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Domain wall spacetimes and particle motion

Richard Gass and Manash Mukherjee
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011

~Received 24 December 1998; published 23 August 1999!

We present a mathematical framework for generating thick domain wall solutions to the coupled Einstein-
scalar field equations which are~locally! plane symmetric. This approach leads naturally to two broad classes
of wall-like solutions. The two classes include all previously known thick domain walls. Although one of these
classes is static and the other dynamic, the corresponding Einstein-scalar equations share the same mathemati-
cal structure independent of the assumption of any reflection symmetry. We also exhibit a class of thick static
domain wall spacetimes with different asymptotic vacua. Our analyses of particle motion in such spacetimes
raises the interesting possibility that static domain walls will possess a unique experimental signature.
@S0556-2821~99!03116-1#

PACS number~s!: 11.27.1d, 04.20.Jb
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I. INTRODUCTION

Spontaneous symmetry breaking in the early universe
produce domain walls~sometimes called cosmic mem
branes!. In the simplest model, a domain wall is forme
when a discrete symmetry is broken with the resulting d
crete set of vacua in different regions of space-time@1#. The
study of domain walls has a long history dating back to
work of Zel’dovich et al. @2# ~see also Ref.@3# for a recent
review by Cveticˇ and Soleng!. Domain walls produced a
high temperatures are cosmologically problematic since t
produce large-scale anisotropies which violate current
perimental bounds@2,4–6#. However, domain walls that ar
formed after the decoupling of the microwave backgrou
do not produce large-scale anisotropies@7#. These late-time
domain walls are produced at low temperatu
(;1022 eV) and therefore have characteristic widths on
order of 1 Mpc and low-energy densities, thus the name
domain walls. Soft domain walls have large density gradie
and thus are a potential source of the density fluctuations
are necessary for the formation of the large scale struc
seen in the universe. It is also interesting to note that
energy-momentum tensor for domain walls violates
strong energy condition which results in a gravitational fie
that is, on average, repulsive@8,9#.

In this paper, we consider thick domain walls that ar
from a single real scalar field with self-interaction. The a
sociated Einstein-scalar field equations admit acceler
spherically symmetric~and hence, locally plane symmetric!
wall-like solutions. Unlike some previous investigatio
@8,10# of other thick domain walls, we do not assume a
reflection symmetry of the corresponding spacetime, and
analysis of the Einstein equations leads to two broad cla
of wall-like solutions which include previously known do
main walls. Although nonreflection symmetric domain wa
have been previously investigated by Cveticˇ et al. and by
Jensen and Soleng@3,11–15# their focus was on thin domain
walls. Explicit thick wall solutions have previously bee
found by Cveticˇ, Griffies, and Rey@16# and by Cveticˇ and
Griffies @17#. Our work differs from previous work on thick
walls in that we provide a very general solution generat
technique. Our solution generating technique works for b
0556-2821/99/60~6!/065011~12!/$15.00 60 0650
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static and dynamic domain walls. We find that relaxing t
assumption of reflection symmetry leads to a family of sta
plane symmetric domain walls. This result is consistent w
the Dolgov-Khripovich theorem@18#, although our method
of proof is different. The Dolgov-Khripovich theorem rule
out static domain walls provided the vacuum energy den
is positive and the metric has the same asymptotic limit
both sides of the wall. By violating the metric condition w
are able to produce explicit solutions for static domain wa
Linet @19# has shown that one can also produce a static w
by using a negative vacuum energy density. These w
have the unusual property that their asymptotic vacua di
from each other intrinsically.

In Sec. II, we introduce a simple model of domain wal
and discuss the general properties of the associated en
momentum tensor with particular emphasis on various
ergy conditions. Without reflection symmetry we obtain,
Sec. III, a new class of domain walls which are~locally!
plane symmetric. In Sec. IV, the existence of static dom
wall solutions is established. Finally, in Sec. V, we presen
detailed analysis of the nontrivial particle motion in doma
wall spacetimes. In the Appendix, we prove two lemm
which are essential for understanding the properties of st
and accelerated domain walls.

II. STRUCTURE OF THE ENERGY MOMENTUM
TENSOR

Following @8# we consider a real self-interacting scal
field on a space-time (M4, g). The action for the scalar field
is given by

L@f#52E
M
H 1

2
l2df~df̃ !1m4V~f!J !1, ~2.1!

wherel and m set the energy scales,! is the Hodge dual
operator, and the vector fielddf̃ is the metric dual todf.
@Throughout this paper, we work with units where\5c
5kB51 and G5(1.231019GeV)22. In these unitsf and
the ‘‘potential’’ V(f) are dimensionless.# The stress energy
tensor due tof is given by
©1999 The American Physical Society11-1
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T5l2df ^ df2H 1

2
l2df~df̃ !1m4V~f!J g. ~2.2!

We assume that the potentialV(f) is positive. This ensures
that the energy density

T~Z, Z!5
l2

2 H @Z~f!#21(
i 51

3

@Xi~f!#2J 1m4V~f!

~2.3!

is positive. Here$X0 , X1 , X2 , X3% form a local orthonormal
basis andZ5X0 is any observer withg(Z, Z)521.

Since we are looking for domain wall solutions we r
quire thatV(f) has two degenerate global minimum atf
5m6 with V(m6)50. Since we are considering only class
cal systems we require that the vacuum energy density
non-negative@20#. A negative vacuum energy density wou
violate the weak energy condition. The boundary betwe
these regions is the domain wall where the potentialV(f)
.0 and has a maximum atf5m0 . The fieldf is a smooth
function on spacetime which connects the vacuam6 . Thus,
the ~ideal! boundary must be a timelike hypersurface
(M4, g), defined byf5m0 . For such field configurations
the gradient fielddf̃ must be normal to the boundary hype
surface, and hence it is spacelike. The stress energy te
can now be written as

T52r~g2Ñ^ Ñ!1n~Ñ^ Ñ!, ~2.4!

where the unit normal N is defined by N

[df̃/@g(df̃, df̃)#1/2, and the functionsr and n are given
by

r5
1

2
l2df~df̃ !1m4V~f!, ~2.5!

n5
1

2
l2df~df̃ !2m4V~f!. ~2.6!

SinceV(f)>0 anddf(df̃).0, we have

r.0, ~2.7!

r1n.0. ~2.8!

In order to search for a domain wall configuration of t
scalar fieldf as a solution to Einstein-Scalar equations

Rab2
1

2
Rgab5~8pG!Tab

we have made two physically reasonable assumptions~i!
V(f)>0, ~ii ! f is spacelike, which means thatgab]af]bf
.0. These two assumptions lead to the following proper
of the stress tensorT.

~1! Tab satisfies the weak-energy condition. For an o
server,ua ~whereuaua521), we have
06501
be

n

sor

s

-

uauaTab5l2~ua]af!~ub]bf!

1H l2

2
gab]af]bf1m4V~f!J .0.

~2! Tab satisfies the dominant-energy condition. Defini
va
ªTabub , we have va5l2(]af)(]bf)ub2rua, which

implies

vava52r222m4l2V~f!~ua]af!2,0.

~3! Tab violates the strong-energy condition,uauaTab
>2 1

2 tr(T), for every causal vectorua: To see this we
choose an observerua with uaua521 andua]af50. Then,
we have

uauaTab5H l2

2
gab]af]bf1m4V~f!J ,

2
1

2
tr~T!5H l2

2
gab]af]bf12m4V~f!J .

Hence,uauaTab,2 1
2 tr(T), violating the strong-energy con

dition for the chosen causal vector fieldua.
~4! Einstein’s equations imply the equation of motion f

the scalar fieldf:

05]afTab;b5~]af]af!H l2¹b¹bf2m4
dV~f!

df J .

Here, (]af]af)Þ0 since (]af) is spacelike, and hence Ein
stein’s equations lead to the scalar-field equation

l2¹b¹bf2m4
dV~f!

df
50.

III. ACCELERATED SPHERICALLY SYMMETRIC
DOMAIN WALLS

In order to determine the spacetime due to the stre
energy tensor~2.2! we must solve the Einstein equations

Ric2
1

2
Rg58pGT, ~3.1!

whereRic and R are the Ricci tensor and scalar curvatu
respectively. To look for a spherically symmetric solution w
choose a chart (t,x,u,c) and assume that the metric adm
three Killing vector fields

K15sinc]u1cotu cosc]c ,

K252cosc]u1cotu sinc]c ,

K35]c . ~3.2!

We consider a spherically symmetric metric of the followin
form:
1-2
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g5 f 2~ t,x!$2dt ^ dt1dx^ dx%

1h2~ t,x!$du ^ du1sin2 udc ^ dc%, ~3.3!

where the functionsf (t,x) andh(t,x) are not assumed to b
spatially reflection symmetric. Now, taking Lie derivative
of Einstein’s equations~3.1! with respect to a Killing vector
field K, we find

LKT50,

LK(traceT)50, ~3.4!

which, together with the equations~2.4!–~2.6!, gives K(r)
50, K(n)50, and henceK(f)50. Then from Eq.~2.2!, we
have]uf5]cf50. Sincedf̃ is spacelike,f is assumed to
be t independent in the chart (t,x,u,c). Hence df
5(]xf)dx, and the spacelike unit vector field,N
[df̃/@g(df̃,df̃)#1/2, normal to the membrane is given b
N5(1/f )]x . Then, the membrane stress tensor~2.4! can be
written as

T52r~2e0
^ e01e2

^ e21e3
^ e3!1ne1

^ e1, ~3.5!

where we have defined the coframes by

e05 f dt, e15 f dx, e25hdu, e35h sinudc ~3.6!

and the corresponding orthonormal frames are

X05~1/f !] t , X15~1/f !]x , X25~1/h!]u ,

X35~1/h sinu!]c . ~3.7!

For complete specification of the metric~3.3! inside a space-
time region dominated by a thick~cosmic! membrane, it is
necessary to solve for the functions$ f ,h% from the Einstein
equations

Pa58pG$Tab2~G/2!gab%e
b, ~3.8!

where T is given by Eq.~3.5!, and G[tr@T#5(23r1n).
Now, computing the Ricci one-formsPa[Ric(Xa ,Xb)eb

with respect to the orthonormal basis~3.6!, ~3.7!, we find

P05Ae01Be1, P15Be01Ce1 ,P25De2, P35De3,
~3.9!

where$A,B,C,D% are functions of$t,x%. ~Henceforth, a dot
and a prime denote partial differentiations with respect tt
andx.) Now, from Eqs.~3.5!, ~3.8!, ~3.9!, it is seen thatB
5Ric(X0 ,X1)50, and hence, in terms of the coeffecien
$ f ,h%, we have

B52S 2

f hD H ]xS ḣ

f
D 2S ḟ

f 2D h8J 50. ~3.10!

A simple solution to Eq.~3.10! can be given by

f [ f ~x!, h[c~ t ! f ~x!. ~3.11!
06501
SettingB50 @Eq. ~3.10!# in Eq. ~3.9! and using Eq.~3.11! in
the Einstein equations~3.8!, we find

f 2A[]xS f 8

f D12S f 8

f D 2

22S c̈

cD524pG~r2n! f 2,

f 2C[23]xS f 8

f D54pG~3r1n! f 2,

2 f 2D[]xS f 8

f D12S f 8

f D 2

2S c̈

cD2S ċ

cD 2

2S 1

cD 2

524pG~r2n! f 2. ~3.12!

From the first and the third equations in Eq.~3.12!, we have
( c̈/c)5(1/c2)1( ċ/c)2 which has a solution

c~ t !5
1

k
cosh~kt!, ~3.13!

wherek.0. Using Eq.~3.13! and definingu5 f 8/ f , the Ein-
stein equations~3.12! reduce to

2u81u22k252~8pG f2!r, ~3.14!

23~u22k2!52~8pG f2!n. ~3.15!

As a consequence of Eqs.~3.14!, ~3.15! or ¹•T50, the
equation of motion for the scalar fieldf is given by

S f 8

f D52
1

3

n8

~r1n!
. ~3.16!

It is clear from Eq.~3.5! that r andn represent energy den
sity and pressure~normal to the wall! with respect to the
orthonormal basis in Eqs. ~3.6!, ~3.7!: T(X0 ,X0)
5r; T(X1 ,X1)5n, and by Eqs.~3.14!, ~3.15!, r[r(x) and
n[n(x) in the chart$t,x,y,z%. @Here we remark that com
ponents of the stress tensor~3.5! are not, in general, time
independent with respect to the coordinate basis. For
ample, T(]y ,]y)52r exp(kt) by Eqs. ~3.5!, ~3.11!, and
~3.13!.# Furthermore,n50 implies (f 8/ f )25k2, and hence
r50, leading to an empty spacetime~vacuum!. Thus the
pressure,~n!, inside the membranescannot be zero. We now
show that the nowhere zero smooth functionn(x),0 based
on the constraint (r1n).0, and additional physical assump
tions that f is bounded and nowhere zero, and the str
tensor@~3.5!# tends to zero in the limituxu˜` giving rise to
asymptotic vacua.

A. Negative ‘‘pressure’’ „n…

From Eqs.~3.12! and ~3.14!–~3.16!, we have

3u8524pG~3r1n! f 2, ~3.17!

n8523~r1n!u. ~3.18!

From Eq.~3.17!, it follows that u8(x),0, and hence,u has
at most one zero. Also, for the nowhere zero smooth fu
tion, n, there exists anx̄ such thatn8( x̄)50. ~See the Appen-
1-3
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RICHARD GASS AND MANASH MUKHERJEE PHYSICAL REVIEW D60 065011
dix, Lemma 2, for a proof of this statement.! Then, Eq.
~3.18! implies that each of the functionsu and n8 has a
unique zero atx5 x̄. Furthermore, differentiating Eq.~3.18!
and using~3.17!, we haven9( x̄)52(r1n)u8( x̄).0, which
means that the unique extremum ofn overR is a minimum at
x5 x̄. However, n satisfies the asymptotic conditio
limuxu˜`n50, and hencen must benegative. As a conse-
quence ofn,0, we haver.unu since r.0 and (r1n)
.0.

B. The equation of staten[n„r…

In order to solve the Einstein-scalar equations~3.14!,
~3.15!, we need an equation of staten[n(r) subject to the
constraintsn,0, r.unu, limuxu˜`n50, and limuxu˜`r50.
First, we observe thatu8(x),0;x, and hence, from Eq
~3.15!, limx˜6` u(x)57k. From these properties ofu(x),
it follows that the nonzero smooth functions (u22k2) andu8
are both negative; each of them has a unique minimum
tends to zero in the limituxu˜`. Using Eqs.~3.14! and
~3.15!, we also have

u8~x!

k22u~x!2 52e~x!, ~3.19!

where the nowhere zero smooth functione(x) is given by

e~x!5
1

2 F3r~x!

un~x!u
21G.1 ~3.20!

sincer(x).un(x)u. In fact, Eqs.~3.19! and~3.20! lead to an
equation of staten52v0

2r where (32v0
2)/2v0

25e(x).1,
and hence,v0

2,1. It is important to note thate(x) is dimen-
sionless according to our choice of units~specified at the
beginning of Sec. II!. Thus,e(x) is, in fact, a function of the
dimensionless argumentkx, where the dimension ofk is
given by inverse of length.

To determine the classes of admissiblee(x) leading to
domain wall configurations off(x), we recall from Sec. II
@and the discussion below Eq.~3.3!# that limx˜6`f(x)
5m6 , where the constantsm1 andm2 represent two degen
erate vacua withV(m6)50. However, from Eqs.~2.5!, ~2.6!,
~3.3!, ~3.14!, and~3.15!, and the existence of asymptotic lim
its of f, we have

f8~x!25~2/l28pG!@e~x!21#@k22u~x!2#

lim
uxu˜`

f8~x!50, ~3.21!

where limuxu˜`@k22u(x)2#50. Thus, anye(x) from the
class ofboundedsmooth functions such that 1,e(x)<e0 ,
will satisfy the condition~3.21!.

One can also choosee(x) to beunbounded. In this case,
we have another family of admissible smooth functions s
isfying Eq. ~3.21! provided, asymptotically,@k22u(x)2# ap-
proaches zero faster thane(x) tends to infinity. To see this
we integrate Eq.~3.19! to obtainu(x):
06501
d

t-

u~x!52k tanhS kE e~x!dx1cD ,

wherec is an integration constant. Inserting the above e
pression foru(x) in @k22u(x)2#, we find

@k22u~x!2#5k2 sech2S kE e~x!dx1cD .

The first equation in Eq.~3.21! now gives

f8~x!25~2k2/l28pG!@e~x!21#sech2S kE e~x!dx1cD .

Since sech2@k*e(x)dx1c# tends to zero exponentially asuxu
˜`, we may takee(x) to be, for example, a polynomia
such as 213k2x2 for which Eqs.~3.20! and~3.21! are satis-
fied.

This suggests a procedure for solving the Einstein eq
tions ~3.14!, ~3.15! with a choice ofe(x) from these two
large classes of functions leading to domain walls. In
following section, we will discuss solutions due to bound
e(x).

C. Solutions to the Einstein equations

A simple solution to the Einstein equations~3.14! and
~3.15! is obtained by choosinge(x)[e0.1, which trivially
belongs to the class of smooth bounded functions. Hen
such a choice ensures, through Eq.~3.21!, the existence of a
domain wall solution to the Einstein equations. Integrati
Eq. ~3.19! and usingu[ f 8/ f , we find

u~x!52k tanh~e0kx!,

f ~x!5cosh2q~kx/q!, ~3.22!

whereq[1/e0 . Also, from Eqs.~3.21! and ~3.22!, we have
the following exact solutions forf andV(f):

f5arctan@sinh~kx/q!#,

V~f!5$cosf%2(12q),

where the parametersq andk are related to the energy scale
l andm by

l252q~12q!~1/8pG!,

m45k2S 1

q
12D ~1/8pG!.

Thus, f (x), f(x), andV(f) solve the Einstein equations a
well as the field equation for the real scalarf. Finally, the
metric for the accelerated spherically symmetric domain w
spacetime is given by
1-4
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g5 f 2~x!$2dt ^ dt1dx^ dx%

1S 1

k
cosh~kt! D 2

f 2~x!$du ^ du1sin2udc ^ dc%.

~3.23!

It is interesting to note that for a fixedx5x0 , the spheri-
cal domain represented by~a three-dimensional de Sitte
slice!

gux5x0
5 f 2~x0!H 2dt ^ dt

1S 1

k
cosh~kt! D 2

~du ^ du1sin2 udc ^ dc!J
~3.24!

first contracts and then expands. Furthermore, if we choo
chart $t,h,y,z% with the following ~implicit! coordinate
transformations:

t5S 1

kD lnS 1

k
sinhkt1

1

k
coshkt cosu D ,

h5x,

y5~coshkt sinu cosc!/~sinhkt1coshkt cosu!,

z5~coshkt sinusinc!/~sinhkt1coshkt cosu!,
~3.25!

the wall spacetime~3.23! becomes~locally! plane symmet-
ric:

g5 f 2~h!$2dt ^ dt1dh ^ dh%

1exp~2kt! f 2~h!$dy^ dy1dz^ dz%. ~3.26!

The metric~3.23! or ~3.26! is only one of many possible
domain wall solutions and Eqs.~3.19!, ~3.20! show that ad-
missible choices fore(x) generate additional solutions. Fo
example, the smooth functione(x)52@12kxexp(2k2x2)#
.1 has aymptotic limits, limuxu˜`e(x)52. Thus,e(x) be-
longs to the class of bounded smooth functions so that
~3.21! is satisfied, and hence,e(x) must lead to a domain
wall solution to the Einstein equations.

Equation~3.19! for u(x) then becomes

u8~x!

k22u~x!2 522@12kx exp~2k2x2!#. ~3.27!

By integrating Eq.~3.27!, we get

u~x!52k tanh@2kx1exp~2k2x2!2C#, ~3.28!

where C is a constant of integration which we will set t
zero. The constantC determines whereu(x) crosses thex
axis. By adjustingC the functionu(x) can be made to cros
thex axis at the origin. Sinceu5 f 8/ f we can now solve for
f (x) which gives
06501
a

q.

f ~x!5exp2kE tanh@2kx1exp~2k2x2!#dx. ~3.29!

The integral in Eq.~3.29! which cannot be evaluated analyt
cally, is easily done numerically. A plot off (x) is shown in
Fig. 1.

The energy densityr(x) and the pressuren(x) can be
computed from the Einstein equations~3.14! and ~3.15! and
are shown in Figs. 2 and 3. The equation of state can
longer be found analytically but it is possible to parame
cally plot the energy density and the pressure as a functio
position. This is shown in Fig. 4. The nonzero area e
closed by ther-n diagram is due to the lack of reflectio
symmetry in the stress tensor. The kink in the curve is due
the bump in the potentialV(f) which is shown in Fig. 5.
The fieldf which generatesV(f) is shown in Fig. 6.

The equations~3.19!, ~3.20! clearly allow one to generate
two broad classes of accelerated spherically symmetric
main wall spacetimes but all of these solutions lead to s
tionlike configurations for the scalar fieldf and have geode
sics with the same general features. These solutions ma
may not be reflection symmetric inx coordinates. In the nex
section, we will show that static wall spacetimes cannot
reflection symmetric@18#, leading to nontrivial asymptotic
vacuum structures.

FIG. 2. Plot of the energy densityr(x) versusx for k51.

FIG. 1. Plot off (x) as defined by Eq.~3.29! versusx. Note that
the domain wall is no longer centered atx50.
1-5
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IV. STATIC PLANE SYMMETRIC DOMAIN WALLS

We now look for static solutions to the Einstein-sca
equations. Imposing plane symmetry, the metric for a st
spacetime takes the following form@21#:

g5 f 2~x!$2dt^ dt1dx^ dx%1h2~x!$dy^ dy1dz^ dz%.
~4.1!

Then the Einstein equations corresponding to the dom
wall stress tensor are given by

u812uv52~4pG! f 2~r2n!, ~4.2!

u812~v81v22uv !52~4pG! f 2~3r1n!, ~4.3!

v812v252~4pG! f 2~r2n!, ~4.4!

where we setu[( f 8/ f ) and v[(h8/h). Equations~4.2!–
~4.4! also imply @see the Appendix#

~u812v8!,0, ~4.5!

n852~r1n!~u12v !. ~4.6!

The above equations lead to a number of general prope
of the plane symmetric static domain wall, assuming t
(r1n).0, limuxu˜` n50 and limuxu˜` r50.

FIG. 4. Plot of the energy densityr(x) versus the pressuren(x)
for k51.

FIG. 3. Plot of the pressuren(x) versusx for k51. Note that the
pressure is negative, as it must be for a domain wall solution.
06501
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A. Negative ‘‘pressure’’ „n…

From Eq.~4.5!, it follows that (u12v) has at most one
zero. Also, for a nowhere zero smooth function,n, there
exists anx̄ such thatn8( x̄)50. ~See the Appendix, Lemma 2
for a proof of this statement.! Then, Eq.~4.6! implies that
each of the functions (u12v) and n8 has a unique zero a
x5 x̄. Furthermore, differentiating Eq.~4.6! and using Eq.
~4.5!, we haven9( x̄)52(r1n)@u8( x̄)12v8( x̄)#.0, which
means that the unique extremum ofn overR is a minimum at
x5 x̄. However, n satisfies the asymptotic conditio
limuxu˜`n50, and hencen must be negative.

B. Plane symmetric static wall is not reflection symmetric

If the metric ~4.1! is reflection symmetric aboutx50
~say! then f (x)5 f (2x) and hence,f 8(x)52 f 8(2x) and
f 8(0)50. Similar results hold forh(x), and u(0)50
5v(0). Also, from the Einstein equations~4.2! and~4.3!, we
have

~v82u8!12v~v2u!50.

Integrating once gives

@v~x!2u~x!#h2~x!5K/2 ~4.7!

FIG. 5. Plot of the potentialV(f) versusx for k51.

FIG. 6. Plot of the fieldf(x) versusx for k51.
1-6
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for all x, whereK is a constant. ForKÞ0, Eq.~4.7! contra-
dicts reflection symmetry off (x) and h(x), and hence a
plane symmetric static wall cannot have reflection symme
If K50, h(x) is proportional tof (x) and with the linear
changes in coordinates we havef (x)5h(x) and u(x)
5v(x). Then from the Einstein equations

u812u252~4pG! f 2~r2n!,

u812~v81v22uv !52~4pG! f 2~3r1n!,

we find

0<3u25~8pG! f 2n<0

since,n,0 for nonzeron. Thus, forK50 we haven50,
and hencer50 producing a vacuum. This conclusion al
means that a conformally flat plane symmetric static me
leads to a vacuum spacetime under the asymptotic condit
on n andr.

C. Asymptotic limits of the Einstein equations

If we assume, again, that pressure~n! and energy density
~r! vanish in the region far from a thick membrane, th
equations

lim
uxu˜`

n50, lim
uxu˜`

r50,

generate the vacuum Einstein’s equations

u812uv50, ~4.8!

u812~v81v22uv !50, ~4.9!

v812v250. ~4.10!

From these equations, we find an algebraic relation

~2u1v !v50.

~a! If ( h8/h)[v50, then (f 8/ f )8[u850. In this case,
we may takeh(x)51, and on integrationf (x)5exp(px),
where p is a constant. Inserting the following coordina
transformations:

t̃ 5
1

p
exp~pt!sinh~px!, x̃5

1

p
exp~pt!cosh~px!,

ỹ5y, z̃5z

in Eq. ~4.1!, we have the Minkowski spacetime

gMink52d t̃ ^ d t̃1dx̃^ dx̃1dỹ^ dỹ1dz̃^ dz̃.

~b! If 2( f 8/ f )1(h8/h)[2u1v50, by integrating once
we havef 2(x)h(x)5C0 , whereC0 is a constant. Also, Eq
~4.10! implies h2(x)5x, and choosingC051 we getf 2(x)
51/Ax. In this case, we have Taub’s plane symmetric v
cum spacetime@21#
06501
y.

c
ns

-

gTaub5
1

Ax
$2dt^ dt1dx^ dx%1x$dy^ dy1dz^ dz%.

D. Solutions to Einstein’s equations

In order to obtain a plane symmetric static wall solution
the Einstein equations~4.2!, ~4.3!, and ~4.4! we now intro-
duce a coordinate transformation suggested by Eq.~4.7!

1

h~x!

dh~x!

dx
5

1

f ~x!

d f~x!

dx
1

K

2h2~x!
. ~4.11!

If we define the nonsingular coordinate changej[j(x) by

dj5
dx

h2~x!
~4.12!

then consideringf (x) andh(x) as functions ofj, we have

1

h

dh

dj
5

1

f

d f

dj
1

K

2
~4.13!

Since f (x)dx5 f @x(j)#h2@x(j)#dj, we define

f @x~j!#[F~j! and N~j![ f @x~j!#h2@x~j!#.
~4.14!

Thus,h2@x(j)#5 N(j)/F(j), and hence, in the new coord
nate system$t, j, y, z%, the plane symmetric static metri
~4.1! takes the following form:

g52F2~j!dt^ dt1N2~j!dj ^ dj

1
N~j!

F~j!
$dy^ dy1dz^ dz%. ~4.15!

Denoting differentiation with respect toj by a prime, Eq.
~4.13! implies

S N8

N D53S F8

F D1K. ~4.16!

The Einstein equations corresponding to the metric~4.15! are
given by

S F8

F D 8
52~4pG!N2~r2n!, ~4.17!

3

2 S F8

F D 2

2S F8

F D S N8

N D2
1

2 S N8

N D 2

1S N8

N D 8

52~4pG!N2~3r1n!, ~4.18!

1

2 H S N8

N D 8
2S F8

F D 8J 52~4pG!N2~r2n!. ~4.19!

From Eqs.~4.17!–~4.19! and ~4.16!, we have
1-7
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22S F8

F D 8
1H 3S F8

F D 2

12S F8

F DK1K2/4J 5~8pG!N2r~j!,

H 3S F8

F D 2

12S F8

F DK1K2/4J 5~8pG!N2n~j!.

~4.20!

If we setr (j)[F8(j)/F(j)1K/3 anda[K/6, then the Ein-
stein equations~4.20! become

2r 823~r 22a2!52~8pGN2!r,

23~r 22a2!52~8pGN2!n.
~4.21!

From this form of the Einstein equations, we have

r 8~j!

a22r ~j!2 52s~j!, ~4.22!

where the nowhere zero smooth functions(j) is given by

s~j!5
3

2 F3r~j!

un~j!u
11G.3 ~4.23!

sincer(j).un(j)u. Sincen,0, we have an equation of sta
in the form n(j)52q(j)r(j), where the relation
3
2 @3r(j)/un(j)u 11#5s(j).3 is equivalent to 0,q(j)
,1. Following the procedure developed in Sec. III B f
generating solutions to the Einstein-scalar equations, we
tain the simplest static domain wall solution to Eqs.~4.20!,
~4.21! whenq is a constant:

ln F52
L

3
lnFcoshS Kj

2L D G2
Kj

3
, ~4.24!

whereL is related toq by q5L/(22L) and hence, 0,L
,1. Now, using Eq.~4.16! we find the metric functions

F25@cosh~Kj/2L !#2 2L/3 expS 2
2Kj

3 D , ~4.25!

N25@cosh~Kj/2L !#22L, ~4.26!

S N

F D5@cosh~Kj/2L !#2 2L/3 expS Kj

3 D . ~4.27!

Equations~4.25!–~4.27! represent a two-parameter (K, L)
family of plane symmetric static spacetimes dominated
domain walls. The ‘‘density’’~r! and ‘‘pressure’’~n! func-
tions are obtained from the Einstein equations~4.20!, ~4.21!:

r~j!5
K2 ~22L !sech~K j/2L !222 L

96G L p
, ~4.28!

n~j!5
2K2 sech~K j/2L !222 L

96G p
. ~4.29!

The explicit forms of the~dimensionless! scalar field and the
potential are given by
06501
b-

y

f~j!5arctanFsinhS K j

2 L D G , ~4.30!

V~f!5~cosf!222 L. ~4.31!

The energy scalesl andm, are related to the parametersK
andL by

l25
~12L ! L

12G p
, ~4.32!

m45
K2

48G L p
. ~4.33!

It should be noted from Eqs.~4.28!, ~4.29! that the matter
density and pressure are reflection symmetric, while
spacetime@determined by Eqs.~4.25!–~4.27!# is not. The
absence of reflection symmetry of the static wall spacetim
also demonstrated by the existence of different asympt
vacua defined by

lim
uju˜`

n50, lim
uju˜`

r50.

For j˜`,

F2
˜exp~2Kj!, ~4.34!

N2
˜exp~2Kj!, ~4.35!

S N

F D˜const. ~4.36!

Comparing our results in Sec. IV C it is clear that the lim
~4.34!–~4.36! imply a Minkowski vacuum. Forj˜2`,

F2
˜expS 2

1

3
Kj D , ~4.37!

N2
˜exp~Kj!, ~4.38!

S N

F D˜expS 2

3
Kj D . ~4.39!

The fact that the limits~4.37!–~4.39! yield the Taub vacuum
can be seen as follows:

gj˜2`52expS 2
1

3
Kj Ddt^ dt1exp~Kj!dj ^ dj

1expS 2

3
Kj D $dy^ dy1dz^ dz%. ~4.40!

Then, the coordinate transformations given by

t5~2K/3!1/3t0 , ~4.41!

j5~3/2K !ln$~2K/3!4/3j0%,
~4.42!

y5~3/2K !2/3y0, ~4.43!
1-8
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z5~3/2K !2/3z0, ~4.44!

lead to the standard form of the metric for the Taub vacu

gTaub5
1

Aj0

$2dt0^ dt01dj0^ dj0%

1j0$dy0^ dy01dz0^ dz0%. ~4.45!

The asymptotic solution in Eq.~4.45! also appears implicitly
in the work of Jensen and Soleng@15#. The existence of a
large family of solutions all of which are equivalent a
j˜2` is to be expected since any plane symmetric st
domain wall solution has the Taub vacuum as its asympt
limit on one side of the wall.

All plane symmetric static domain walls solution have
singularity at infinity, since the Taub vacuum~4.40! has a
singularity at infinity. One can also compute th
Kretschmann invariantI 5RabmnRabmn. For the solution
given by Eqs.~4.25!–~4.27! with K51 andL51/2 we find
that

I 5
21e22 j118e2 j

27~11e2 j!2

clearly showing that there is a singularity atj˜2`. The
physical significance of the singularity is unclear. The sing
larity arises on the Taub side of the wall because we ass
that the energy density goes to zero at infinity. In a phy
cally realistic spacetime there would be a contribution to
energy density from ordinary matter. If at large distanc
from the domain wall, the contribution to the energy dens
is dominated by ordinary matter, then one might expec
spacetime which near the wall is described by the dom
wall solutions and yet is well behaved at infinity.

E. More static solutions

In Eq. ~4.22!, if we take a nowhere zero bounded smoo
function

s~j!59@11exp~236a2j2!#

which satisfies Eq.~4.23!, then we have

r ~j!52a tanhF ~9a!j1S 3

4DAp Erf~6aj!2CG .
~4.46!

A plot of r (j) is shown, forC50 anda51/6 ~or equiva-
lently, K51), in Fig. 7. The functionF(j) can be found by
numerical integration. A plot ofF(j) is shown in Fig. 8.
Equation~4.16! can be integrated to giveN(j). A plot of
N(j) is shown in Fig. 9.

V. PARTICLE MOTION

For domain wall spacetimes gravity is, on average, rep
sive. This can be seen from the following argument. T
conditionRic(v, v)>0 for all observersv expresses the em
pirical fact that, on average, gravity attracts@22#. This con-
06501
ic
ic

-
e

i-
e
s
y
a
in

l-
e

dition is equivalent to the strong energy condition,T(v, v)
>2 G/2 for all observersv, whereG5tr(T). Thus, violation
of the strong energy condition for the Einstein-scalar str
tensor implies that, on average, gravity is repulsive in
domain wall spacetime.

A. Accelerated spacetimes

To obtain the geodesic eqations for a particle~of massm)
in the accelerated domain wall spacetime@Eq. ~3.23!#, we
consider its worldline in the equatorial plane@u5p/2#:

g:t°„t5t~t!,x5~t!,u5p/2,c5c~t!…. ~5.1!

If g is a geodesic~andt is an affine parameter alongg), then
the four-velocity of the particle is given by

g* 5S dt

dt D ] t1S dx

dt D ]x1S dc

dt D ]c ~5.2!

with the normalizationg(g* ,g* )52m2:

2 f 2S dt

dt D 2

1 f 2S dx

dt D 2

1 f 2~coshkt/k!2S dc

dt D 2

52m2.

~5.3!

Then the geodesicg is specified by

S dx

dt D 2

5S 1

f 2D S a0

f 2 2m2D , ~5.4!

S dt

dt D 2

5S 1

f 2D H a02S a3k

coshktD
2J ,

~5.5!

dc

dt
5S 1

f 2D S a3k2

cosh2 ktD , ~5.6!

wherea0 anda3 are constants of integration. For a massi
particle (m51), three-velocity with respect to an observ
Z5(1/f )] t is given by

v2512$a0 / f 21~a3k/ f coshkt!2%21. ~5.7!

For any given domain wall solution these equations can
solved numerically. We will work withf (x)5cosh2q(kx/q)
@Eq. ~3.22!# solution but the essential features of particle m
tion remain unchanged in other spacetimes obtained f
Eqs. ~3.19!–~3.21!. Since f (x) decreases monotonicall
away fromx50 ~where it attains its unique maximum!, the
three-velocity of the partcle with respect to the observerZ,
will increase away fromx50. This shows the repulsive na
ture of the domain wall gravitational field.

Since domain wall space-times allow repulsive gravity
is clear that ‘‘turning point’’ solutions in which an incomin
particle is repelled by the domain wall are allowed. T
phase space plot for one such geodesic is shown in Fig.
Since the space-time is expanding and particles are acc
ated away from the wall the coordinate timet along a geo-
desic is red shifted. A plot oft(t) is shown in Fig. 11.
1-9
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B. Static spacetimes

To analyze particle motion in a static domain wall spa
time we now consider the geodesic equations for a test
ticle ~of massm50, 1!. Such a particle may be represent
by a curve on (M4, g) @with g given by Eqs.~4.15! and
~4.25!–~4.27!#:

g:t°@ t5t~t!,j5j~t!,y5y~t!,z5z~t!#. ~5.8!

If g is a geodesic~andt is an affine parameter alongg), then
the four-velocity of the particle is

g* 5S dt

dt D ] t1S dj

dt D ]j1S dy

dt D ]y1S dz

dt D ]z ~5.9!

with the normalizationg(g* , g* )52m2:

2F2S dt

dt D 2

1N2S dj

dt D 2

1~N/F !H S dy

dt D 2

1S dz

dt D 2J 52m2.

~5.10!

The geodesic equations are given by

dt

dt
5C0 /F2, ~5.11!

FIG. 7. Plot of r (j) as defined by Eq.~4.46! versusx for K
51.

FIG. 8. Plot ofF(j) versusj for K51.
06501
-
r-

d

dt S N2
dj

dt D5
1

2 H 2~F2!8S dt

dt D 2

1~N2!8S dj

dt D 2

1~N/F !8S dy

dt D 2

1~N/F !8S dy

dt D 2J ,

~5.12!

dy

dt
5C2 /~N/F !, ~5.13!

dz

dt
5C3 /~N/F !, ~5.14!

whereC0 , C2 , andC3 are constant and a prime represen
differentiation with respect toj. For a massive particle (m
51), the three-velocity with respect to an observerZ
5(1/F)] t is given by

v2512~F/C0!2. ~5.15!

SinceF is a monotonically decreasing positive function,
massive particle that starts on the left side with a nega
velocity will move away from the wall, reach a turning poin
and be accelerated back towards the wall. After the part

FIG. 9. Plot ofN(j) versusj for K51.

FIG. 10. Phase space plot of a turning point solution for a p
ticle with initial conditionsx(0)520, x8(0)520.5, y8(0)50.5,
y(0)50, z8(0)50, z(0)50, t8(0)51, t(0)50, andf given by Eq.
~3.22!.
1-10
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has passed through the wall it will be repelled from the w
Thus, on the left side of the domain wall~Taub vacuum!,
gravity is attractive while, on the right side~Minkowsky
vacuum!, gravity is repulsive. A phase space plot for such
particle is shown in Fig. 12.

For a photon traveling along thej axis, the corresponding
null geodesic is represented by

g:l°@ t5t~l!, j5j~l!, y5a, z5b#, ~5.16!

wherel is an affine parameter anda, b are constants. This
null geodesic is characterized by

g* 5S dt

dl D ] t1S dj

dl D ]j , ~5.17!

dt

dl
5C0 /F2, ~5.18!

FIG. 11. A plot of t(t) showing the redshift of thet for a
particle with initial conditionsx(0)51/2, x8(0)520.5, y8(0)
50, y(0)50, z8(0)50, z(0)50, t8(0)51, t(0)50, and f given
by Eq. ~3.22!.

FIG. 12. Phase space plot of a turning point solution for a u
mass particle with initial conditionsx(0)52, x8(0)520.5, y8(0)
50.9188,y(0)50, z8(0)50, z(0)50, t8(0)51, t(0)50. On the
left hand side of the domain wall gravity is attractive, while on t
right hand side of the domain wall gravity is repulsive. The spa
time has parametersm51, L51/2, andk51/2, and a metric given
by g in Eqs.~4.15! and ~4.25!–~4.27!.
06501
l.

g~g* , g* !5052F2S dt

dl D 2

1N2S dj

dl D 2

. ~5.19!

Now, with respect to the observer fieldZ5(1/F)] t , we com-
pute the frequency ratio for the photons traveling along thj
axis:

f e

f o
5$2g~g* , Ze!%/$2g~g* , Zo!%5F~jo!/F~je!,

~5.20!

wheree and o are the emission and observation point, r
spectively. From the above equation, we note that phot
approaching the wall from the left-hand~Taub! side will be
continuously blueshifted as they pass through the wall
ward the Minkowski vacuum. Photons that approach the w
from the right-hand~Minkowski! side of the wall will first be
redshifted and then blueshifted when they pass through
wall into the Taub side~see Fig. 13!.

The geodesic equations with respect to the general
static wall metric discussed in Sec. IV E can be obtained
replacingF in the above equations. The essential charac
istics of particle motion are the same as discussed abov

VI. CONCLUSIONS

We have found new classes of static and nonstatic dom
wall solutions to the coupled Einstein-scalar field equatio
which are ~locally! plane symmetric. The static walls ar
particularly interesting since static domains walls cannot
reflection symmetric. Consequently, static domain wa
must possess different asymptotic vacua. In principle
should be possible to detect static domain walls by stud
the redshift of photons. The fact that photons approach
the wall from the Taub side are continuously blueshifted
they pass through the wall toward the Minkowski vacuu
while photons that approach the wall from the Minkows
side of the wall are first redshifted and then blueshifted wh
they pass through the wall into the Taub side provide
unique experimental signature.

it

-

FIG. 13. The redshift oft(t) along a geodesic for a unit mas
particle with initial conditions x(0)52, x8(0)520.5, y8(0)
50.9188, y(0)50, z8(0)50, z(0)50, t8(0)51, t(0)50. The
spacetime has parametersm51, L51/2, andk51/2 and metric
given byg in Eqs.~4.15! and ~4.25!–~4.27!.
1-11
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It is generally believed that small perturbations in t
mass distribution in the early Universe could subseque
grow @23,24# to form galaxies and the structures we curren
see around us. However, one of the major problems@25# in
modern cosmology is to identify the origin of these pert
bations. The domain walls discussed in this paper could
possible sources of the density fluctuations through their s
cific gravitational interactions with the ambient matter.
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APPENDIX

Lemma 1.(u812v8),0 @Eq. ~4.5!#.
Proof. Equating Eqs.~4.2! and ~4.4! leads to
.

n

ys

cl.

s.

06501
ly

-
e
e-

a
-

2~v22uv !5u82v8.

Inserting the above relation in Eq.~4.3! gives

u81v8/252~2pG! f 2~3r1n!,0.

This equation, together withv8,0 @which follows from Eq.
~4.4!#, proves the lemma.

Lemma 2.Let n(x) be a smooth nowhere-zero function o
R. If lim uxu˜`n50, then there is anx̄ such thatn8( x̄)50.

Proof. Suppose thatn8Þ0 for all xPR. Since n(x) is
smooth,n8(x) is continuous and hence, eithern8(x).0 or
n8(x),0. If n8(x).0, thenn is a strictly increasing function
on R, and hence it cannot satisfy the boundary condit
limuxu˜`n50. Forn8(x),0, a similar argument leads to th
same contradiction. Thus, there exists anx̄PR such that
n8( x̄)50.
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