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Constructive algebraic renormalization of the Abelian Higgs-Kibble model
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We propose an algorithm, based on algebraic renormalization, that allows the restoration of Slavnov-Taylor
invariance at every order of perturbative expansion for an anomaly-free Becchi-RouetEB®ainvariant
gauge theory. The counterterms are explicitly constructed in terms of a set of one-particle-irreducible Feynman
amplitudes evaluated at zero moment(and derivatives of thejnThe approach is discussed here in the case
of the Abelian Higgs-Kibble mode(in 3+ 1 dimensions where the zero momentum limit can be safely
performed. The normalization conditions are imposed by means of the Slavnov-Taylor invariants. A judicious
choice of the normalization conditions greatly simplifies the calculation of the counterterms. In particular
within this model all counterterms involving BRS external sourta#ifields can be put to zero with the
exception of the fermion sectdiS0556-282(99)01916-3

PACS numbgs): 11.10.Gh, 11.15.Bt

[. INTRODUCTION model(in 3+ 1 dimensions[1,7,8), where the zero momen-
tum limit can be safely performed.

Few gauge models of physical interest enjoy a symmetri- As a starting point we assume that a consistent subtraction
cal regularization of Feynman amplitudésich as QCD in procedure allows the evaluation of tindoop vertex func-
dimensional regularization In particular for the standard tionsT'™ when the correct vertex functionBl is given for
model the difficulty comes from the endemic presence.pf any j<n. That is we assume that our procedure has been
and of the complete antisymmetric tensor. Thus, if the regusuccessfully worked out for the lower orders and we proceed
larization breaks the desired symmetries, one has to recové® restore Slavnov-TaylofST) invariance onI'™. The
the correct Green’s functions by finite renormalization in or-n-order vertex functions are constructed by iterative use of
der to satisfy the Slavnov-Taylor identitiéSTIs). The alge-  Ssubgraphs and counterterms according to the scheme of Bo-
braic RenormalizatiofAR) [1-5] theory gives the condi- goliubov[9,10].
tions under which this strategy is possible: in particular there The regularization can be any, provided it respects the
should be no anomalies in the STI. Thus in principle thequantum action principléQAP) [11] (i.e., it is correct up to
renormalization program can be performed. However, it iscounterterms in the actignin order to make the discussion
not an easy task beyond the one-loop approximation, since $impler we assume also that the regularization procedure re-
high number of vertex functions at lower order must bespects some basic symmetries of the classical action, such as
evaluated for generic external momenta in order to restorgorentz covariance, Faddeev-Pop(P) charge conserva-
the STI. tion, and any possible further symmetsuch as charge con-

In this paper we propose a strategy for the evaluation oservationC). Thus, if the regularization is not invariant, we
the counterterms, based on zero-momentum subtrafBipn expect that STIs are broken
The final result is an explicit solution of the STI where

the counterterms are given in terms of a set of finite vertex n ev n
functions and their der?vatives evaluated at zero momentum. s(r)(n)zj d*x ‘WCF&JJ“ AT 7¢2>r(€)}

Our strategy is based on various results taken from

the  Bogoliubov-Parasiuk-Hepp-Zimmermann-Lowenstein +(I, D)™

(BPHZL) renormalization scheme and from the algebraic —AM 1)

renormalization theory. We show that the zero momentum

subtraction and a judicious use of the normalization condl—Where the brackets represent

tions permits a practical evaluation of the counterterms by

means of a relevant set of finite vertex functions. In particu- SX Y  SX SY SX SY oSX SY
lar the choice of the normalization conditions entails a diag- (X,Y)=—— —+—+— — - — =+ —=—. (2
onal block structure of the matrices that fix the counterterms. 6Jy 61 63 8y SY 5y Sy Om

This approach is here discussed in the Abelian Higgs-Kibble .
Ji,J1,m,m are the sources coupled to the Becchi-Rouet-
Stora(BRS) variations, i.e., the antifieldsee Eq(A9)]. We
*Email address: The ruggero.ferrari@mi.infn.it use the convention that derivatives are always from left and
TEmail address: pgrassi@mppmu.mpg.de fields with Fermi character anticommute. Although STls are
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broken, the QAP guarantees that at every o€l is a  the relevant term for a recursive construction of the invariant
local insertion (provided that STIs are valid at the lower vertex functions is the linear operator H{":

orderg, has the correct invariance properties under exact

symmetriege.g., Lorentz, Faddeev-Pop@vP) charge, etg, So(r(n))Ef dx
and is consistent with the power counting. Thus we can ex-

pandA on a suitable basis:

ev
eI )+ ( PPt — ¢>2) FS‘)}

+(TO 7™My 4 (T M 7)), (8)

A= M=, cif d*xfi(p,d)(x), (3)  whereS; is the linearized ST operator. We assume that zero
[ [ momentum subtraction is possible and focus our attention on
) o i other effects of the subtraction. In genegglis not homoge-
whereA; is any Lorentz scalar monomiglin the fields and a5 in the dimensions of the fielésg., in presence of a
thelr derlvatlve§, mtegr:_ated over t.he Mlnkoyvskl space. Re’spontaneous breaking of symmetrs a consequence the
sidual symmetries restrict the ba_ssjv_[i ; for instance, for  action of (1-t%) on each single terms &(I'™) induces
the present Higgs-Kibble modél invariance constrains the gome oversubtractions of (n). These oversubtractions
possible breaking terms. By construction the canonical di 4 nifest theirselves as new local breaking teihobtained

mension of M; is less than or equal to 5. by reshuffling the Eq(7) in the form
The renormalization of the model consists in finding the

finite counterterms in the action that restore the validity of (1 —t%)Sy(I'(™)=S,[(1—t %) T (M ]+ Sy(t %" (M)
the STIs and consequently the physical unitatalgebraic 5 )
renormalization Let us denote by’ the vertex functions =S (IM). 9

resulting from this procedure. The locality and c_:ovariance OtI'he last terms show that the zero momentum subtraction
A suggests that we consider the Taylor expansion in MOMENhes not give ST invariant vertex functions and that order-

tum space. Let® be the projector of the polynomials of ; . i
T . by-order we have to introduce counterterms in the action. Let
degrees (the Taylor expansion in the independent external . . .
us make explicit the STI. The recursive procedure gives

momenta up to degres). The symbols,. denotes the su-
perficial degree of a given amplitude. n-1

These facts suggest a strategy in the evaluation of thgy[(1—t%)[(M]+ >, ('), (-1
counterterms. The first step consists in the zero momentum =1

subtraction compatible with the power counting no1

=[t9S, — St Ipc] (M + 19 () (=)=
(1-t%9T. (4) [£70Sp— Spt eI T (M +- ¢ D]Zl (T, re-) =y,
10
The above expressiotfI’ is a short-hand notation of the (10

following procedure: at first we consider the relevant ampli-TheI" terms are computed at the lower orders in the pertur-
tude (the functional derivatives respect to fields are denotedative expansion. They are supposed to satisfy STI at every

by subscripts order less tham. In our strategy one of the criterion in the
choice of the normalization conditions is the suppression of
L 4000, - ..¢m(pm)|pm:—2?:11pj (5 the above bilinear contributions.

If the model has no anomalies the problem is then to find
and then its Taylor expansidfiin the independent momenta the counterterm& (" which satisfy
up to degree. Formallyt’I’ can be written in the forrfil4]

So(EM)=—w® (1)
o m
t'T=2 | 11 d*pigsi(pi) or
m=1J i=1 -
m So(EM) = —[tSy— Spt %] T(M—t% > (W), (=1,
s “
x 8! ;1 Pi T 0100 0(02)- - b o= -3 ;- 1= 12

©) Finally the correct vertex functions are

Thus we consider the lowes}, such that rm=(1—t%)r™m4+ =M, (13

(1-t0)S(I)M=(1-t0)AM=0 () The zero momentum subtraction, as intermediate renor-

. . . malization, has the advantage to reduce the renormalization

at every order in the perturbative expansiof (does not iy any subtraction procedure to a common ground: the algo-
depend om). Also the expression®A™ has to be under- rithm is then the same and it consists in the evaluation of a
stood in the above sen$®) anddp=5-=;dy (d, arethe set of finite amplitudes and their derivatives at zero mo-

naive dimensions of the fields, entering in the expansion ofenta. Moreover, as we will discuss later, it suggests a natu-
AM in terms of polynomial of fields. In the above equation ral choice of the normalization conditions. Finally in the zero

065010-2



CONSTRUCTIVE ALGEBRAIC RENORMALIZATION OF ... PHYSICAL REVIEW D60 065010

momentum subtraction the contributions of the lower ordersosed by the CSE on the breaking terf$" allows the

of perturbation to¥ is consistently reducedEqg. (10)]. evaluation of some amplitudes in terms of simpler vertex
A limit of the present approach is that the vertex functionsfunctions. Moreover some amplitude can be obtained as the

and their derivatives with respect to external momenta mustesult of mass insertions on vertex functions with less exter-

have regular behavior at zero momenta. In the presence ofal legs. The automatic calculus is particularly useful since

massless and massive fields, this requirement implies the ihe external momenta are zero.

troduction of infrared cutoffs and the Taylor operattr has It is important to reduce the contributions %™ of the
to be modified(see Ref[12]); however, this possibility will lower terms in the perturbation expansion. Equatidd) al-
not be explored in the present work. lows the direct control of the consequences of any particular

There is a fairly large amount of freedom in the choice ofchoice for the basis of the noninvariant counterterms, i.e., of
the counterterm& [Eq. (13)]. This is due to the presence of the choice of the normalization conditions. This point of
a certain number of ST invariant terms explicitly given in view is at variance with the on-shell conditions, which can-
Appendix C. This freedom will be exploited in order to ob- not dispose this particular problem. For instance, it is clear
tain the most efficient strategy in the evaluationsbfand in  that by dropping external sources counterterms one can
order to reduce the contribution % [Eq. (12)] due to the eliminate most of the terms coming from the lower order in
lower perturbative terms. Any choice & fixes automati- the perturbative expansidsee Eq.(2)].
cally the normalization conditions. The physical amplitudes necessitate the study of the zeros

The use of ST invariants and the normalization conditionf the two-point functions. Then the free parameters of the
is organized by introducing a hierarchy for the countertermsaction have to be tuned in order to obtain the physical masses
(choice of a basis of noninvariant counterteyniBhey will  and the correct coupling constants.
be grouped into disjoint sets: ti8 variation of the elements The Higgs-Kibble model has the advantage of admitting
of two different sets have no common elements. In additiordimensional regularizatiofif there is no fermion sector It
the elements of a single set can be organized with a nesting nontrivial, since the presence ¢t requires the full gen-
structure. By following this hierarchy decomposition, in the erality of the Algebraic Renormalization. Moreover the
present model it is possible to avoid all counterterms involv-model has no anomalies: the Adler-Bardeen-Jackiw anomaly
ing the external sourcek, tadpoles and out-of-diagonal bi- is zero due taC conjugation.
linear expressions. As a consequence the mass countertermslin the following to make the formalism simpler and more
turn out to be zero with the exception of the fermions. Thedirect we use to give a compact notation for the breaking
ghost equation, which guarantees the nilpotency of the Sterms¥ (™ and its coefficient§see Eq.(3)]:
operator, also plays an important role in the control of some
of the counterterms.

By construction the functionaV contains only finite ver-
tex functions, i.e., at every order of the perturbative expan-
sion n it can be evaluated and it is independent from theand in the same way we will denote the counterteEf8 by
regularization procedurgonce T'U<" is correctly con-
structed. The counterterm function& is determined by Eq. 2= ¢ 16
(11). In general there are more equations than unknowns . gpkpk’ (16)
(overdetermined problem However, the system of equa-
tions has a solution since there are consistency conditionghere P, is a Lorentz invariant monomial with dimension
[13]. Most of them are consequence of the nilpotency of th@ess than or equal to 4, null Faddeev-Popov charge @nd
ST operator even. We may omit also the sign of integfa“x, when not

Sy(W (M) 0. (14 necessary, e'gf%)zf}?“x g2 Moreover the evaluation oF
in terms of finite Feynman amplitudes, according to the Eq.
The evaluation off can be performed either by imposing (10), requires the expansion &f in terms of effective am-
the consistency conditions o™ or by a choice of the Plitudes by using Eq(6)
linearly independent equations. It should be remarked that
the expression oE ™ in terms of W(" is a simple linear ro==S 17, (17)
relation independent from the order of the perturbative ex- k
pansion.
The really hard work is the evaluation #™. It consists Where the dimension dP is now unlimited. However, we
in the computation of vertex functions and of some of theirshall need only the amplitudes of dimension 5 and 6, due to
derivatives at zero momenta. The number of graphs turns odif€ structure ofS, as given in Eq(10).
to be very largdespecially for amplitudes involving scalars Equation(13) can be looked from the point of view of a
For this reason it is important to find possible relationsdifferent renormalization scheme. LE(" be the result of
among the amplitudes, e.g., the Callan-Symanzik equatioAny (nonsymmetrigrenormalization. One needs to introduce
(CSB), and to use automatic calculus to generate and evali set of countertermE{} order-by-order:
ate the graphs. Particularly interesting is the CSEe for
example Refs[14,15,9). The consistency conditions im- ro+re. (18

WO=3 g M, (15
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By comparing with our procedure we have _
VEE{EK X Pl Xy € C, dim(P) <4,

I=—tl My EM4 Y v,T; . (19)
i FP charge(P,)=0 (21

The first term is just a Taylor expansion of the action-like

amplitudes. The second term is evaluated in terms of finit&"

amplitudes and of some of their derivatives at zero momenta

(this computation can be possibly performed by automatic VWE(E X M;|x; e C,dim(M;) <5,

calculug. The last term contains the ST invariants and ac- i

counts for the differences between the normalization condi-

tions in.the tyvo schemes. _ FP charge(M;)= 1]_ (22)
Section Il is devoted to the separation of the counterterms

into sectors. By a judicious choice of the normalization con- o ) ) ) )

ditions we can drop the tadpole and most of the external Ne set of all actionlike functionalZ;} which are invariant

source counterterms. Only in the fermion sector the externainder ST transformations forms the kernelSf

source terms are modified by the renormalization procedure.

Moreover we can identify a bosonic, a kinetic—gaqge sector ker(Sy) = ( E viTi|vi e C,dim(Z) <4,

and a fermionic sector. At the end of Sec. Il we discuss the i

computation ofSmatrix elements.

_ Section Il antains a study of t.he breaking term func- FP charge(Ii)=O]. (23)

tional . In particular the ST linearized operat8g of Eq.

(8), which enters in expression fdr, is modified in order to

keep track of the ghost equation. Some of the ST invariants are genuine BRS invariants. The
Section IV provides the complete list of the countertermstrivial ST invariants are given by all elements which &g

in terms of finite amplitudes. The solution contains the con-variations of local functionals of dimensios3 and FP

tribution of the lower terms of the perturbative expansion.charge=—1. The subspace kegf) induces an equivalence

Moreover some consistency conditions are shown to péelation among the counterterms. The freedom of the choice

present among the finite amplitudes. of the representative of the equivalence classes will be used
Technical detail are in the Appendixes. In Appendix A we as one of the tools to organize the counterterms in a hierar-

give the essential elements of the BRS transformations anéhy, according to a strategy aiming to reduce the complexity

of the model. In Appendix B we list all possible counter- of AR. This choice amounts to fix the normalization condi-

terms and their ST transforms. In Appendix C we discuss th&ons; in fact in this way we select a basis on which we write

important issue of the linearly independent ST invariantsthe counterterm function& . Therefore all monomials out-

Finally Appendix D contains the expansion of the breakingside the basis do not appear as counterterms. It should be

termsW¥ in terms of local Lorentz invariant monomiglEg.  mentioned here that the subspace gy (s further restricted

(15)]. The expansion of the functiond in terms of Lorentz by the condition imposed by the ghost equation of motion.

invariant amplitudes allows the evaluation of the solutionsThe necessity to impose this condition as a first step comes
given in Sec. IV. from the fact that the ghost equation of motion is the state-
ment of the nilpotency 08;.
The image of)z is a proper subspace 0f;,
Il. HHERARCHY OF COUNTERTERMS AND BREAKING =
TERMS So(V=)CVy . (24)

The complexity of the problem is somehow distributed on
two different steps. The evaluation of the breaking-term
functional ¥ is probably the most complex part. Ondeis
given, one has to evaluate the counterteEndy Eq. (11). ¥ e So(Ve) (25
The present section is devoted to this last problem. In ordegjy e there are no anomalies. It is convenient to use a basis
to reduce the problem of managing the complete set of STI
simultaneously, we introduce a hierarchy for the counter- Miew=So(Py), (26)
termsE and breaking term¥ . This problem has been al-
ready discussed in previous worksee Refs[1] and[4]) on  wherek labels the chosen representatives of the equivalence

algebraic renormalization. classes in/z . Finally we have
Sy is a mapping ofVz on Vy,,

By construction

So:Vz—Vy, (20) EZEKZ &P, (27)

where the vector spaces are given by the relevant monomialshere ¢, are determined from
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A. Ghost equation and invariant counterterms

V= % Miiéi, (28) The proof of physical unitarity relies on the propertySaf
of being nilpotent. In the present on-shell formalism the
ie. ghost equation guarantees the above requirement
aldc+ evl“Jzzl“;. (34
Bi=2 ek (29
K This requirement excludes a mass tern'f of the form

The matrixey; is fixed by the model and by the choice of the 5 AZ s o
basis{P,}. It can be evaluated solely by using the ST trans- M# 5 +ee— (1t 7). (35
formations given in Appendix B. In particular it does not
depend on the order of the perturbative expansion. The present approach is equivalent to the Nakanishi-Lautrup

In general the number af; is higher than the number of formulation of the gauge fixing The ghost equation must be
the unknownsé,. The solution exists since the theory is valid after the renormalization procedure. For 1 we have
assumed to satisfy STho anomalies Most of the consis-
tency conditions can be derived from the nilpotencysgfif evFS’;)c: Ff:—z) ,
the ghost equation is satisfied

evl{), =18

So(¥)=0. (30) cedy’
i i i i evl\" =1
The choice of the representatives and of the linearly inde- Iy T cegl
pendent equations in E¢L1) is performed according to the
following strategy, which aims to reduce the complexity of evl" =1

. . Jycd2™ Teco
AR. First, we look for a block or triangular structure of the 2 2

matrix e,; (hierarchy. Second, we reduce the number of

terms coming from the lower perturbation expandisee Eq.

(12)]. Third, the choice of the linearly independent equations . ]

is done by preferring the breaking terms with lower numberThese equations fix the counterterms

of external legs and higher derivatives in the external mo- N N 37)

menta. In this way the number of graphs is reduced at the cterScedp SecdyrSech,

s s e o T MO SOy ar e 1 sty e s
L : . ..~ " "The remaining counterterms

ever, it will be useful in a more complicated situation as in

(n __
eVFJZCAi_ ccAi' (36)

the standard model. S £ocrEocs, (39
Two A,B subspaces of= are disjoint if
are related to counterterms involving external sources
So(A)NSy(B) ={0}. (31
E1,0E3,00,- (39

Practically, this means that the ST transformsAoB do not . . ) ) ) )
shear any monomiaM; . A includesB if In Appendix C we list the linearly independent ST invariants

with charge conjugation-1. Any linear combination of ST

So(B)CSH(A). (32 Invariants

These definitions are the guide for the hierarchy structure of e+ 2 viZ, (40)
the counterterms. If they can be grouped into disjoint sets j=1....11

then we have a block diagonalization fi. If we get an  can pe added to the vertex functional. A straightforward

including structure then the matrix is triangular. In both 5naiysis shows that the ghost equation is preserved provided
cases the task is consistently reduced. Moreover we can use

the ST invariants in order to improve the structure of the v,;=0
matricese,; by choosing appropriate normalization condi-
tions. This is performed by exploiting the invariance of Eq. vg=—(ev)?vg—e?vvy, (41)

(12) under the transformation

E—)E-i—E viZ;. (33 1The Nakanishi-Lautrup formulation requires a Lagrange multi-
] plier b coupled to the gauge fixing functigf(A, ¢) [see Eq(A7)]
and whose BRS transformation is simply given $ly=c,sc=0.
The coefficientsv; will be determined by excluding some This provides an off-shell nilpotent BRS transformations avoiding
monomialsP, from the basis foi=. the constraint$34) in order to guarantee the nilpotency 8f.
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and moreover that, under such circumstances, the monomi&ince the ghost equation fixes all counterterms involving the
fd*cOc is absent in the rest of the ST invariants in Eq.ghost field, we drop the analysis of the ghost sector. The

(40). ghost part ofZ is
For further use we notice that the remaining constants
i{(;/\/j\/}in(:g]arr:irt:g g]%tg(r)Tnlir;?g by fixing the coefficients of the fol- Eghost:f d4X[§?DcCDC+§€c¢§CC¢§+§gC¢§cc¢§
. J— VA
b1, b501, A2 b1, F2 iy, hrysAi,doC,d5Ch1,d1Ch, +§C°AiCCA“]' (47
(42)
C. Sector |

as can be seen from the matrix given in Appendix C. ) N
The next sector is selected by the condition

B. Sector 0 Ny=<4, Na=N,=N,=0, (48

The counterterms containing external sourdgsn,; are

the right group to start with whereNy, Na, N,, andN,, respectively count the num-

ber of d),A,z/;,E. The coefficients of the monomial of this
Ea,01€0,00,060,c0, Encur Even - (43 sector are mass term@)* £4,:80,6, 66,0y trilinear self-
_ _ _ interacting termg2): §¢1¢2¢2,§¢1¢1¢1, and, quadrilinear in-
The ST_ transform; of their cqrrespondmg monomiase teracting termg3): §¢l¢l¢2¢2,§¢1¢1¢1¢1,§¢2¢2¢2¢2_ The sec-
Appendix B contain the equations of motion and thereforet r can be further decomposed into two sub-sectors with
the external source counterterms are present in most of the. ~ P
»<2 and N,>2. These two sub-sectors turn out to be

subspaces o’z as defined in Eq(31) and in Eq.(32). AN o
Moreover in the recursive equatioil2) the counterterms disjoint if we put to zero the Coeﬁ'c'e@lfﬁz% (see Appen-

which contain external sources are present in almost everix B). This can be achieved by using the ST invaridt
terms. Thus it is advantageous to set all possible loop corhe contribution from the lower orders of perturbation are
rections to the BRS external sources to zero by using théeduced if we put equal to zero the coefficigy, of the
freedom in the choice of the coefficier{ts;} in Eq.(33). By  tadpole. This condition can be imposed by using the ST in-
using the ST invariantgy_; given in Appendix C we im-  variantZ;. Finally six coefficients have to be evaluated. A
pose the normalization conditiona*0) direct inspection of the ST transforms of the corresponding
monomial shows that the breaking terms to be evaluated are
r{0)=&=0,
2 2 |
i ={cg, Vep,p, Weg, 62 Yo, o Pegds ¢c¢g¢l}- (49)
., (0)=£7, =0, . N .
7 2 With the above conventions it is straightforward, with the
help of the ST transformations in Appendix B, to construct

(n) —en L
Fquz(O)_ngwz_o' (44 the reduced matrix in Eq29):
As a consequence of this choice E86) now fixes the coun- g(ﬁ §¢§ gqﬁ §¢i¢§ §¢111 g(,)g
terterms in Eq(38). By using the relation
bep, O —2ev 0 O 0 0
— __t+96, =

=(1-t)I'+ 2 (45 Ves,p, 226 —2¢ 0 O 0 0
one gets §>0) Yeg,42 0 0 3 —2v 0 O

ff:_? - I‘S:)(O) =0, Peg,02 0 O 0 -2 4e O

") ™ ") Pegd 0 0 0 0 0 —4dev
88:0c= 0p, Iprlec (0)=€vdp dpul’5,0(0), Yeg3s, O O 0 2 0 —4e
291

M _ M )=
£y =T, (0)=0,

() ") D. Sector Il
§&¢2=—9VFJ C¢2(0), i .
1 2691 This sector (selected by the conditionV,<2, N,

=0, N;=0, Ny+N,=2) deals with the kinetic terms of
&Y o= —evl' () 5(0),

cc¢§_ J2c¢§

2 .
gg)Az =— eVan)cAZ(O)- (46 The numper in brackets counts the number of counterterms of the
u u corresponding sub-sector.
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the scalar fields and the corresponding terms coming form
the covariant derivatives, that is the interaction terms of the
scalar fields and the gauge fields. It also contains the mass of XEp sy EA2 9, ER2 32, EA2 g2} (52
the gauge boson. The coefficiend§ are mass term for . ® poL T2

gauge field (1), éa2, kinetic terms for scalar field$2),

~® - - .
gﬁ%l%(ﬁl,gﬁwzﬁwz, mixing terms between scalar field and
gauge field(1), gﬂﬂA%z, coupling scalar-gauge field®),
gAM“‘ﬁz‘/’l’gAﬁ’z&”’l’ trilinear term(1), En2 g and quadrilin-
"
ear terms(2), §A2¢,§,§A2¢§. The bilinear out-of-diagonal X‘ﬂcwszl'lﬂcﬁ”A#’wcﬁ“AMl"ﬂcA"ﬁMl’
I3 "
counterterm can be put to zero,

n_
'3 —{§Ai:§ﬁﬂ¢lf7#¢1, §a#¢za#¢2a §A#¢2¢9#¢11

in terms of the following breaking terms:

_
Ui =g canpy Vep,0y Wei, dyom s

X 2 2 2 2
Weomn 62 Veans, o2 Peann 02 Yerra g2

2 =g =

t FAMd)Z(O) EArg, 0, (51 % (/chﬂAﬂdziv'r//cAMA#ng!}' (53
by using the ST invarianf;. Finally one has to evaluate
eight coefficients The transformation matrig;, [Eq. (29)] is

a2 Eongio,by Eonayi,ey EALbpmsy Emmgney EAZg E2g7 EAZg2

Yenig, 0 O 2ev 0 0 0 0 0
Yep00, O —2e 0 1 0 0 0 0
Yoo, ppme, 0 0 0 1 1 0 0 0
e gy, 0 O 2e 0 1 0 0 0
Peomn,, 2 0 0 0 0 0 0 0
T 0 0 ev 2 0 0
l//CA#(?qul 0 0 0 —ev ev 2 0 0 54
N 0 0 ¢ 0 2 0
lr//CAqulﬁ#(pl 0 0 0 —-e e 0 4 0
Yemn,g2 0 0 0 -e 0 0 0 2
‘//cAu¢zau¢2 0 0 0 —-e e 0 0 4
‘/’cAid)z 0 o0 0 0 0 e 0 —2ev
l//cAfL¢2¢1 0o o0 0 0 0 0 p2 —2e
|
E. Sector Il The ST invariantZ, can be used in order to put equal zero

In the present model the kinetic terms for the gauge fielddn® counterterm corresponding to the transverse part:
are trivial because of the Abelianity of the gauge group. The
eigenvalues of the counting operators are given by &r2 =0. (57)

Ng=Ny=0, (NatNy)=4. (55 By looking at Eq.(B2) we have the following relations:

The sector contains kinetic terms for gauge field@: Yoo, ar="28; Arg,Ar

g(,#w A€y A VRS and interacting termgl): ¢,4. The cor-
v v y23

responding breaking-terms are given by Weonn a2=4Eps — Ecep?,
My Iz "

n" ={eni, areoma a2 Pcon a Ant- (56) Yoorn,ape=BEnt, (58)
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where the coefficienf.. 52 is known from the ghost equation computation of physical processes. For this reason, we out-
(46). . line the construction of the physical amplitudes.

By denotingI',,(p) the elements of the two-point func-
tion matrix, for generic fieldsa,b the masses of the

asymptotic fields are given by the solutions of the equation
This sector contains the Green'’s functions with fermion
fields, and it can be further divided into the sector of mass
' r =0. 4
terms of fermion fields and their coupling with the scalar detTan(p)]=0 64
fields and the sector of the kinetic terms and the interaction ] )
with the gauge fields. The present sector is completely de!n€ physical values are recovered by tuning the free param-

coupled for the previous sectors, it is specified by the follow-8t€rse,v,\,G of I's. The wave functions of the asymptotic
ing eigenvalues: fields coincide with the eigenvectoe§’

F. Sector IV

No<L Ny=2, Nat Nost, 59 [Las(P)1e)(P) | 2-mp=0. (69

and the counterterms are mass tefn &,,,, Yukawa term
(2): &yys, Eiyyeua, Kinetic term and interaction with the Finally the LSZ formalism provides the correct physical
gauge field(2): &4, €54, The breaking-terms are given amplitudes. For instance, the reduction formula for an out-

by going particle will be
D =AWeurgy Weayirsy Yesgin Yoty Ve, v}
Wb Veertrar ety Vet ot (}60) 2260% lim Toup)—o—2ziv1 . (66)
p2m? oYc(p) v=0
There are two invariantsZ§ andZg), pertinent to this sector.
tTicr)]r?g- are used to impose the following normalization condl—Where Zillz are the residual at the pole of the propagators,
' Z[Y] is the generating functional of connected amplitudes,
Ehy=0, andY, is the source of.. After the reduction formula the
Smatrix elements depend only on the parametesince
€yt =0 (61  M\.G,v are fixed by the masses. This last parameter has to be

tuned on a physical process.
The matrixe;, which express the functiong'V) in terms

of &™) is given by lll. ST BREAKING TERMS
& S, &by In the strategy outlined before the counterterm functional
-~ E is obtained by solving a set of linear equatig29). The
Vewysy -1 0 0 restoration of ST invariance consists in the evaluation of a
Yo iyt 0 -1 0 certain number offfinite) vertex functions(the functional
s V). This fact is clear evidence that it is the finite part of the
L2 0 1 0 _ (62) perturbative expansion that fixes the counterterms in the ac-
tion.
epyson 0 0 - l In this section we discuss some aspects of this procedure.
2 The first step consists in the evaluation of the functional
_ 1 derivatives of . It is of some help to remember that, in
‘ﬂcﬂ”wv,ﬂsw 0 0 ) absence of anomalie¥ is the image througl$, of nonin-
variant countertermss,). Therefore it has a FP charge equal
o N +1, C-even and dimensionless or equal to 5. The next step is
G. Summary of the normalization conditions to find the coefficients); in the expansion in terms of Lor-
Forn>0 we have imposed the normalization conditions entz scalar monomials
n n n n
€n=0, &, =0, &0, , =0, &2 -0 & -0

V=2 M. (67)

(n)
EnAvsi//:O’ 522’:0’ 55223‘/’120’ ggrll)c‘/’zzo' (63

Let us write explicitly, forn>0, the operatofs,, where
This set of normalization conditions should be considered agie impose the ghost equation of motion given in E4),
an intermediate step in the evaluation of physical amplitudes.e.,
Furthermore normalization conditions at zero momentum is a
standard procedure in the BPHZ formalism. However, it () _ ()
might seem unfamiliar for those involved in the explicit eVFJz =I." for n>0, (68)
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. . ) ) - The functional derivatives o¥ are listed in Appendix D.
So(F(n))Ef d*x %CFAM—GC%F%+90(¢1+V)F¢2 It should be noticed that a few other counterterms turn out to
be zero at every order:

J d*x¢?, J d*x¢3, J d*x(3,,¢2)?, J d*xAZ .
(74)

e — e
P (W (n) (O]
+|201p'}/51—‘¢ +|20’)/5l//r¢ +F¢1FJ1

+

ev

I'D+ev| o#A,+ —¢2) }rg“)—rf,?)r(—”’
2 o 2 K This is due to the combined effects of our choice of normal-
ization conditions and of the zero momentum subtraction
+r(°)r(”“)]_ (69) procedure. Moreover the contribution to STI from the lower
v order amplitudes appear only in few functional derivatives of
) ) » ] W¥. One can describe this fact by saying that the set of STI

By imposing the condition(68) the breaking term¥ becomesalmostlinear inT.

changes. We denote this change with the notafion W,

In the linearized form §;) one of the factors in each IV. SOLUTION FOR COUNTERTERMS
monomial contains the vertex function at zero 1d&f3. All ) ) i ) .
these facts have some interesting consequences. The relations obtained in Appendix D can be expanded in

(1) The expansion off’ in terms of polynomial of fields terms of Lorentz invariant amplitudes. Thus one can express

which is relevant for evaluating the counterterms, can bdhe invariant amplitude foE in terms of the invariant am-

read directly from the ST transforms of all actionlike termsPlitude for'. This amounts to solve the linear algebra prob-

(see Appendix B lem given in Eq.(29) where the matrices are given in Egs.
(2) Let & be the total dimension of the fields we use for (50); (54), (50), (58), and (62).

the functional derivative of. Then the order of the Taylor e remind our notationgsee Eqs(15), (16), and (17)]
operatordy, is [see Eq(7)] where the small letter§, v, andys denote the coefficients of

the Lorentz invariant monomials, respectively, ®f(coun-
S5=5- 4. (7o) terterms, I', and ¥ (breaking termpindicated by the sub-
script. The order of perturbation theory is not shown and it is
(3) Let us consider a generic term &, for instance understood to be, unless explicitly exhibited. The ghost
FS?)F((;:) or FS?)F(qu)- If T© does not contain any dimen- equation(34) fixes the kinetic counterterms of the gh@ste

sional parameter, then Eq. (46)]
Enc=eVynac- (75)
tﬁDFS?)Fg:)=FS?)t5p0Fg:). (72) cLic 2C

) i A. Counterterms of sector |
In the above equation we use a rather short-hand writing and
to be more explicit we give an example: by taking the func-

tional derivative of thd“gcl’)l“g‘l) term with respect te ¢,, the
ép is equal to 3 and we get

In this sector we have the same number of equations and
unknowns. The solution i6ncluding the normalization con-
ditions)

§¢1=0, §¢§:0, §¢§:01 §¢§¢1:0, §¢‘2‘:0,

31(0) (n— _ (n)
5y, Ty =—etTy). (72)
1
- - - ) Ega= o —MPy; g2t Aeviy ity —MAV Y5 4l
where d,.= 3 is the superficial degree of dlvergencel“éjl. 417 3e 173,c45 bo¢y 1V VIicdy
On the contrary, iff'(®) contains a dimensional parameter, 3

namelyv, Eq.(71) is not valid. ——m?
. e . L 2 1Y ey,
For instance, considering the functional derivative of
FSTFg’l) with respect tacé, ¢, the 8p is equal to 2 and we

) 1
obtain f«ﬁ%d)f: Z_e{_ 2\v yJZC(,,g—v)\ Ya,co,h, T ACY Yoie,
200 10) \_ _ 2:21(n) 2,017(n)
By Ty ) =—mit’T§N, +p?TY, . (73 —m%lewg},
The first terms on the right hand side of the above equation, 1

. . _ 2
namely —mit’T{",, , contains oversubtractions of the — £4i= El T2V V3,027 AVA Y3 e, T MY 08,02
three-point functio {7}, . As discussed in the Introduction

2
these are the sources of the ST breaking terms. 28V Y243 2NV Yay002 T ABY Yydg, T M1Ya 1063
(4) The above point implies thak [Eq. (10)] gets contri- n—1
butions only from those terms &f® which carry a dimen- ) (n-1)
. +3 76
sioned parameten/(and massés ,Zl Viedrti 03 (76

065010-9
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B. Counterterms of sector I (3) 7\V2927J1cm¢2+ edy 79ﬂ¢29“¢2¢1+ AveZYDch
In this sector the problem is overdetermined. We use the ) )
first six and the last two rows of the matii%4). The solution ~2NVeYy co, vt €V Vg, 425 AnT ZAVTY) cp,A2

is (including the normalization conditions 9 2
F2VNY3,cA2 = €V Yy ch,0, T 2NV IRV 0o An g,y
§A2=0, fAMaﬂqu:O, gﬁﬂqﬁzﬁ#(ﬁZ:Oy n—1
2 — () (n—1)
gA#gbl&quz_ M1Y1c06, 28V Ya, 000050, VYo,es !
n-1

2 2 (1) (n=§)_
Envi, by, = MLY3,c00, ™ M1Ya 1comp,~ 2NV YOa0 +3ej21 Yajconn, S8 =0, (81

1
&y pongp, = —{miyo; co, TEVYs b boore
P11 2@ 1692 nP2920" 41 (4) 3y¢g&#A#+)\V731C5¢2—2)\Vy,;#310(w¢2—3)\7mzc

2 2
Yo +M1yyc06,0 — =
N1Yo,9.comh, ™ M1Yagc o) + 3,042 ey%(bzﬁwz(ﬁl—o. (82

1
2 2
24 =— =M + —mjev
9 ¢1 2 1731°‘9MA” 21 YacOé, C. Counterterms of sector IlI

The counterterms of the sector lll, together with the nor-

1
+(ev)? +—-mie , At i
(ev) Yo, b0ty 5 M1EY O, malization condition, are

1 §F2 :01
En2y2= E§A2¢l, wy
1 2 2 1
En2g2= 2e| TM1Yace,n2T 2VAYycp2t €V Yy ch,0, Ea,A,0vAR= E{eV YA, om0, €V YOa,eh
—NeVyyes ant N(ev)?yscog,t eV Yo, bpikdydy
< -j 13 4=E evy 2+e?vy +nil 'y(j) g(n—j)
+)\e2V')’DJ2c+ 2 7511)c¢2¢1§$ A12) _ 77 AYT g bgotA A 9,31CA# & Taagen, $,A2 [ -
=1 !
(83
The rest of the equations provided by the matt¥) gives
consistency c_ond|t|ons. Howeve_r, not all of them are linean, this sector there is one consistency condition
independent, in fact one can easily check that the linear com-
bination
n—1
~2¢cp2g,t €hcans, 6, " OV Penra, 4,0, (78) YA, omn2 T €Yy co AnT Viyenzt 1_21 VSJl)cauAmufg]l;\JZ)
is identically zero. It should be reminded that this peculiar n-1 .
property is a consequence of our normalization conditions. =Ygma,n2 T €Yo 3 cant ]Zl ygﬁjchﬂgg‘lAJ}. (84

Then the consistency conditions are

() evlvs g comg,~ Ya,c006,1 T €Y00,cT Vo 3,cAn . o
Tur0992 195992 267 Tuhe It is remarkable that contribution from the lower order terms

—¥3,00,A0=0, (790  appears only in three counterterfisee Eqs(76), (77), and
o
(83)].

(2)  BAV(Yaco,an™ Vi a,0m0) — mi’YchAf‘ﬁM(ﬁl
2 2 2 D. Counterterms of the fermion sector
~MLYo,3canp, 2M1Ya e, Arg, ~ M€Y 3 comg,
5 The expansion of¥ in terms of the Lorentz invariant
—2e V73M¢2W¢2¢1_4)‘6V7mz°_2eV7Jz°¢f amplitudes performed in Appendix D reveals that the fer-
+26v(yy s s2an— 2 an)=0 (80) mion source counterterms are nonvanishing. The counter-
Y20, 61747 Véoyo,An) =5 terms of this sector are
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1

gi/z(;?’s‘//(;*cl?s’]) == % 2ev 7¢2¢2E‘//_ 2Gv 7(:4)2;1//

+ev Vi ‘/’24’1;’}/51//_ 2Gv ’)/icqf’l;)’sl/’

(n—j)

0
[2 51( Yeg,im

2 _
- ml?’ichwyslp—j:lE;

(n=j) (J)_ n=])
7ic¢1¢y5n) §¢1l//t/f§l/2(77y51/10+01117571)] ’
(85

The other counterterms are

1
Eprn™ 551 28V Y hydous— 2GV Yeiyny ™ OV Vi iy s
2e

_ 2 _
+ ZGV‘}/iC(ﬁln'ySJJI_'— m17iJ1C$y5¢

(n J)

- ) (n-i)
J_:% [2 g,/,;p( C¢ l//’? iC"51‘/’%77)
(_ gn-j)
+ §¢1¢¢/§|/2(7]'ysl//(§+c¢1757])]] ’ (86)
S 1 7 e
§¢/¢;: — E GVfi/g(yl'ysil/chCl//’ysﬂ)

(87)

(i) £(n=J) —
i 2 . f f,/z(ﬂ75¢c+c¢7571) !

and

2 1
giayuﬁ“t//: E| - Efi/Z(gyslﬁHCEvsn)"' Gv Yney, vsot

+Gv yZCyMySa"‘n_ ev ’y¢21/_/yﬂy519/"’l//

> [g“(

j=1n-1

(n—j) (n—j)
Cl//y Y59t 70777 75&‘%)

(1) (n—J)
gIl/ﬂ/ 6”¢§l/2(ny5¢0+611/7577)

} (88)

PHYSICAL REVIEW D60 065010

any regularization procedure which preserves the Lorentz co-
variance and the relevant discrete symmetries can be cor-
rected by finite counterterms. In the present work we explic-
ity gave the counterterms in terms of a set finite vertex
functions. Our strategy relied on two essential ingredients.
One was the possibility to perform subtraction at zero mo-
mentum. The second consists of the use of normalization
conditions which simplify the construction of explicit solu-
tions. Quite a few counterterms turn out to be zero and more-
over the contribution of the lower terms in the perturbative
expansion is highly reduced. Although the solution look
cumbersome we believe that it makes possible the automatic
evaluation of the counterterms.
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APPENDIX A: CLASSICAL ACTION AND BRS

Feynman rulesThe Lagrangian density is

Since we require Hermiticity and charge conjugation invari-

ance, there is only one consistency condition, given by the

equation
0=—evyg,yun, st CVYeyynysya, = GV Yeuynysya,

o) (n i
+j:12,nf (&7 cytySyA, yYcpyiySan,

V. CONCLUSIONS

The absence of anomalies in the Higgs-Kibble model al-
lows the explicit construction of counterterms which reestab-
lish the Slavnov-Taylor invariance of the model. Therefore \/5

§(J) (n=j) ) (89)

1 2 @ 2 2 2 V2 ? _@
L=——-F- ——(dA)*+|D -\ ——| +uyi
4#v2()|u¢| |¢|2 nDyY
G _ G _
+—=9(1—ys)pdp+ —=p(1+ ys) ™, (A1)
V2 V2
where
D,=d,—ieA,,
e
D—aﬂ—|§y5AM. (A2)
The BRS transformations are
6A,=4d,C,
Sp=iecao,
S¢* = —ieco*,
o= _|_751/fc
— _e —
Sy=i §c¢y5. (A3)

Now we consider the spontaneous symmetry breaking

065010-11
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The bilinear parts give a out-of-diagonal term

— ev
5c=F=0A+—¢,. (A7)
ev d,dA, (A5) a
i Then the gauge fixing term is
thus we need gauge fixing Hooft)
2 a —
ev (0)— 4yl — — 72
_a &A+—¢2) . (A6) gl fd X 2]-" +aCoF
2 @
Thus we complete the BRS =f d*x| — g]-‘2+ acOc+ (ev)Zcc+e?vced,|.
6¢p1=—€Coy, (A8)
dpr=ec(p1+V), and the zero-loop action is
1 e?v? a — - — 1 (ev)?
o= f d*x| — ZFwar TAi— 5 9A?+ aclIc+ (ev)ce+e?veedh, + E(aﬂ¢§+ 3,5 — A2 3 — 7¢§

P 2 2e_22 2 A2 2, 0 N0 o, — -
+eA (P Pp1— " Prdp1) +EVHA“H 2(¢1+¢2)A AV o1 (P1+ ¢3) 4(¢1+¢’2) + b+ G

e— — — e— e
+ §¢7M75¢A”+G¢¢¢1_i6 byspdot o[ —echy]+Iec(pi+v)+i 57775¢C+i EClﬂ’)’sﬂ}- (A9)

The action is C invariant if the fieldg,,A,, ,i yysi,c,c,J; U a2 | f . 5
J— — + —
areC odd and the fieldsp; ,J;, ¢4 areC even. This invari- So| | d X¢2¢1_ &) dxc2da(frtV)di= 2],
ance can be extended ig » by requiring )
CyC '=By', CyC '=By', B'y,B=-y,, So“ d*x ¢S =—4ef d*x(ceiey),

B?=1, B*=B, B'=-B, B'=B" . (A10) 1
_ - sy [ atas|=ae [ atxieoiiantv),

Moreover we impose Hermiticity for the low momentum ex- ]
pansion of the vertex amplitudé by requiring

c'=c, c'=—¢, so[ f d'xpagi|=e f A*X[ 202 (1 V)
7=y (A1) —2C45h21]- (B1)
APPENDIX B: ST TRANSFORMATION The kinetic boson sector:

OF COUNTERTERMS

The ST of the countertermEhe scalar boson sectors: So f d'xA?| = —ZJ d*x(cd,A*),
d4 —— d4 ,
S J X1 ef x(c2) SOU d“xﬁMA/‘cﬁ2 =J' d*xc[O b, +ed, APy
Sy fd4x¢§ =—ZeJ d*x(Cy ), +v)1,
ey 2] s Sol | d*x(a, 12| =2e | d*(cOb ),
So| | d'xep3|=2e | dX[Cho(P1+V)], w1 172
S fd“Xcﬁi =—3ef d*x(ceiey), SOH d“X(o?,Lqu)z}:—Zef d*x[cO¢y(b1+V)],
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So[f d4XA“(9M¢1¢2}:f d*xc[ —O 1o~ 3,10 b,
+e<9MA“¢§+ eA“ b0, b,

teNd, (1T V)],

So[f d4XA”¢1(l9M¢2)}:f d*xc[ — ¢p1 0o~ 3, 10" b,
—eN'dyd, b~ ed A di( Py
+Vv)—eAd,di1(P1 V)],

SOU d4xA2¢1}:f d*xc[ —20*(A 1)

—eAg,],

Sy f d*xA?¢3|=2 f d*xc[ — *(A,b%)
LA

so_ f d4xA2¢§_=2 J d*xc[ — *(A,b3)

+eAlpy(pr+v)],

so[ f d*xd, A" A, |=2 f d*xcda"A,,
so[ f d*xdg*A,d"A, | =2 f d*xca"A,,

So{ f d4xA4_:—4 f d*xca*(A,A?),

so[ f d*xccA?| = f d*x[ FcA2—2cc(akc)A,].
' (B2)

Fermion sectors:

So f d*x iy, 0" =g f d*xcl ¢y, vs0"
+(3“9) v, s,
So[ J d*x gy, ysAt | =~ J d*xc[ ¢y, yso* i
+ (") v, s,
sy [ at|=ie [ dctivon
sy [ ain = dixliFrapss i),

PHYSICAL REVIEW D60 065010

—e f dxC] — o+ Dysih(

+v)]. (B3)

s [ adivswes
The ghost sector:
SOU d*xcc =f d*x.Fc,

SOU d*xcOc =f d*xFc,

S f d*xccey | = f d*xFcey,

Sof d*xccp? :j d*xFce?,

S f d*xccg?|= f d*x Feg2. (B4)
Fermion sources sector:

So

J d“XIE(;vstﬂHC%sn)}

1 _
=C| 5y, ys¥) HiGVysY

+iG Yrysheps+ G%ﬁ(ﬁz}- (B5)

APPENDIX C: ST INVARIANTS

We have two classes of ST invariants: the BRS invariants

where the sources do not intervene

I,= f d*x( T+ d5+2vehy),
I,= f d*X( P+ p3+ 2T 5+ Av 3+ Av by po+ v ¢T),
13=f d4x|DM¢|2,
I4:f d4X(F/,LV)2!

= LN w
s fd Xihiy, D*if,

— Ayt i
I6_f d*xy[ (Pt V) —iysho]ib,

1 _

I,=T,= f d4x<§}'2+céBRS}'),

1 — v
Igzzszf d4x(§A2+cc+ Ed’l) (C1
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and ST invariants with external sources =—\V2T,— NI, + 213+ GIs—evig— Iy,

To= f d*X AT Q)+l O+ a(Fo*A,—cOc)],
e__
Ilszf d4x<rfpo)l//_i577075¢):_15_GIG,

zm:so( J d*xJ; | = f d*xT ),
_ -, & _
Ip= SO( J d4X‘Jl¢l> — j d4x(¢1rgfl)+e~]10¢2)- T14= J d4x( lﬂF; +1 ElpC')’Sn) =—13.
(C2) (C3

There are other invariants which are linearly dependent from o ) ) ]
the previous ones: The coefficients of the invariant counterterms can be fixed

by choosing the normalization conditions on some monomi-

_ 4 ) als. The following matrix provides an example of the linear

IlZ_f d*x{ oIy, —eLc(¢1 V) dependence of the ST invariants from a set of monomials

L (for comparison an extra row is added involving the Fermi
+ev[Fp,—ecc(¢p1+V)]} external source

Vi Va2 V3 Vg Vs Vg Vg V1o Vi
b1 2v. 0 0 0 0O 0 O —2xv2 0
dady 0 4v 0 0 0 © -\ —\vV
A%¢, 0 0 €ev 0 0 0 2% ¢ e’v
F2, 0 0 1 00 0 O 0
_ e e
A+ 0 0 O O - 0 = 0 0
idyspp, O O O 0 0 -1 0 0 0
J,C 0O 0 O 0O 0 0 ev e 0
J,Cehy 0O 0 0 O 0 0 e 0 e
JiCoh, 0O 0 0 0 0 O -e O e
— e
i pysic 0 0 0 0 0 0 ; 0 0
[
APPENDIX D: EXPANSION OF W IN TERMS OF LOCAL ization conditiong63), we get

POLYNOMIALS OF FIELDS

The expansion off’ in terms of local polynomials of
fields and their derivatives can be achieved by the functional (ev)?
derivatives. The relevant terms are selected by the charge :(
and ghost number conservation and by the naive dimension

(<5) of ¥. Each functional derivativé’- - - is, in general, n—j A
a linear combination of Lorentz invariant amplitudjege- =3 FE:JJ)ZFE;;J)' (D1)
noted by, - - in Eq. (15)]. =1 2

(1) At first we consider the derivative off with respect to
the ghost fieldc and to the Goldstone,. Its naive dimen- In the Taylor expansion denoted b3, the odd-number de-
sion is three and, therefore, according to E), we use the rivative of the vertex functions at zero momentum are zero,
Taylor operator (+1t3). Moreover, by applying the normal- by Lorentz covariance. Moreover the constant term is zero

n—j
- TS, TG
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ot itiofr@) (0)= Q) = ez
due to the normalization cond|t|oii‘CJ2(0) 0 thus only \[rwz(p)d)l(q) —[i(p+q)* Endy(p)by(a) “¢1¢1(Q)]

()
& can be nonzero. However, we get
T2z =- mf(tz—tl)chl(qw (p)*eV(tz—tl)
- j) p(n=1) _tl

. . (D3)
r o) —thrg V1=0.  (D2)

Thus finally= 4,4, is zero. The lower order contributions are zero by the normalization

(2) The second coefficient is computed by taking the deonditions. Since¥ () )., contains only terms quadratic in
1
rivative of W in Eq. (69) with respect to the ghost, to the

Goldstoneg,, and to the Higgsh,. Moreover by using the
normalization condition$63) andE¢2¢2=O, one gets

the momenta, then there is no countertermfaéx¢?. It
should be reminded that we have already cha?g,gl,ﬁl:O

(3) ¥ 2=l e:$3)+ev:f;)¢2]— 2mr(, , (0). (D4)
(n) ,_,(n) = (n)
(4) ¥ g=—[-eE+3eE() ]
n—1

=—18>\vrgg>l¢2¢l(0)—3m§r‘”) e ¢2(0)+evr(”>¢3(0) exv ¢2(0)+32 (' ord , ). (05
(5) w‘”) =0. (D6)
6) ¥ = —[-3eE") +e“‘”)]——6x T, 6 (0 +evlyl (0)-mirl) s0)-6aT() 2(0). (D7)

coddy $ig2 T O= VEcio,e, Vi gls, ( 1 cJ1¢g( Ve, ¢2(
(7) TR =—iptEQ, =ev(t—t)T ), —ievp*(t3— )T . (D8)

Then there is no contribution 1?2 and to the transverse part Af,, i.e., [d*xF,; only to (7,A*)?.

_Ti = () = (n) _ _
(8) TR pyoy@=—[HP+D*Ela (o) py@HEVE DA @ray@]= ~MIE =TT a @+ eV E=tHT s () o)

(D9)
The last term is zero because of covariance.
Jr (N — T =(n) = (n) = (n)
(9) Ver (mes(apsrian = ~HIPHA1T A" ZEnin (0)pyap) dyay) T 5 doA (p dstan T EE 6n (P61 (a)]
1 0
~MATO A oyt T kA o) ~ EMVE =T G g a0
n—-1
1_+0\(Nn) i (n) (n—j) 1(3j)
TV gon (0) 6y (ap) b1(ay) 'eVpVFch(pm(qlml(qz)+jzl [Tz (0T eji,1-
(D10)
Notice that the breaking tenﬁ(o) s, (t 1—t°)F(C'})2¢1 is zero and therefore it has been omitted.
3,(n) i = (n) _a=() —_a=()
(100 Wen (p)dpapdsan = ~LHPHA1+ A2 Enia (p)4,(a,) 6500, ™ €F d1A, () b(a) ~ €5 61A,(p) b0,
_ 1 0\ (N) : (n)
= =20 (TS g -, OV =T (01,0 TIPVT G5, 42(0)-
(D11)
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() =™ =)
(1) Wer (ppa,(pda@ = ~L78E 1A (p)A,(p) TEVE 4ya A 6y(a)]

_ 0 1 : (n)
=ev(t' =TT (o0 (@28 =G T o sy 4,@IVIPITE, (o), ) 0@ (O)
n—1
v () (n—j) 1)
+szch(pz)AMwl)asz(q)(0)]+121 [T5,an, (0TS (5,4 b @] (D12)

From the Lorentz structure we see that all terms are zero and therefore

() —e=(M —ey=M =
WER, (p)A, (P2 62(0) = BF 614 (A, (p) ~ BV E 68 A, dy(0) = O- (D13)

=—[—e= = (n)
(12) q’cA Adatr— LT EZGA A0 T EE G A A 0]

_eVF¢2A A,dy6,(0)— mlchlA A, b (0)+29V29WF$)1¢2¢1(0)
n-1
-~ 2xvrg’3)2AMAv(0) + ,Zl (TY) 4,0, E;lAl ,)(0). (D14)

(13 q’cA aA, = ~LI(P1F Pt pS)ME,(AIL)AVApAU]

_ 2 0 2
—evtlrg‘)A AA, +2ev2gPo(tt—t )rgg)l(pﬁ%)A (b 28V g’o(tt—t )rcjl(pl+p3)A (5

+2ev?grP(tt— to)l“ch(pﬁpz)A (p3)+|evp11“032(p1)A A (O)leevpgl“CJZ(pz)A A (O)leevpgl“cJZ(pS)A A, (0)

n—-1 n—1 n—-1
+ JEl (T 0 TG A (0)+ ]21 (T A )TE A (0)+ J_gl (T A )T (0). (D15
(n) a = i 8om Cau=m s
(14) ‘Pcw(pl)w(pz) 27’5H¢(p2)¢+'2 v Y5~ CVE L ohcutn) ~ CVE niputpye
_ 1_ 0y (N) . 1_:0\ () _ 1_0yp(n)
=—ev(U=O) oyuey GV =0 s euy = GV = o e
o 0 peb p@ poeD)
t E Coyatoncl wopa ™ CuopUntpycutpy)) (D16)
e
(n) N = (n) € o= _ - = _
(15) qfc'//(pl)¢(p2)¢1(q) 275H¢‘/’(p2)¢1(‘1) |2 i//i//(Pl)(bl(Q)ys i//(pz)'//(pl)¢2(Q) G= 7](p1)c¢’(p2) G‘_(ﬂ(pz)i//(pl)c
P 20(n) - P
e"r¢zw(p1)w(p2></>1(q) ML o ue) ~ CVE e cuo) o, Gvrﬂ(pz)‘//(pl)CK/’l(Q)
0 (i) =i (i) (n-i) _oS ) (n-i)
tJZ Cowautenel wpwa@ T Lintopoy@! nppesey) ,Z Lepcnpn oyl wow
(i) (D)
Lo ntecutny) dy(a)- (D17)
(n) ) =) s
(16) \I’C'ﬂ(pl)'ff(pz)lf’z(Q) L+ eE ) ve,@ T ICE npye(- -y o T CE pipy WPy e~ py - py-a)]
(1) () n _
- e"r¢2w(p2)w(p1)¢z(q) VI oeup sx@ ~ CVL ipywppcaya
.0 0 _ (=), () p(0-0)
t jzl (F’?(Pz)‘p(pl)C(lﬁz(Q)F‘//(pz)ﬁ F‘//‘//(pl)rﬂ(pl)(:l//(pz)¢2(Q)). (D18)
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\ifC%MA,FO. In fact the only possible counterterm@My5¢A“ and this is excluded by the normalization conditions. The
above analysis shows that at every order the following counterterms are absent to all orders:

f d*x¢?, f d*x¢3, f d*x(d,¢)%, f dxA? . (D19)
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