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Perturbing topological field theories
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The Abelian Chern-Simons theory is perturbed by introducing local gauge-invariant interaction terms de-
pending on the curvature. The computation of the correlation function^rg1

dxmAmrg2
dynAn& for two smooth

closed nonintersecting curvesg1 , g2 is reported up to four loops and is shown to be unaffected by radiative
corrections. This result ensures the stability of the linking number ofg1 and g2 with respect to the local
perturbations which may be added to the Chern-Simons action.@S0556-2821~99!00318-5#
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I. INTRODUCTION

Since their introduction@1#, topological field theories
have been responsible for many applications@2# and have
been the object of continuous investigations. Nowadays t
represent an important chapter of quantum field theory.
original motivation was related to the possibility of descr
ing topological invariants by means of standard field-the
techniques@1,3#.

In order to give an idea of this framework, we prese
here the field-theory characterization of one of the m
simple and familiar topological invariants, namely, the lin
ing numberx(g1 ,g2) of two nonintersecting smooth close
oriented curves inR 3 ~see Fig. 1! @3,4#.

As is well known, the linking numberx(g1 ,g2) is an
integer which counts the number of times that one cu
winds around the other. It is independent from the shape
the curves and can be represented by the Gauss integra

x~g1 ,g2!5
1

4p R
g1

dxm R
g2

dyn«mnr

~x2y!r

ux2yu3
. ~1!

Expression~1! is in fact easily seen to be an integer by use
the Stokes’ theorem@3,4#. Taking a field theory point of
view, the linking numberx(g1 ,g2) may be obtained by in-
troducing the topological Abelian Chern-Simons action@1#

SCS~A!5
1

2E d3x«mnrAm]nAr , ~2!

and by evaluating the correlation function of two-loop va
ablesrgdxmAm , i.e.,

K R
g1

dxmAm R
g2

dynAnL
SCS

. ~3!

That expression~3! reproduces the linking number follow
from the observation that the propagator of the gauge fi
0556-2821/99/60~6!/065008~6!/$15.00 60 0650
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Am obtained from the Chern-Simons action~2! upon quanti-
zation in the Landau gauge is precisely the kernel of
Gauss integral~1!, i.e.,

^Am~x!An~y!&SCS
5

1

4p
«mnr

~x2y!r

ux2yu3
. ~4!

The correlator~3! may thus be regarded as a field-theo
description of the linkingx(g1 ,g2). The action~2! can be
suitably extended to higher dimensions, providing a fie
theory characterization of the generalizations of the link
number@4#. Moreover, the non-Abelian version of the thre
dimensional Chern-Simons action~2! has been proven to
play a very relevant role in knot theory@1,3#.

Although the topological field theories possess their o
interests and applications, it is worth underlining here t
topological terms appear frequently as parts of more gen
effective actions useful for the theoretical description o
large number of phenomena in different space-time dim
sions. For instance, the effective action corresponding to
bosonization@5# of relativistic three-dimensional massiv
fermionic systems atT50 can be written as the sum of th
Chern-Simons term~2! and of an infinite series of higher
order terms in the curvatureFmn and its derivatives, i.e.,

SCS~A!1S~F ! ~5!

with S(F) being a combination of terms of the type

FIG. 1. Linking betweeng1,g2.
©1999 The American Physical Society08-1
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E d3xF2,E d3xF4,E d3xF6, . . . . ~6!

This kind of action turns out to be useful in order to stu
several three-dimensional phenomena such as the Fe
Bose transmutation@6,7# and the quantum Hall effect@8#.

A second interesting example is provided by the fiv
dimensional generalization of Eq.~5!, obtained from the
anti–de Sitter~AdS!/conformal field theory~CFT! corre-
spondence@9,10#, which relates the conformalN54 super-
Yang-Mills theory to a type-IIB superstring on AdS53S5. In
fact, in the conformal case, the dual supergravity on Ad5
possesses a Chern-Simons term obtained from aSL(2,Z)
doublet of two-formsBmn

RR,Bmn
NS. In this case, the relevan

effective action forBmn
RR,Bmn

NS looks like @10#

E
AdS5

d5x«mnrlsBmn
RR]rBls

NS1S~dB!, ~7!

where the termS(dB) collects all the higher-order terms i
the curvaturesdBRR,dBNS. The correlation function~3! gen-
eralizes now to

K E
S1

dsmnBmn
RRE

S2

dslrBlr
NSL , ~8!

whereS1 ,S2 are appropriate two surfaces.
In view of these applications, it seems natural to ask o

selves what is the response of a correlator of the type~3!
when the corresponding topological field theory is perturb
by the introduction of a nontopological interaction term d
pending on the curvature.

This is the aim of the present paper. More precisely,
shall report on the four-loop computation of the correlato

K R
g1

dxmAm R
g2

dynAnL
Seff

, ~9!

when the three-dimensional Chern-Simons action~2! is per-
turbed by a nontopological interaction term of the kind*F4,
namely, expression~9! will be evaluated with an effective
actionSeff given by

Seff5
1

2E d3x«mnrAm]nAr1
t

4!E d3xF̃mF̃mF̃nF̃n ~10!

with F̃m5 1
2 «mnrFnr andt being an arbitrary parameter wit

negative mass dimension, reflecting the power-counting n
renormalizability of the perturbation.

In particular, we shall be able to prove that the correlat
function ~9! turns out to be independent fromt, yielding the
linking numberx(g1 ,g2) of the two curvesg1 ,g2. Although
the loop analysis will be worked out only up to the four
order, this conclusion holds to all orders of perturbati
theory and may be easily generalized to any local nonto
logical interaction term containing arbitrary powers of t
06500
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curvatureFmn as well as to the higher-dimensional cases@11#
as, for instance, the effective action of Eq.~7!.

This result means that the loop correlator~9! is stable with
respect to the perturbations which can be added to the s
ing topological action. In other words, the expression~9! will
give the linking number of the two curvesg1 ,g2, regardless
of anyF-dependent perturbation term that can be introdu
and of their power-counting nonrenormalizability characte

Two remarks are now in order. First, we will limit her
ourselves only to effective actions which are Abelian. S
ond, we shall consider onlyF-dependent terms which can b
treated as true perturbations. Therefore, we shall avoid in
effective action~10! the inclusion of a term of the Maxwel
type

SMax5
1

4mE d3xFmnFmn , ~11!

where m is a mass parameter. The presence of this te
would completely modify the original properties of th
model. In fact, expression~11! being quadratic in the gaug
fields, it cannot be considered as a perturbation term, a
will be responsible for the presence of massive excitation
the spectrum of the theory@12#. Rather, the presence of th
Maxwell term in the effective action~10! will give rise to the
existence of two distinct regimes corresponding to the lo
and short distance behaviors, respectively. For distan
larger than the inverse of the mass parameterm ~i.e., the
low-energy regime!, the topological term will prevail, while
the Maxwell term will become the relevant one at short d
tances~i.e., the high-energy regime!. It is worth mentioning
here that these two regimes can be accessed in a very si
way by means of suitable gauge-invariant field redefinitio
of the gauge connectionAm @13#. However, their full under-
standing is a difficult and delicate task, which is beyond
aim of the present paper, being under investigation.

We should also underline here that, in the Abelian ca
the loop variablergdxmAm is gauge invariant for closed
curves, and so there is no need to take into account its e
nentiationei rgdxmAm, as would be required in the non-Abelia
case. This feature has a useful consequence. It allows
indeed, to avoid the case in which the double-line integral~9!
has to be taken along the same curve. This case, usu
referred to as the self-linking, would be automatically gen
ated by the perturbative Taylor expansion of the exponen
ei rgdxmAm. In other words, as far as the Abelian case is co
cerned, the loop variables in Eq.~9! do not need to be expo
nentiated. Therefore, the two curvesg1 and g2 will always
refer to two distinct curves which do not intersect each oth
As we shall see in the following, this point will be relevant
order to establish the independence from the parametert of
expression~9!.

II. PERTURBATIVE EXPANSION AND FEYNMAN
DIAGRAMS

In order to discuss the perturbative expansion of the lo
correlator~9!, let us first define the gauge-fixed version
8-2
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the effective action which shall be used throughout
present article, namely,

Seff5
1

2E d3x«mnrAm]nAr1E d3xb]A

1
t

4!E d3x:F̃mF̃mF̃nF̃n :, ~12!

where the Lagrange multiplierb has been introduced in orde
to implement the Landau gauge. Notice that we have W
ordered the quartic interaction term, which will allow us
rule out tadpole diagrams.1

As usual in this kind of problem, we shall make use of t
configuration space rather than the momentum space. Le
now give the elementary Wick contractions which shall
needed for the evaluation of the Feynman diagrams. Re
ing that

]2
1

ux2yu
524pd3~x2y!, ~13!

from Eq. ~4! one obtains

^Am~x!F̃n~y!&5gmnd3~x2y!1]m]n

1

4pux2yu
, ~14!

and

^F̃m~x!F̃n~y!&52«mnr]rd3~x2y!. ~15!

Concerning now the perturbative loop expansion, it is ea
checked that the first Feynman diagram which contribute
the correlation function~9! is of two-loop order. In Fig. 2,
the wavy and dashed lines refer, respectively, to the W
contractionŝ AF̃& and ^F̃F̃&.

The Feynman integrals corresponding to the diagram
Fig. 2 are easily written down by means of Eqs.~14! and
~15!. However, before computing them, let us spend a f
words on the mechanism which is responsible for the in
pendence on the parametert of expression~9!. From the
structure of the diagram of Fig. 2, we observe that the ga
fields Am(x) and An(y) lying on the two curvesg1 and g2

will be always contracted with theF̃ ’s present in the inter-
06500
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action term of expression~12!. Therefore, besides contrac
tions of the typê F̃F̃&, the corresponding Feynman integra
will always contain two contractions of the kind^AF̃&. How-
ever, we note that in the second term of Eq.~14! one of the
Lorentz indices of the two space-time derivatives cor
sponds to the vector index of a gauge field lying on eitherg1
or g2. It thus refers to a total derivative with respect to t
variable running along one of the closed loops, implying
vanishing contribution. In other words, the second term
Eq. ~14! may be neglected. As a consequence, all the W
contractions entering the Feynman integrals will basica
lead to a product ofd functions. After the introduction of a
suitable regularization, the latter can be integrated out,
nally resulting in ad3(x2y), where, we note thatx andy run
along each of the two curves, respectively. As these varia
never coincide, the whole expression vanishes identica
ensuring the independence from the parametert of the cor-
relator ~9!. The same mechanism can be seen to occu
higher loop orders, as it will be explicitly shown later on.

Apart from an irrelevant global symmetry coefficient, th
diagram of Fig. 2 therefore corresponds to the following
tegral:

I (2)5 R
g1

dxm R
g2

dynE d3z1d3z2^Am~x!F̃a~z1!&

3^An~y!F̃g~z2!&^F̃b~z1!F̃r~z2!&@4^F̃a~z1!F̃r~z2!&

3^F̃b~z1!F̃g~z2!&12^F̃a~z1!F̃g~z2!&

3^F̃b~z1!F̃r~z2!&#. ~16!

Let us analyze the first term of the above expression. Mak
use of the propagators~14! and ~15!, we obtain

FIG. 2. Two-loop contribution.
of gauge
24 R
g1

dxm R
g2

dynE d3z1d3z2Fgmad3~x2z1!1]m]a

1

4pux2z1uG Fgngd3~y2z2!1]n]g

1

4puy2z2uG@«brl]ld3~z12z2!#

3@«art]td
3~z12z2!#@«bgs]sd3~z12z2!#. ~17!

1We remind the reader that, in the present Abelian case, the normal-ordering prescription is compatible with the requirement
invariance. This follows from the observation that the positive- and negative-frequency partsFmn

(1) andFmn
(2) of the field strengthFmn are each

gauge invariant.

8-3
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As previously mentioned, the terms containing the deri
tives]m and]n do not contribute, as they correspond to to
derivatives on closed curves. Expression~17! then becomes

4 R
g1

dxm R
g2

dynE d3z1d3z2d3~x2z1!d3~y2z2!

3@«brl]ld3~z12z2!#@«m
rt]td

3~z12z2!#

3@«bs
n]sd3~z12z2!#. ~18!

In spite of the presence of the products ofd functions with
the same arguments, the above expression is easily se
vanish. Let us show this claim in two ways. First, we obse
that there is always a possible order of taking the integrati
over thed functions, such that we end up with products
d3(x2y) and not ofd3(0). In thepresent case, this woul
amount to integrating out first the twod functions with ar-
gumentsx2z1 andy2z2, which would lead to

4 R
g1

dxm R
g2

dyn@«brl]ld3~x2y!#

3@«m
rt]td

3~x2y!#@«bs
n]sd3~x2y!#50,

~19!

since x2y never vanishes. It is worth remarking that th
possibility exists, in fact, for the higher-order diagrams,
will be shown below.

Second, we can adopt a more rigorous treatment by re
larizing thed functions with coinciding arguments throug
the point-splitting procedure already used by Polyakov@6#:

d«~z12z2!5
1

~2p«!3/2
e2(z12z2)2/2«,

lim
«˜0

d«~z12z2!5d3~z12z2!. ~20!

More precisely, whenever a product ofn d functions with
coinciding arguments occurs, it will be understood as

@d3~z12z2!#n5@d«~z12z2!#n21d3~z12z2!,

where the limit«˜0 is meant to be taken at the end of a
calculations. Accordingly, expression~18! will be replaced
by its regularized version,

FIG. 3. Three-loop contribution.
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4 R
g1

dxm R
g2

dynd3~x2z1!d3~y2z2!

3@«brl]ld«~z12z2!#@«m
rt]td«~z12z2!#

3@«bs
n]sd3~z12z2!#. ~21!

Whatever the order of integration, we get, before taking
limit, an expression containingd3(x2y), which leads to a
null result.

The second term of Eq.~16! follows analogously, so tha
the two-loop diagram of Fig. 2 does not contribute to t
correlator~9!.

Concerning the higher-order contributions in the pertur
tion theory, the results are of a similar nature. The topolo
cally distinct diagrams contributing to the three- and fou
loop are given in Figs. 3, 4, and 5.

It is sufficient to present here just one typical term of ea
order. A notational simplification is convenient. We defi
the transverse derivative operator

]̃mn[«mnr]r.

For instance, a typical contraction from Fig. 3 is proportion
to

FIG. 4. Four-loop contribution, first type.

FIG. 5. Four-loop contribution, second type.
8-4
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I (3)5 R
g1

dxm R
g2

dynE d3z1d3z2d3z3gmad3~x2z1!gngd3~y2z2!

3@ ]̃agd3~z12z2!#@ ]̃bdd3~z12z3!#@ ]̃bld3~z12z3!#@ ]̃rld3~z22z3!#@ ]̃rdd3~z22z3!#

5 R
g1

dxm R
g2

dynE d3z3@ ]̃mnd3~x2y!#@ ]̃bdd«~x2z3!#@ ]̃bld3~x2z3!#@ ]̃rld«~y2z3!#@ ]̃rdd3~y2z3!#, ~22!

while the diagram of Fig. 4 gives

I (4)5 R
g1

dxm R
g2

dynE d3z1•••d3z4 gmad3~x2z1!gngd3~y2z2!

3@ ]̃agd3~z12z2!#@ ]̃bld3~z12z3!#@ ]̃bsd3~z12z4!#@ ]̃rsd3~z22z4!#@ ]̃rld3~z22z3!#@ ]̃wvd3~z32z4!#

3@ ]̃wvd3~z32z4!#

5 R
g1

dxm R
g2

dynE d3z3d3z4@ ]̃mnd3~x2y!#@ ]̃bld3~x2z3!#@ ]̃bsd3~x2z4!#@ ]̃rsd3~y2z4!#

3@ ]̃rld3~y2z3!#@ ]̃wvd«~z32z4!#@ ]̃wvd3~z32z4!#. ~23!
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In order to obtain the above expressions we have follow
the same prescription established before for regularizing
d functions with identical arguments. Notice also that w
have integrated out first the twod functions whose argu
ments depend on pointsx andy of the two curves.

All terms in all possible diagrams may then be seen to
proportional tod3(x2y) ~or its derivatives!. One may easily
convince oneself that this mechanism also applies to
order in perturbation theory. As we always havexÞy, these
diagrams all amount to a null correction to the basic diagra
so that the correlation function~9! for two closed smooth
nonintersecting curvesg1 ,g2 gives their linking number to
all orders:

^Am~x!An~y!&Seff
5x~g1 ,g2!. ~24!

III. CONCLUSIONS

We have been able to show in the present article, that
correlation function~9! is unaffected by the radiative correc
tions, providedg1 ,g2 are two nonintersecting closed curve
Although we have given explicit expressions for the*F̃4

perturbation, the same result may be achieved for any lo
interaction term of the type*F̃n.

We may interpret this result as a kind of nonrenormali
tion property of the linking number, reflecting its stabili
with respect to any local gauge invariant perturbation of
starting Chern-Simons action. Further generalizations
higher dimensions as well as to the non-Abelian case
under investigation@11#.

The spirit of the computation presented in this paper
that of analyzing the effects of perturbing a pure topologi
field theory. However, it is worth adding a few comments
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what we could expect by defining the theory through t
inclusion of a regularizing~nontopological! Maxwell term
~11! in the action~12!, to be removed at the end by lettin
the mass parameterm go to infinity, after a suitable renor
malization procedure. The regularizing role of the Maxw
term is easily understood by observing that the ultravio
behavior of the propagator is now 1/p2 instead of 1/p for the
pure Chern-Simons case. This point of view has been ta
for instance, in the evaluation of the two-loop effective p
tential for the Maxwell-Chern-Simons-Higgs scalar elect
dynamics @14#, using the dimensional renormalizatio
scheme. In particular, Polyakov’s dimensional transmutat
@6# takes place in the limit in which the Maxwell term i
removed, after properly renormalizing the parameters of
theory, through the introduction of local counterterms.

We also emphasize that the same approach had alr
been employed in the computation@15# of the vacuum ex-
pectation value of the Wilson loop in the Abelian Maxwe
Chern-Simons theory, in which the mass parameter of
~11! was sent at infinity at the end. The final result, obtain
after renormalizing the Wilson loop according to Polyakov
prescription, was given by the so-called self-linking numb
@3#, thus respecting the topological character of the Che
Simons theory. A similar result may be expected to be g
eralized in the case of the linking number of two no
intersecting curves.
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