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Domain wall spacetimes and particle motion
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We present a mathematical framework for generating thick domain wall solutions to the coupled Einstein-
scalar field equations which afcally) plane symmetric. This approach leads naturally to two broad classes
of wall-like solutions. The two classes include all previously known thick domain walls. Although one of these
classes is static and the other dynamic, the corresponding Einstein-scalar equations share the same mathemati-
cal structure independent of the assumption of any reflection symmetry. We also exhibit a class of thick static
domain wall spacetimes with different asymptotic vacua. Our analyses of particle motion in such spacetimes
raises the interesting possibility that static domain walls will possess a unique experimental signature.
[S0556-282099)03116-1

PACS numbgs): 11.27:+d, 04.20.Jb

[. INTRODUCTION static and dynamic domain walls. We find that relaxing the
assumption of reflection symmetry leads to a family of static
Spontaneous symmetry breaking in the early universe caplane symmetric domain walls. This result is consistent with
produce domain walls(sometimes called cosmic mem- the Dolgov-Khripovich theorenj18], although our method
branes. In the simplest model, a domain wall is formed Of proof is different. The Dolgov-Khripovich theorem rules
when a discrete symmetry is broken with the resulting dis-out static domain walls provided the vacuum energy density
crete set of vacua in different regions of space-tfhe The IS positive and the metric has the same asymptotic limit on
study of domain walls has a long history dating back to theboth sides of the wall. By violating the metric condition we
work of Zel'dovich et al. [2] (see also Ref{3] for a recent are able to produce explicit solutions for static domain walls.
review by Cveticand Soleny Domain walls produced at Linet[19] has shown that one can also produce a static wall
high temperatures are cosmologically problematic since they using a negative vacuum energy density. These walls
produce large-scale anisotropies which violate current exbave the unusual property that their asymptotic vacua differ
perimental bound§2,4—6. However, domain walls that are from each other intrinsically.
formed after the decoupling of the microwave background In Sec. Il, we introduce a simple model of domain walls,
do not produce large-scale anisotropj@s These late-time and discuss the general properties of the associated energy-
domain walls are produced at low temperaturesmomentum tensor with particular emphasis on various en-
(~10"2eV) and therefore have characteristic widths on theergy conditions. Without reflection symmetry we obtain, in
order of 1 Mpc and low-energy densities, thus the name soféec. lll, a new class of domain walls which aflecally)
domain walls. Soft domain walls have large density gradient®lane symmetric. In Sec. 1V, the existence of static domain
and thus are a potential source of the density fluctuations thaall solutions is established. Finally, in Sec. V, we present a
are necessary for the formation of the large scale structurdetailed analysis of the nontrivial particle motion in domain
seen in the universe. It is also interesting to note that thavall spacetimes. In the Appendix, we prove two lemmas,
energy-momentum tensor for domain walls violates thewhich are essential for understanding the properties of static
strong energy condition which results in a gravitational fieldand accelerated domain walls.
that is, on average, repulsiy8g,9].
In this_ paper, we consider thick dom_ain Wal_ls that arise IIl. STRUCTURE OF THE ENERGY MOMENTUM
from a single real scalar field with self-interaction. The as- TENSOR
sociated Einstein-scalar field equations admit accelerated
spherically symmetri¢and hence, locally plane symmelric  Following [8] we consider a real self-interacting scalar
wall-like solutions. Unlike some previous investigations field on a space-timeM*, g). The action for the scalar field
[8,10] of other thick domain walls, we do not assume anyis given by
reflection symmetry of the corresponding spacetime, and our
analysis of the Einstein equations leads to two broad classes 1 ~
of wall-like solutions which include previously known do- Al¢]= —f [§K2d¢(d¢)+m4V(¢) *1, (21
main walls. Although nonreflection symmetric domain walls M
have been previously investigated by Cvetical. and by _
Jensen and Solerf8,11—19 their focus was on thin domain Where\ andm set the energy scales, is the Hodge dual
walls. Explicit thick wall solutions have previously been operator, and the vector fieldp is the metric dual tal¢.
found by Cvetic Griffies, and Rey{16] and by Cveticand  [Throughout this paper, we work with units whefie=c
Griffies [17]. Our work differs from previous work on thick =kg=1 andG=(1.2x10°GeV) 2. In these units¢ and
walls in that we provide a very general solution generatinghe “potential” V(¢) are dimensionlessThe stress energy
technigue. Our solution generating technique works for bothensor due tap is given by
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1 —_
E>\2o|<z>(o|¢)+m“V(¢>)]g. (2.2 ,

A
+1=509%0,0d,0+m*V () | >0.
We assume that the potenth( ¢) is positive. This ensures 2

that the energy densit
9 y (2) T,p satisfies the dominant-energy condition. Defining

A2 3 v3:=T3,, we havev®=\%(32¢)(d°d)u,—pu?, which
T(Z, Z>=7[[Z(¢>]2+E [Xi(¢>)]2] +m*V(¢) implies
i=1
2.3 vovi=—p?2—2m*\2V(¢)(u,d2¢)?<0.
is ppsitive. Here{XO, X1, Xo, X3} fqrm a local orthonormal (3) T, violates the strong-energy condition?u®T,;,
basis andZ =X, is any observer witly(Z, Z)=—1. =—31tr(T), for every causal vectou®: To see this we

Since we are looking for domain wall solutions we re- -hoose an observef with uu,= —1 andu®d,¢=0. Then,
quire thatV(¢) has two degenerate global minimum @&t e have

= u+ with V(u-)=0. Since we are considering only classi-

cal systems we require that the vacuum energy density be A2

non-negativd20]. A negative vacuum energy density would uAuT = [?gab§a¢ﬁb¢+ m4V(¢)] ,
violate the weak energy condition. The boundary between

these regions is the domain wall where the potentigd) A2

>0 and has a maximum &= uy. The field¢ is a smooth —Ztr(T)= (_gab(;a¢ab¢+ 2m4V(¢)].
function on spacetime which connects the vagua. Thus, 2 2

the (ideal) boundary must be a timelike hypersurface in
(M*#,g), defined by¢=wu,. For such field configurations € ]
the gradient field’j?; must be normal to the boundary hyper- d't'(iln on_r tTe. C,hosen f.a“%?' velct;)r: fieud. i f motion f
surface, and hence it is spacelike. The stress energy tenst re( gcal'gff?;?d;equa lons Imply the equation of motion for
can now be written as '

Hence,u?u®T,,< — 3 tr(T), violating the strong-energy con-

T=—p(g—NeN)+ r(NeN), (2.4 o=aa¢Tab;b:(aa¢aa¢)[szbv%—m“dw@].

de

Here, 0,¢9%¢) # 0 since ¢2¢) is spacelike, and hence Ein-
stein’s equations lead to the scalar-field equation

where the unit normal N is defined by N
=d¢/[g(de¢, dé)]*¥2 and the functiong and v are given

by
dV(¢)
1 ~ A2V VPp—mt———=0.
p=5N2d(d) + mV(@), 25 VT g
1 N lll. ACCELERATED SPHERICALLY SYMMETRIC
v= §x2d¢(d¢) —m*V(¢). (2.6) DOMAIN WALLS
.y In order to determine the spacetime due to the stress-
SinceV($)=0 andd¢(d¢) >0, we have energy tensof2.2) we must solve the Einstein equations
>0, 2. 1
p 2.7 Ric— >Rg=87GT, (3.1)
p+v>0. (2.8

whereRic andR are the Ricci tensor and scalar curvature,

In order to search for a domain wall configuration of therespectively. To look for a spherically symmetric solution we

scalar field¢ as a solution to Einstein-Scalar equations choose a chartt(x, 6,¢) and assume that the metric admits
three Killing vector fields

1
Rab— ERgab:(sWG)Tab Ky=sinyd,+cotd cosyd,,
we have made two physically reasonable assumpti@ns: K,= —cosyd,+cotdsingd,,
V(¢)=0, (ii) ¢ is spacelike, which means thgt°s,¢d,¢
>0. These two assumptions lead to the following properties Ks=4d,. 3.2

of the stress tensor.
(1) T,y satisfies the weak-energy condition. For an ob-We consider a spherically symmetric metric of the following
server,u® (whereu®u,=—1), we have form:
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g="f%(t,x){ —dt®dt+ dx®dx} SettingB=0 [Eq.(3.10] in Eqg. (3.9 and using Eq(3.11) in
_ the Einstein equation@.8), we find
+h?(t,x){dd®do+sir’ ddyedy}, (3.3

’ r\ 2 o
¢
where the function$(t,x) andh(t,x) are not assumed to be f2A=0, T/t2 T) —2<E> =—4nG(p—v)f?
spatially reflection symmetric. Now, taking Lie derivatives
of Einstein’s equation$3.1) with respect to a Killing vector £/
field K, we find fZCE—S&X(T) =47G(3p+v)f?,
LkT=0, £ £F1\2 (g c\2 [1\2
—f2D=g,| —|+2| | —|=|-[=] —|=
Lq(traceT)=0, (3.9 f f c/ \c c
=—47G(p—)f2 (3.12

which, together with the equation®.4)—(2.6), gives K(p)
=0, K(»)=0, and hence&(4)=0. Then from Eq(2.2, we  From the first and the third equations in Eg.12, we have
haved,¢=4d,¢=0. Sinced¢ is spacelike¢ is assumed to  (¢/c)=(1/c?) +(¢/c)? which has a solution

be t independent in the chartt,k,0,4). Hence d¢
=(dp)dx, and the spacelike unit vector fieldN
=d¢/[g(d¢p,dd)]¥2 normal to the membrane is given by
N=(1/f)dy. Then, the membrane stress tenghd) can be

c(t)= %cosr(kt), (3.13

wherek>0. Using Eq.(3.13 and definingu=f'/f, the Ein-

itt i i
written as stein equation$3.12 reduce to
T=—p(—ee’+e’we’+e’we’) +velwel, (3.5 2u'+u—k?=—(8wGf?)p (.14
where we have defined the coframes by —3(u?>—k?)=—(87Gf?)v (3.19

0__ 1__ 2 __ 3_ H
e’=fdt, e~=fdx, e"=hdd, e’=hsinody, (3.6 a5 5 consequence of Eqe3.14, (3.15 or V-T=0, the

and the corresponding orthonormal frames are equation of motion for the scalar fieldl is given by

f/ !
Xo=(L6)d, Xy=(UF)oy, Xo=(1M)3), (T) -3 (3.16

X3=(1hsin6)a,. (3.7 It is clear from Eq.(3.5) that p and v represent energy den-

sity and pressurénormal to the wall with respect to the
orthonormal basis in Egs.(3.6), (3.7: T(Xg,Xp)
=p; T(Xy1,X1)=v, and by Eqs(3.14), (3.19, p=p(x) and
v=wp(x) in the chart{t,x,y,z}. [Here we remark that com-
ponents of the stress tens(8.5 are not, in general, time
P.=87G{Ta—(I'/2)gap€°, (3.9 independent with respect to the coordinate basis. For ex-
ample, T(dy,dy)=—pexpkt) by Egs. (3.9, (3.11), and
whereT is given by Eq.(3.5, andT=t[T]=(—3p+v). (3.13.] Furthermorepy=0 implies (f'/f)*=k? and hence
Now, computing the Ricci one-form®,=Ric(X,,X,)e® =0, leading to an empty spacetinfeacuum. Thus the

For complete specification of the met(i8.3) inside a space-
time region dominated by a thictcosmig membrane, it is
necessary to solve for the functiofis h} from the Einstein
equations

with respect to the orthonormal basi:6), (3.7), we find pressure(v), inside the membranesannot be zerowWe now
show that the nowhere zero smooth functigix) <0 based
Po,=Ae’+Be!, P,=Be’+Ce! ,P,=De?, P;=De? on the constraintg+ v) >0, and additional physical assump-

(3.9 tions thatf is bounded and nowhere zero, and the stress
tensor{(3.5)] tends to zero in the limix|— o giving rise to
where{A,B,C,D} are functions oft,x}. (Henceforth, a dot asymptotic vacua.
and a prime denote partial differentiations with respect to
andx.) Now, from Eqgs.(3.5), (3.8), (3.9, it is seen thaB A. Negative “pressure” (v)

=Ric(Xy,X;1)=0, and hence, in terms of the coeffecients
i h}(w(:a hla)ve From Egs.(3.12 and(3.14—(3.16), we have

) 3 3u'=—47G(3p+v)f? (3.17
B:_(m)[’?X(?)_ f_z)h ]:O' (319 y'=—3(p+ ). (3.189
A simple solution to Eq(3.10 can be given by From Eq.(3.17), it follows thatu’(x) <0, and hencey has
at most one zero. Also, for the nowhere zero smooth func-
f=f(x), h=c(t)f(x). (3.11) tion, », there exists ar such that' (x) =0. (See the Appen-
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dix, Lemma 2, for a proof of this statemenfThen, Eg.

(3.18 implies that each of the functions and »' has a u(x):—ktanr(kJ e(x)dx+c
unique zero ak=Xx. Furthermore, differentiating Eq3.18
and using(3.17), we haver”(x) = — (p+ v)u’(x)>0, which
means that the unique extremumodverRR is a minimum at
Xx=X. However, v satisfies the asymptotic condition
lim,_,..»=0, and hencev must benegative As a conse-
guence ofy<0, we havep>|v| since p>0 and (p+v) [k?—u(x)?]=k?sech
>0.

wherec is an integration constant. Inserting the above ex-
pression foru(x) in [k?—u(x)?], we find

kf e(x)dx+c

B. The equation of stater=(p) The first equation in Eq3.21) now gives
In order to solve the Einstein-scalar equatiof3s14),

(3.15, we need an equation of state= v(p) subject to the &' (X)?=(2k?/\?87G)[ (x) — 1]sec

constraintsy<<0, p>|v|, limy_.»=0, and lim,_.p=0.

First, we observe thati’(x)<0Vx, and hence, from Eq.

(3.19, limy_, +., u(x)= ¥ k. From these properties af(x),

it follows that the nonzero smooth functions’- k?) andu’

are both negative; each of them has a uniqgue minimum an

tends to zero in the limi{x|—c. Using Egs.(3.14 and

(3.15, we also have

kf e(x)dx+c

Since secfikfe(x)dx+c] tends to zero exponentially 4|
—o, we may takee(x) to be, for example, a polynomial
uch as 2 3k?x? for which Eqgs.(3.20 and(3.21) are satis-
ied.
This suggests a procedure for solving the Einstein equa-
tions (3.14), (3.15 with a choice ofe(x) from these two

u’(x) large classes of functions leading to domain walls. In the
W(X)Z: —€(X), (3.19 following section, we will discuss solutions due to bounded
e(x).

where the nowhere zero smooth functiefx) is given by ) o _
C. Solutions to the Einstein equations

1

cx)=5 3p(x)

lv(x)|

A simple solution to the Einstein equatiori3.14 and
1 (320 (3.15 is obtained by choosing(x)=e,> 1, which trivially
belongs to the class of smooth bounded functions. Hence,
sincep(x)>|v(x)|. In fact, Eqs(3.19 and(3.20 lead to an ZUCh a ch0||<|:e (elnsures, thgough E321), the ¢X|stelr10e ofa
equation of stater=—v2p where (3-v2)/2v2=e(x)>1, omain wall solution to the Einstein equations. Integrating

and hencey3<1. It is important to note tha¢(x) is dimen- Eq. (3.19 and usingu=f'/f, we find
sionless according to our choice of unispecified at the u(x) = — k tanh egkx),
beginning of Sec. )l Thus,e(x) is, in fact, a function of the
dimensionless argumemtx, where the dimension ok is
given by inverse of length.

To determine the classes of admissikl) leading to
domain wall configurations ofs(x), we recall from Sec. I Whereq=1/e,. Also, from Egs.(3.2) and(3.22, we have
[and the discussion below Ed3.3] that lim_ ..¢(x) the following exact solutions fop andV(#):
= u~, Where the constanjs, andu _ represent two degen-

1>

f(x)=cosh 9(kx/q), (3.22

erate vacua witl (.. ) = 0. However, from Eqs2.5), (2.6), ¢=arctafisinh(kx/q)],
(3.3), (3.14), and(3.15), and the existence of asymptotic lim-
its of ¢, we have V(p)={cosp}21=9,
¢’ (x)?=(2I\*8mG)[ e(x) — 1][K*— u(x)?] where the parametegsandk are related to the energy scales
N andm by
lim &' (x)=0, (3.21)
x| N2=2q(1—-q)(1/87G),

where limy_,..[k*—u(x)?]=0. Thus, anye(x) from the 1
class ofboundedsmooth functions such that<le(x)<e¢g, m4:k2(—+2
will satisfy the condition(3.22). q
One can also choosgx) to beunboundedIn this case,
we have another family of admissible smooth functions satThus, f(x), ¢(x), andV(¢) solve the Einstein equations as
isfying Eq.(3.21) provided, asymptotically,k?—u(x)?] ap-  well as the field equation for the real scalr Finally, the
proaches zero faster thafx) tends to infinity. To see this, metric for the accelerated spherically symmetric domain wall
we integrate Eq(3.19 to obtainu(x): spacetime is given by

(1/8wG).

065011-4
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g=f2(x){— dt®dt+dx®dx}

1 2
+ —cosr(kt)) f2(x){do®do+sirfodyediy}.

k

(3.23

It is interesting to note that for a fixed=Xxq, the spheri-
cal domain represented bfa three-dimensional de Sitter
slice)

g|x=xO= fz(xo)[ —dtedt

+

1 2
Ecosk{kt)) (do®do+sir? odyedy)

(3.29

first contracts and then expands. Furthermore, if we choose a

chart {7,7,y,z} with the following (implicit) coordinate
transformations:

— 1| ! inhk ! hk
™=\ n Esm t+Ecos tcosé |,

7=X,
y=(coshkt sin # cosy)/(sinhkt+ coshkt cosé),

z=(coshkt sin #sin )/ (sinhkt+ coshkt cosé),
(3.25

the wall spacetimé3.23 becomeglocally) plane symmet-
ric:

g=f%(p){—dredr+dypedy}

+exp(2k7)f2(p){dyedy+dzedz}. (3.26

The metric(3.23 or (3.26 is only one of many possible
domain wall solutions and Eq§3.19, (3.20 show that ad-
missible choices fog(x) generate additional solutions. For
example, the smooth functioa(x)=2[1—kxexp(—k®x?)]
>1 has aymptotic limits, liq_,.€(X)=2. Thus, e(x) be-

PHYSICAL REVIEW D60 065011

£( x)

X

2 4 6

FIG. 1. Plot off(x) as defined by Eq.3.29 versusx. Note that
the domain wall is no longer centeredxat 0.

f(x)=exp—kftani{ka+exp(—k2x2)]dx. (3.29

The integral in Eq(3.29 which cannot be evaluated analyti-
cally, is easily done numerically. A plot dfx) is shown in
Fig. 1.

The energy density(x) and the pressure(x) can be
computed from the Einstein equatiof&14) and(3.15 and
are shown in Figs. 2 and 3. The equation of state can no
longer be found analytically but it is possible to parametri-
cally plot the energy density and the pressure as a function of
position. This is shown in Fig. 4. The nonzero area en-
closed by thep-v diagram is due to the lack of reflection
symmetry in the stress tensor. The kink in the curve is due to
the bump in the potentia¥(¢) which is shown in Fig. 5.
The field ¢ which generate¥(¢) is shown in Fig. 6.

The equation$3.19), (3.20 clearly allow one to generate
two broad classes of accelerated spherically symmetric do-
main wall spacetimes but all of these solutions lead to soli-
tionlike configurations for the scalar field and have geode-
sics with the same general features. These solutions may or
may not be reflection symmetric incoordinates. In the next
section, we will show that static wall spacetimes cannot be
reflection symmetrid 18], leading to nontrivial asymptotic
vacuum structures.

longs to the class of bounded smooth functions so that Eq.

(3.21) is satisfied, and hence(x) must lead to a domain
wall solution to the Einstein equations.
Equation(3.19 for u(x) then becomes

u’(x)
kz_—u(X)ZZ—Z[J.—kXGXK(—kZXZ)]. (327)
By integrating Eq.(3.27), we get
u(x)=—ktant 2kx+exp(—k?x?>)—C],  (3.29

where C is a constant of integration which we will set to
zero. The constant determines where(x) crosses the
axis. By adjustingC the functionu(x) can be made to cross
the x axis at the origin. Sinca=f'/f we can now solve for
f(x) which gives

pP(x)

-4 -2 2 4

FIG. 2. Plot of the energy densip(x) versusx for k=1.
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v(x)

FIG. 3. Plot of the pressurg(x) versusx for k= 1. Note that the
pressure is negative, as it must be for a domain wall solution.

IV. STATIC PLANE SYMMETRIC DOMAIN WALLS

We now look for static solutions to the Einstein-scalar
equations. Imposing plane symmetry, the metric for a statié

spacetime takes the following forf21]:

g=f?(x){—dtedt+dx®dx}+h?(x){dyedy+dzedz.
(4.2

PHYSICAL REVIEW D60 065011

Vip(x))

2 4
FIG. 5. Plot of the potentiaV/(¢) versusx for k=1.

A. Negative “pressure” (v)

From Eq.(4.5), it follows that (u+2v) has at most one
ero. Also, for a nowhere zero smooth function, there
exists arx such thatv’ (x) = 0. (See the Appendix, Lemma 2,
for a proof of this statementThen, Eq.(4.6) implies that
each of the functionsu+2v) and v’ has a unique zero at
x=X. Furthermore, differentiating Eq4.6) and using Eg.

(4.5, we haver"(xX)=—(p+v)[u’' (X)+2v'(x)]>0, which
Then the Einstein equations corresponding to the domaimeans that the unique extremumobverRR is a minimum at
wall stress tensor are given by x=X. However, v satisfies the asymptotic condition
5 lim,_..»=0, and hence must be negative.
u'+2uv=—(47G)f(p—v), (4.2

B. Plane symmetric static wall is not reflection symmetric
u'+2(v' +vi—uv)=—(47G)f3(3p+v), (4.3 _ _ _ _

If the metric (4.1) is reflection symmetric about=0
(4.4) (say then f(x)=f(—x) and hencef’'(x)=—f'(—x) and
f’(0)=0. Similar results hold forh(x), and u(0)=0
=v(0). Also, from the Einstein equatiorid.2) and(4.3), we
have

v/ +2v2=—(47G)f3(p—v),

where we seu=(f'/f) andv=(h'/h). Equations(4.2)—
(4.4) also imply[see the Appendiix

(U’ +2v')<0, (4.5 (v'=u")+2v(v—u)=0.
v'=—(p+v)(ut+2v). (4.6)  Integrating once gives
The above equations lead to a number of general properties 5
of the plane symmetric static domain wall, assuming that [v(x)—u(x)]h=(x)=K/2 (4.7)
(p+v)>0, limy_.. »=0 and lim,_,.. p=0.
¢ (x)
P
0.1
4
-2 2 2 1 *
3 -0
2 -0,.2
-0.3
1
0.4
=2 15 -1 0.5 M 0
-0.6

FIG. 4. Plot of the energy densip(x) versus the pressungx)

for k=1. FIG. 6. Plot of the field$(x) versusx for k=1.
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for all x, whereK is a constant. FOK+# 0, Eq.(4.7) contra- 1
dicts reflection symmetry of (x) and h(x), and hence a Otau™—=
plane symmetric static wall cannot have reflection symmetry. VX
If K=0, h(x) is proportional tof(x) and with the linear

changes in coordinates we havigx)=h(x) and u(x) D. Solutions to Einstein’s equations
=v(x). Then from the Einstein equations

{—dt@dt+dxodx}+x{dye®dy+dzedz}.

In order to obtain a plane symmetric static wall solution to
u’+2u?=—(47G)f4(p—v), the Einstein equation&t.2), (4.3), and (4.4) we now intro-
duce a coordinate transformation suggested by(£4)

u'+2(v'+vi-uv)=—(47G)f*(3p+v), 1 dh(x) 1 df(x) K

we find hoo dx 0 dx T2npgc Y
0=3u’=(87G)f?»=<0 If we define the nonsingular coordinate charigeé(x) by

since, v<<0 for nonzerov. Thus, forKk=0 we haver=0, dx

and hencep=0 producing a vacuum. This conclusion also dé= ) (4.12

means that a conformally flat plane symmetric static metric
leads to a vacuum spacetime under the asymptotic conditio

on » and p. TRen considering (x) andh(x) as functions of, we have

1dh 1df K

C. Asymptotic limits of the Einstein equations n d_§ =7 d_§ + 5 (4.13
If we assume, again, that pressuir¢ and energy density

(p) vanish in the region far from a thick membrane, thenSincef(x)dx=f[x(&)]h’[x(£)]d¢, we define

equations

fIx(&)1=F(&) and N(&)=f[x(&)]h*[x(&)].
(4.149

lim »=0, lim p=0,
|x|—c0 x| o0
Thus,h?[x(&)]= N(&)/F(&), and hence, in the new coordi-

generate the vacuum Einstein’s equations ) . :
nate systemt, &,y, z}, the plane symmetric static metric

u’ +2uv=0, (4.8 (4.1 takes the following form:
U +2(v' +v2—uv)=0, (4.9 g=—F?(§)dtedt+N?(§)déwds
v/ +2v?=0. (4.10 + %{dy@dwdz@dz}. (4.15

From these equations, we find an algebraic relation _ ' o . .
Denoting differentiation with respect té by a prime, Eq.

(2u+v)v=0. (4.13 implies
(@ If (h'/h)=v=0, then §'/f)'=u’=0. In this case, N’ F’
we may takeh(x)=1, and on integratiorf (x) =exppX), N =3 = +K. (4.16

where p is a constant. Inserting the following coordinate

transformations: The Einstein equations corresponding to the mé#it5 are
1 1 given by
T=Bexr(pt)sinr(px), 7<=Bexp(pt)cosr(px), "y
(F) =—(47G)N?*(p—), (4.1
y=y, Z=z
in Eq. (4.1), we have the Minkowski spacetime § 'i 2_ F_/ N_’ _E N_’ 2+ N_’ ,
2\ F F/\N 2\ N N
Ouvink= —dte@dt+dxe@dx+dyedy+dzedz. — —(47G)NX3p+ 1), 4.18
(b) If 2(f'/f)+(h’'/h)=2u+v=0, by integrating once L .

we havef?(x)h(x)=C,, whereC, is a constant. Also, Eq. E N_ _ F_ = (47G)N%(p—v). (4.19
(4.10 implies h?(x)=x, and choosingCo=1 we getf?(x) 2|\ N F P ’ '
=1/JX. In this case, we have Taub’s plane symmetric vac-
cum spacetimé¢21] From Egs.(4.17—(4.19 and (4.16), we have
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o) s
R
o=
F
(4.20

If we setr (&)=F'(&)/F (&) +K/3 anda=K/6, then the Ein-
stein equation$4.20 become

2
+2

! !

3

= K+ K2/4]=(877G)N29(§)1

!

K+K?/4} =(87G)N?w(£).

ol
F

2r'—3(r’—a?)=—(87GN?)p,

—3(r?—a?)=—(87GN?).
(4.21)

From this form of the Einstein equations, we have

r'cé)

az_—r(g)z=—0(§), (4.22
where the nowhere zero smooth functie(s) is given by
_3[3p(9)

sincep(&)>|v(£)|. Sincer<0, we have an equation of state
in the form v(&)=-q(&)p(§), where the relation
3[3p(&)/|v(&)| +1]=0(£)>3 is equivalent to €q(¢)

< 1. Following the procedure developed in Sec. IlIB for

PHYSICAL REVIEW D60 065011

. [KE
P(&)= arcta+ sml—( Z) } ,

V(¢)=(cos¢)? 2L, (4.3D)

The energy scales andm, are related to the parameté{s
andL by

(4.30

(1-L)L
=G (4.32
K2
4:—
M =28c L (4.33

It should be noted from Eqg4.28), (4.29 that the matter
density and pressure are reflection symmetric, while the
spacetime[determined by Eqs(4.25—(4.27)] is not. The
absence of reflection symmetry of the static wall spacetime is
also demonstrated by the existence of different asymptotic
vacua defined by

generating solutions to the Einstein-scalar equations, we ob-

tain the simplest static domain wall solution to E¢$.20,
(4.21 whengq is a constant:

K¢

il

COS|’(

wherelL is related toq by q=L/(2—L) and hence, &L
<1. Now, using Eq(4.16) we find the metric functions

L K¢
INnF=—=In 3

3 (4.29

F2=[coshK&/2L)]~ 2" exr{ - ?) , (429
N2=[coshK&/2L)] 2, (4.26
(g) =[coshK&/2L)]™ 23 exg( g) : (4.27)

Equations(4.25—(4.27) represent a two-parameteK (L)

family of plane symmetric static spacetimes dominated by

domain walls. The “density”(p) and “pressure”(v) func-
tions are obtained from the Einstein equati¢h20), (4.21):

K?(2—L)sechK ¢/2L)2 2t
96G L ’

p(&)= (4.28

—K?sechiK &/2L)2" 2t
96G 7 '

v(§)= (4.29

The explicit forms of thddimensionlessscalar field and the
potential are given by

lim »=0, lim p=0.
|| o ] —oe
For é—oo,
F2oexp—Ké), (4.39
N2—exp —K&), (4.39
7
3 —const. (4.36

Comparing our results in Sec. IV C it is clear that the limits
(4.34—(4.36 imply a Minkowski vacuum. FOE— — oo,

1
F2_>exp( - §K§), (4.37)
N2—exp(K¢), (4.39
N 2
(E)—>6X[<§K§) . (4.39)

The fact that the limit$4.37)—(4.39 yield the Taub vacuum
can be seen as follows:

Oems o™ —exp( — %Kg)dt®dt+ expKé)déwdé

+ex;{§K§ {dy®dy+dzedz. (4.40
Then, the coordinate transformations given by
t=(2K/3)Y,, (4.41
&= (3/2K)In{(2K/3)*3¢,},
(4.42
y=(3/2K)%y,, (4.43
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z=(3/2K)%3z,, (4.44

PHYSICAL REVIEW D60 065011

dition is equivalent to the strong energy conditidrfy, v)
= — I'/2 for all observers, wherel’=tr(T). Thus, violation

lead to the standard form of the metric for the Taub vacuunt the strong energy condition for the Einstein-scalar stress

1
gTaub:_\/g—{_ dtp®@dty+dée@ déo}
0

+&oldyo®dyo+dzy@dzp}. (4.45

The asymptotic solution in Eq4.45 also appears implicitly
in the work of Jensen and Soleffj5]. The existence of a
large family of solutions all of which are equivalent as

é—— is to be expected since any plane symmetric static

domain wall solution has the Taub vacuum as its asymptoti
limit on one side of the wall.

All plane symmetric static domain walls solution have a
singularity at infinity, since the Taub vacuu@.40 has a

tensor implies that, on average, gravity is repulsive in the
domain wall spacetime.

A. Accelerated spacetimes

To obtain the geodesic egations for a partidemassm)
in the accelerated domain wall spacetiftey. (3.23], we
consider its worldline in the equatorial plahé= /2]:

vir—=(t=t(7),x=(7),0=7I2,= (7). (5.1

(I:f vis a geodesi¢and ris an affine parameter along, then

the four-velocity of the particle is given by

. . L dt dx dy
singularity at infinity. One can also compute the Vo= = |0t | = |0+ | =] 9, (5.2
Kretschmann invariant =R,z,,R*#*". For the solution dr dr dr
tgf:\g;:n by Eqs.(4.25—(4.27) with K=1 andL=1/2 we find with the normalizatiorg(y, ,, )= — M2
- dt)? x\2 diy\?
_2+e ?f+18e%¢ —fZ(d—T +1% 52 +f2(coshkt/k)2<d—f> =—m?.
= 262
27(1+€e“%) 5.3
clearly showing that there is a singularity & —«. The - .
physical significance of the singularity is unclear. The singu-Then the geodesig is specified by
larity arises on the Taub side of the wall because we assume dx\2 [ 1\/a
that the energy dengity goes to zero at infinity. In. a physi- (d_) =l ?g—mz , (5.9
cally realistic spacetime there would be a contribution to the T
energy density from ordinary matter. If at large distances qi? /1 K \2
from the domain wall, the contribution to the energy density (_t) :(_) [ ap— a3 )
is dominated by ordinary matter, then one might expect a dr f2 coshkt/ |’
spacetime which near the wall is described by the domain (5.9
wall solutions and yet is well behaved at infinity.
dlp_( 1\ agk? ) 5.6
E. More static solutions dr | f?/\costkt)’ '

In Eq. (4.22), if we take a nowhere zero bounded smooth

_ wherea, anda; are constants of integration. For a massive
function

particle (m=1), three-velocity with respect to an observer
o(£)=9[ 1+ expl — 36a%¢?)] Z=(1/f )0, is given by

v2=1—{ay/f?+ (azk/f coshkt)?} 1. (5.7

For any given domain wall solution these equations can be
solved numerically. We will work withf (x) =cosh 9(kx/q)

[Eq. (3.22] solution but the essential features of particle mo-
tion remain unchanged in other spacetimes obtained from
Egs. (3.19—(3.21). Since f(x) decreases monotonically
away fromx=0 (where it attains its unique maximynthe
three-velocity of the partcle with respect to the obseXer
will increase away fronx=0. This shows the repulsive na-
ture of the domain wall gravitational field.

Since domain wall space-times allow repulsive gravity it
is clear that “turning point” solutions in which an incoming
particle is repelled by the domain wall are allowed. The

For domain wall spacetimes gravity is, on average, repulphase space plot for one such geodesic is shown in Fig. 10.
sive. This can be seen from the following argument. TheSince the space-time is expanding and particles are acceler-
conditionRic(v, v)=0 for all observery expresses the em- ated away from the wall the coordinate timalong a geo-
pirical fact that, on average, gravity attra¢®?]. This con-  desic is red shifted. A plot of( 7) is shown in Fig. 11.

which satisfies Eq(4.23, then we have

\/;Erf(Gaf)—C}.
(4.46)

A plot of r(&) is shown, forC=0 and«=1/6 (or equiva-
lently, K=1), in Fig. 7. The functiori-(£) can be found by
numerical integration. A plot ofF(¢§) is shown in Fig. 8.
Equation(4.16) can be integrated to givhl(£). A plot of

N(¢) is shown in Fig. 9.

r(é)= —atanr{(9a)§+ ;

V. PARTICLE MOTION
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r&) N (&)
15 -1 -0. 0.5 1 5
o\ 25
0.0 -2
. 85
-3 -2 -1 1 2 3 s
-0.05 -8
-0.1 .75
-0.15 .7
FIG. 7. Plot ofr(&) as defined by Eq(4.46 versusx for K FIG. 9. Plot ofN(¢) versusé for K=1.
=1
d dé dt)?2 dg\?
. . i 2> _(E2y| = AN
B. Static spacetimes dr(N dr [ (F9) (dr +(N?) (dT
To analyze particle motion in a static domain wall space- 5 5
time we now consider the geodesic equations for a test par- +(N/F)' d_y) +(N/F)’ d_y
ticle (of massm=0, 1). Such a particle may be represented dr dr/ |’
by a curve on K14, g) [with g given by Egs.(4.15 and (5.12
(4.25—-(4.27)]: '
yir=>[t=t(7),§=¢&(7),y=y(7),z=2(7)]. (5.8 3—y=C2/(N/F), (5.13
.
If yis a geodesi¢andris an affine parameter along, then
the four-velocity of the particle is dz
d—Tzcgl(N/F), (5.19

_(dt dé dy (dz £ g
)/*—Eo’ft'i‘a_é’g'FEé’y'Faﬁz ()

with the normalizatiorg(y, , v,)=—m?:

SinceF is a monotonically decreasing positive function, a

dt)2 dg\? dy\? [(dz\?
_p2| = 2[ 25 htd it I GRS
F (dr) +N (dr +(N/F)[(dr +<d7’ ] m-<.
(5.10
The geodesic equations are given by
dt—c: IF? 5.1
E__ 0 ] ( . :D
Vx
F (&) ol
2.5} 0.75}
0.5f
2t 0.25}
1 5l 17.
-0.25¢}
-0.5¢}
-0.75}
0.5} _qk
-1 -2 2 4

vZ=1—(F/Cp)>.

whereC,, C,, andC; are constant and a prime represents
differentiation with respect t@. For a massive particleng
=1), the three-velocity with respect to an obsen&r
=(1/F)d, is given by

(5.15

massive particle that starts on the left side with a negative
velocity will move away from the wall, reach a turning point
and be accelerated back towards the wall. After the particle

FIG. 10. Phase space plot of a turning point solution for a par-
3 ticle with initial conditionsx(0)=20, x'(0)=-0.5, y’(0)=0.5,

y(0)=0,z'(0)=0,2z(0)=0,t'(0)=1,t(0)=0, andf given by Eq.

FIG. 8. Plot of F(¢) versusé for K=1. (3.22.
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30
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20

15

10

2 4 6 8 t

FIG. 11. A plot of 7(t) showing the redshift of the for a

particle with initial conditionsx(0)=1/2, x'(0)=-0.5, y'(0)

=0, y(0)=0, 2'(0)=0, z(0)=0, t'(0)=1, t(0)=0, andf given
by Eg.(3.22.

has passed through the wall it will be repelled from the wall.

Thus, on the left side of the domain wdllaub vacuum
gravity is attractive while, on the right sideMinkowsky

vacuun), gravity is repulsive. A phase space plot for such a

particle is shown in Fig. 12.
For a photon traveling along thgaxis, the corresponding
null geodesic is represented by

vin—[t=t(N), £€=£&(N\), y=a, z=b], (5.19

where\ is an affine parameter ara] b are constants. This
null geodesic is characterized by

_ dt) dé -
Y= ﬁ (9t+ ﬁ (95, ( 7)
dt—c /F? 5.1
a_ 0 ’ ( &

& ; ; : x

PHYSICAL REVIEW D60 065011

15¢

12.5}

10}

1 2 3 4 5 6

FIG. 13. The redshift ofr(t) along a geodesic for a unit mass
particle with initial conditions x(0)=2, x'(0)=-0.5, y'(0)
=0.9188,y(0)=0, z’(0)=0, z(0)=0, t'(0)=1, t(0)=0. The
spacetime has parametars=1, L=1/2, andk=1/2 and metric
given byg in Egs.(4.195 and (4.295—(4.27).

dt)|? dé\?
9(7*17*):O:_F2(d_)\> +N2(£) . (5.19

Now, with respect to the observer fiefd= (1/F) d; , we com-
pute the frequency ratio for the photons traveling alongé&he
axis:

fe
f_:{_g(y* ) Ze)}/{_g(')’* ,ZO)}:F(fo)/F(fe),

° (5.20

wheree and o are the emission and observation point, re-
spectively. From the above equation, we note that photons
approaching the wall from the left-harf@aub) side will be
continuously blueshifted as they pass through the wall to-
ward the Minkowski vacuum. Photons that approach the wall
from the right-handMinkowski) side of the wall will first be
redshifted and then blueshifted when they pass through the
wall into the Taub sidésee Fig. 13

The geodesic equations with respect to the generalized
static wall metric discussed in Sec. IV E can be obtained by
replacingF in the above equations. The essential character-
istics of particle motion are the same as discussed above.

VI. CONCLUSIONS

We have found new classes of static and nonstatic domain
wall solutions to the coupled Einstein-scalar field equations
which are (locally) plane symmetric. The static walls are
particularly interesting since static domains walls cannot be
reflection symmetric. Consequently, static domain walls
must possess different asymptotic vacua. In principle, it
should be possible to detect static domain walls by studing

FIG. 12. Phase space plot of a turning point solution for a unitthe redshift of photons. The fact that photons approaching

mass particle with initial conditions(0)=2, x'(0)=—0.5,y’(0)
=0.9188,y(0)=0, z’(0)=0, z(0)=0, t'(0)=1, t(0)=0. On the

the wall from the Taub side are continuously blueshifted as
they pass through the wall toward the Minkowski vacuum,

left hand side of the domain wall gravity is attractive, while on the While photons that approach the wall from the Minkowski
right hand side of the domain wall gravity is repulsive. The SpaceSIde of the wall are first redshifted and then blueshifted when

time has parametera=1, L =1/2, andk=1/2, and a metric given
by g in Egs.(4.15 and (4.25—(4.27).

they pass through the wall into the Taub side provides a
unigue experimental signature.
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It is generally believed that small perturbations in the 2(v2—uv)=u'—v'.
mass distribution in the early Universe could subsequently
grow[23,24] to form galaxies and the structures we currently
see around us. However, one of the major problé2% in  |nserting the above relation in E¢.3) gives
modern cosmology is to identify the origin of these pertur-
bations. The domain walls discussed in this paper could be
possible sources of the density fluctuations through their spe- u'+v'/2=—(2wG)f?(3p+v)<0.
cific gravitational interactions with the ambient matter.
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