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Vacuum amplification of the high-frequency electromagnetic radiation

G. A. Vilkovisky
Lebedev Physics Institute and Research Center in Physics, Leninsky Prospect 53, Moscow 117924, Russia

~Received 29 December 1998; published 24 August 1999!

When an electrically charged source is capable of both emitting the electromagnetic waves and creating
charged particles from the vacuum, its radiation gets so amplified that only the back reaction of the vacuum
makes it finite. The released energy and charge are calculated in the high-frequency approximation. The
technique of expectation values is advanced and employed.@S0556-2821~99!01016-4#

PACS number~s!: 12.20.Ds
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I. INTRODUCTION AND SUMMARY

A. Introduction

The reaction of the vacuum on rapidly moving sources
strongly variable fields, is important for the evolution
black holes and the early universe but is also interesting
electrodynamics. We know that in electrodynamics
vacuum attenuates an external charge. Suppose now tha
external source is not a monopole but, say, a dipole, and
this dipole be capable of emitting the electromagnetic wa
so that the information about it reaches infinity. Then wh
will the vacuum effect be on such a dipole?

The answer obtained below is that the effect is the op
site: the radiation of the dipole gets amplified. This effe
becomes noticeable as soon as the typical frequency o
dipole exceeds the threshold of pair creation. A flux
charged particles that appears in this case is accompanie
an increaseof the electromagnetic radiation. Generally, the
is a nonlocal tail of radiation caused by the vacuum str
but, at high frequency, the effect boils down to a multiplic
tion of the classical radiation rate by a renormalization c
stant. Since the dipole is a nonlocal object,
renormalization1 is finite and observable.

The vacuum amplification of the electromagnetic wav
emitted by a source is analogous to the effect of the vacu
gravitational waves@1#. The difference is only in the theo
retical mechanisms and in the dimensions of the coup
constants.2 The dimension of the coupling constant caus
the gravitational effect to never boil down to a mere ren
malization.

In the case of electromagnetic waves, the mechanism
which this effect emerges in theory is as follows. If o
calculates the energy of charged particles created from
vacuum by a given nonstationary electromagnetic field@2#,
one finds that the result can be obtained only in the c
where the electromagnetic field contains no outgoing wav
In the general case this energy is infrared divergent with
divergent term proportional to the energy of the outgo
waves. The appearing divergence is a signal that the ca
lation is not complete becausethe energy of the vacuum o

1Residual after an infinite renormalization of the monopole.
2The main difference is, of course, in the fact that for a creation

the gravitational charge, there is no threshold.
0556-2821/99/60~6!/065012~27!/$15.00 60 0650
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charged particles goes partially into the coherent electr
magnetic radiation.Indeed, the missing contribution come
from the back reaction of the vacuum on the electromagn
field. If one calculates the effective electromagnetic field t
solves the expectation-value equations, one finds that
quantum correction to the energy of the outgoing waves
also divergent, and the two divergences cancel each o
As a result, the total released energy is finite but is no m
the energy of created charged particles alone. Rather it
sum of the energy that goes with charged particles and
energy that goes with the enhanced electromagnetic wa
The two contributions can then be separated by calcula
the released charge.

It is worth noting that the vacuum reactions on the lo
frequency and high-frequency external fields are very diff
ent. Effects such as the anomalous magnetic moment in Q
refer to the low-frequency electromagnetic fields and are
related to the effect considered here. On the other hand
the mechanism described above one easily recognizes
physics that stands behind the so-called infrared disas
Here this physics actually works and, of course, there is
disaster if one does not consider the transitions between
cocted states but considers the evolution of expectation
ues.

The terms ‘‘high-frequency approximation’’ an
‘‘strongly variable field’’ are used here as synonyms. Letl be
the typical spatial size of the source of an external field a
n be its typical frequency. On the other hand, letm be the
mass of the lightest particles interacting with this field. In t
problem of the vacuum particle creation, the external field
considered as strongly variable if the energy\n dominates
both the rest energy of the vacuum particle and its st
energy in this field. The first of these conditions is discuss
in Sec. IV below, and its more accurate form is

\n@mc2S mc

\
l D . ~1.1!

The second is exemplified in Ref.@2#. Under condition~1.1!
the vacuum particles may be regarded as massless in
calculation of their fluxes. However, the massm cannot be
neglected in the calculation of the static polarization a
charge renormalization.

It makes sense to begin with quoting the result for t
energy of particles created from the vacuum by strongly v
able fields of arbitrary configurations. The respective cal
f
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G. A. VILKOVISKY PHYSICAL REVIEW D 60 065012
lation was carried out in Ref.@2# for the standard loop, i.e.,
for the vacuum action of the form

Svac5
i

2
log detĤ, ~1.2!

Ĥ5gmn¹m¹n1̂1S P̂2
1

6
R1̂D2m21̂, ~1.3!

where the operatorĤ is defined as acting on an arbitrary s
of quantum fields. The hat over a symbol means that
symbol is a matrix in the space of field components, 1ˆ is the
unit matrix, and the matrix trace will be denoted tr. T
external fields in Eq.~1.3! are the metricgmn , the matrix
potentialP̂, and an arbitrary connection defining the comm
tator curvature:

@¹m ,¹n#5R̂mn . ~1.4!

The sign convention for the Ricci scalarR in Eq. ~1.3! is
such that when acting on a scalar field, the operatorĤ with
P̂50 andm50 is conformal invariant.

In the present paper, only the effect of the commuta
curvature R̂mn is considered, andneverthelessthe action
~1.2! is needed with all the three types of external fie
present. The dependence ofSvac on the metric is needed be
cause the vacuum energy-momentum tensor is obtaine
varying the action~1.2! with respect to the metric

Tvac
mn5

2

g1/2

dSvac

dgmn
~1.5!

~and next using the retarded resolvent for the nonlocal fo
factors3!. The dependence ofSvac on the potential is neede
because the results for various quantum field models,
for the spinor QED, are obtained by combining the stand
loops with P̂ generally depending onR̂mn ~see Ref.@3# and
Sec. VIII below!.

For the classical action of the commutator curvature o
may take the expression

Scl5
1

16pk2E dxg1/2trR̂mnR̂mn ~1.6!

with some coupling constantk2.0. In the case of the elec
tromagnetic connection, thek2 is to be chosen so that th
expression~1.6! be the Maxwell action

Scl52
1

16pE dxg1/2FmnFmn ~1.7!

@the matrix trace in Eq.~1.6! is always negative@2##. Denote

3See Ref.@2#, and references therein.
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Tcl
mn5

2

g1/2

dScl

dgmn
. ~1.8!

The energy of the classical electromagnetic radiation a
in the high-frequency approximation, also the outgoing fl
of the vacuum energy can be calculated at the future
infinity I1 @4,2#. The limit I1 is defined as the limit of
infinite luminosity distancer along the null geodesic that
when traced to the future, comes at the instantu of retarded
time to the pointf of the celestial two-sphereS. One has

1
4 ¹mv¹nvTcl

mnuI152
1

r 2

]

]u
Ecl~u,f!1OS 1

r 3D , ~1.9!

1
4 ¹mv¹nvTvac

mn uI152
1

r 2

]

]u
Evac~u,f!1OS 1

r 3D ,

~1.10!

where

¹vuI15¹u12¹r , ~¹u,¹r !uI1521. ~1.11!

The notation]E/]u is introduced to represent the energ
loss. Taken with the minus sign, each]E/]u is the density of
the respective outgoing flux of energy so that the total em
ted energy is obtained by integrating (2]E/]u) over the
two-sphereS ~normalized to have the area 4p) and the time
u. Specifically, the total released vacuum energy equals

E
2`

`

duE d2S~f!S 2
]Evac

]u D5(
A

«A^ in vacuaout
1Aaout

A u in vac&

~1.12!

and equals the total energy of particles created from the
vacuum by external fields~see, e.g., Ref.@5#!. Here aout

1A ,
aout

A are the creation and annihilation operators for the o
vacuum, and«A is the energy in the out-modeA. SinceTcl

mn

is energy-dominant@4#, the flux (2]Ecl /]u) is manifestly
positive. The flux (2]Evac/]u) is sign indefinite because o
the quantum uncertainty but the integrated flux~1.12! is
positive @2#.

Only the external fields generated by sources are con
ered in Ref.@2# and the present paper. The sources of ex
nal fields in Eq.~1.3! are

Ĵ5 P̂, Ĵm5¹nR̂mn, Jmn5Rmn2
1

2
gmnR, ~1.13!

whereRmn is the Ricci tensor of the external metric, and t
potentialP̂ is identified with its own source. These classic
sources will be referred to asbaresources. The bare source
are assumed to have their supports in a spacetime tube
compact spatial sections and a timelike boundary. Their
main of nonstationarity is assumed compact in both sp
and time@2#.

At a large distance from a source, all its manifestations
both classical and quantum levels are governed by a si
quantity, itsradiation moment@2# defined as an integral o
2-2
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VACUUM AMPLIFICATION OF THE HIGH-FREQUENCY . . . PHYSICAL REVIEW D60 065012
the source over a spacelikehyperplane. The hyperplane itself
is defined as follows. One considers all timelike geodes
that, when traced to the future, reach infinity with one a
the same value of energy per unit rest mass (E.1) and at
one and the same point of the celestial sphere (fPS). These
geodesics make a three-parameter congruence whic
hypersurface-orthogonal, and the hyperplanes are the hy
surfaces orthogonal to this congruence@2#. Let

Tgf~x!5const ~1.14!

be the equation of these hypersurfaces. The parameterg that,
along withf, labels the functionTgf(x) is a redefinedE:

g5
AE221

E
, 0,g,1 ~1.15!

and the functionTgf(x) itself is normalized by the condition

„¹Tgf~x!…252~12g2!. ~1.16!

The radiation moments of the sources in Eq.~1.13! are the
following integrals@2#:

D̂5
1

4pE dxg1/2d„Tgf~x!2u…Ĵ~x!, ~1.17!

D̂a5
1

4pE dxg1/2d„Tgf~x!2u…gā
a
Ĵā~x!, ~1.18!

Dab5
1

4pE dxg1/2d„Tgf~x!2u…gā
a
gb̄

b
Jāb̄~x!, ~1.19!

wheregā
a is the propagator of the geodetic parallel transp

@6# connecting the integration point with the future end po
of the geodesic having the parametersg,f. The moments are
tensors at this end point depending parametrically on timu.

At the limit g51 the hyperplane~1.14! becomes null.
The vector and tensor moments taken atg51 govern the
classical electromagnetic and gravitational radiation. Spe
cally, for the energy of the electromagnetic waves one
@2#

2
]

]u
Ecl~u,f!52

1

4pk2
tr gabS ]

]u
D̂aD S ]

]u
D̂bD U

g51

.

~1.20!

The expansion of the vector and tensor moments atg50
gives rise to the usual multipole moments@2#. The radiation
moments integrated overg govern the energy of the vacuum
particle production. One has@2#
06501
s
d

is
er-

t
t

fi-
s

2
]

]u
Evac~u,f!5

1

~4p!2E0

1

dgg2trF S ]2

]u2
D̂ D S ]2

]u2
D̂ D

2
1

3

1

~12g2!
gabS ]

]u
D̂aD S ]

]u
D̂bD

1
1̂

30S gmagnb2
1

3
gmngabD S ]2

]u2
DmnD

3S ]2

]u2
DabD G1Q.N. , ~1.21!

where the abbreviation Q.N. means quantum noise and
notes the sign-indefinite contribution that is present in
vacuum energy flux because of the quantum uncertainty
sums to zero for the whole history@2,5#:

E
2`

`

duE d2S~f!~Q.N.!50. ~1.22!

In the equations below the term Q.N. will often be omitt
but its presence will be tacitly assumed in all expressions
the vacuum energy.

The significance of the result~1.21! is that it brings the
quantum problem of particle creation to the level of the cl
sical problem of radiation of waves. This is seen from
comparison of Eq.~1.21! with ~1.20!. The integral overg in
Eq. ~1.21! is none other than the integral over the energies
the outgoing particles. The integrand gives, therefore,
energy spectrum of the vacuum radiation.

Expression~1.21! is the starting point of the present work
It is seen that in the case of the vector moment~and only in
this case! the validity of this expression is limited by th
condition

trgabS ]

]u
D̂aD S ]

]u
D̂bD U

g51

50 ~1.23!

which in view of Eq. ~1.20! is a condition that the vecto
source does not radiate classically:

]

]u
Ecl~u,f![0. ~1.24!

If it does, the integral in Eq.~1.21! has a pole atg51. The
appearance of this pole is a manifestation of the infra
disaster that occurs when the classical and quantum ra
tions overlap, and the back reaction of the vacuum is
glected.

As pointed out in Ref.@2#, the calculation in this referenc
is insufficient for a removal of the limitation~1.24!. If this
limitation does not hold, the calculation in Ref.@2# needs to
be revised. The revised calculation with all the need
amendments is carried out in the present paper.
2-3
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G. A. VILKOVISKY PHYSICAL REVIEW D 60 065012
B. Summary of the results

Below I shall consider only the contribution of the vect
source assuming that the other contributions in Eq.~1.21! are
absent:

2
]Evac

]u
52

1

~4p!2

1

3E0

1

dg
g2

~12g2!
tr gabS ]

]u
D̂aD S ]

]u
D̂bD

1Q.N. ~1.25!

It is useful to decompose the vector moment over the ve
basis at infinity:

gabur˜`52¹au¹bu2~¹au¹br 1¹ar¹bu!

1
1

2
~mamb* 1ma* mb!, ~1.26!

wherem is the complex null vector tangent to the two-sphe
S, andm* is its complex conjugate. The projection

@¹mu1~12g!¹mr #D̂m[ê5const ~1.27!

is the full conserved charge of the bare source@2#. Hence

tr gabS ]

]u
D̂aD S ]

]u
D̂bD

5trF S ma

]

]u
D̂aD S mb

]

]u
D̂bD *

1~12g2!

3S ¹ar
]

]u
D̂aD 2G . ~1.28!

The transverse projections of the moment taken atg51 de-
fine the complexnews functionof the electromagnetic
waves4

]

]u
maD̂aug51[

]

]u
Ĉ~u,f! ~1.29!

so that, by Eqs.~1.20! and ~1.28!,

2
]Ecl

]u
52

1

4pk2
trS ]

]u
ĈD S ]

]u
Ĉ* D . ~1.30!

Finally, the longitudinal projection of the moment

¹arD̂ a[D̂ uu~u,f! ~1.31!

plays no role in classical theory but, as shown in the pres
paper, it is responsible for the vacuum creation of char
Upon the insertion of the decomposition~1.28! in Eq. ~1.25!
it is seen that the contribution of the longitudinal projecti
of the moment is finite. It turns out that this contributio
alone is the correct result for the energy of created char
particles@Eq. ~1.38! below#. The contribution of the trans

4I am using the terminology of Bondi@7#.
06501
or
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verse projections of the moment is divergent but, if t
waves are emitted, the calculation of Eq.~1.25! should be
revised@2#.

The result of the revised calculation is that the quan
~1.25! indeeddiverges. The pole atg51 goes but its place is
taken up by an infrared divergence. Only the total ene
flux

2
]Etot

]u
52

]Ecl

]u
2

]Evac

]u
~1.32!

is finite. The point here is that the electromagnetic field to
inserted in Eq.~1.32! should solve the expectation-valu
equations. To an appropriate order in the coupling cons
]Evac/]u can be calculated with the bare source but]Ecl /]u
should already be quantum corrected, and this correc
does not boil down to a renormalization of the coupling co
stant. This correction is infrared divergent, and it cancels
divergence in]Evac/]u. The final result for the total energ
flux ~1.32! is

2
]Etot

]u
52

1

4pk2
trS ]

]u
ĈeffD S ]

]u
Ĉeff* D2

1

~4p!2

3
1

3E0

1

dg
g2

~12g2!
tr gabF S ]

]u
D̂aD S ]

]u
D̂bD

2S ]

]u
D̂aD S ]

]u
D̂bD U

g51
G ~1.33!

with the effective news function

]

]u
Ĉeff~u,f!5F12

k2

24p S c2 log 21
25

12D G ]

]u
Ĉ~u,f!

2
k2

24p

]

]uE2`

u

dt log@m~u2t!#
]

]t
Ĉ~t,f!.

~1.34!

Herek2 is the renormalized coupling constant,c is the Euler
constant and, distinct from Eq.~1.25!, the result is not inde-
pendent of the massm even in the high-frequency approx
mation. The quantitiesD̂a and Ĉ in the expressions abov
pertain to the originalbare source.

Expression~1.33! is to be compared with the sum of ex
pressions~1.30! and ~1.25!. It is seen that the pole atg51
gets eliminated but there appears a finite vacuum contr
tion to the energy of the electromagnetic radiation. The
tarded integral alongI1 in Eq. ~1.34! represents a nonloca
tail of the electromagnetic radiation caused by the vacu
stress. Technically, when a point tends toI1, its past light
cone becomes a sum of a null hyperplane and a single
generator that merges withI1 @2#. The nonlocal radiation
tail is a contribution of this generator~see Appendix C!.

The energy flux in Eq.~1.33! belongs partially to charged
particles and partially to the electromagnetic waves. The
that only the total energy flux is calculable signifies that t
separation of the vacuum energy between the charged
2-4
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VACUUM AMPLIFICATION OF THE HIGH-FREQUENCY . . . PHYSICAL REVIEW D60 065012
ticles and the electromagnetic waves is subject to the qu
tum uncertainty. However, up to this uncertainty, the tw
contributions should be separable since they are measu
separately:

2
]E tot

]u
52

]E charge

]u
2

]E waves

]u
. ~1.35!

A calculation of the flux of charge helps to make this se
ration. The density of the outgoing flux of charge can
calculated from the expectation-value equations for the e
tromagnetic field~Sec. III below!. The result for this density
reads

2
]

]u
ê~u,f!52

k2

3~4p!2

]

]u
D̂ uuug51 ~1.36!

so that the total released charge is

E
2`

`

duE d2S~f!S 2
]ê

]u
D

5
k2

3~4p!2E d2S~f!@D̂ uu~u52`!

2D̂ uu~u51`!#ug51 . ~1.37!

Hence one may infer that the portion of the total energy fl
~1.33! that goes with the charged particles is the one ass
ated with the longitudinal projection of the moment

2
]E charge

]u
52

1

~4p!2

1

3E0

1

dg g2 trS ]

]u
D̂ uu D 2

1Q.N.

~1.38!

The remaining energy in the total flux~1.33! goes with
the electromagnetic radiation. Since expression~1.33! is
valid only in the high-frequency approximation anywa
condition ~1.1! can be used for its further simplification.
will be recalled that the domain of nonstationarity of the ba
source is assumed compact. Its temporal scale~in time u) is
a purely classical quantity of order 1/n. Therefore, if in Eq.
~1.34! one writes

log@m~u2t!#5 log
m

n
1 log@n~u2t!#, ~1.39!

the contribution of the second term will be of orderO(1)
whereas the contribution of the first term will be large:

]

]u
Ĉ eff~u,f!5H 12

k2

24p
log

m

n
1OS m

n D 0J ]

]u
Ĉ~u,f!.

~1.40!

As a result, foru in the support of the bare news function, th
radiation flux becomes merely a renormalized classical o

2
]E waves

]u
52Z

]Ecl

]u
, ~1.41!
06501
n-

ble

-
e
c-

x
i-

e

e:

Z512
k2

12p
log

m

n
1OS m

n D 0

. ~1.42!

Note the sign of the quantum correction. The radiation g
amplified.

The results above pertain to the standard loop. For o
models the vacuum fluxes are multiples of the respec
fluxes for the standard loop~Sec. VIII!. Thus, for the spinor
QED, the flux of charge istwice the one in Eq.~1.36!, and
the quantum correction to the flux of energy istwice the one
in Eq. ~1.33!. Only the numerical constant which in Eq
~1.34! is 25/12 needs to be calculated anew but this cons
is anyway unimportant. The explicit results for the spin
QED are obtained by introducing the said factor of 2 a
substituting

R̂mn52 iqFmn1̂, ê52 iqe1̂, k254q2, tr1̂54,
~1.43!

whereFmn is the Maxwell tensor,e is the electric charge o
the source,q is the electron’s charge, andm in Eq. ~1.34! is
the electron’s mass.

In conclusion it will be noted that the result obtained ca
not be the end of the story since, obviously, it violates
energy conservation law. Indeed, the frequencyn is propor-
tional to the energy of the bare source and, since the fa
log(n/m) can be arbitrarily large, at a sufficiently largen the
source will radiate more energy than it has initially. In th
respect the present case is similar to the case of cha
spherical shell considered in Ref.@2#. A charged spherica
shell expanding in the self field emits no electromagne
waves~neither classical nor quantum! but it creates charged
particles from the vacuum and, at an ultrarelativistic ener
this radiation violates the energy conservation law@2#. The
measure of the violation is in both cases one and the sa
k2logn, and the cause is also one and the same: the prob
has not been made fully self-consistent. Although in t
present case the back reaction of the vacuum on the ele
magnetic field is taken into account~otherwise the emitted
energy would not even be finite!, its reaction on the motion
of the source is not. This task remains beyond the scop
the present work but it may be conjectured that the miss
back reaction effect is nonanalytic in the coupling consta

Equations~1.33!–~1.37! and their corollaries are the mai
results of the present work. Their derivation is given belo
A reader not interested in the technical details may still w
to read Secs. II–IV. Section II presents the general sche
of the calculation including the important intermediate r
sults and displays the mechanism of the vacuum back r
tion. Section III presents the solution of the expectatio
value equations and the calculation of the emission
charge. In Sec. IV, creation of massive particles is cons
ered, and a criterion of the high-frequency approximation
derived.

The technical details are presented in Secs. V–VIII. T
calculation required in the present work is more complica
than in Ref.@2# because the nonlocal form factors act now
functions having noncompact spatial supports. For a
2-5
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G. A. VILKOVISKY PHYSICAL REVIEW D 60 065012
function X, compactness of the spatial support is equival
to the following powers of decrease at null infinitiesI6 and
spatial infinity i 0:

XuI65OS 1

r 3D , Xu i 05OS 1

r 4D . ~1.44!

The behaviors of the form factors derived or quoted in R
@2# are valid only under conditions~1.44!. For the present
calculation, critical is the behavior of the test function atI1.
The test function that does not satisfy condition~1.44! at I1

will be called singular at I1. The operators log(2h) and
1/h with test functions singular atI1 are considered in
Appendix C. The behaviors of the third-order form factors
I1 are obtained in Appendix B. Appendix A summarizes t
structure of the one-loop form factors.

II. THE MECHANISM OF THE VACUUM BACK
REACTION

For obtaining the vacuum energy-momentum tensor
lowest order in the commutator curvature, one needs
terms in the effective action quadratic in the commuta
curvature and linear in the gravitational curvature, i.e., q
dratic terms of orderR̂3R̂ and cubic terms of orde
R3R̂3R̂. Their general form is@8,9#

Svac5Svac~2!1Svac~3!1higher-order terms, ~2.1!

Svac~2!5
1

2~4p!2E dxg1/2tr R̂mng~2h !R̂mn,

~2.2!

Svac~3!5
1

2~4p!2E dxg1/2

3tr(
i

G i~2h1 ,2h2 ,2h3!R1R̂2R̂3~ i !

~2.3!

with some form factorsg(2h) and G i(2h1 ,2h2 ,
2h3). In the basis of nonlocal invariants of third order@9#,
there are six invariants of the needed type:

R1R̂2R̂3~7!5R1R̂2
mnR̂3mn ,

R1R̂2R̂3~8!5R1
abR̂2a

mR̂3bm ,

R1R̂2R̂3~18!5R1ab¹mR̂2
ma¹nR̂3

nb ,

R1R̂2R̂3~19!5R1
ab¹aR̂2

mn¹bR̂3mn ,

R1R̂2R̂3~20!5R1¹aR̂2
am¹bR̂3bm ,

R1R̂2R̂3~21!5R1
mn¹m¹lR̂2

laR̂3an

~2.4!
06501
t

f.

t

o
e
r
-

~I preserve the numbers that these invariants have in the
list of Ref. @9#.!

For k2 in Eq. ~1.6! to be the renormalized coupling con
stant, the form factorg(2h) should satisfy the normaliza
tion conditiong(0)50. The normalizedg(2h) calculated
for the standard loop is

g~2h !52
1

2E0

1

daE
0

a(12a)

dx logS 12x
h

m2D . ~2.5!

When applied to a high-frequency field, this operator tak
the form

g~2h !5
1

12F8

3
2 logS 2

h

m2D G1O~m2!. ~2.6!

~The high-frequency limit is considered in Sec. IV.! The con-
stant 8/3 in Eq.~2.6! is observable since it accounts for th
difference between the static regime in which the total i
tially stored charge is calculated and the high-frequency
gime in which the emission of charge is calculated. Neith
this constant nor the term in logm2 can be discarded whe
the operator~2.6! acts on a function singular atI1 ~cf. Ref.
@2#!.

The third-order form factorsG i admit the massless limi
and, in the high-frequency approximation, can be tak
massless from the outset. One can then use the results of
@9# where the masslessG i are calculated for all cubic invari
ants including the ones in Eq.~2.4!.

For obtainingTvac
mn atI1 one does not need the exact for

factors. It suffices to have the asymptotic behaviors
G i(2h1 ,2h2 ,2h3) with one of the arguments small an
the others fixed. The difference with Ref.@2# is that these
behaviors are now needed including the termsO(h0). The
algorithms of extracting the needed terms are derived in
pendix B.

The contribution of the second-order action~2.2! to Tvac
mn

will be divided into two:

2

g1/2

dSvac~2!

dgmn
5Tvac

mn~1!1Tvac
mn~2! ~2.7!

with Tvac
mn(2) the contribution of the variation of the form

factor

E dxg1/2Tvac
mn~2!dgmn

5
1

~4p!2E dxg1/2tr R̂mndg~2h !R̂mn. ~2.8!

DenotingTvac
mn(3) the contribution of the third-order actio

~2.3!, one has

Tvac
mn5Tvac

mn~1!1Tvac
mn~2!1Tvac

mn~3!. ~2.9!

The vacuum energy flux in Eq.~1.10! will then also be a sum
of the respective three contributions:
2-6
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2
]Evac

]u
52

]Evac~1!

]u
2

]Evac~2!

]u
2

]Evac~3!

]u
. ~2.10!

The expectation-value equations are obtained by vary
the total actionScl1Svac with respect to the connection field
These are the following equations for the source of the f
quantum-corrected, commutator curvature:

Ĵ full
m 1

k2

2p
g~2h !Ĵ full

m 5 Ĵ bare
m ~2.11!

with the retarded boundary conditions forg(2h) @2#. Solv-
ing them iteratively one obtains

Ĵ full
m 5 Ĵ bare

m 2
k2

2p
g~2h !Ĵ bare

m ~2.12!

and, hence,

R̂ full
mn 5R̂ bare

mn 2
k2

2p
g~2h !R̂ bare

mn . ~2.13!

For displaying the mechanism of the vacuum back re
tion, it suffices to write down the expressions forTcl

mn and
Tvac

mn(1):

Tcl
mn52

1

4pk2
trS R̂mlR̂n

l2
1

4
gmnR̂abR̂abD , ~2.14!

Tvac
mn~1!52

1

8p2
trS R̂mlg~2h !R̂n

l

2
1

4
gmnR̂abg~2h !R̂abD . ~2.15!

Using Eq.~2.13! one finds

Tcl
mnuJ5J full

5@Tcl
mn22Tvac

mn~1!#uJ5J bare
. ~2.16!

The total energy-momentum tensor of the commutator c
vatureTcl

mn1Tvac
mn is then

T tot
mn5@Tcl

mn1Tvac
mn~1!1Tvac

mn~2!1Tvac
mn~3!#uJ5J full

5@Tcl
mn2Tvac

mn~1!1Tvac
mn~2!1Tvac

mn~3!#uJ5J bare
~2.17!

and hence the total energy flux is

2
]E tot

]u
52S ]Ecl

]u
2

]Evac~1!

]u
1

]Evac~2!

]u
1

]Evac~3!

]u D U
J5J bare

.

~2.18!

Thus the effect of the vacuum back reaction ischanging the
sign of Tvac

mn(1). As will be seen in a moment, this effect i
dramatic.

Note that if the substitution~2.13! was made in the action
then, after varying with respect togmn , both Tvac

mn(1) and
06501
g

l,

-

r-

Tvac
mn(2) would change their signs. This procedure is incorr

because it amounts to varying the action ingmn at fixedR̂ bare
whereas the energy-momentum tensor is obtained by var
the action ingmn at fixedR̂ full .

5 This makes difference sinc
the relation betweenR̂ full and R̂ bare itself depends on the
metric through the operatorh. The correct procedure is
making the substitution~2.13! in the energy-momentum ten
sor.

The dictum thatTvac
mn at I1 is infrared divergent mean

that expansion~1.10! does not hold. Rather there is an e
pansion of the form

Tvac
mn uI15terms

log r

r 2
1terms

1

r 2
1OS 1

r 3D . ~2.19!

If this was the behavior of the total energy-momentum te
sor, the expectation-value spacetime would fail to be asym
totically flat. This is not the case but, in the intermedia
expressions, the factor logr will conventionally be included
in ]Evac/]u thereby considering this energy flux as dive
gent.

The contributions~2.10! to ]Evac/]u are calculated in
Secs. V–VII below. Their main ingredient is theg51 radia-
tion moment

D̂aug51[D̂1
a . ~2.20!

The latter notation is used everywhere below. The results

2
]Evac~1!

]u
5

1

~4p!2

1

6
trH 2S logmr12c2 log 21

8

3D
3S ]

]u
D̂1

aD S ]

]u
D̂1aD2S ]

]u
D̂1

aD
3

]

]uE2`

u

dt log@m~u2t!#
]

]t
D̂1a~t!J ,

~2.21!

2
]Evac~2!

]u
5

1

~4p!2

1

6
trH S ]

]u
D̂1

aD ]

]uE2`

u

dt log~u2t!

3
]

]t
D̂1a~t!2

]

]uE2`

u

dt log~u2t!

3S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D J 1Q.N., ~2.22!

5The effective action does not know bare fields. It is a functio
of just one field which after varying and solving the equations~with
the appropriate boundary conditions for the resolvents! becomes the
full expectation value. Therefore, all currents in the expectati
value equations, including the energy-momentum tensor, are
tained by varying with respect to the full fields keeping the oth
full fields fixed.
2-7
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2
]Evac~3!

]u
5

1

~4p!2

1

6
trH 2S log r 1 log 22

3

2D S ]

]u
D̂1

aD
3S ]

]u
D̂1aD1

]

]uE2`

u

dt log~u2t!

3S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D

22E
0

1

dg
g2

12g2 F S ]

]u
D̂aD S ]

]u
D̂aD2S ]

]u
D̂1

aD
3S ]

]u
D̂1aD G J 1Q.N. ~2.23!

Owing to the conservation law~1.27!, only the transverse
projections ofD̂1

a survive in these expressions. Therefo
under the limitation~1.24! the contributions]Evac(1)/]u and
]Evac(2)/]u vanish, and the contribution]Evac(3)/]u gives
back the result of Ref.@2#.

When the limitation~1.24! does not hold, the contribution
]Evac(1)/]u is infrared divergent. The contributio
]Evac(2)/]u is not but it has another pathology. The tota
derivative term in Eq.~2.22! does not vanish in the integra
over time. On the contrary, the behavior of this term at l
time is

]

]uE2`

u

dt log~u2t!S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D U

u˜`

5
1

uE2`

`

dtS ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D ~2.24!

so that the integrated flux~2.22! diverges:

E
2`

`

du
]Evac~2!

]u
5`. ~2.25!

The contribution]Evac(3)/]u contains the divergences o
both types. In the sum of the three contributions the div
gence of the integral in time cancels but the infrared div
gencedoubles:

2
]Evac

]u
52

1

~4p!2

1

3
~ log r !trS ]

]u
D̂1

aD S ]

]u
D̂1aD1O~1!.

~2.26!

Only in the total sum~2.18! with the changed sign o
]Evac(1)/]u both divergences cancel, and the finite res
~1.33! emerges.

The cancellations outlined above do not depend on
relative sign and coefficient betweenScl andSvac @the k2 in
Eq. ~1.6! is in fact kept arbitrary# but they depend crucially
on the balance betweenSvac(2) andSvac(3). As seen from
the expressions~2.21!–~2.23!, there is a precise relation be
tween the respective contributions, and this relation ma
tains for other field models~Sec. VIII! despite the fact tha
06501
,

e

r-
-

lt

e

-

Svac(2) emerges from the purely electromagnetic coupl
whereasSvac(3) represents the vertices with the gravitation
coupling. Owing to this relation, the final result is rigidly tie
to the overall coefficient of the actionSvac(2) which is
merely theb function. A knowledge of this coefficient is in
the end sufficient for obtaining the vacuum radiation flux

III. THE MEAN ELECTROMAGNETIC FIELD AND
EMISSION OF CHARGE

Since the quantum correction to the electromagnetic fi
cancels the infrared divergence in the vacuum energy
should itself be infrared divergent. This point is clarified b
low but, before considering the expectation-value equatio
it is useful to make a general analysis of the asympto
properties of the commutator curvature and its source in
case where there is an emission of both waves and cha
To make difference with the notation already used, the qu
tities in this analysis will be distinguished with boldface.

The existence of a flux of charge at a large distance fr
the source implies thatĴa falls off at I1 as

ĴauI15
ja~u,f!

r 2
1OS 1

r 3D ~3.1!

with some coefficientja(u,f). This is the most general be
havior admissible for an isolated system. Although the s
port of the sourceĴa is no more confined to a spacetim
tube, its domain of nonstationarity must remain compac
time in order that all fluxes die out in the past and future
I1. More generally, the source should be asymptotically s
tionary in the past and future. To account for this property
the past, it will be assumed that the domain of nonstation
ity of Ĵa is confined to the interior of some future light con
u5u2 . Then

ja~u,f!uu,u2
50. ~3.2!

The density of the flux of charge from a source is e
pressed through the coefficient in Eq.~3.1! as follows@2#:

2
]

]u
ê~u,f!5

1

8p
¹av~r 2Ĵa!uI15

1

8p
¹av ja~u,f!

~3.3!

with ¹v in Eq. ~1.11!. The function

ê~u![ê~2`!1E
2`

u

dūE d2S~f!
]

]ū
ê~ ū,f! ~3.4!

defined by Eq.~3.3! up to an additive constantê(2`) can be
written as an integral over the future light cone@2#

ê~u!5
1

4pE dx̄ ḡ1/2d~ ū2u!¹̄m̄ūĴm̄~ x̄! ~3.5!

provided that the constant

ê[ê~2`! ~3.6!
2-8
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is taken as a conserved integral over an arbitrary~complete!
spacelike hypersurface

ê5
1

4pE dx̄ ḡ1/2d„t~ x̄!…¹̄m̄t~ x̄!Ĵm̄~ x̄!, ~¹t!2,0.

~3.7!

The functionê(u) may be called the Bondi charge, and t
constantê the Arnowitt-Deser-Misner~ADM ! charge since
their meaning is the same as of the Bondi and ADM mass6

The ADM charge is the total charge of the sourceĴ in the
initial state, i.e. before the beginning of emission. The Bo
charge is the charge that remains in a compact domain by
instant u of retarded time in the process of emission. T
ADM charge is conserved because at any instantu it equals
a sum of the charge emitted by this instant and the cha
remaining by this instant, Eq.~3.4!.

Consider the conservation equation

¹aĴa50. ~3.8!

Inserting the expansion~3.1! in Eq. ~3.8! one obtains

]

]u
~¹auja!50, ~3.9!

whence, in view of Eq.~3.2!,

¹auja50. ~3.10!

The latter equation makes it possible to express the flux
charge in Eq.~3.3! through the longitudinal projection ofja:

2
]

]u
ê~u,f!5

1

4p
¹ar ja~u,f!. ~3.11!

Thus the longitudinal projection¹ar ja of the residue in
Eq. ~3.1! is responsible for the emission of charge, the p
jection ¹auja vanishes but no conclusion can be made
the transverse projectionsmaja. Their vanishing does no
follow and, at this stage, their role remains unclear.

For obtaining the behavior of the commutator curvatu
one must first consider the question of convergence of
momentD̂1

a of the sourceĴ. The analysis of convergence
carried out in Ref.@2#. When applied to the present case,
gives the following result. The projection ofD̂1

a on a basis
vector in Eq.~1.26! converges if and only if thelike projec-
tion of the residueja vanishes. It follows that the projectio
¹auD̂1

a converges, the projection¹avD̂1
a diverges, and the

behaviors of the transverse projectionsmaD̂1
a remain unde-

termined. Hence using the results for the retarded oper
1/h in Ref. @2# and Appendix C below one obtains

6I continue using the terminology of the theory of asymptotica
flat spaces@4#.
06501
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¹au
1

h
ĴauI152

1

r
¹auD̂1

a~u,f!, ~3.12!

¹av
1

h
ĴauI152

log r

r

1

2E2`

u

dū¹av ja~ ū,f! ~3.13!

while for the transverse projections one has two cases:

~ i! maja50, ma

1

h
ĴauI152

1

r
maD̂1

a~u,f!,

~3.14!

~ ii ! majaÞ0,

ma

1

h
ĴauI152

log r

r

1

2E2`

u

dū maja~ ū,f!.

~3.15!

When the support of the source is confined to a spacet
tube, the convergent projection¹auD̂1

a equals the total
charge of the source@Eq. ~1.27!#. This projection remains the
conserved ADM charge also in the general case, even w
there is an emission of charge and despite the fact that
integration hypersurface inD̂1

a is null:

]

]u
~¹auD̂1

a!50, ¹auD̂1
a5ê. ~3.16!

The proof uses the explicit form of the null hyperplane@2#
and the stationarity of the source in the past.

The fact that the projection¹avD̂1
a is generally divergent

presents no real problem since this projection drops ou
both the square of the differentiated moment in Eq.~1.28!
and the commutator curvature. Indeed, solving the Jac
identities to lowest order@2#, one obtains for the commutato
curvature

R̂mn5¹n

1

h
Ĵm2¹m

1

h
Ĵn, ~3.17!

whence

R̂mnuI15
]

]u S ¹nu
1

h
Ĵm2¹mu

1

h
ĴnD1OS 1

r 2D .

~3.18!

The projection~3.13! drops out of this expression by sym
metry. Moreover, owing to the conservation law~3.16! one
finds

R̂mnuI15
1

2

]

]u F ~¹numm2¹mumn!S ma*
1

h
ĴaD

1~¹numm* 2¹mumn* !S ma

1

h
ĴaD G1OS 1

r 2D ,

~3.19!
2-9
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and the only projection ofR̂mn that can behave as 1/r ~count-
ing only powers! is

1
2 ¹mvmnR̂mnuI15

]

]u S ma

1

h
ĴaD U

I1

[ 2
1

r

]

]u
Ĉ1OS 1

r 2D ,

~3.20!

where the coefficient]Ĉ/]u at 1/r will conventionally be
called news function although in the case~ii ! above it is
infrared divergent. One has either

~ i! maja50,
]

]u
Ĉ5

]

]u
@maD̂1

a~u,f!# ~3.21!

or

~ ii ! majaÞ0,
]

]u
Ĉ5~ log r !

1

2
maja~u,f!.

~3.22!

At this stage there appears an argument to make a con
sion on the transverse fluxesmaja. If one wants the news
function to be finite, these fluxes must vanish. However,
only reason for insisting that the news function be finite
making finite theenergyof the electromagnetic field since b
Eqs.~2.14! and ~3.20!

2
]Ecl

]u
52

1

16pk2
tr~r¹mvmnR̂mn!~r¹avmb* R̂ab!uI1

[2
1

4pk2
trS ]

]u
ĈD S ]

]u
Ĉ* D . ~3.23!

This is the reason indeed but only if the energy-moment
tensor of the electromagnetic field is given by express
~2.14!. For a classical field it is. Therefore, for a classic
field one has the case~i! maja50, i.e., the only nonvanish
ing flux of Ĵa is the flux of charge in Eq.~3.11!, and the only
divergent projection of the moment is¹avD̂1

a. The flux of
the electromagnetic energy is then completely determined
the finite news function in Eq.~3.21!. However, if a
c-number electromagnetic field is an expectation value ra
than the classical field, its energy-momentum tensor isnot
Eq. ~2.14!. Rather it is a sumTcl

mn1Tvac
mn , and the same argu

ment that the energy should be finite may now be in favo
the case~ii ! majaÞ0 where the news function is divergen

One is now ready to consider the expectation-value eq
tions. In the high-frequency approximation, Eq.~2.12! takes
the form

Ĵ full
m 5 Ĵ bare

m 2
k2

24p F8

3
2 logS 2

h

m2D G Ĵ bare
m . ~3.24!

Since the bare source has a compact spatial support, on
use the result from Ref.@2#
06501
lu-

e

n
l

y

er

f

a-

can

log~2h !XuI152
2

r 2

]

]u
D1~u,fuX!1OS 1

r 3D
~3.25!

which is valid under conditions~1.44! and in which
D1(u,fuX) is theg51 moment of the test sourceX. Since
the local terms in Eq.~3.24! areO(1/r 3), one obtains

Ĵ full
a uI152

1

r 2

k2

12p

]

]u
D̂1

a
bare1OS 1

r 3D . ~3.26!

This is Eq.~3.1! with

ja~u,f!52
k2

12p

]

]u
D̂1

a
bare. ~3.27!

Hence, using the conservation law~3.16! for the bare source
one obtains

¹auja52
k2

12p

]

]u
~¹auD̂1

a
bare!50 ~3.28!

and thereby checks condition~3.10!. Next, using Eq.~3.11!
one calculates the density of the flux of charge

2
]

]u
ê full~u,f!52

k2

3~4p!2

]

]u
~¹arD̂ 1

a
bare! ~3.29!

and thereby obtains the result~1.36!. Finally, one calculates
the transverse fluxes

maja52
k2

12p

]

]u
~maD̂1

a
bare!52

k2

12p

]

]u
Ĉ bare

~3.30!

and discovers that they are proportional to the news func
of the bare source. It follows that if the bare source em
waves, then the news function of the full source diverges.
Eq. ~3.22!,

]

]u
Ĉ full5S 12~ log r !

k2

24p D ]

]u
Ĉ bare1O~1!. ~3.31!

However, one knows already that this divergence come
the rescue. One can now check this again. From Eqs.~3.23!
and ~3.31! one obtains

]Ecl

]u U
J full

5
1

4pk2 S 12
k2

12p
log r 1k2O~1! D trS ]

]u
Ĉ bareD

3S ]

]u
Ĉ bare* D . ~3.32!

On the other hand, by Eq.~2.26!,

]Evac

]u
5

1

3~4p!2
~ log r !trS ]

]u
Ĉ bareD S ]

]u
Ĉ bare* D1O~1!.

~3.33!
2-10
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As a result, the total energy flux~1.32! is finite.
The approximate form~3.24! of the expectation-value

equations corresponds to a neglect of the mass of the vac
particles and is valid only in the regionu.u2 where the
source is assumed strongly variable. This form can be u
for a calculation of the derivative of the Bondi charge in t
high-frequency approximation but cannot be used for a
culation of the ADM charge since the latter calculation
volves the regionu,u2 where the source is static. Theelec-
trostatic polarization with massless vacuum particles
infinite. Indeed, for the ADM charge~3.7! to converge, the
full source must fall off atspatial infinity as

Ĵu i 05OS 1

r 4D , ~3.34!

whereas a calculation with the massless form fac
log(2h) in Eq. ~3.24! yields the behavior

log~2h !Ĵ bareu i 05OS 1

r 3D ~3.35!

and the divergent result7

ê full5S 12~ log r !
k2

12p D ê bare1O~1!, m50.

~3.36!

The correct result for the ADM charge is obtained with t
normalized massive form factor~2.5!:

ê full5ê bare, mÞ0. ~3.37!

IV. CREATION OF MASSIVE PARTICLES AND THE
HIGH-FREQUENCY APPROXIMATION

In spite of their apparent similarity, the divergent reno
malization ~3.36! of the ADM charge and the divergen
renormalization~3.31! of the news function have differen
status. The former is a result of an incorrect use of the hi
frequency approximation in the static region whereas the
ter is a natural consequence of the intensive pair creation
show this and to derive a criterion of the high-frequen
approximation, the expectation-value equations are con
ered below with the massive form factorg(2h).

The kernel of the operator~2.5! is obtained with the aid of
its spectral form

7The only exception is the case where the bare source ha

monopole moment,ê bare50. Then one can show that alsoê full

50. An observableelectric charge cannot be carried by massl
particles.
06501
um

ed

l-

s

r

-

-
t-
o

d-

g~2h !5
1

12F8

3
1E

4m2

`

dm2
~124m2/m2!3/2

m22h

2E
0

`

dm2
1

m21m2G ~4.1!

in which the thresholdm254m2 appears explicitly, and, for
the convergence at the upper limit, the two spectral integ
are to be considered as a single integral. Outside the sup
of the sourceĴ bare, Eq. ~2.12! takes the form

Ĵ full
a 52

k2

24pE4m2

`

dm2S 12
4m2

m2 D 3/2
1

m22h
Ĵ bare

a

~4.2!

with the retarded resolvent (m22h)21. Here the order of
integrations is important@10#. The spacetime integration im
plied in (m22h)21Ĵ bareis to be done first, and the spectra
mass integration next.

One is presently interested in the behavior of the f
source at a large distance from the support tube ofĴ bare. At
r @ l and u fixed, the retarded resolvent acting on a nons
tionary source behaves as follows@10#:

1

m22h
Ĵ bare

a }
1

r
exp@2mAf ~u!r #, ~4.3!

where f (u) is a positive function of time and angles havin
the dimensions 1/n.

Using Eqs.~4.2! and ~4.3! one can estimate the fluxe
associated with created particles. Forr @ l one finds

Ĵ full
a }

1

r E4m2

`

dm2S 12
4m2

m2 D 3/2

exp@2mAf ~u!r #

5
1

r 2

1

f ~u!
E

0

`

dx2
x3

@x214m2f ~u!r #3/2

3exp@2Ax214m2f ~u!r #. ~4.4!

When projected on¹ar , the coefficient of 1/r 2 in the latter
expression is the density of the flux of charge through a t
of radius r. It follows that, because of the presence of t
threshold, the flux through the tube of radiusr @ l is sup-
pressed by the factor

expS 2
2mAr

An
D . ~4.5!

Hence one infers that, although pair creation starts as s
as\n reaches the value of ordermc2, the particles are cre
ated in the support of the source with small momenta and
not get far away. They stay in a compact spatial domain u
\n reaches the value

\n;mc2S mc

\
l D . ~4.6!

no

s
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At this value there appears an observable flux of char
particles outside the support tube ofĴ bare. The factor
(mc/\) l may be interpreted as the number of created p
ticles for which there is room in the spatial support of t
source. If the creation is more violent, the particles get ou
the tube. Finally, the high-frequency approximation is va
when\n is much bigger than the value~4.6!:

\n@mc2S mc

\
l D . ~4.7!

Under this condition the flux of created energy and cha
stops depending on the mass of the particles. The mass t
in Eq. ~4.4! can then be discarded which is equivalent
replacing the second term of the spectral formula~4.1! with

E
0

`

dm2
1

m22h
. ~4.8!

Hence the approximation~2.6! for the form factor.
Expression~4.4! holds for the transverse projections

Ĵ full as well:

maĴ full
a ur @ l}

1

r 2
, ~4.9!

and the coefficient of 1/r 2 in this expression is nonvanishin
whenever there is a nonvanishing flux of created partic
outside the support ofĴ bare. Only in the special case wher
the electromagnetic radiation ofĴ bare is absent altogethe
may the transverse projections vanish. Thus the beha
~4.9! is a direct consequence of pair creation. Then, by
~3.22!, the news function of the mean field inevitably d
verges as logr. Hence relation~3.31!. The normalization
scale of the logr in this relation can be read from the kern
of the operator 1/h ~Appendix C!. This is log(r/l).

It will be emphasized once again that there is noth
wrong about the mean electromagnetic field. When pairs
created, its energy is no more governed by its news func
since there appears a real vacuum contribution. The n
function diverges but the vacuum energy redistributes
keeps the electromagnetic radiation down.

V. CALCULATION OF Tvac
µn

„1… AT I1

There remains to be presented the calculation of the
ergy fluxes~2.21!, ~2.22!, and~2.23!. This is, of course, the
main part of the work.

TheTvac
mn(1) is given by expression~2.15! with g(2h) in

Eq. ~2.6!. The commutator curvature to be inserted inTvac
mn is

the one generated by the bare source. The bare source
compact spatial support. Therefore@2#,

2
1

h
Ĵ bare

a uI15
1

r
D̂1

a1OS 1

r 2D ~5.1!

and hence, by Eq.~3.18!,
06501
d

r-

f

e
ms

s

or
.

g
re
n
s

d

n-

s a

R̂mnuI15
1

r S ¹mu
]

]u
D̂1

n2¹nu
]

]u
D̂1

mD1OS 1

r 2D . ~5.2!

It follows that for obtainingTvac
mn(1) at I1 one needs to

know the behavior of log(2h) with a test function that be-
haves atI1 as

XuI1 5
1

r
A~u,f!1OS 1

r 2D . ~5.3!

The needed result is obtained in Appendix C:

2 logS 2
h

m2D XuI1

5
A~u,f!

r
~ logmr12c2 log 2!

1
1

r E2`

u

dt log@m~u2t!#
]

]t
A~t,f!1OS log r

r 2 D .

~5.4!

Substituting Eq.~5.2! for Eq. ~5.3! one obtains

2R̂m
llogS 2

h

m2D R̂nluI1

5
1

r 2
¹mu¹nuF ~ logmr12c2 log 2!S ]

]u
D̂1

aD S ]

]u
D̂1aD

1S ]

]u
D̂1

aD E
2`

u

dt log@m~u2t!#
]2

]t2
D̂1a~t!G

1OS 1

r 3D . ~5.5!

Here and below, use is to be made of the following identi

d

duE2`

u

dt log~u2t! f ~t!5E
2`

u

dt log~u2t!
d

dt
f ~t! ,

~5.6!

where f (t) is supposed to provide the convergence at
lower limit. The convergence of the integral in Eq.~5.5! and
similar integrals is provided by the assumption of asympto
stationarity of the bare source. Under the simplified assum
tion that the domain of nonstationarity of the source is co
pact, there will be time instantsu2 andu1 such that@2#

]

]u
D̂a~u!uu,u2

50,
]

]u
D̂a~u!uu.u1

50. ~5.7!

In this way the result~2.21! is obtained.
2-12



as
r-

q.
y

ed

es.

l

is

e

e

VACUUM AMPLIFICATION OF THE HIGH-FREQUENCY . . . PHYSICAL REVIEW D60 065012
VI. CALCULATION OF Tvac
µn

„2… AT I1

The Tvac
mn(2) is defined by Eq.~2.8! with g(2h) in Eq.

~2.6!. Using the spectral formula

logS 2
h

m2D 52E
0

`

dm2S 1

m22h
2

1

m21m2D ~6.1!

one finds

E dxg1/2Tvac
mn~2!dgmn

5
1

12~4p!2E dxg1/2 trE
0

`

dm2S 1

m22h
R̂abD

3dhS 1

m22h
R̂abD , ~6.2!

and the operatordh can be obtained by calculating

E dxg1/2 tr R̂ab~dh !R̂ab

5E dxg1/2dgmn tr@pmn~¹1 ,¹2!R̂1
abR̂2ab#, ~6.3!

wherepmn(¹1 ,¹2) is some polynomial in the derivative¹1

acting onR̂1 and the derivative¹2 acting onR̂2. In terms of
this operator polynomial one obtains

Tvac
mn~2!52

1

12~4p!2
tr pmn~¹1 ,¹2!

log~h1 /h2!

h12h2
R̂1

abR̂2ab,

~6.4!

where the nonlocal form factor results from the spectral-m
integration in Eq.~6.2! and, up to higher orders in the cu
vature, the operators in Eq.~6.4! are commutative.

The explicit form of Eq.~6.3! is

E dxg1/2 tr R̂ab~dh !R̂ab

5E dxg1/2dgmn trF ~¹mR̂ab!~¹nR̂ab!

2
1

4
gmnh~R̂abR̂ab!22¹a~R̂m

b¹nR̂ab

2R̂ab¹nR̂m
b!G , ~6.5!

whence

Tvac
mn~2!52

1

12~4p!2
tr

log~h1 /h2!

h12h2
¹1

mR̂1
ab¹2

nR̂2ab

1total derivatives. ~6.6!
06501
s

A detailed analysis shows that the total derivatives in E
~6.6! either vanish atI1 or vanish in the integrated energ
flux; i.e., their contribution to]Evac/]u is quantum noise
@Eq. ~1.22!#. The technique used in this analysis is outlin
below.

In the remaining term of Eq.~6.6! use will be made of Eq.
~3.17! and the conservation equation~3.8! to express the
commutator curvature through its source:

R̂1
abR̂2ab5hS 1

h1h2
Ĵ1

aĴ2aD22¹a¹bS 1

h1h2
Ĵ1

aĴ2
bD

2
1

h1
Ĵ1

aĴ2a2 Ĵ1
a 1

h2
Ĵ2a . ~6.7!

The first two terms of this expression are total derivativ
One obtains

Tvac
mn~2!5

1

6~4p!2
tr

1

h2

log~h1 /h2!

h12h2
¹1

(mĴ1a¹2
n)Ĵ2

a

1total derivatives, ~6.8!

where the indicesmn are symmetrized. Of the new tota
derivatives, the contribution of the first term in Eq.~6.7! is
O(1/r 3) at I1, and the contribution of the second term
quantum noise. The proof is given below.

The form factor in Eq.~6.8! can be expressed through th
operatorHq introduced in Ref.@2# and Appendix A below:

1

h2

log~h1 /h2!

h12h2
X1X2~x!

52E
2`

0

dqS d

dq
HqX1~x! D S E

2`

q dq̄

q̄
Hq̄X2~x!D .

~6.9!

The behavior of this function asx˜I1 is obtained in the
same way as in Ref.@2# by making the replacement of th
integration variable

q5r ~t2u!, r 5r ~x!˜`, ~6.10!

wheret is the new integration variable andu5u(x) is the
retarded time of the pointx at I1. With q replaced as in Eq.
~6.10!, one has@2#

HqX~x!ux˜I15
1

r
D1~t,fuX!, ~6.11!

where the quantity on the right-hand side is theD1 moment
of the test sourceX. As a result, for the function~6.9! one
obtains
2-13
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1

h2

log~h1 /h2!

h12h2
X1X2uI152

1

r 2E2`

u

dtS ]

]t
D1~t,fuX1! D

3S E
2`

t dt̄

t̄2u
D1~ t̄,fuX2!D .

~6.12!

Using the latter result in Eq.~6.8! one finds

Tvac
mn~2!uI15

1

r 2
¹mu¹nu

1

6~4p!2
trF2E

2`

u

dtS ]2

]t2
D̂1

a~t!D
3S E

2`

t dt̄

t̄2u

]

]t̄
D̂1a~ t̄ !D 1Q.N.G1OS 1

r 3D .

~6.13!

The integration by parts first in the internal integral

E
2`

t dt̄

t̄2u

]

]t̄
D̂1a~ t̄ !5 log~u2t!

]

]t
D̂1a~t!

2E
2`

t

dt̄ log~u2 t̄ !
]2

]t̄2
D̂1a~ t̄ ! ~6.14!

and next in the external integral yields finally the express
~2.22!.

It is now convenient to present a proof that the first tw
terms in Eq.~6.7! can be discarded. Their contributions
Tvac

mn(2) are, respectively,

D1Tvac
mn52

1

12~4p!2
trhS 1

h1h2

log~h1 /h2!

h12h2
¹1

mĴ1
a¹2

nĴ2aD
~6.15!

and

D2Tvac
mn5

1

6~4p!2
tr¹a¹bS 1

h1h2

log~h1 /h2!

h12h2
¹1

mĴ1
a¹2

nĴ2
bD .

~6.16!

Using the same technique as above, one obtains

1

h1h2

log~h1 /h2!

h12h2
¹1

mĴ1
a¹2

nĴ2
buI1

52
1

2r
¹mu¹nuE

2`

u

dtS E
2`

t dt̄

t̄2u

]

]t̄
D̂1

a~ t̄ !D
3S E

2`

t dt̄

t̄2u

]

]t̄
D̂1

b~ t̄ !D 1OS 1

r 2D . ~6.17!

Note that this behavior is not even 1/r 2. It is 1/r . Neverthe-
less, one has
06501
n

hOS 1

r D U
I1

5OS 1

r 3D ~6.18!

~see Appendix B!. Therefore, the contribution~6.15! is in-
deedO(1/r 3) at I1.

To calculate the contribution~6.16! at I1, one may use
the following result from Ref.@2#. If a symmetric tensorVab

is analytic atI1, and its projections tangential toI1 vanish:

¹auVabuI15OS 1

r
VD , ¹au¹buVabuI15OS 1

r 2
VD ,

~6.19!

then

¹a¹bVabuI15
1

r

]

]u
~gabVab!1OS 1

r 2
VD . ~6.20!

By Eq. ~3.16!, the tensor~6.17! possesses the properties
Vab. As a result, for the contribution~6.16! one finds

D2Tvac
mn uI15

1

r 2
¹mu¹nuS 2D2

]Evac

]u D1OS 1

r 3D ,

~6.21!

where the respective energy flux is a total derivative in tim

2D2

]Evac

]u
5

21

12~4p!2
tr

]

]uE2`

u

dtS E
2`

t dt̄

t̄2u

]

]t̄
D̂1

a~ t̄ !D
3S E

2`

t dt̄

t̄2u

]

]t̄
D̂1a~ t̄ !D . ~6.22!

Since

E
2`

u

dtS E
2`

t dt̄

t̄2u

]

]t̄
D̂1

a~ t̄ !D S E
2`

t dt̄

t̄2u

]

]t̄
D̂1a~ t̄ !D U

u˜`

5
1

u
@D̂1~1`!2D̂1~2`!#2

˜0, ~6.23!

one obtains

E
2`

`

duS D2

]Evac

]u D50. ~6.24!

Thus the contribution~6.21! is indeed quantum noise.

VII. CALCULATION OF Tvac
µn

„3… AT I1

The Tvac
mn(3) is obtained by varying the third-order actio

~2.3! with respect to the metric. Only the Ricci curvature th
enters the basis invariants~2.4! needs to be varied. The com
mutator curvatures in these invariants are to be expres
through their sources via Eqs.~3.17! and ~3.8!. The result
may be represented in the form
2-14
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Tvac
mn~3!5

1

~4p!2
tr(

l
G̃ l~2h,2h2 ,2h3!R̂2R̂3

mn~ l !,

~7.1!

where the form factorsG̃ l(2h,2h2 ,2h3) are linear com-
binations of G i(2h,2h2 ,2h3), and the structures
R̂2R̂3

mn( l ) make some nonlocal tensor basis second-orde
~the source of! the commutator curvature. The first argume
h of the form factorsG̃ l is the operator argument that in th
actionSvac(3) acts on the Ricci curvature. In the variation
derivative~7.1! it becomes anoverall operator acting at the
observation point. In the diagrammatic language, the ar
menth corresponds to the external line of the current~7.1!.
This is explained in more detail in Appendix B.

It is shown in Appendix B that only the small-h expan-
sion of G̃ l(2h,2h2 ,2h3) in the argumenth is relevant
to the behavior of the current~7.1! atI1. This expansion has
the form

G̃ l~2h,2h2 ,2h3!5 log~2h !Al~h2 ,h3!1Bl~h2 ,h3!

1O~h !, h˜0 ~7.2!

and the contribution atI1 of the termsO(h) is already
O(1/r 3). By the results in Appendix B, bothAl(h2 ,h3) and
Bl(h2 ,h3) can be expressed through the operatorHq in a
way similar to Eq.~6.9!. Specifically, allAl(h2 ,h3) are
linear combinations of the following operato
Fmn(h2 ,h3):

Fmn~h2 ,h3!X2X3522E
2`

0

dq qm1nF S d

dqD m11

HqX2G
3F S d

dqD n11

HqX3G . ~7.3!

Moreover, the term with log(2h) in Eq. ~7.2! always ap-
pears in the combination

log~2h !Fmn~h2 ,h3!1Lmn~h2 ,h3! ~7.4!

with

Lmn~h2 ,h3!X2X3

522E
2`

0

dq qm1nF logS 2
q

2D12cG F S d

dqD m11

HqX2G
3F S d

dqD n11

HqX3G . ~7.5!

All Bl(h2 ,h3) in Eq. ~7.2! are linear combinations o
Lmn(h2 ,h3) andFmn(h2 ,h3).

Thus one arrives at the ansatz
06501
in
t

l

u-

Tvac
mn~3!uI15

1

~4p!2
tr(

l
@ log~2h !Al~h2 ,h3!

1Bl~h2 ,h3!#R̂2R̂3
mn~ l !1OS 1

r 3D ~7.6!

in which both the basis elements and the operator coe
cients are presently to be determined. One can check tha
following nine structures quadratic in the source of the co
mutator curvature make a basis:

R̂2R̂3
mn~1!5 Ĵ2

m
• Ĵ3

n , ~7.7!

R̂2R̂3
mn~2!5

1

2
¹m¹n~ Ĵ2

a
• Ĵ3a!, ~7.8!

R̂2R̂3
mn~3!5 Ĵ2

a
•¹3

m¹3
nĴ3a , ~7.9!

R̂2R̂3
mn~4!5

1

2
¹m¹n¹a¹b~ Ĵ2

a
• Ĵ3

b!,

~7.10!

R̂2R̂3
mn~5!5¹a¹b~ Ĵ2

a
•¹3

m¹3
nĴ3

b!,
~7.11!

R̂2R̂3
mn~6!5¹a~¹2

(mĴ2a• Ĵ3
n)!, ~7.12!

R̂2R̂3
mn~7!5¹a~ Ĵ2a•¹3

(mĴ3
n)!, ~7.13!

R̂2R̂3
mn~8!5gmnĴ2

a
• Ĵ3a , ~7.14!

R̂2R̂3
mn~9!5gmn¹a¹b~ Ĵ2

a
• Ĵ3

b!. ~7.15!

The last two structures will be omitted since they cann
contribute to the energy flux throughI1.

The respective coefficientsAl(h2 ,h3) andBl(h2 ,h3)
are obtained using the algorithms of Appendix B and
table of the third-order form factors in Ref.@9#. Only the
basis element ~7.10! with l 54 has a nonvanishing
Al(h2 ,h3):

Al~h2 ,h3!50, lÞ4, ~7.16!

A4~h2 ,h3!52
1

3

1

h2h3
@F22~h2 ,h3!22F11~h2 ,h3!#.

~7.17!

This agrees with Ref.@2# where only the term with
log(2h) in Eq. ~7.6! was considered. The results fo
Bl(h2 ,h3) are as follows:

B1~h2 ,h3!50, ~7.18!

B2~h2 ,h3!52
1

6

1

h2h3
1

1

12S 1

h2
1

1

h3
DF11~h2 ,h3!,

~7.19!
2-15
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B3~h2 ,h3!5
1

12S 1

h2
2

1

h3
D @F11~h2 ,h3!

2F00~h2 ,h3!#, ~7.20!

B4~h2 ,h3!5B48~h2 ,h3!1B49~h2 ,h3!, ~7.21!

B48~h2 ,h3!52
1

3

1

h2h3
@L22~h2 ,h3!

22L11~h2 ,h3!#, ~7.22!

B49~h2 ,h3!5
2

3

1

h2h3
F11~h2 ,h3!, ~7.23!

B5~h2 ,h3!5
1

6

1

h2h3
@F12~h2 ,h3!2F21~h2 ,h3!

2F11~h2 ,h3!2F00~h2 ,h3!#, ~7.24!

B6~h2 ,h3!52
1

6 S 1

h2
23

1

h3
DF11~h2 ,h3!

2
1

6

1

h2
F00~h2 ,h3!, ~7.25!

B7~h2 ,h3!5
1

3

1

h3
FF11~h2 ,h3!2

1

2
F00~h2 ,h3!G .

~7.26!

Only B4 contains the contribution ofLmn(h2 ,h3) because
the latter can appear only in the combination~7.4!.

The kernels for the superpositions of the operat
Fmn(h2 ,h3) with 1/h2 and 1/h3 are given in Eqs.~A.15!
and ~A.16! of Appendix A. By the same calculation as
Eqs. ~6.9!–~6.12! their behaviors atI1 are expressed
through the momentsD1 of the test functions:

1

h3
Fmn~h2 ,h3!X2X3uI1

52
1

r 2E2`

u

dt~t2u!m1nS ]m11

]tm11
D1~t,fuX2!D

3S ]n

]tnE2`

t dt̄

t̄2u
D1~ t̄,fuX3!D , ~7.27!

1

h2h3
Fmn~h2 ,h3!X2X3uI1

52
1

2r E2`

u

dt~t2u!m1nS ]m

]tmE2`

t dt̄

t̄2u
D1~ t̄,fuX2!D

3S ]n

]tnE2`

t dt̄

t̄2u
D1~ t̄,fuX3!D , ~7.28!
06501
s

1

h2h3
X2X3uI15

1

r 2
D1~u,fuX2!D1~u,fuX3!.

~7.29!

With these behaviors, the calculation of theBl terms in Eq.
~7.6! essentially repeats the calculation in Sec. VI. TheBl
terms that involve the form factors~7.27! are analogous to
Eq. ~6.8!, and theBl terms that involve the form factor
~7.28! are analogous to Eq.~6.16!. This concerns allBl ex-
ceptB48 .

For lÞ4 the results are as follows. SinceB150, there
remain two basis structures,l 56 and l 57, in which the
indices of the energy-momentum tensor do not belong
derivatives. Their contributions atI1 vanish by virtue of the
conservation law~3.16!. This may be exemplified with jus
one term

1

h3
F11~h2 ,h3!Ĵ2a¹3

aĴ3
nuI1

52
1

r 2
¹auE

2`

u

dt~t2u!S ]2

]t2
D̂1a~t!D S ]

]t
D̂1

n~t! D
1OS 1

r 3D 5OS 1

r 3D . ~7.30!

The contributions of the remaining structures are of the fo

Bl~h2 ,h3!R̂2R̂3
mn~ l !uI1

5
1

r 2
¹mu¹nuF2cu l S ]

]u
D̂1

aD S ]

]u
D̂1aD1Q.N.G1OS 1

r 3D
~7.31!

with

cu l 525
1

12
, cu l 535

1

6
, cu l 555

1

4
. ~7.32!

The contribution ofB49 is also of the form~7.31! with
cu l 5450. Thus the effect of all structures induced by t
third-order action except the basis structure withl 54 boils
down to a finite renormalization of the classical news fun
tion.

The main contribution comes from the basis structu
~7.10! with l 54. One may write

@ log~2h !A4~h2 ,h3!1B48~h2,h3!#R̂2R̂3
mn~4!

5¹m¹n@ log~2h ! Î ~x!1N̂~x!#, ~7.33!

where

Î ~x!52
1

6
¹a¹b

1

h2h3
@F22~h2 ,h3!

22F11~h2 ,h3!# Ĵ2
aĴ3

b , ~7.34!
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N̂~x!52
1

6
¹a¹b

1

h2h3
@L22~h2 ,h3!

22L11~h2 ,h3!# Ĵ2
aĴ3

b . ~7.35!

The scalar trÎ (x) is the central object in Ref.@2#. In the same
way as above one obtains

Î ~x!uI15
1

6r 2E2`

u

dt~u2t!S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D

1OS 1

r 3D , ~7.36!

N̂~x!uI15
log r

6r 2 E2`

u

dt~u2t!S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D

1
1

6r 2E2`

u

dt~u2t!S log~u2t!

2 log 212c1
1

2D S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D

1
1

12r 2
D̂1

a~u!D̂1a~u!1OS 1

r 3D , ~7.37!

where Eq.~7.36! reproduces the result in Ref.@2#. However,
the scalar trÎ (x) is needed at one more limit which in@2# is
calledi 1. This is the limitr˜` along the timelike geodesi
that, when traced to the future, reaches infinity at the poinf
of the celestial sphere with the energyE5(12g2)21/2 per
unit rest mass. The result obtained in Ref.@2# for this limit is

Î ~x!u i 15
g~12g2!

12r E
2`

`

duS ]

]u
D̂aD S ]

]u
D̂aD , ~7.38!

whereD̂a is the full (g-dependent! radiation moment of the
sourceĴ.

It follows from the properties ofÎ (x) above that, for the
calculation of the function~7.33! at I1, one needs to know
the behavior of log(2h) with a scalar test function that be
haves atI1 as

XuI15
1

r 2
A~u,f! ~7.39!

and ati 1 as

Xu i 15
g~12g2!

r
Q~g,f!, Q~1,f!Þ0, ~7.40!

where A(u,f) and Q(g,f) are some coefficients. Th
needed result is obtained in Appendix C:
06501
2 log~2h !XuI1

52
A~u,f!

r 2
~ log r 1c!1

B~u,f!

r 2
1OS log r

r 3 D ~7.41!

and

E d2S~f!B~u,f!uu˜`

5uE d2S~f!F26Q~1,f!14E
0

1

dg
g2

12g2

3@Q~g,f!2Q~1,f!#G1O~ logu!. ~7.42!

The behavior of the function~7.33! at I1 is obtained by
substituting Eq.~7.36! for Eq. ~7.39! and using Eqs.~7.41!
and ~7.37!. Summarizing the calculation above one has

Tvac
mn~3!uI15

1

r 2
¹mu¹nuS 2

]Evac~3!

]u D1OS 1

r 3D ,

~7.43!

2
]Evac~3!

]u
5

1

~4p!2
trF2

1

6 S log r 1 log 21
3

2D S ]

]u
D̂1

aD
3S ]

]u
D̂1aD1

1

6

]

]uE2`

u

dt log~u2t!

3S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D

2
]2

]u2
B̂~u,f!1Q.N.G . ~7.44!

The contribution of the latter total-derivative term to the r
diation energy

E
2`

`

duE d2S~f!S 2
]Evac~3!

]u D ~7.45!

is

2
1

~4p!2
tr E d2S~f!

]

]u
B̂~u,f!uu˜` . ~7.46!

Substituting Eq.~7.38! for Eq. ~7.40! and using Eq.~7.42!
one obtains
2-17
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2E d2S~f!
]

]u
B̂~u,f!uu˜`

5E
2`

`

duE d2S~f!H 1

2 S ]

]u
D̂1

aD S ]

]u
D̂1aD

2
1

3E0

1

dg
g2

12g2 F S ]

]u
D̂aD S ]

]u
D̂aD2S ]

]u
D̂1

aD
3S ]

]u
D̂1aD G J . ~7.47!

In this way the result~2.23! emerges.

VIII. OTHER MODELS

The results for quantum-field models other than the st
dard loop can be obtained by combining the results for
standard loop@3#. However, the results for the standard lo
should then be known in full, including the contributions
the potential P̂. The contribution of the potential to th
vacuum energy flux is given in expression~1.21! but this
expression implies that the potential is regular atI1:

P̂uI15OS 1

r 3D . ~8.1!

If condition ~8.1! does not hold, the contribution of the po
tential should be calculated anew. For the starting point
may take the expression forSvac(2) with the form factors in
the high-frequency approximation@2#

Svac~2!5
1

2~4p!2E dxg1/2 trF2
1

2
P̂logS 2

h

m2D P̂

2
1

12
R̂mnlogS 2

h

m2D R̂mn1const3 P̂P̂

1const3R̂mnR̂mnG ~8.2!

and the expression forTvac
mn(3)uI1 calculated in Ref.@2# up to

termsO(h0) in the argumenth of the external line:

Tvac
mn~3!uI15

1

~4p!2
¹m¹ntr log~2h ! Î ~x!1O~h0!,

~8.3!

Î ~x!5
1

2 S F11~h2 ,h3!2
1

3
F00~h2 ,h3! D P̂2P̂3

2
1

6
¹a¹b

1

h2h3
„F22~h2 ,h3!

22F11~h2 ,h3!…Ĵ2
aĴ3

b . ~8.4!
06501
-
e

e

Of the missing termsO(h0), the important ones can easil
be restored. These are the terms inLmn . Since the
log(2h) in Eq. ~8.3! originates from the expansion of th
third-order form factors~Appendix B!, eachFmn in Eq. ~8.4!
should be accompanied by the respectiveLmn to form the
combination~7.4!. With the terms inLmn added, expression
~8.3! becomes analogous to Eq.~7.33!. The remaining terms
O(h0) and the unspecified constants in Eq.~8.2! contribute
only to a numerical renormalization of the news functi
~Sec. VII!.

For the first example, consider the spinor QED. The
fective action generated by the fermion loop in this mode
(21) times the action for the standard loop with

P̂5
1

2
gmgnR̂mn , gmgn1gngm52gmn1̂ ~8.5!

and

R̂mn52 iqFmn1̂, tr 1̂54, ~8.6!

where Fmn is the Maxwell tensor, andq is the electron’s
charge.

Since the potential in Eq.~8.5! is singular atI1, one has
to resort to Eqs.~8.2!–~8.4!. One obtains

trP̂2P̂352
1

2
tr R̂2

mnR̂3mn ~8.7!

which is valid with any insertion of the formf (¹2 ,¹3).
Then, by Eq.~6.7!,

trP̂2P̂35trF2
1

2
hS 1

h2h3
Ĵ2

aĴ3aD1¹a¹bS 1

h2h3
Ĵ2

aĴ3
bD

1
1

2 S 1

h2
Ĵ2

aĴ3a1 Ĵ2
a 1

h3
Ĵ3aD G . ~8.8!

When this expression is inserted in Eqs.~8.4!,~8.3!, the con-
tribution of the first term vanishes atI1 because of the pres
ence of the overallh ~see Appendix B!, and the contribution
of the second term is pure quantum noise because it has
same structure as theĴĴ term in Eq.~8.4! but with no form
factor F22.8 As a result, one is left with

Î ~x!5
1

2

1

h3
F11~h2 ,h3!Ĵ2

aĴ3a

2
1

6
¹a¹b

1

h2h3
F22~h2 ,h3!Ĵ2

aĴ3
b1Q.N.,

~8.9!

where the first term is the contribution of the potential.

8In each sum ofFnn in Eq. ~8.4!, only theFnn with the highestn
is to be retained since the juniorFnn contribute only to the quantum
noise@2#.
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For Î (x) in Eq. ~8.9! the technique of Ref.@2# yields
straight away

Î ~x!uI152
1

3r 2E2`

u

dt ~u2t!S ]

]t
D̂1

a~t! D S ]

]t
D̂1a~t! D

~8.10!

which is (22) times the expression~7.36!, and

Î ~x!u i 152
g~12g2!

6r E
2`

`

duS ]

]u
D̂aD S ]

]u
D̂aD

~8.11!

which is (22) times the expression~7.38!. In addition, there
is the overall (21) appropriate for fermions. It follows tha
]Evac(3)/]u for QED is twice the result for the standar
loop. On the other hand, using Eq.~8.7! in Eq. ~8.2! and
changing the overall sign, one finds thatSvac(2) for QED is
also twice the result for the standard loop. Thus, up to
numerical addition to the renormalization of the news fun
tion, all the results for QED are obtained by doubling t
respective results for the standard loop and making the
stitution ~8.6!. Note that, since the balance betweenSvac(2)
and Svac(3) is maintained, the fact of doubling can be re
just from theb function.

Both the standard loop and the spinor QED have
‘‘zero-charge’’ @11# sign of the static vacuum polarization.
is interesting to see what will be the results in the case of
‘‘asymptotically free’’ sign. For that, consider creation of th
Yang-Mills quanta in the external Yang-Mills field. In thi
consideration, it is convenient to refer to the standard lo
with the commutator curvature

R̂mn5R bmn
a 5Cf b

a Fmn
f , ~8.12!

whereCf b
a are the group structure constants, andFmn

f is the
strength of the external Yang-Mills field.

In the minimal @3# gauge, the effective action generat
by the ghost loop is (22) times the action for the standar
loop with P̂50 andR̂mn in Eq. ~8.12!. The quantities per-
taining to the loop of the gauge field will be distinguish
with a tilde and expressed through the quantity in Eq.~8.12!.
The loop of the gauge field is the standard loop with@3#

P̃5P(bb)
(aa)522R bag

a ggb, ~8.13!

R̃mn5R (bb)mn
(aa) 5R bmn

a da
b . ~8.14!

Hence, in terms of theR̂mn in Eq. ~8.12!,

tr P̃2P̃3524 trR̂2
mnR̂3mn , ~8.15!

tr R̃2
mnR̃3mn54 trR̂2

mnR̂3mn . ~8.16!

Relation~8.15! differs from Eq.~8.7! only in the coefficient.
Therefore, the calculation of the contribution of the poten
repeats literally the one above; only the result should
multiplied by 8. The contribution of the potentialP̃ to
06501
-

b-

e

e

p

l
e

]Evac(3)/]u is then (224) times the result for the standar
loop. The contribution ofR̃mn is, by Eq.~8.16!, four times
the result for the standard loop. Since the contribution
ghosts is (22) times the result for the standard loop, th
grand total is (222) times the result for the standard loo
The total actionSvac(2) for the Yang-Mills field is also
(222) times the result for the standard loop as follows i
mediately from using Eqs.~8.15! and~8.16! in Eq. ~8.2! and
adding the ghost contribution.

Thus, also for the Yang-Mills coupling, all vacuum fluxe
are multiples of the respective fluxes for the standard lo
@with the substitution~8.12!#, and the multiplicity is (222)
in accord with theb function but the price for the asymptoti
freedom is that the radiation energy isnegative.9 This is not
surprising. Because the Yang-Mills quanta are exactly ma
less, a source of the Yang-Mills field would cause initially
infinite static polarization. The Yang-Mills charge is uno
servable at infinity.
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APPENDIX A: THE ONE-LOOP FORM FACTORS

The basic building element for all one-loop form facto
@9# is the operator10

Hq5A2q

h
K1~A2qh !, q,0 ~A1!

depending on the parameterq, with K1 the order-1 Mac-
donald function. By the properties of the Macdonald fun
tions one has also

d

dq
Hq5K0~A2qh ! ~A2!

and

2q
d2

dq2
Hq5hHq . ~A3!

Despite its scaring appearances the operator~A1! has a
simple kernel. Its retarded kernel is

HqX~x!5
1

4pEpast ofx
dx̄ḡ1/2d„s~x,x̄!2q…X~ x̄!, ~A4!

9This does not contradict the proof of positivity in Ref.@2# since
the proof has been given only for the case where the potentia
regular atI1, Eq. ~8.1!.

10All operator functions are originally defined in the Euclidea
domainh,0.
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wheres(x,x̄) is the world function@6#, and the integration is
over the past sheet of the hyperboloid of equal geodetic
tance fromx. The derivation of Eq.~A4! is based on the
spectral representation for the operator~A1!:

Hq52
1

h
2A22qE

0

`

dm
J1~mA22q!

m22h
, ~A5!

where J1 is the Bessel function. Inserting in Eq.~A5! the
kernel of the retarded resolvent@10#

1

m22h
X~x!5

1

4pEpast ofx
dx̄ḡ1/2

3S d~s!2u~2s!
mJ1~mA22s!

A22s
D X̄,

~A6!

doing the spectral-mass integrations

E
0

`

dm J1~mA22q!5
1

A22q
,

E
0

`

dm m J1~mA22q!J1~mA22s!5d~s2q!, ~A7!

and using that

2
1

h
X~x!5

1

4pEpast ofx
dx̄ḡ1/2d~s!X̄ ~A8!

one obtains Eq.~A4!.
The kernel~A4! was used in Ref.@2# without pointing out

its relation to Eq.~A1!. This relation and the technique i
Ref. @9# make it possible to obtain the kernels of all one-lo
form factors in the expectation-value equations. Thus, for
second-order and third-order form factors@9#

Fmn~h1 ,h2!5S ]

] j 1
D mS ]

] j 2
D nlog~ j 1h1 / j 2h2!

j 1h12 j 2h2
U

j 15 j 251

,

~A9!

Gkmn~h1 ,h2 ,h3!

52E
a.0

da1da2da3 d~12a12a22a3!

3
a1

ka2
ma3

n

a2a3h11a1a3h21a1a2h3
~A10!

one has@9#

Fmn~h1 ,h2!522E
2`

0

dq qm1n
dm

dqm
K0~A2qh1!

3
dn

dqn
K0~A2qh2!, ~A11!
06501
s-

e

Gkmn~h1 ,h2 ,h3!5
4~21!k1m1n

~k1m1n!! E2`

0

dq qk1m1n

3
dk

dqk
K0~A2qh1!

dm

dqm
K0~A2qh2!

3
dn

dqn
K0~A2qh3!, ~A12!

and, therefore,

Fmn~h1 ,h2!X1X2~x!

522E
2`

0

dq qm1nF S d

dqD m11

HqX1~x!G
3F S d

dqD n11

HqX2~x!G , ~A13!

Gkmn~h1 ,h2 ,h3!X1X2X3~x!

5
4~21!k1m1n

~k1m1n!! E2`

0

dq qk1m1nF S d

dqD k11

HqX1~x!G
3F S d

dqD m11

HqX2~x!GF S d

dqD n11

HqX3~x!G
~A14!

with HqX(x) in Eq. ~A4!.
Equation~A3! makes it possible to obtain easily the s

perpositions of the kernels above with 1/h. For example,

1

h2
Fmn~h1 ,h2!X1X2

52E
2`

0

dq qm1nS dm11

dqm11
HqX1D S dn

dqnE2`

q dq̄

q̄
Hq̄X2D ,

~A15!

1

h1h2
Fmn~h1 ,h2!X1X2

52
1

2E2`

0

dq qm1nS dm

dqmE2`

q dq̄

q̄
Hq̄X1D

3S dn

dqnE2`

q dq̄

q̄
Hq̄X2D ~A16!

which is valid including the casesn50, m50 ~cf. Ref.@2#!.
Similarly for the third-order form factors. The convergen
of the integrals inq at the upper limit is controlled by the
behaviors

Hquq5052
1

h
,

d

dq
Hquq˜05O~ logq! ~A17!
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following from Eq. ~A1!, and the convergence at the low
limit should be provided by the properties of the test fun
tions @2#. Equation ~A3! can also be obtained directly b
acting with the operatorh on Eq. ~A4! and neglecting the
curvature ins, hs541O@R#.

One might have introduced the kernel even more elem
tary than the one in Eq.~A4!:

QqX~x!5
1

4pEpast ofx
dx̄ḡ1/2u„q2s~x,x̄!…X~ x̄!, q,0,

~A18!

d

dq
Qq5Hq , Qquq505

2

h2
, ~A19!

whence

Qq5
2q

h
K2~A2qh !. ~A20!

The initial condition in Eq.~A19! implies that

1

h2
X~x!5

1

8pEpast ofx
dx̄ḡ1/2u~2s!X̄ ~A21!

and

1

~4p!2Epast ofx
dx̄ḡ1/2d„s~x,x̄!…E

past ofx̄
dx% g% 1/2d„s~ x̄,x% !…X%

5
1

8pEpast of x
dx̄ḡ1/2u„2s~x,x̄!…X̄. ~A22!

Equation~A21! can be obtained by acting with the operat
h on Eq.~A18! and using Eq.~A8!. It is also a limiting case
of the formula@2#

1

~m22h !2
X~x!5

1

8pEpast ofx
dx̄ḡ1/2u~2s!J0~mA22s!X̄

~A23!

for the massive operator. The kernels~A18! and ~A21! do
not decrease at the future infinity and can be used for a d
determination of the moments. Thus,

]

]u S 1

h2
XU
I1

D 5
1

2
D1~u,fuX!, ~A24!

where the quantity on the right-hand side is theD1 moment
of the sourceX.

APPENDIX B: THE THIRD-ORDER FORM FACTORS
AT I1

The form factors in the third-order action~2.3! are linear
combinations of the functionsGkmn(h1 ,h2 ,h3) introduced
in Appendix A. The typical contribution of such a form fac
tor to the energy-momentum tensor at pointx has the form
06501
-

n-

ct

Gkmn~h,h2 ,h3!X2X3~x!, ~B1!

where theX’s are the commutator curvatures or their deriv
tives, and it is assumed that firsth2 acts onX25X(x2), and
h3 on X35X(x3) with subsequently making the pointsx2
andx3 coincident with the observation pointx, and next the
first argumenth of the form factor acts on the thus obtaine
function of the observation point. This nonlocal structu
corresponds to the diagram in Fig. 1.

By the results in Appendix A, expression~B1! can be
represented as follows:

Gkmn~h,h2 ,h3!X2X3~x!

5
4~21!k1m1n

~k1m1n!! E2`

0

dqS qk
dk

dqk
K0~A2qh !DF~q,x!,

~B2!

where the operatorh acts to the right on the function ofx,
and this function is

F~q,x!5qm1nF S d

dqD m11

HqX2~x!GF S d

dqD n11

HqX3~x!G .
~B3!

When theX’s are expressed as in Eq.~6.7! through the
sourcesJ having compact spatial supports, there occur two
essentially different cases. An example of the first case i

X2X35J2
aJ3

b , ~B4!

and examples of the second case are

X2X35
1

h2
J2

aJ3
b or J2

a 1

h3
J3

b or ¹a¹bS 1

h2h3
J2

aJ3
bD .

~B5!

The difference between the two cases is in the behavior
integrals with the functionF(q,x) asx˜I1. These behav-
iors are readily obtained by the technique in Ref.@2# ~see
also Sec. VI above!. In the first case one has

E
2`

0

dqF~q,x!ux˜I15O~r 23!, ~B6!

and in the second case

FIG. 1. The diagram for the contribution~B1! to the
expectation-value current at pointx. The argumenth of the form
factor G corresponds to the external line.
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E
2`

0

dqF~q,x!ux˜I15O~r 22!. ~B7!

The second case is our main concern here since the fun
~B7! is singular atI1.

Our present goal is obtaining the behavior of the curr
~B2! asx˜I1. The principal assertion is that this behavi
is determined by the first few terms of the small-h expan-
sion of the form factorG in the argumenth of the external
line. For the proof it suffices to consider two generic terms
the small-h expansion of the functionK0(A2qh) in Eq.
~B2!:

~qh !p and ~qh !plogqh. ~B8!

It will be recalled that the behaviors~B6! and ~B7! are
obtained by making the replacement~6.10! of the integration
variableq. From the form of this replacement, it follows th
in the case~B7! one has also

E
2`

0

dq qpF~q,x!ux˜I15r p22ap~u,f!, ~B9!

E
2`

0

dq qp log~2q!F~q,x!ux˜I1

5r p22log rap~u,f!1O~r p22!, ~B10!

and then, by the result in Appendix C,

log~2h !S E
2`

0

dq qpF~q,x! D U
x˜I1

52r p22log rap~u,f!1O~r p22!, p>1

~B11!

with one and the same coefficientap(u,f) in all the expres-
sions~B9! to ~B11!.

Moreover, using the following form of the operatorh at
I1 @2#,

hXuI152
2

r

]

]u
X22

]2

]u]r
X1OS 1

r 2
XD , ~B12!

one obtains

hO~r p!uI15O~r p21!, pÞ21 ~B13!

and, in the exceptional casep521,

hO~r 21!uI15O~r 23!. ~B14!

Owing to the latter fact, one has

hpO~r p22!uI15OS 1

r 3D , p>1. ~B15!

The relations above make it possible to obtain the con
butions to the current~B2! of the expansion terms~B8!:
06501
on

t

f

i-

hpE
2`

0

dq qpF~q,x!ux˜I15OS 1

r 3D , p>1, ~B16!

hpF log~2h !S E
2`

0

dq qpF~q,x! D
1E

2`

0

dq qp log~2q!F~q,x!GU
x˜I1

5OS 1

r 3D , p>1. ~B17!

It follows that, in the case~B7!, the function ofh in Eq.
~B2! can be truncated as follows:

qk
dk

dqk
K0~A2qh !5H 1

2
~21!k~k21!!, k.0,

2
1

2
log

qh

2
2c, k50,

1 irrelevant terms, ~B18!

where the irrelevant terms are the terms whose contribut
to the current~B2! areO(1/r 3) at I1. By a similar analysis,
in the case~B6! this function can be truncated even more

qk
dk

dqk
K0~A2qh !5H 0, k.0,

2
1

2
log~2h !, k50,

1 irrelevant terms, ~B19!

and one recovers the algorithm used in Ref.@2#. Thus the
amendment needed in the case~B7! as compared to the cas
~B6! is retaining the termsO(h0) of the form factors.

In addition to the contributions of the form~B1!, the
vacuum energy-momentum tensor contains contribution
which the form factorsGkmn(h,h2 ,h3) are superposed
with 1/h in the argument of the external line@9#:

1

h
Gkmn~h,h2 ,h3!X2X3~x!. ~B20!

These contributions occur only atk>1 @9# and only in the
case~B6!.11 By the same consideration as above, the ope
tor function in Eq.~B2! can then be truncated as follows:

11This fact is a matter of a direct calculation@9# but it is also
a necessary condition for the expectation-value spacetime to
asymptotically flat.
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1

h
qk

dk

dqk
K0~A2qh !

5
1

2
~21!k~k21!!

1

h

1H 2
1

4
~21!k~k22!!q, k.1,

2
1

4 S log
qh

2
12c21Dq, k51,

1 irrelevant terms. ~B21!

The effect of these truncations is that the third-order fo
factors boil down to the second-order form factors. The la
are the functionsFmn and Lmn introduced in Sec. VII, and
similar functions originating from expansion~B21! and dif-
fering from Fmn andLmn by an extra power ofq:

Gmn~h2 ,h3!X2X3

522E
2`

0

dq qm1n11F S d

dqD m11

HqX2G
3F S d

dqD n11

HqX3G , ~B22!

Mmn~h2 ,h3!X2X3

522E
2`

0

dq qm1n11F logS 2
q

2D12cG
3F S d

dqD m11

HqX2GF S d

dqD n11

HqX3G . ~B23!

Using Eq.~A3!, the latter functions can be expressed throu
Fmn andLmn :

Gmn~h2 ,h3!

5
2

h2
@Fm12,n~h2 ,h3!1~m11!Fm11,n~h2 ,h3!#

5
2

h3
@Fm,n12~h2 ,h3!1~n11!Fm,n11~h2 ,h3!#,

~B24!

Mmn~h2 ,h3!

5
2

h2
@Lm12,n~h2 ,h3!1~m11!Lm11,n~h2 ,h3!#

5
2

h3
@Lm,n12~h2 ,h3!1~n11!Lm,n11~h2 ,h3!#.

~B25!

Equivalence of the two forms in Eq.~B24! follows from the
identities forFmn in Ref. @2#. Similar identities can be de
06501
r

h

rived for Lmn , Gmn , andMmn . All of them are based on Eq
~A3! and the integration by parts in theq integrals.

The consideration above can be summarized as follo
For the case~B4! one has

Gkmn~h,h2 ,h3!J2J3uI15OS 1

r 3D , k.0, ~B26!

G0mn~h,h2 ,h3!J2J3uI1

5
~21!m1n

~m1n!!
log~2h !@Fmn~h2 ,h3!J2J3#1OS 1

r 3D .

~B27!

For all subcases in Eq.~B5! one has

Gkmn~h,h2 ,h3!X2X3uI1

52
~21!m1n~k21!!

~k1m1n!!
Fmn~h2 ,h3!X2X31OS 1

r 3D ,

k.0, ~B28!

G0mn~h,h2 ,h3!X2X3uI1

5
~21!m1n

~m1n!!
$ log~2h !@Fmn~h2 ,h3!X2X3#

1Lmn~h2 ,h3!X2X3%1OS 1

r 3D . ~B29!

For the superpositions ofG with 1/h one has

1

h
Gkmn~h,h2 ,h3!J2J3uI1

52
~21!m1n~k21!!

~k1m1n!!

1

h
@Fmn~h2 ,h3!J2J3#

1
1

2

~21!m1n~k22!!

~k1m1n!!
Gmn~h2 ,h3!J2J31OS 1

r 3D ,

k.1, ~B30!

1

h
G1mn~h,h2 ,h3!J2J3uI1

52
~21!m1n

~m1n11!!

1

h
@Fmn~h2 ,h3!J2J3#

2
1

2

~21!m1n

~m1n11!!
$ log~2h !

3@Gmn~h2 ,h3!J2J3#1Mmn~h2 ,h3!J2J3

2Gmn~h2 ,h3!J2J3%1OS 1

r 3D . ~B31!
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The senior terms of the latter expressions, proportiona
1/h, cancel in the energy-momentum tensor@1#. Another
useful relation

h

h2h3
Gkmn~h,h2 ,h3!J2J3uI15OS 1

r 3D ~B32!

is a consequence of Eq.~B14!.
Finally, the relations~B26!–~B32! remain unchanged

when multiplied byh2 /h3 or h3 /h2. Indeed, replacing the
functionF(q,x) with (h2 /h3)F(q,x) or (h3 /h2)F(q,x)
does not change the behaviors~B6! and ~B7!. Using Eq.
~A3!, the multiplierh2 /h3 or h3 /h2 can be absorbed in
any second-order or third-order form factor.

APPENDIX C: THE OPERATORS log „2h… AND 1/h FOR
TEST FUNCTIONS SINGULAR AT I1

The behavior~4.3! of the resolvent is valid only for tes
functions having compact spatial supports@10#. Therefore,
the behaviors atI1 of all form factors, used in Ref.@2#, are
also valid only under conditions~1.44!. For log(2h) this is
the behavior~3.25!. In the general case, the support of t
test function may conventionally be divided into a comp
domain and asymptotic domain. The 1/r 2 behavior in Eq.
~3.25! is a contribution of the compact domain. Any behav
of log(2h)XuI1 more singular than 1/r 2 ~call it just singular!
can only be a contribution of the asymptotic domain, i.e.,
XuI1 itself. Similarly, the regular behavior of (1/h)XuI1 is
1/r and is a contribution of the compact domain. A key
obtaining the contributions of the asymptotic domain is
fact that the null hyperplane reachesI1 at only one point of
the celestial sphere@2#. Therefore, the singular contribution
are always local in the angles although possibly nonloca
time. To see why they may be nonlocal in time recall th
when a point tends toI1, one generator of its past light con
merges withI1 entirely @2#. The retarded time ranges alon
this generator to2` whereas the whole generator is label
by a single value of the angles.

Let L(x,x̄) be the retarded kernel of log(2h),

log~2h !X~x!5E dx̄ ḡ1/2L~x,x̄!X̄. ~C1!

By the argument above,

log~2h !X~x!ux5(u,f,r˜`)

5E dx̄ ḡ1/2L~x,x̄!~X̄uf̄5f!1OS 1

r 2D , ~C2!

i.e., for obtaining the singular terms atI1, the test function
can be taken at the angles of the observation point,f̄5f.
The angle integrations indx̄ can then be done explicitly, and
as a result, the kernel becomes spherically symmetric. T
for obtaining the singular contributions atI1, it suffices to
consider the spherically symmetric kernel.

The spherically symmetric kernel suffices for obtaini
also the regular contributions provided thatX is a scalar, and
06501
to

t

r

f

e

n
,

s,

one needs only the integral of Eq.~C2! over the two-sphere
Indeed, to lowest order in the curvature, the scalar kerne
log(2h) can depend on the angles only through the
length between the pointsf andf̄ on the two-sphere. There
fore,

E d2S~f!@ log~2h !X#5E dx̄ ḡ1/2L~x,x̄!S E d2S~f̄ !X̄D ,

~C3!

where the angle integrations indx̄ concern only the kerne
L(x,x̄) and convert it into a spherically symmetric kernel

One case of the singular behavior considered below
whereXuI15O(1/r ), and log(2h)XuI1 is needed up to the
regular termsO(1/r 2). In this case Eq.~C2! works. Another
case is whereXuI15O(1/r 2), and log(2h)XuI1 is needed
including the regular terms 1/r 2. This case is more difficult
but is encountered only inTvac

mn(3) ~Sec. VII! where the limi-
tations implied in Eq.~C3! are fulfilled. Therefore, in both
cases one may use the spherically symmetric kernel.

Below, y is a point of the two-dimensional Lorentzia
section of a spherically symmetric spacetime, andY(y) is a
test function restricted to this section. The spherically sy
metric retarded kernel of the operator log(2h) is of the form
@8,5#

2 logS 2
h

m2D Y~y!5
1

r È
0

dr̄
r̄

r̄ 1r
Ȳupath 1

1
1

r E0

r

dr̄ log@m~r 2 r̄ !#
d

dr̄
~ r̄ Ȳupath 2!

1
1

r È
r

dr̄ log@m~ r̄ 2r !#
d

dr̄
~ r̄ Ȳupath 3!

12cY~y!, ~C4!

wherer is the luminosity coordinate of the observation po
y, and the integrations are along the null paths 1,2,3 show
Fig. 2. In Eq.~C4!, each of the paths is parametrized with t
luminosity coordinater̄ . The retarded time labeling the radia

FIG. 2. Penrose diagram for the Lorentzian section of a sph
cally symmetric spacetime. The timelike liner 50 is the central
geodesic. The union of paths 1 and 2, and path 3 are the two ra
light rays that come to the two-dimensional observation pointy. V
is the domain bounded by the paths 1,2,3.
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future light cones and normalized in Eq.~1.11! will be de-
noted u as above. In the coordinatesy5(u,r ), ȳ5(ū, r̄ ),
and with the curvature neglected, path 1 isū12r̄ 5u, path 2
is ū5u, and path 3 isū12r̄ 5u12r .

The spherically symmetric retarded kernel of the opera
1/h is of the form

2
1

h
Y~y!5

1

2r EV
d2ȳg1/2~ ȳ! r̄ Ȳ, ~C5!

where V is the domain bounded by the paths 1,2,3, a
d2ȳg1/2( ȳ) is the induced volume element. Hence, in t
coordinatesy5(u,r ),

2
]

]u

1

h
Y~u,r !5

1

2r È
0

dr̄ r̄ Ȳupath 11
1

2r E0

r

dr̄ r̄ Ȳupath 2

2
1

2r È
r

dr̄ r̄ Ȳupath 3. ~C6!

Denoting the contributions of the paths 1,2,3 in Eq.~C4!
P1 ,P2 ,P3, one has

2 logS 2
h

m2D Y~y!5P1~y!1P2~y!1P3~y!12cY~y!.

~C7!

The contribution of path 2 can be rewritten identically
follows:

P2~y!5
1

r n11E0

r

dr̄ r̄
r̄ n2r n

r̄ 2r
Ȳupath 21~ logmr!Y~y!

1
1

r nE0

1

dj log~12j! f ~r j! ~C8!

with n arbitrary, and

f ~ r̄ ![
d

dr̄
~ r̄ n11Ȳupath 2!. ~C9!

If one choosesn equal to the power of decrease ofY at I1

Y~y!uI15
A~u!

r n
, ~C10!

the last integral in Eq.~C8! will have a finite limit:

E
0

1

dj log~12j! f ~r j!ur˜`52A~u!. ~C11!

In this way one obtains forn51

n51, P2~y!uI15
log~mr!

r
A~u!1OS log r

r 2 D
~C12!
06501
r

d

~with no pure 1/r term!, and forn52

n52, P2~y!uI152
log~mr!

r 2
A~u!

2
1

r 2E0

`

dr̄ log~mr̄!
d

dr̄
~ r̄ 2Ȳupath 2!

1OS log r

r 3 D . ~C13!

As y˜I1, path 3 shifts entirely toI1. Introducing the
retarded timeū as a parameter along path 3, one can ea
calculate the limit

P3~y!uI15E
2`

u

dū logS m
u2ū

2
D d

dū
~ȲuI1!. ~C14!

Hence for the behavior~C10! one obtains

P3~y!uI15
1

r nE2`

u

dū logS m
u2ū

2
D d

dū
A~ ū!1OS 1

r n11D .

~C15!

Finally, as y˜I1, path 1 remains fixed. Therefore, it
contribution is always regular:

P1~y!uI15
1

r 2 È0

dr̄ r̄ Ȳupath 1. ~C16!

The contributions of the paths 1,2,3 in Eq.~C6! are consid-
ered similarly.

In the casen52 above, the total result is

2 log~2h !Y~y!uI1

52
A~u!

r 2
~ log r 1c!1

B~u!

r 2
1OS log r

r 3 D , ~C17!

where

B~u!5B1~u!1B2~u!, ~C18!

B1~u!5 È0

dr̄ r̄ Ȳupath 12E
0

`

dr̄ log r̄
d

dr̄
~ r̄ 2Ȳupath 2!,

~C19!

B2~u!5E
2`

u

dū logS u2ū

2
D d

dū
A~ ū!, ~C20!

and the next task is obtaining the behavior of the coeffici
B(u) asu˜`.

The analysis of the behavior ofB1(u) at late time essen
tially repeats the one in Ref.@2#. The dominant contribution
to this behavior comes fromY(y) at the limit y˜ i 1 which
in the present case is the limitr˜` along the radial timelike
2-25



he

ls

nal

In

-

l

e

f

G. A. VILKOVISKY PHYSICAL REVIEW D 60 065012
geodesic that reaches the future infinity with the energyE
5(12g2)21/2 per unit rest mass:

y˜ i 1: u5
12g

g
r , r˜`. ~C21!

The variablesg and r may be used as coordinates of t
point y:

Y~y!5Y~g,r !. ~C22!

Then the definition of the limiti 1 is

Yu i 15Y~g,r˜`!. ~C23!

Of interest is the following behavior ofY at i 1 ~see Sec.
VII !:

Yu i 15
g~12g2!

r
Q~g!, Q~1!Þ0, ~C24!

whereQ(g) is some regular function ofg.
The limits i 1 and I1 are related@2#. For an analytic

function, the sequence of limitsi 1 andg˜1 coincides with
the future ofI1. Hence, using Eq.~C21!, one obtains

~YuI1!u˜`5~Yu i 1!g˜15
2u

r 2
Q~1!. ~C25!

Therefore, the behavior~C24! implies a linear growth of the
coefficient in Eq.~C10! at late time:

A~u!uu˜`52uQ~1!. ~C26!

The late-time behavior ofB1(u) in Eq. ~C19! is obtained
by introducingg as an integration variable in both integra
and restricting12 both integrations to the interval 0,g,1.
One obtains

B1~u!uu˜`52uE
0

1 dg

~11g!2
h1S g,r 5

gu

11g
˜` D

2uE
0

1 dg

~12g!2
h2S g,r 5

gu

12g
˜` D ,

~C27!

where

h1~g,r !5rY~g,r !, ~C28!

h2~g,r !5 log r S ]

]r
1

g~12g!

r

]

]g D r 2Y~g,r !. ~C29!

12The integration limits 0,g,1 emerge after one restricts th

support ofȲ to the interior of some future light coneū5const and

the exterior of some tuber̄ 5const. The complementary portions o

the support ofȲ contribute negligibly asu˜` @2#.
06501
With the behavior~C24! of Y at i 1 this yields the result

B1~u!uu˜`52uE
0

1

dg g
12g

11g
Q~g!

2uE
0

1

dgS log
ug

12g D ]

]g
@g2~11g!Q~g!#

1O~ logu!. ~C30!

The integration by parts brings this expression to the fi
form

B1~u!uu˜`522u~ logu2 log 212!Q~1!

14uE
0

1

dg
g2

12g2
@Q~g!2Q~1!#1O~ logu!

~C31!

in which the coefficient of the linear growth is convergent.
this way the pole atg51 is eliminated@see Eq.~1.21! and
the discussion of this problem in Ref.@2##.

The behavior ofB2(u) at late time is obtained by rewrit
ing Eq. ~C20! identically as follows:

B2~u!5E
2`

u0
dū logS u2ū

2
D d

dū
A~ ū!1S log

u

2D @A~u!

2A~u0!#1uE
u0 /u

1

dj log~12j!g~uj!, ~C32!

whereu0,u, and

g~ ū![
d

dū
A~ ū!. ~C33!

As u˜`, the first term in Eq.~C32! is O(logu), and the
remaining terms are determined by the behavior~C26!. In
this way one obtains

B2~u!uu˜`52uS log
u

2
21DQ~1!1O~ logu!. ~C34!

In the sum~C18! the senior termsulogu cancel, and the fina
result is

B~u!uu˜`5uF26Q~1!14E
0

1

dg
g2

12g2
@Q~g!2Q~1!#G

1O~ logu!. ~C35!

Taking into account Eqs.~C2! and~C3!, one can summa-
rize the calculations above as follows. For any functionX(x)
in four dimensions that behaves atI1 as

XuI15
A~u,f!

r n
, n,2 ~C36!

one has
2-26
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2
1

h
XuI15

1

2~22n!

1

r n21E2`

u

dt A~t,f!1
O

r n21

~C37!

and

2 logS 2
h

m2D XuI1

5
A~u,f!

r n S logmr12c2 log 2211E
0

1 dj

jn21

12jn

12j D
1

1

r nE2`

u

dt log@m~u2t!#
]

]t
A~t,f!1

O
r n

,

~C38!

whereOuI150. For a functionX(x) that behaves atI1 as

XuI15
A~u,f!

r 2
, ~C39!

one has

2
1

h
XuI15

1

2

log r

r E
2`

u

dt A~t,f!1OS 1

r D ~C40!
,

R.

06501
and

2 log~2h !XuI152
A~u,f!

r 2
~ log r 1c!1

B~u,f!

r 2

1OS log r

r 3 D ~C41!

with some coefficientB(u,f). If in the latter case the func
tion X(x) is a scalar that behaves ati 1 as

Xu i 15
g~12g2!

r
Q~g,f!, ~C42!

then

E d2S~f!B~u,f!uu˜`

5uE d2S~f!F26Q~1,f!14E
0

1

dg
g2

12g2
@Q~g,f!

2Q~1,f!#G1O~ logu!. ~C43!

Note that the term with logr in Eq. ~C41! is doubled as
compared to Eq.~C38!.
,

.
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