

log(— )X (X) [ x= (u, ¢, =)

1fr — —d —

_ _ + = drlogim(r—r)]—=(rY

:fdxglfzc(x,x)(x|g:¢)+o =], (€2 r o 09 gr " Ylpund
r

. - . ) 1(r — — d

i.e., for obtaining the singular terms @&t", the test fu_nctlon +Ff dr Iog[m(r—r)]d—_(rY|pam3)

can be taken at the angles of the observation pepst,e. - '

The angle integrations idx can then be done explicitly, and, +2cY(y), (C4

as a result, the kernel becomes spherically symmetric. Thus, _ o _ _ _
for obtaining the singular contributions @t", it suffices to ~ Wherer is the luminosity coordinate of the observation point
consider the spherically symmetric kernel. y, and the integrations are along the null paths 1,2,3 shown in

The spherically symmetric kernel suffices for obtaining Fig. 2. In Eq.(C4), each of the paths is parametrized with the
also the regular contributions provided thais a scalar, and luminosity coordinate. The retarded time labeling the radial
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future light cones and normalized in E@.11 will be de-

notedu as above. In the coordinates=(u,r), y=(u,r),

and with the curvature neglected, path Liis 2r =u, path 2

is u=u, and path 3 isi+2r=u+2r.

PHYSICAL REVIEW D60 065012

(with no pure 1v term), and forn=2

log(mr)

=2, Poy)lr-=2—

A(u)

The spherically symmetric retarded kernel of the operator

1/0 is of the form

1 1 -
—gYW =5 fﬂdzygl’z(y)rY, (C5)

wh_ere Q_is the domain bounded by the paths 1,2,3, and
d?ygYA(y) is the induced volume element. Hence, in the

coordinatesy=(u,r),

01 1o — Ly
—@EY(”'”:E d”Y|path1+§ Od”Y|path2

[

1(r —
- Eﬁodr rY|path 3 (C6)

Denoting the contributions of the paths 1,2,3 in EQ4)
P1,P,,Ps, one has

Y(y)="Pu(y) +Po(y)+Ps(y) +2cY(y).
(C7)

| O
f— o —_——

The contribution of path 2 can be rewritten identically as

follows:

1 fr "=y
Pay)= rnﬂfod” . Y | patn 2+ (logmr) Y (y)

1 (1
+—nj délog(1-§)f(ré) (Cy
r"Jo

with n arbitrary, and

f(r)

d — —
d_T( n+1Y|path2)- (C9)

If one chooses equal to the power of decrease vkt Z*

A(u)

YWz == (C10

the last integral in Eq(C8) will have a finite limit:

1
fo délog(1—&)f(ré)|i_.=—A(u). (C1y
In this way one obtains fon=1

log(mr) logr

n=1, Pay)lr+= A(U)+O(r—2)
(C12

| driogmn 2]
- riog(mr)—(r
r2 0 g dr path?)

logr
+0O( —|.
As y—Z*, path 3 shifts entirely t& *. Introducing the

retarded timeu as a parameter along path 3, one can easily
calculate the limit

(C13

uo u—ujd —
Pg(y)|1+=f_ dulog mT d—U(Y|I+). (C14)

1
ph+il ’
(C1H9

Finally, asy—Z*, path 1 remains fixed. Therefore, its
contribution is always regular:

Hence for the behavioiC10 one obtains

1 (u u—uld —
7’3(Y)|z+=—j dulog| m——|—=A(u)+0
rJ—e 2 /du

170
Puy)lz+= r_zLdr rY/path 1- (C19

The contributions of the paths 1,2,3 in E6) are consid-
ered similarly.
In the casen=2 above, the total result is

—log(—O)Y(y)|7+

A B |
=2 (g)(logr+c)+(—2u)+o(£3r>, (C1?
r r r
where
B(u)=B1(u)+By(u), (C19
o __ o _d —-—

Bl(u):derrY|path1_ jo drIOQrd_?(r2Y|path2)y
(C19
B (u):fu dulo (Lﬂi_A(U) (C20

2 . g 2 |dg '

and the next task is obtaining the behavior of the coefficient
B(u) asu—oe.

The analysis of the behavior & (u) at late time essen-
tially repeats the one in Reff2]. The dominant contribution
to this behavior comes frof(y) at the limity—i* which
in the present case is the linmit» along the radial timelike
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geodesic that reaches the future infinity with the endfgy With the behavio(C24) of Y ati* this yields the result
=(1— %) Y2 per unit rest mass:

1-
1—y By(W)[yme=—u f dy i, Q(V)
y—it: u=——=r, r—oo, (Cc21
4 1 uy |\ d
2
The variablesy andr may be used as coordinates of the _ufo d”( |Ogl_7)5['y (1+7)Q(v)]
pointy:
+0O(logu). (C30
Y(y)=Y(y.r). (C22 _ , . . . ,
The integration by parts brings this expression to the final
Then the definition of the limit" is form
Y|i+=Y(y,r—x). (C23 B1(U)|ym-=—2u(logu—log 2+2)Q(1)
Of interest is the following behavior of ati™ (see Sec. 1 ¥?
VIl): +4u| dy 5[Q(y)=Q(1)]+O(logu)
-7
( -9 (C3)
Y|i+="—"—""Q(y), Q(1)#0, (C29

in which the coefficient of the linear growth is convergent. In
this way the pole aty=1 is eliminated see Eq.(1.21) and
the discussion of this problem in RéR]].

The behavior oB,(u) at late time is obtained by rewrit-
ing Eq. (C20) identically as follows:

whereQ(y) is some regular function of.

The limitsi* and Z* are related[2]. For an analytic
function, the sequence of limits andy— 1 coincides with
the future ofZ*. Hence, using Eq(C21), one obtains

2u B —fu‘)d_l 1Y) 9 @+ logs A
(Yl )ue = (Y] )y =5 Q). (C29 A= | dulog) 5 [qpAt T legz LAW
1
Therefore, the behavidC24) implies a linear growth of the —A(uo)]+uf délog(1—¢€)g(ué), (C32
coefficient in Eq.(C10) at late time: Uo /U
AUy =20Q(1). (Cog ~ “Whereto=u,and
'!'he Iate-.time behavior (31(_11) in E_q. (Cl-9) is obftained g(u)= —_A(u) (C33
by introducingy as an integration variable in both integrals
and restricting’ both integrations to the interval<0y<1.
One obtains As u—, the first term in Eq(C32) is O(logu), and the
remaining terms are determined by the behay{©26). In
1 dy ( yu ) this way one obtains
B u —)OO: - f - 5 = o
O 0 (1+ )2 Y 1+y
Bo(W)|ume= ZU(Iog——l)Q(l)+O(Iog u). (C349
)
—uf hy| y,r= ———w . .
0(1—1y)? 1-y In the sum(C18) the senior termslogu cancel, and the final
(c27) result is
1 2
where B(W)[un=U —6Q(1)+4f d 17 2
0 —
hi(y,r)=rY(y,r), (C28
+0O(logu). (C3H
y(d-v) 9, -
h,(y,r)=logr =TT 35 r<yY(y,r). (C29 Taking into account EqgC2) and(C3), one can summa-
r r Y rize the calculations above as follows. For any functidmi)
in four dimensions that behavesat as
2The integration limits 82y<1 emerge after one restricts the A(u, o)

X|I+:

support ofY to the interior of some future light cone= const and n<2 (C36

the exterior of some tube= const. The complementary portions of
the support ofY contribute negligibly asi—« [2]. one has
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1X 1 1 fu drA (@)
] |z+—mrn—_1 _ar (7',¢>)+rn—_1

(C37)

and

X|I+

o -
_O _——

_AWu,¢)

rn

| 2c—log2—1 fldg 1-¢&
ogmr+2c—log + e

1 (u d @)
v drtodmu- 0} AG)+
(C38
whereO|;+=0. For a functionX(x) that behaves &~ as

A(u,¢)

2 1

|7+= (C39

r
one has

1X _1IongudA o
—gXlrr=5 _ArA(T )+

1
F) (C40

PHYSICAL REVIEW D60 065012

and

A(U;ﬁ) (logr +c)+
]

logr
ro[ %]
with some coefficienB(u, ¢). If in the latter case the func-
tion X(x) is a scalar that behavesidt as

B(u,¢)
2

—log(—O)X|7+=2

(C4)

l_
x| = 137) 7)Qw é), (C42)
then
fsz(qS)B(u,(ﬁ)IM
—qu25(¢>) 6Q(1¢)+4
—Q(1,¢)]| +0O(logu). (C43

Note that the term with log in Eq. (C41) is doubled as
compared to Eq(C38).
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