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Constructive algebraic renormalization of the Abelian Higgs-Kibble model
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We propose an algorithm, based on algebraic renormalization, that allows the restoration of Slavnov-Taylor
invariance at every order of perturbative expansion for an anomaly-free Becchi-Rouet-Stora~BRS! invariant
gauge theory. The counterterms are explicitly constructed in terms of a set of one-particle-irreducible Feynman
amplitudes evaluated at zero momentum~and derivatives of them!. The approach is discussed here in the case
of the Abelian Higgs-Kibble model~in 311 dimensions!, where the zero momentum limit can be safely
performed. The normalization conditions are imposed by means of the Slavnov-Taylor invariants. A judicious
choice of the normalization conditions greatly simplifies the calculation of the counterterms. In particular
within this model all counterterms involving BRS external sources~antifields! can be put to zero with the
exception of the fermion sector.@S0556-2821~99!01916-5#

PACS number~s!: 11.10.Gh, 11.15.Bt
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I. INTRODUCTION

Few gauge models of physical interest enjoy a symme
cal regularization of Feynman amplitudes~such as QCD in
dimensional regularization!. In particular for the standard
model the difficulty comes from the endemic presence ofg5
and of the complete antisymmetric tensor. Thus, if the re
larization breaks the desired symmetries, one has to rec
the correct Green’s functions by finite renormalization in
der to satisfy the Slavnov-Taylor identities~STIs!. The alge-
braic Renormalization~AR! @1–5# theory gives the condi-
tions under which this strategy is possible: in particular th
should be no anomalies in the STI. Thus in principle t
renormalization program can be performed. However, i
not an easy task beyond the one-loop approximation, sin
high number of vertex functions at lower order must
evaluated for generic external momenta in order to res
the STI.

In this paper we propose a strategy for the evaluation
the counterterms, based on zero-momentum subtraction@6#.
The final result is an explicit solution of the STI whe
the counterterms are given in terms of a set of finite ver
functions and their derivatives evaluated at zero moment
Our strategy is based on various results taken fr
the Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenst
~BPHZL! renormalization scheme and from the algebr
renormalization theory. We show that the zero moment
subtraction and a judicious use of the normalization con
tions permits a practical evaluation of the counterterms
means of a relevant set of finite vertex functions. In parti
lar the choice of the normalization conditions entails a di
onal block structure of the matrices that fix the counterter
This approach is here discussed in the Abelian Higgs-Kib
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model~in 311 dimensions! @1,7,8#, where the zero momen
tum limit can be safely performed.

As a starting point we assume that a consistent subtrac
procedure allows the evaluation of then-loop vertex func-
tions G (n) when the correct vertex functionalGj is given for
any j ,n. That is we assume that our procedure has b
successfully worked out for the lower orders and we proc
to restore Slavnov-Taylor~ST! invariance onG (n). The
n-order vertex functions are constructed by iterative use
subgraphs and counterterms according to the scheme of
goliubov @9,10#.

The regularization can be any, provided it respects
quantum action principle~QAP! @11# ~i.e., it is correct up to
counterterms in the action!. In order to make the discussio
simpler we assume also that the regularization procedure
spects some basic symmetries of the classical action, suc
Lorentz covariance, Faddeev-Popov~FP! charge conserva
tion, and any possible further symmetry~such as charge con
servationC). Thus, if the regularization is not invariant, w
expect that STIs are broken

S~G!(n)5E d4xF]mcGAm
(n)

1S ]mAm1
ev
a

f2DG c̄
(n)G

1~G,G!(n)

5D (n), ~1!

where the brackets represent

~X,Y!5
dX

dJ1

dY

df1
1

dX

dJ2

dY

df2
2

dX

dc

dY

dh̄
1

dX

dc̄

dY

dh
. ~2!

J1 ,J1 ,h,h̄ are the sources coupled to the Becchi-Rou
Stora~BRS! variations, i.e., the antifields@see Eq.~A9!#. We
use the convention that derivatives are always from left a
fields with Fermi character anticommute. Although STIs a
©1999 The American Physical Society10-1
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RUGGERO FERRARI AND PIETRO ANTONIO GRASSI PHYSICAL REVIEW D60 065010
broken, the QAP guarantees that at every orderD (n) is a
local insertion ~provided that STIs are valid at the lowe
orders!, has the correct invariance properties under ex
symmetries~e.g., Lorentz, Faddeev-Popov~FP! charge, etc.!,
and is consistent with the power counting. Thus we can
pandD on a suitable basis:

D5(
i

ciMi5(
i

ciE d4x f i~f,]f!~x!, ~3!

whereMi is any Lorentz scalar monomialf i in the fields and
their derivatives, integrated over the Minkowski space. R
sidual symmetries restrict the basis ofMi ; for instance, for
the present Higgs-Kibble modelC invariance constrains th
possible breaking terms. By construction the canonical
mension ofMi is less than or equal to 5.

The renormalization of the model consists in finding t
finite counterterms in the action that restore the validity
the STIs and consequently the physical unitarity~algebraic
renormalization!. Let us denote byG the vertex functions
resulting from this procedure. The locality and covariance
D suggests that we consider the Taylor expansion in mom
tum space. Lettd be the projector of the polynomials o
degreed ~the Taylor expansion in the independent exter
momenta up to degreed). The symboldpc denotes the su
perficial degree of a given amplitude.

These facts suggest a strategy in the evaluation of
counterterms. The first step consists in the zero momen
subtraction compatible with the power counting

~12tdpc!G. ~4!

The above expressiontdG is a short-hand notation of th
following procedure: at first we consider the relevant amp
tude ~the functional derivatives respect to fields are deno
by subscripts!

Gf1(p1)f2(p2) . . . fm(pm)upm52S
j 51
m21pj

~5!

and then its Taylor expansiontd in the independent moment
up to degreed. Formally tdG can be written in the form@14#

tdG5 (
m51

` E )
i 51

m

d4pif i~pi !

3d4S (
j 51

m

pj D tdGf1(p1)f2(p2)•••fm(pm)upm52S
j 51
m21pj

.

~6!

Thus we consider the lowestdD such that

~12tdD!S~G!(n)5~12tdD!D (n)50 ~7!

at every order in the perturbative expansion (dD does not
depend onn). Also the expressiontdDD (n) has to be under-
stood in the above sense~6! anddD552( idf i

(df i
are the

naive dimensions of the fields, entering in the expansion
D (n) in terms of polynomial of fields. In the above equatio
06501
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the relevant term for a recursive construction of the invari
vertex functions is the linear operator onG (n):

S0~G (n)![E d4xF]mcGAm
(n)

1S ]mAm1
ev
a

f2DG c̄
(n)G

1~G (0),G (n)!1~G (n),G (0)!, ~8!

whereS0 is the linearized ST operator. We assume that z
momentum subtraction is possible and focus our attention
other effects of the subtraction. In generalS0 is not homoge-
neous in the dimensions of the fields~e.g., in presence of a
spontaneous breaking of symmetry!. As a consequence th
action of (12tdD) on each single terms ofS0(G (n)) induces
some oversubtractions ofG(n). These oversubtraction
manifest theirselves as new local breaking termsC, obtained
by reshuffling the Eq.~7! in the form

~12tdD!S0~G (n)!5S0@~12tdpc!G (n)#1S0~ tdpcG (n)!

2tdDS0~G (n)!. ~9!

The last terms show that the zero momentum subtrac
does not give ST invariant vertex functions and that ord
by-order we have to introduce counterterms in the action.
us make explicit the STI. The recursive procedure gives

S0@~12tdpc!G (n)#1 (
j 51

n21

~G( j ),G(n2 j )!

5@ tdDS02S0tdpc#G (n)1tdD(
j 51

n21

~G( j ),G(n2 j )![C (n).

~10!

The G terms are computed at the lower orders in the per
bative expansion. They are supposed to satisfy STI at ev
order less thann. In our strategy one of the criterion in th
choice of the normalization conditions is the suppression
the above bilinear contributions.

If the model has no anomalies the problem is then to fi
the countertermsJ (n) which satisfy

S0~J (n)!52C (n) ~11!

or

S0~J (n)!52@ tdDS02S0tdpc#G (n)2tdD(
j 51

n21

~G( j ),G(n2 j )!.

~12!

Finally the correct vertex functions are

G(n)5~12tdpc!G (n)1J (n). ~13!

The zero momentum subtraction, as intermediate ren
malization, has the advantage to reduce the renormaliza
in any subtraction procedure to a common ground: the a
rithm is then the same and it consists in the evaluation o
set of finite amplitudes and their derivatives at zero m
menta. Moreover, as we will discuss later, it suggests a n
ral choice of the normalization conditions. Finally in the ze
0-2
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CONSTRUCTIVE ALGEBRAIC RENORMALIZATION OF . . . PHYSICAL REVIEW D60 065010
momentum subtraction the contributions of the lower ord
of perturbation toC is consistently reduced@Eq. ~10!#.

A limit of the present approach is that the vertex functio
and their derivatives with respect to external momenta m
have regular behavior at zero momenta. In the presenc
massless and massive fields, this requirement implies th
troduction of infrared cutoffs and the Taylor operatortdD has
to be modified~see Ref.@12#!; however, this possibility will
not be explored in the present work.

There is a fairly large amount of freedom in the choice
the countertermsJ @Eq. ~13!#. This is due to the presence o
a certain number of ST invariant terms explicitly given
Appendix C. This freedom will be exploited in order to o
tain the most efficient strategy in the evaluation ofJ and in
order to reduce the contribution toC @Eq. ~12!# due to the
lower perturbative terms. Any choice ofJ fixes automati-
cally the normalization conditions.

The use of ST invariants and the normalization conditio
is organized by introducing a hierarchy for the counterter
~choice of a basis of noninvariant counterterms!. They will
be grouped into disjoint sets: theS0 variation of the elements
of two different sets have no common elements. In addit
the elements of a single set can be organized with a nes
structure. By following this hierarchy decomposition, in t
present model it is possible to avoid all counterterms invo
ing the external sourcesJi , tadpoles and out-of-diagonal b
linear expressions. As a consequence the mass counter
turn out to be zero with the exception of the fermions. T
ghost equation, which guarantees the nilpotency of the
operator, also plays an important role in the control of so
of the counterterms.

By construction the functionalC contains only finite ver-
tex functions, i.e., at every order of the perturbative exp
sion n it can be evaluated and it is independent from
regularization procedure~once G( j ,n) is correctly con-
structed!. The counterterm functionalJ is determined by Eq.
~11!. In general there are more equations than unknow
~overdetermined problem!. However, the system of equa
tions has a solution since there are consistency condit
@13#. Most of them are consequence of the nilpotency of
ST operator

S0~C (n)!50. ~14!

The evaluation ofJ can be performed either by imposin
the consistency conditions onC (n) or by a choice of the
linearly independent equations. It should be remarked
the expression ofJ (n) in terms of C (n) is a simple linear
relation independent from the order of the perturbative
pansion.

The really hard work is the evaluation ofC (n). It consists
in the computation of vertex functions and of some of th
derivatives at zero momenta. The number of graphs turns
to be very large~especially for amplitudes involving scalars!.
For this reason it is important to find possible relatio
among the amplitudes, e.g., the Callan-Symanzik equa
~CSE!, and to use automatic calculus to generate and ev
ate the graphs. Particularly interesting is the CSE~see for
example Refs.@14,15,8#!. The consistency conditions im
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posed by the CSE on the breaking termsC (n) allows the
evaluation of some amplitudes in terms of simpler ver
functions. Moreover some amplitude can be obtained as
result of mass insertions on vertex functions with less ex
nal legs. The automatic calculus is particularly useful sin
the external momenta are zero.

It is important to reduce the contributions toC (n) of the
lower terms in the perturbation expansion. Equation~10! al-
lows the direct control of the consequences of any particu
choice for the basis of the noninvariant counterterms, i.e.
the choice of the normalization conditions. This point
view is at variance with the on-shell conditions, which ca
not dispose this particular problem. For instance, it is cl
that by dropping external sources counterterms one
eliminate most of the terms coming from the lower order
the perturbative expansion@see Eq.~2!#.

The physical amplitudes necessitate the study of the z
of the two-point functions. Then the free parameters of
action have to be tuned in order to obtain the physical mas
and the correct coupling constants.

The Higgs-Kibble model has the advantage of admitt
dimensional regularization~if there is no fermion sector!. It
is nontrivial, since the presence ofg5 requires the full gen-
erality of the Algebraic Renormalization. Moreover th
model has no anomalies: the Adler-Bardeen-Jackiw anom
is zero due toC conjugation.

In the following to make the formalism simpler and mo
direct we use to give a compact notation for the break
termsC (n) and its coefficients@see Eq.~3!#:

C (n)5(
i

cMi

(n)Mi ~15!

and in the same way we will denote the countertermsJ (n) by

J (n)5(
k

jPk

(n)Pk , ~16!

wherePi is a Lorentz invariant monomial with dimensio
less than or equal to 4, null Faddeev-Popov charge anC
even. We may omit also the sign of integral*d4x, when not
necessary, e.g.,jf

1
2

(n)
[j

*d4xf
1
2

(n)
. Moreover the evaluation ofC

in terms of finite Feynman amplitudes, according to the E
~10!, requires the expansion ofG in terms of effective am-
plitudes by using Eq.~6!

G (n)5(
k

gkPk , ~17!

where the dimension ofPk is now unlimited. However, we
shall need only the amplitudes of dimension 5 and 6, due
the structure ofS0 as given in Eq.~10!.

Equation~13! can be looked from the point of view of
different renormalization scheme. LetG (n) be the result of
any ~nonsymmetric! renormalization. One needs to introduc
a set of countertermsGCT

(n) order-by-order:

G (n)1GCT
(n) . ~18!
0-3
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RUGGERO FERRARI AND PIETRO ANTONIO GRASSI PHYSICAL REVIEW D60 065010
By comparing with our procedure we have

GCT
(n)52tdpcG (n)1J (n)1(

j
v jIj . ~19!

The first term is just a Taylor expansion of the action-li
amplitudes. The second term is evaluated in terms of fi
amplitudes and of some of their derivatives at zero mome
~this computation can be possibly performed by autom
calculus!. The last term contains the ST invariants and
counts for the differences between the normalization con
tions in the two schemes.

Section II is devoted to the separation of the counterte
into sectors. By a judicious choice of the normalization co
ditions we can drop the tadpole and most of the exter
source counterterms. Only in the fermion sector the exte
source terms are modified by the renormalization proced
Moreover we can identify a bosonic, a kinetic-gauge sec
and a fermionic sector. At the end of Sec. II we discuss
computation ofS-matrix elements.

Section III contains a study of the breaking term fun
tional C. In particular the ST linearized operatorS0 of Eq.
~8!, which enters in expression forC, is modified in order to
keep track of the ghost equation.

Section IV provides the complete list of the counterter
in terms of finite amplitudes. The solution contains the co
tribution of the lower terms of the perturbative expansio
Moreover some consistency conditions are shown to
present among the finite amplitudes.

Technical detail are in the Appendixes. In Appendix A w
give the essential elements of the BRS transformations
of the model. In Appendix B we list all possible counte
terms and their ST transforms. In Appendix C we discuss
important issue of the linearly independent ST invarian
Finally Appendix D contains the expansion of the break
termsC in terms of local Lorentz invariant monomials@Eq.
~15!#. The expansion of the functionalC in terms of Lorentz
invariant amplitudes allows the evaluation of the solutio
given in Sec. IV.

II. HIERARCHY OF COUNTERTERMS AND BREAKING
TERMS

The complexity of the problem is somehow distributed
two different steps. The evaluation of the breaking-te
functionalC is probably the most complex part. OnceC is
given, one has to evaluate the countertermsJ by Eq. ~11!.
The present section is devoted to this last problem. In or
to reduce the problem of managing the complete set of
simultaneously, we introduce a hierarchy for the count
termsJ and breaking termsC. This problem has been a
ready discussed in previous works~see Refs.@1# and@4#! on
algebraic renormalization.

S0 is a mapping ofVJ on VC,

S0 :VJ˜VC , ~20!

where the vector spaces are given by the relevant monom
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VJ[H(
k

xkPkuxkPC,dim~Pk!<4,

FP charge~Pk!50J ~21!

and

VC[H(
i

xiMi uxiPC,dim~Mi !<5,

FP charge~Mi !51J . ~22!

The set of all actionlike functionals$Ii% which are invariant
under ST transformations forms the kernel ofS0,

ker~S0!5H(
i

v iIi uv iPC,dim~Ii !<4,

FP charge~Ii !50J . ~23!

Some of the ST invariants are genuine BRS invariants. T
trivial ST invariants are given by all elements which areS0
variations of local functionals of dimension<3 and FP
charge521. The subspace ker(S0) induces an equivalenc
relation among the counterterms. The freedom of the cho
of the representative of the equivalence classes will be u
as one of the tools to organize the counterterms in a hie
chy, according to a strategy aiming to reduce the comple
of AR. This choice amounts to fix the normalization cond
tions; in fact in this way we select a basis on which we wr
the counterterm functionalJ. Therefore all monomials out
side the basis do not appear as counterterms. It shoul
mentioned here that the subspace ker(S0) is further restricted
by the condition imposed by the ghost equation of motio
The necessity to impose this condition as a first step co
from the fact that the ghost equation of motion is the sta
ment of the nilpotency ofS0.

The image ofVJ is a proper subspace ofVC,

S0~VJ!,VC . ~24!

By construction

CPS0~VJ! ~25!

since there are no anomalies. It is convenient to use a b

Mieik5S0~Pk!, ~26!

wherek labels the chosen representatives of the equivale
classes inVJ . Finally we have

J5(
k

jkPk , ~27!

wherejk are determined from
0-4
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CONSTRUCTIVE ALGEBRAIC RENORMALIZATION OF . . . PHYSICAL REVIEW D60 065010
C5(
ki
Mieikjk , ~28!

i.e.

c i5(
k

eikjk . ~29!

The matrixeki is fixed by the model and by the choice of th
basis$Pk%. It can be evaluated solely by using the ST tran
formations given in Appendix B. In particular it does n
depend on the order of the perturbative expansion.

In general the number ofc i is higher than the number o
the unknownsjk . The solution exists since the theory
assumed to satisfy STI~no anomalies!. Most of the consis-
tency conditions can be derived from the nilpotency ofS0 ~if
the ghost equation is satisfied!,

S0~C!50. ~30!

The choice of the representatives and of the linearly in
pendent equations in Eq.~11! is performed according to th
following strategy, which aims to reduce the complexity
AR. First, we look for a block or triangular structure of th
matrix eki ~hierarchy!. Second, we reduce the number
terms coming from the lower perturbation expansion@see Eq.
~12!#. Third, the choice of the linearly independent equatio
is done by preferring the breaking terms with lower numb
of external legs and higher derivatives in the external m
menta. In this way the number of graphs is reduced at
cost of some derivatives on external momenta. This strat
might look unnecessary in the present simple model. Ho
ever, it will be useful in a more complicated situation as
the standard model.

Two A,B subspaces ofVJ are disjoint if

S0~A!ùS0~B!5$0%. ~31!

Practically, this means that the ST transforms ofA,B do not
shear any monomialMi . A includesB if

S0~B!,S0~A!. ~32!

These definitions are the guide for the hierarchy structure
the counterterms. If they can be grouped into disjoint s
then we have a block diagonalization ofeki . If we get an
including structure then the matrix is triangular. In bo
cases the task is consistently reduced. Moreover we can
the ST invariants in order to improve the structure of t
matriceseki by choosing appropriate normalization cond
tions. This is performed by exploiting the invariance of E
~11! under the transformation

J˜J1(
j

v jIj . ~33!

The coefficientsv j will be determined by excluding som
monomialsPk from the basis forJ.
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A. Ghost equation and invariant counterterms

The proof of physical unitarity relies on the property ofS0
of being nilpotent. In the present on-shell formalism t
ghost equation guarantees the above requirement

ahc1evGJ2
5G c̄ . ~34!

This requirement excludes a mass term inG (0) of the form

M2FA2

2
1 c̄c2

1

2a
~f1

21f2
2!G . ~35!

The present approach is equivalent to the Nakanishi-Lau
formulation of the gauge fixing.1 The ghost equation must b
valid after the renormalization procedure. Forn.1 we have

evGJ2c
(n) 5Gc̄c

(n) ,

evGJ2cf1

(n) 5Gc̄cf1

(n) ,

evGJ2cf
1
2

(n)
5Gc̄cf

1
2

(n)
,

evGJ2cf
2
2

(n)
5Gc̄cf

2
2

(n)
,

evGJ2cA
m
2

(n)
5Gc̄cA

m
2

(n)
. ~36!

These equations fix the counterterms

j c̄hc ,j c̄cf
1
2,j c̄cf

2
2,j c̄cA

m
2 ~37!

since they are related to superficially finite vertex functio
The remaining counterterms

j c̄c ,j c̄cf1
~38!

are related to counterterms involving external sources

jJ2c ,jJ2cf1
. ~39!

In Appendix C we list the linearly independent ST invarian
with charge conjugation11. Any linear combination of ST
invariants

J˜J1 (
j 51, . . . ,11

v jIj ~40!

can be added to the vertex functional. A straightforwa
analysis shows that the ghost equation is preserved prov

v750

v852~ev !2v92e2vv11 ~41!

1The Nakanishi-Lautrup formulation requires a Lagrange mu
plier b coupled to the gauge fixing functionF(A,f) @see Eq.~A7!#

and whose BRS transformation is simply given bysb5 c̄,sc̄50.
This provides an off-shell nilpotent BRS transformations avoid
the constraints~34! in order to guarantee the nilpotency ofS0.
0-5
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RUGGERO FERRARI AND PIETRO ANTONIO GRASSI PHYSICAL REVIEW D60 065010
and moreover that, under such circumstances, the mono
*d4xc̄hc is absent in the rest of the ST invariants in E
~40!.

For further use we notice that the remaining consta
$v j% can be determined by fixing the coefficients of the f
lowing nine monomials:

f1 ,f2
2f1 ,A2f1 ,Fmn

2 ,i c̄g5cf2 ,c̄g5A” c,J2c,J2cf1 ,J1cf2

~42!

as can be seen from the matrix given in Appendix C.

B. Sector 0

The counterterms containing external sourcesJi ,h,h̄ are
the right group to start with

jJ2c ,jJ2cf1
,jJ1cf2

,jh̄cc ,jc̄ch . ~43!

The ST transforms of their corresponding monomials~see
Appendix B! contain the equations of motion and therefo
the external source counterterms are present in most o
subspaces ofVJ as defined in Eq.~31! and in Eq. ~32!.
Moreover in the recursive equation~12! the counterterms
which contain external sources are present in almost e
terms. Thus it is advantageous to set all possible loop
rections to the BRS external sources to zero by using
freedom in the choice of the coefficients$v j% in Eq. ~33!. By
using the ST invariantsI9211 given in Appendix C we im-
pose the normalization conditions (n.0)

GJ2c
(n) ~0!5jJ2c

(n) 50,

GJ2cf1

(n) ~0!5jJ2cf1

(n) 50,

GJ1cf2

(n) ~0!5jJ1cf2

(n) 50. ~44!

As a consequence of this choice Eq.~36! now fixes the coun-
terterms in Eq.~38!. By using the relation

G5~12tdpc!G1J ~45!

one gets (n.0)

j c̄c
(n)

5Gc̄c
(n)

~0!50,

8j c̄hc
(n)

5]pm
]pmGc̄c

(n)
~0!5ev]pm

]pmGJ2c
(n) ~0!,

j c̄cf1

(n)
5Gc̄cf1

(n)
~0!50,

j c̄cf
1
2

(n)
52evGJ2cf

1
2

(n)
~0!,

j c̄cf
2
2

(n)
52evGJ2cf

2
2

(n)
~0!,

j c̄cA
m
2

(n)
52evGJ2cA

m
2

(n)
~0!. ~46!
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Since the ghost equation fixes all counterterms involving
ghost field, we drop the analysis of the ghost sector. T
ghost part ofJ is

Jghost5E d4x@j c̄hcc̄hc1j c̄cf
1
2c̄cf1

21j c̄cf
2
2c̄cf2

2

1j c̄cA
m
2 c̄cAm

2 #. ~47!

C. Sector I

The next sector is selected by the condition

Nf<4, NA5Nc5Nc̄50, ~48!

whereNf , NA , Nc , andNc̄ respectively count the num
ber of f,A,c,c̄. The coefficients of the monomial of thi
sector are mass terms~3!2: jf1

,jf1f1
,jf2f2

, trilinear self-

interacting terms~2!: jf1f2f2
,jf1f1f1

, and, quadrilinear in-

teracting terms~3!: jf1f1f2f2
,jf1f1f1f1

,jf2f2f2f2
. The sec-

tor can be further decomposed into two sub-sectors w
Nf<2 andNf.2. These two sub-sectors turn out to b
disjoint if we put to zero the coefficientjf1f2f2

~see Appen-

dix B!. This can be achieved by using the ST invariantI2.
The contribution from the lower orders of perturbation a
reduced if we put equal to zero the coefficientjf1

of the
tadpole. This condition can be imposed by using the ST
variant I1. Finally six coefficients have to be evaluated.
direct inspection of the ST transforms of the correspond
monomial shows that the breaking terms to be evaluated

c i
I5$ccf2

,ccf2f1
,ccf2f

1
2,ccf2f

1
3,ccf

2
3,ccf

2
3f1

%. ~49!

With the above conventions it is straightforward, with th
help of the ST transformations in Appendix B, to constru
the reduced matrix in Eq.~29!:

1
jf

1
2 jf

2
2 jf

1
3 jf

1
2f

2
2 jf

1
4 jf

2
4

ccf2 0 22ev 0 0 0 0

ccf2f1 2e 22e 0 0 0 0

ccf2f
1
2 0 0 3e 22ev 0 0

ccf2f
1
3 0 0 0 22e 4e 0

ccf
2
3 0 0 0 0 0 24ev

ccf
2
3f1 0 0 0 2e 0 24e

2 .

~50!

D. Sector II

This sector ~selected by the conditionNf<2, Nc
50, Nc̄50, NA1N]52) deals with the kinetic terms o

2The number in brackets counts the number of counterterms o
corresponding sub-sector.
0-6
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the scalar fields and the corresponding terms coming f
the covariant derivatives, that is the interaction terms of
scalar fields and the gauge fields. It also contains the mas
the gauge boson. The coefficientsj II are mass term for
gauge field ~1!, jA

m
2 , kinetic terms for scalar fields~2!,

j]mf1]mf1
,j]mf2]mf2

, mixing terms between scalar field an

gauge field~1!, j]mAmf2
, coupling scalar-gauge fields~2!,

jAm]mf2f1
,jAmf2]mf1

, trilinear term~1!, jA
m
2 f1

, and quadrilin-

ear terms ~2!, jA
m
2 f

1
2,jA

m
2 f

2
2. The bilinear out-of-diagona

counterterm can be put to zero,

t2GAmf2
~0!5JAmf2

50, ~51!

by using the ST invariantI3. Finally one has to evaluat
eight coefficients
ld
h

06501
m
e
of

j II [$jA
m
2 ,j]mf1]mf1

,j]mf2]mf2
,jAmf2]mf1

,

3jAm]mf2f1
,jA

m
2 f1

,jA
m
2 f

1
2,jA

m
2 f

2
2% ~52!

in terms of the following breaking terms:

c i
I I 5$c]mc]mf2

,ccf2hf1
,cc]mf2]mf1

,

3cchf2f1
,cc]mAm

,cc]mAmf1
,ccAm]mf1

,

3cc]mAmf
1
2,ccAm]mf

1
2,cc]mAmf

2
2,ccAm]mf

2
2,

3ccAmAmf
1
2,ccAmAmf

2
2,%. ~53!

The transformation matrixeik @Eq. ~29!# is
¨

jA
m
2 j]mf1]mf1

j]mf2]mf2
jAmf2]mf1

jAm]mf2f1
jA

m
2 f1

jA
m
2 f

1
2 jA

m
2 f

2
2

cchf2 0 0 2ev 0 0 0 0 0

ccf2hf1 0 22e 0 1 0 0 0 0

cc]mf2]mf1 0 0 0 1 1 0 0 0

cchf2f1 0 0 2e 0 1 0 0 0

cc]mAm
2 0 0 0 0 0 0 0

cc]mAmf1 0 0 0 0 ev 2 0 0

ccAm]mf1 0 0 0 2ev ev 2 0 0

cc]mAmf
1
2 0 0 0 0 e 0 2 0

ccAmf1]mf1 0 0 0 2e e 0 4 0

cc]mAmf
2
2 0 0 0 2e 0 0 0 2

ccAmf2]mf2 0 0 0 2e e 0 0 4

ccA
m
2 f2 0 0 0 0 0 e 0 22ev

ccA
m
2 f2f1 0 0 0 0 0 0 2e 22e

©
. ~54!
ro
E. Sector III

In the present model the kinetic terms for the gauge fie
are trivial because of the Abelianity of the gauge group. T
eigenvalues of the counting operators are given by

Nf5Nc50, ~NA1N]!54. ~55!

The sector contains kinetic terms for gauge fields~2!:
j]mAm]nAn,j]nAm]nAm, and interacting terms~1!: jA

m
4 . The cor-

responding breaking-terms are given by

c i
I II 5$cch]mAn,cc]mAmA

n
2,cc]nAmAnAm%. ~56!
s
e

The ST invariantI4 can be used in order to put equal ze
the counterterm corresponding to the transverse part:

jF
mn
2 50. ~57!

By looking at Eq.~B2! we have the following relations:

cch]mAn522j]mAm]nAn,

cc]mAmA
n
254jA

m
4 2j c̄cA

m
2 ,

cc]nAmAnAm58jA
m
4 , ~58!
0-7
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where the coefficientj c̄cA
m
2 is known from the ghost equatio

~46!.

F. Sector IV

This sector contains the Green’s functions with fermi
fields, and it can be further divided into the sector of ma
terms of fermion fields and their coupling with the sca
fields and the sector of the kinetic terms and the interac
with the gauge fields. The present sector is completely
coupled for the previous sectors, it is specified by the follo
ing eigenvalues:

Nf<1, Nc52, NA1N]<1, ~59!

and the counterterms are mass term~1!: jc̄c , Yukawa term
~2!: jc̄cf1

,j i c̄g5cf2
, kinetic term and interaction with the

gauge field~2!: j i c̄]”c ,jc̄A” c . The breaking-terms are give
by

c i
IV5$ccc̄g5c ,ccf1c̄g5c ,ccf2c̄c ,ccc̄g5]”c ,cc]mc̄gmg5c ,%.

~60!

There are two invariants (I5 andI6), pertinent to this sector
They are used to impose the following normalization con
tions:

jc̄A” c50,

j i c̄g5cf2
50. ~61!

The matrixeik which express the functionalc (IV) in terms
of j (IV) is given by

1
jc̄c jc̄cf1 j i c̄]”c

ccc̄g5c 21 0 0

ccf1c̄g5c 0 21 0

ccf2c̄c 0 1 0

ccc̄g5]”c 0 0 2
1

2

cc]mc̄gmg5c 0 0 2
1

2

2 . ~62!

G. Summary of the normalization conditions

For n.0 we have imposed the normalization condition

jf1

(n)50, jf
2
2f1

(n)
50, j]mAmf2

(n)
50, jF

mn
2

(n)
50, j i c̄g5cf2

(n)
50,

j
c̄A” g5c

(n)
50, jJ2c

(n) 50, jJ2cf1

(n) 50, jJ1cf2

(n) 50. ~63!

This set of normalization conditions should be considered
an intermediate step in the evaluation of physical amplitud
Furthermore normalization conditions at zero momentum
standard procedure in the BPHZ formalism. However,
might seem unfamiliar for those involved in the explic
06501
s
r
n
e-
-

-

s
s.
a
t

computation of physical processes. For this reason, we
line the construction of the physical amplitudes.

By denotingGab(p) the elements of the two-point func
tion matrix, for generic fieldsa,b the masses of the
asymptotic fields are given by the solutions of the equati

det@Gab~p!#50. ~64!

The physical values are recovered by tuning the free par
eterse,v,l,G of G0. The wave functions of the asymptoti
fields coincide with the eigenvectorsea

( i )

@Gab~p!#eb
( i )~p!up25m

i
250. ~65!

Finally the LSZ formalism provides the correct physic
amplitudes. For instance, the reduction formula for an o
going particle will be

zi
1/2eb

( i )* lim
p2

˜mi
2

Gbc~p!
d

dYc~p!
Z@Y#U

Y50

, ~66!

where zi
1/2 are the residual at the pole of the propagato

Z@Y# is the generating functional of connected amplitud
and Ya is the source ofa. After the reduction formula the
S-matrix elements depend only on the parametere since
l,G,v are fixed by the masses. This last parameter has t
tuned on a physical process.

III. ST BREAKING TERMS

In the strategy outlined before the counterterm functio
J is obtained by solving a set of linear equations~29!. The
restoration of ST invariance consists in the evaluation o
certain number of~finite! vertex functions~the functional
C). This fact is clear evidence that it is the finite part of t
perturbative expansion that fixes the counterterms in the
tion.

In this section we discuss some aspects of this proced
The first step consists in the evaluation of the functio
derivatives ofC. It is of some help to remember that, i
absence of anomalies,C is the image throughS0 of nonin-
variant counterterms (J). Therefore it has a FP charge equ
11, C-even and dimensionless or equal to 5. The next ste
to find the coefficientsc i in the expansion in terms of Lor
entz scalar monomials

C5(
i

c iMi . ~67!

Let us write explicitly, forn.0, the operatorS0, where
we impose the ghost equation of motion given in Eq.~34!,
i.e.,

evGJ2

(n)5G c̄
(n) for n.0, ~68!
0-8
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Ŝ0~G (n)![E d4xH ]mcGAm

(n)2ecf2Gf1

(n)1ec~f11v !Gf2

(n)

1 i
e

2
cc̄g5Gc̄

(n)
1 i

e

2
cg5cGc

(n)1Gf1

(0)GJ1

(n)

1FGf2

(0)1evS ]mAm1
ev
a

f2D GGJ2

(n)2Gc
(0)Gh̄

(n)

1Gc̄
(0)

Gh
(n)J . ~69!

By imposing the condition~68! the breaking termC

changes. We denote this change with the notationC˜Ĉ.
In the linearized form (S0) one of the factors in each

monomial contains the vertex function at zero loopG (0). All
these facts have some interesting consequences.

~1! The expansion ofC in terms of polynomial of fields,
which is relevant for evaluating the counterterms, can
read directly from the ST transforms of all actionlike term
~see Appendix B!.

~2! Let d be the total dimension of the fields we use f
the functional derivative ofC. Then the order of the Taylo
operatordD is @see Eq.~7!#

dD552d. ~70!

~3! Let us consider a generic term ofS0 for instance
GJi

(0)Gf i

(n) or GJi

(n)Gf i

(0) . If G (0) does not contain any dimen

sional parameter, then

tdDGJi

(0)Gf i

(n)5GJi

(0)tdpcGf i

(n) . ~71!

In the above equation we use a rather short-hand writing
to be more explicit we give an example: by taking the fun
tional derivative of theGJ1

(0)Gf1

(n) term with respect tocf2, the

dD is equal to 3 and we get

t3GJ1cf2

(0) Gf1

(n)52et3Gf1

(n) . ~72!

wheredpc53 is the superficial degree of divergence ofGf1

(n) .

On the contrary, ifG (0) contains a dimensional paramete
namelyv, Eq. ~71! is not valid.

For instance, considering the functional derivative
GJ1

(n)Gf1

(0) with respect tocf2f1, thedD is equal to 2 and we

obtain

t2~GJ1cf2

(n) Gf1f1

(0) !52m1
2t2GJ1cf2

(n) 1p2t0GJ1cf2

(n) . ~73!

The first terms on the right hand side of the above equat
namely 2m1

2t2GJ1cf2

(n) , contains oversubtractions of th

three-point functionGJ1cf2

(n) . As discussed in the Introductio

these are the sources of the ST breaking terms.
~4! The above point implies thatC @Eq. ~10!# gets contri-

butions only from those terms ofG (0) which carry a dimen-
sioned parameter (v and masses!.
06501
e

d
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n,

The functional derivatives ofC are listed in Appendix D.
It should be noticed that a few other counterterms turn ou
be zero at every order:

E d4xf1
2 , E d4xf2

2 , E d4x~]mf2!2, E d4xAm
2 .

~74!

This is due to the combined effects of our choice of norm
ization conditions and of the zero momentum subtract
procedure. Moreover the contribution to STI from the low
order amplitudes appear only in few functional derivatives
C. One can describe this fact by saying that the set of S
becomesalmostlinear in G.

IV. SOLUTION FOR COUNTERTERMS

The relations obtained in Appendix D can be expanded
terms of Lorentz invariant amplitudes. Thus one can expr
the invariant amplitude forJ in terms of the invariant am-
plitude forC. This amounts to solve the linear algebra pro
lem given in Eq.~29! where the matrices are given in Eq
~50!, ~54!, ~50!, ~58!, and~62!.

We remind our notations@see Eqs.~15!, ~16!, and ~17!#
where the small lettersj, g, andc denote the coefficients o
the Lorentz invariant monomials, respectively, ofJ ~coun-
terterms!, G, andC ~breaking terms! indicated by the sub-
script. The order of perturbation theory is not shown and i
understood to ben, unless explicitly exhibited. The ghos
equation~34! fixes the kinetic counterterms of the ghost@see
Eq. ~46!#

j c̄hc5evghJ2c . ~75!

A. Counterterms of sector I

In this sector we have the same number of equations
unknowns. The solution is~including the normalization con
ditions!

jf1
50, jf

2
250, jf

1
250, jf

2
2f1

50, jf
2
450,

jf
1
35

1

3e H 2m1
2gJ2cf

2
214ev2gf

2
4f1

2m1
2vgJ1cf

2
3

2
3

2
m1

2gJ1cf2f1J ,

jf
2
2f

1
25

1

2e
$22lvgJ2cf

2
22vlgJ1cf2f1

14evgf
2
4f1

2m1
2gJ1cf

2
3%,

jf
1
45

1

4e H 22vlgJ2cf
1
224vlgJ1cf2f1

2m1
2gJ1cf2f

1
2

12evgf
2
2f

1
322lvgJ2cf

2
214evgf

2
4f1

2m1
2gJ1cf

2
3

13(
j 51

n21

gJ1cf2f1

( j ) jf
1
3

(n2 j )J . ~76!
0-9
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B. Counterterms of sector II

In this sector the problem is overdetermined. We use
first six and the last two rows of the matrix~54!. The solution
is ~including the normalization conditions!

jA250, jAm]mf2
50, j]mf2]mf2

50,

jAmf1]mf2
52m1

2gJ1chf2
22evg]mf2]mf2f1

22lvghJ2c ,

jAm]mf1f2
5m1

2gJ1chf2
2m1

2g]mJ1c]mf2
22lvghJ2c ,

j]mf1]mf1
5

1

2e
$m1

2ghJ1cf2
1evg]mf2f2]mf1

2m1
2g]mJ1c]mf2

1m1
2gJ1chf2

%,

jA2f1
52

1

2
m1

2gJ1c]mAm1
1

2
m1

2evgJ1chf2

1~ev !2g]mf2]mf2f1
1

1

2
m1

2eghJ2c ,

jA2f
2
25

1

2v
jA2f1

,

jA2f
1
25

1

2e H 2m1
2gJ1cf2A222vlgJ2cA21e2vgJ1cf2f1

2levgJ1c]mAm1l~ev !2gJ1chf2
1e3vg]mf2]mf2f1

1le2vghJ2c1 (
j 51

n21

gJ1cf2f1

( j ) jf1A2
(n2 j )J . ~77!

The rest of the equations provided by the matrix~54! gives
consistency conditions. However, not all of them are lin
independent, in fact one can easily check that the linear c
bination

22ccA2f2
1eccAm]mf1

2evccAm]mf2f2
~78!

is identically zero. It should be reminded that this pecul
property is a consequence of our normalization conditio
Then the consistency conditions are

~1! ev@g]mJ1c]mf2
2gJ1chf2

#1eghJ2c1g]mJ1cAm

2gJ1c]mAm50, ~79!

~2! 6lv~gJ1c]mAm2g]mJ1cAm!2m1
2gJ1cAm]mf1

2m1
2g]mJ1cAmf1

12m1
2gJ1c]mAmf1

2m1
2eg]mJ1c]mf2

22e2vg]mf2]mf2f1
24levghJ2c22evgJ2cf

1
2

12ev~gf2]mf
1
2Am2gf2f

1
2]mAm!50, ~80!
06501
e
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~3! lv2e2gJ1chf2
1e3vg]mf2]mf2f1

1lve2ghJ2c

22lvegJ1c]mAm1e2vgf2f
1
2]mAm12lv2gJ1cf2A2

12vlgJ2cA22e2vgJ1cf2f1
22lv2egJ1c]mAmf1

1e2vgJ2cf
1
22 (

j 51

n21

gJ1cf2f1

( j ) jf1A2
(n2 j )

13e(
j 51

n21

gJ1c]mAm

( j ) jf
1
3

(n2 j )
50, ~81!

~4! 3gf
2
3]mAm1lvgJ1chf2

22lvg]mJ1c]mf2
23lghJ2c

1gJ2cf
2
22eg]mf2]mf2f1

50. ~82!

C. Counterterms of sector III

The counterterms of the sector III, together with the n
malization condition, are

jF
mn
2 50,

j]mAn]nAm5
1

2
$evgAm]mhf2

2evghJ2c%,

jA45
1

4 H evgf2]mAmA21e2vg]mJ1cAm1 (
j 51

n21

g]mJ1cAm

( j ) jf1A2
(n2 j )J .

~83!

In this sector there is one consistency condition

gf2Am]mA21egJ1c]mAm1gJ2cA21 (
j 51

n21

gJ1c]mAmu
( j ) jf1A2

(n2 j )

5gf2]mAmA21eg]mJ1cAm1 (
j 51

n21

g]mJ1cAm

( j ) jf1A2
(n2 j ) . ~84!

It is remarkable that contribution from the lower order term
appears only in three counterterms@see Eqs.~76!, ~77!, and
~83!#.

D. Counterterms of the fermion sector

The expansion ofC in terms of the Lorentz invarian
amplitudes performed in Appendix D reveals that the f
mion source counterterms are nonvanishing. The coun
terms of this sector are
0-10
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j i /2(h̄g5cc1cc̄g5h)52
1

2G H 2evgf2f2c̄c22Gvgcf2h̄c

1evg if2f1c̄g5c22Gvg icf1h̄g5c

2m1
2g iJ1cc̄g5c2 (

j 51,n21
@2jc̄c

( j )
~gcf2c̄h

(n2 j )

1g icf1c̄g5h
(n2 j )

!1jf1c̄c
( j )

j i /2(h̄g5cc1cc̄g5h)
(n2 j )

#J .

~85!

The other counterterms are

jf1c̄c5
1

2e H 2evgf2f2c̄c22Gvgcf2h̄c2evg if2f1c̄g5c

12Gvg icf1h̄g5c1m1
2g iJ1cc̄g5c

2 (
j 51,n21

@2jc̄c
( j )

~2gcf2c̄h
(n2 j )

1g icf1c̄g5h
(n2 j )

!

1jf1c̄c
( j )

j i /2(h̄g5cc1cc̄g5h)
(n2 j )

#J , ~86!

jc̄c52
1

e FGvj i /2(h̄g5cc1cc̄g5h)

2 (
j 51,n21

jc̄c
( j )

j i /2(h̄g5cc1cc̄g5h)
(n2 j ) G , ~87!

and

j i c̄gm]mc5
2

e H 2
1

2
j i /2(h̄g5cc1cc̄g5h)1Gvgh̄cgmg5]mc

1Gvgc̄cgmg5]mh2evgf2c̄gmg5]mc

2 (
j 51,n21

Fjc̄c
( j )

~gcc̄gmg5]mh
(n2 j )

2gch̄gmg5]mc
(n2 j )

!

1
1

2
j i c̄gm]mc

( j )
j i /2(h̄g5cc1cc̄g5h)

(n2 j ) G J . ~88!

Since we require Hermiticity and charge conjugation inva
ance, there is only one consistency condition, given by
equation

052evgf2gmAmc̄c1Gvgch̄gmg5cAm
2Gvgcc̄gmg5hAm

1 (
j 51,n21

~jc̄c
( j )

gch̄gmg5cAm

(n2 j )
2jc̄c

( j )
gcc̄gmg5hAm

(n2 j )
!. ~89!

V. CONCLUSIONS

The absence of anomalies in the Higgs-Kibble model
lows the explicit construction of counterterms which reest
lish the Slavnov-Taylor invariance of the model. Therefo
06501
-
e

l-
-

any regularization procedure which preserves the Lorentz
variance and the relevant discrete symmetries can be
rected by finite counterterms. In the present work we exp
itly gave the counterterms in terms of a set finite vert
functions. Our strategy relied on two essential ingredien
One was the possibility to perform subtraction at zero m
mentum. The second consists of the use of normaliza
conditions which simplify the construction of explicit solu
tions. Quite a few counterterms turn out to be zero and mo
over the contribution of the lower terms in the perturbati
expansion is highly reduced. Although the solution lo
cumbersome we believe that it makes possible the autom
evaluation of the counterterms.
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APPENDIX A: CLASSICAL ACTION AND BRS

Feynman rules. The Lagrangian density is

L52
1

4
Fmn

2 2
a

2
~]A!21uDmfu22lS ufu22

v2

2
D 2

1c̄ iD” c

1
G

A2
c̄~12g5!cf1

G

A2
c̄~11g5!cf* , ~A1!

where

Dm5]m2 ieAm ,

D2]m2 i
e

2
g5Am . ~A2!

The BRS transformations are

dAm5]mc,

df5 iecf,

df* 52 iecf* ,

dc52 i
e

2
g5cc,

dc̄5 i
e

2
cc̄g5 . ~A3!

Now we consider the spontaneous symmetry breaking

f5
f11v1 if2

A2
. ~A4!
0-11
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The bilinear parts give a out-of-diagonal term

evf2]A, ~A5!

thus we need gauge fixing~’t Hooft!

2
a

2 S ]A1
ev
a

f2D 2

. ~A6!

Thus we complete the BRS

df152ecf2 ,

df25ec~f11v !,
x-

06501
d c̄5F5]A1
ev
a

f2 . ~A7!

Then the gauge fixing term is

GGF
(0)5E d4xF2

a

2
F 21a c̄dFG

5E d4xF2
a

2
F 21a c̄hc1~ev !2c̄c1e2v c̄cf1G .

~A8!

and the zero-loop action is
G (0)5E d4xF2
1

4
Fmn

2 1
e2v2

2
Am

2 2
a

2
]A21a c̄hc1~ev !2c̄c1e2v c̄cf11

1

2
~]mf1

21]mf2
2!2lv2f1

22
~ev !2

2a
f2

2

1eAm~f2]mf12]mf2f1!1e2vf1A21
e2

2
~f1

21f2
2!A22lvf1~f1

21f2
2!2

l

4
~f1

21f2
2!21c̄ i ]”c1Gvc̄c

1
e

2
c̄gmg5cAm1Gc̄cf12 iGc̄g5cf21J1@2ecf2#1J2ec~f11v !1 i

e

2
h̄g5cc1 i

e

2
cc̄g5hG . ~A9!
The action is C invariant if the fieldsf2 ,Am ,i c̄g5c,c,c̄,J2

areC odd and the fieldsf1 ,J1 ,c̄c areC even. This invari-
ance can be extended toh,h̄ by requiring

CcC215Bc̄T, ChC215Bh̄T, B†gmB52gm
T ,

B251, B* 5B, BT52B, B†5B21. ~A10!

Moreover we impose Hermiticity for the low momentum e
pansion of the vertex amplitudeG by requiring

c†5c, c̄†52 c̄,

h̄†5g0h. ~A11!

APPENDIX B: ST TRANSFORMATION
OF COUNTERTERMS

The ST of the counterterms. The scalar boson sectors:

S0F E d4xf1G52eE d4x~cf2!,

S0F E d4xf1
2G522eE d4x~cf1f2!,

S0F E d4xf2
2G52eE d4x@cf2~f11v !#,

S0F E d4xf1
3G523eE d4x~cf1

2f2!,
S0F E d4xf2
2f1G5eE d4xc@2f2~f11v !f12f2

3#,

S0F E d4xf1
4G524eE d4x~cf1

3f2!,

S0F E d4xf2
4G54eE d4x@cf2

3~f11v !#,

S0F E d4xf2
2f1

2G5eE d4x@2cf2f1
2~f11v !

22cf2
2f2f1#. ~B1!

The kinetic boson sector:

S0F E d4xA2G522E d4x~c]mAm!,

S0F E d4x]mAmf2G5E d4xc@hf21e]mAm~f1

1v !#,

S0F E d4x~]mf1!2G52eE d4x~chf1f2!,

S0F E d4x~]mf2!2G522eE d4x@chf2~f11v !#,
0-12
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S0F E d4xAm]mf1f2G5E d4xc@2hf1f22]mf1]mf2

1e]mAmf2
21eAmf2]mf2

1eAm]mf1~f11v !#,

S0F E d4xAmf1~]mf2!G5E d4xc@2f1hf22]mf1]mf2

2eAmf2]mf22e]mAmf1~f1

1v !2eAm]mf1~f11v !#,

S0F E d4xA2f1G5E d4xc@22]m~Amf1!

2eA2f2#,

S0F E d4xA2f1
2G52E d4xc@2]m~Amf1

2!

2eA2f1f2#,

S0F E d4xA2f2
2G52E d4xc@2]m~Amf2

2!

1eA2f2~f11v !#,

S0F E d4x]mAn]mAnG52E d4xch]nAn ,

S0F E d4x]mAm]nAnG52E d4xch]nAn ,

S0F E d4xA4G524E d4xc]m~AmA2!,

S0F E d4xc̄cA2G5E d4x@FcA222c̄c~]mc!Am#.

~B2!

Fermion sectors:

S0F E d4xc̄ igm]mc G5 e

2E d4xc@c̄gmg5]mc

1~]mc̄!gmg5c#,

S0F E d4xc̄gmg5Amc G52E d4xc@c̄gmg5]mc

1~]mc̄!gmg5c#,

S0F E d4xc̄c G5 ieE d4xc@c̄g5c#,

S0F E d4xc̄cf1G5eE d4xc@ i c̄g5cf12c̄cf2#,
06501
S0F E d4xc̄ ig5cf2G5eE d4xc@2c̄cf21 i c̄g5c~f1

1v !#. ~B3!

The ghost sector:

S0F E d4xc̄cG5E d4xFc,

S0F E d4xc̄hcG5E d4xFhc,

S0F E d4xc̄cf1G5E d4xFcf1 ,

S0F E d4xc̄cf1
2G5E d4xFcf1

2 ,

S0F E d4xc̄cf2
2G5E d4xFcf2

2 . ~B4!

Fermion sources sector:

S0F E d4x
i

2
~ h̄g5cc1cc̄g5h!G

5cF1

2
]m~c̄gmg5c!1 iGvc̄g5c

1 iGc̄g5cf11Gc̄cf2G . ~B5!

APPENDIX C: ST INVARIANTS

We have two classes of ST invariants: the BRS invaria
where the sources do not intervene

I15E d4x~f1
21f2

212vf1!,

I25E d4x~f1
41f2

412f1
2f2

214vf1
314vf1f2

214v2f1
2!,

I35E d4xuDmfu2,

I45E d4x~Fmn!2,

I55E d4xc̄ igmD mc,

I65E d4xc̄@~f11v !2 ig5f2#c,

I7[I75E d4xS 1

2
F 21 c̄dBRSFD ,

I8[I85E d4xS 1

2
A21 c̄c1

v
a

f1D ~C1!
0-13
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and ST invariants with external sources

I95E d4x@AmGAm
(0)

1cGc
(0)1a~F]mAm2 c̄hc!#,

I105S0S E d4xJ1D5E d4xGf1

(0) ,

I115S0S E d4xJ1f1D5E d4x~f1Gf1

(0)1eJ1cf2!.

~C2!

There are other invariants which are linearly dependent fr
the previous ones:

I125E d4x$f2Gf2

(0)2eJ2c~f11v !

1ev@Ff22ec̄c~f11v !#%
n
ar
si

-

06501
m

52lv2I12lI212I31GI62evI102I11,

I135E d4xS Gc
(0)c2 i

e

2
h̄cg5c D52I52GI6 ,

I145E d4xS c̄Gc̄
(0)

1 i
e

2
c̄cg5h D52I13.

~C3!

The coefficients of the invariant counterterms can be fix
by choosing the normalization conditions on some mono
als. The following matrix provides an example of the line
dependence of the ST invariants from a set of monom
~for comparison an extra row is added involving the Fer
external source!:
¨

v1 v2 v3 v4 v5 v6 v9 v10 v11

f1 2v 0 0 0 0 0 0 22lv2 0

f2
2f1 0 4v 0 0 0 0 0 2l 2lv

A2f1 0 0 e2v 0 0 0 2e2v e2 e2v

Fmn
2 0 0 0 1 0 0 0 0 0

c̄gmg5cAm 0 0 0 0
e

2
0

e

2
0 0

i c̄g5cf2 0 0 0 0 0 21 0 0 0

J2c 0 0 0 0 0 0 ev e 0

J2cf1 0 0 0 0 0 0 e 0 e

J1cf2 0 0 0 0 0 0 2e 0 e

i h̄g5cc 0 0 0 0 0 0
e

2
0 0

©
. ~C4!
ro,
ero
APPENDIX D: EXPANSION OF C IN TERMS OF LOCAL
POLYNOMIALS OF FIELDS

The expansion ofĈ in terms of local polynomials of
fields and their derivatives can be achieved by the functio
derivatives. The relevant terms are selected by the ch
and ghost number conservation and by the naive dimen
(<5) of Ĉ. Each functional derivativeĈc••• is, in general,
a linear combination of Lorentz invariant amplitudes@de-
noted bycc••• in Eq. ~15!#.

~1! At first we consider the derivative ofĈ with respect to
the ghost fieldc and to the Goldstonef2. Its naive dimen-
sion is three and, therefore, according to Eq.~9!, we use the
Taylor operator (12t3). Moreover, by applying the normal
al
ge
on

ization conditions~63!, we get

Ĉcf2
52evJf2f2

(n)

5S ~ev !2

a
2m2

2D ~ t32t1!GcJ2

(n) 1t3(
j 51

n2 j

GcJ2

( j ) Gf
2
2

(n2 j )

5t3(
j 51

n2 j

GcJ2

( j ) Gf
2
2

(n2 j )
. ~D1!

In the Taylor expansion denoted byt3, the odd-number de-
rivative of the vertex functions at zero momentum are ze
by Lorentz covariance. Moreover the constant term is z
0-14
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due to the normalization conditionGcJ2

( j ) (0)50 thus only

j]mf2]mf2

(n) can be nonzero. However, we get

2evJf2f2

(n) 5(
j 51

n2 j

@~ t22t1!GcJ2

( j ) Gf
2
2

(n2 j )
~0!

1GcJ2

( j ) ~0!~ t22t1!Gf
2
2

(n2 j )
#50. ~D2!

Thus finallyJf2f2
is zero.

~2! The second coefficient is computed by taking the
rivative of C in Eq. ~69! with respect to the ghostc , to the
Goldstonef2, and to the Higgsf1. Moreover by using the
normalization conditions~63! andJf f 50, one gets
2 2

06501
-

Ĉcf2(p)f1(q)
(n) 52@ i ~p1q!mJAmf2(p)f1(q)

(n)
2eJf1f1(q)

(n) #

52m1
2~ t22t1!GcJ1(q)f2(p)

(n) 1ev~ t22t1!

3Gf2f2(p)f1(q)
(n) 22lv~ t22t1!GcJ2(p1q)

(n) .

~D3!

The lower order contributions are zero by the normalizat
conditions. SinceCcf2f1

(n) contains only terms quadratic i

the momenta, then there is no counterterm as*d4xf1
2. It

should be reminded that we have already chosenJf
2
2f1

50.
~3! Ĉcf2f
1
2

(n)
52@2eJf

1
3

(n)
1evJf

2
2f

1
2

(n)
#522m1

2GcJ1f2f1

(n) ~0!. ~D4!

~4! Ĉcf2f
1
3

(n)
52@2eJf

1
4

(n)
13eJf

2
2f

1
2

(n)
#

5218lvGcJ1f2f1

(n) ~0!23m1
2GcJ1f2f

1
2

(n)
~0!1evGf

2
2f

1
3

(n)
~0!26lvGcJ2f

1
2

(n)
~0!13(

j 51

n21

~Gf3
(n2 j )

~0!GcJ1f1f2

( j ) !. ~D5!

~5! Ĉcf
2
3

(n)
50. ~D6!

~6! Ĉcf
2
3f1

(n)
52@23eJf

1
2f

2
2

(n)
1eJf

2
4

(n)
#526lvGcJ1f2f1

(n) ~0!1evGf
2
4f1

(n)
~0!2m1

2GcJ1f
2
3

(n)
~0!26lvGcJ2f

2
2

(n)
~0!. ~D7!

~7! ĈcAn

(n) 52 ipmJAmAn

(n)
5ev~ tp

32tp
2!Gf2An

(n) 2 ievpn~ tp
22tp

1!GcJ2

(n) . ~D8!

Then there is no contribution toA2 and to the transverse part ofAm , i.e., *d4xFmn
2 ; only to (]mAm)2.

~8! ĈcAn(p)f1(q)
(n) 52@ i ~p1q!mJAmAn(p)f1(q)

(n)
1evJf2An(p)f1(q)

(n) #52m1
2~ t22t0!GcJ1(q)An(p)

(n) 1ev~ t22t1!Gf2An(p)f1(q)
(n) .

~D9!

The last term is zero because of covariance.

~9! ĈcAn(p)f1(q1)f1(q2)
(n) 52@ i ~p1q11q2!mJAmAn(p)f1(q1)f1(q2)

(n)
1eJf2An(p)f1(q1)

(n) 1eJf2An(p)f1(q2)
(n) #

52m1
2~ t1GcJ1An(p)f1(q1)

(n) 1t1GJ1cAn(p)f1(q2)
(n) !26lv~ t12t0!GcJ1(q11q2)An(p)

(n)

1ev~ t12t0!Gf2An(p)f1(q1)f1(q2)
(n) 2 ievpnGcJ2(p)f1(q1)f1(q2)

(n) 1 (
j 51

n21

@Gf
1
3

(n2 j )
~0!t1GcJ1An

( j ) #.

~D10!

Notice that the breaking termGf2Anf1

(0) (t12t0)GcJ2f1

(n) is zero and therefore it has been omitted.

~10! ĈcAn(p)f2(q1)f2(q2)
(n) 52@ i ~p1q11q2!mJAmAn(p)f2(q1)f2(q2)

(n)
2eJf1An(p)f2(q1)

(n) 2eJf1An(p)f2(q2)
(n) #

522lv~ t12t0!GcJ1(q11q2)An(p)
(n) 1ev~ t12t0!Gf2An(p)f2(q1)f2(q2)

(n) 1 ipnvGcJ2f
2
2

(n)
~0!.

~D11!
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~11! ĈcAm(p1)An(p2)f2(q)
(n) 52@2eJf1Am(p1)An(p2)

(n) 1evJf2AmAnf2(q)
(n) #

5ev~ t12t0!Gf2Am(p1)An(p2)f2(q)
(n) 12ev2~ t12t0!gmnGcJ1(p11p2)f2(q)

(n) iev@p1
mGcJ1(p1)An(p2)f2(q)

(n) ~0!

1p2
nGcJ1(p2)Am(p1)f2(q)

(n) ~0!#1 (
j 51

n21

@Gf1AmAn

(n2 j ) ~0!t1GcJ1(p11p2)f2(q)
( j ) #. ~D12!

From the Lorentz structure we see that all terms are zero and therefore

ĈcAm(p1)An(p2)f2(q)
(n) 5eJf1Am(p1)An(p2)

(n) 2evJf2AmAnf2(q)
(n) 50. ~D13!

~12! ĈcAmAnf2f1

(n) 52@2eJf1AmAnf1

(n) 1eJf2AmAnf2

(n) #

5evGf2AmAnf2f1

(n) ~0!2m1
2GcJ1AmAnf2

(n) ~0!12ev2gmnGcJ1f2f1

(n) ~0!

22lvGcJ2AmAn

(n) ~0!1 (
j 51

n21

~GcJ1f2f1

( j ) Gf1AmAn

(n2 j ) !~0!. ~D14!

~13! ĈcAnArAs

(n) 52@ i ~p11p21p3!mJAmAnArAs

(n) #

5evt1Gf2AnArAs

(n) 12ev2grs~ t12t0!GcJ1(p21p3)An(p1)
(n) 12ev2gns~ t12t0!GcJ1(p11p3)Ar(p2)

(n)

12ev2gnr~ t12t0!GcJ1(p11p2)As(p3)
(n) 1 ievp1

nGcJ2(p1)ArAs

(n) ~0!1 ievp2
rGcJ2(p2)AmAs

(n) ~0!1 ievp3
sGcJ2(p3)AmAr

(n) ~0!

1 (
j 51

n21

~ t1GcJ1Ar

( j ) !Gf1AsAn

(n2 j ) ~0!1 (
j 51

n21

~ t1GcJ1An

( j ) !Gf1AsAr

(n2 j ) ~0!1 (
j 51

n21

~ t1GcJ1As

( j ) !Gf1ArAn

(n2 j ) ~0!. ~D15!

~14! Ĉcc̄(p1)c(p2)
(n)

52F i
e

2
g5Jc(p2)c̄

(n)
1 i

e

2
Jcc̄(p1)

(n)
g52GvJh̄(p1)cc(p2)

(n)
2GvJh(p2)c̄(p1)c

(n) G
52ev~ t12t0!Gf2c(p2)c̄(p1)

(n)
2Gv~ t12t0!Gh̄(p1)cc(p2)

(n)
2Gv~ t12t0!Gh(p2)c̄(p1)c

(n)

2t1(
j 51

n21

~Gh(p2)c̄(p1)c
( j )

Gc(p2)c̄
(n2 j )

1Gcc̄(p1)
( j )

Gh̄(p1)cc(p2)
(n2 j )

!. ~D16!

~15! Ĉcc̄(p1)c(p2)f1(q)
(n)

52F i
e

2
g5Jc̄c(p2)f1(q)

(n)
1 i

e

2
Jcc̄(p1)f1(q)

(n)
g52eJc(p2)c̄(p1)f2(q)

(n)
2GJh̄(p1)cc(p2)

(n)
2GJh(p2)c̄(p1)c

(n) G
52evGf2c̄(p1)c(p2)f1(q)

(n)
2m1

2GcJ1c̄(p1)c(p2)
(n)

2GvGh̄(p1)cc(p2)f1(q)
(n)

2GvGh(p2)c̄(p1)cf1(q)
(n)

2t0(
j 51

n21

~Gh(p2)c̄(p1)c
( j )

Gc(p2)c̄f1(q)
(n2 j )

1Gcc̄(p1)f1(q)
( j )

Gh̄(p1)cc(p2)
(n2 j )

!2t0(
j 51

n21

~Gh(p2)cc̄(p1)f1(q)
( j )

Gc(p2)c̄
(n2 j )

1Gcc̄(p1)
( j )

Gh̄(p1)cc(p2)f1(q)
(n2 j )

!. ~D17!

~16! Ĉcc̄(p1)c(p2)f2(q)
(n)

52@1eJc(p2)c̄f1(q)
(n)

2 iGJh̄(p1)c(2p12p22q)c(p2)
(n)

2 iGJh(p2)c̄(p1)c(2p12p22q)
(n)

#

52evGf2c(p2)c̄(p1)f2(q)
(n)

2GvGh̄(p1)cc(p2)f2(q)
(n)

2GvGh(p2)c̄(p1)cf2(q)
(n)

2t0(
j 51

n21

~Gh(p2)c̄(p1)cf2(q)
( j )

Gc(p2)c̄
(n2 j )

1Gcc̄(p1)
( j )

Gh̄(p1)cc(p2)f2(q)
(n2 j )

!. ~D18!
065010-16
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Ĉcc̄gmcAm50. In fact the only possible counterterm isc̄gmg5cAm and this is excluded by the normalization conditions. T
above analysis shows that at every order the following counterterms are absent to all orders:

E d4xf1
2 , E d4xf2

2 , E d4x~]mf2!2, E d4xAm
2 . ~D19!
77
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