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Perturbing topological field theories
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The Abelian Chern-Simons theory is perturbed by introducing local gauge-invariant interaction terms de-
pending on the curvature. The computation of the correlation fun«égig[dx"A#gSyZdy”AV) for two smooth
closed nonintersecting curves, vy, is reported up to four loops and is shown to be unaffected by radiative
corrections. This result ensures the stability of the linking numbey,0tind y, with respect to the local
perturbations which may be added to the Chern-Simons a¢&%56-282199)00318-3

PACS numbsd(s): 11.10.Gh

[. INTRODUCTION A, obtained from the Chern-Simons acti@®) upon quanti-
zation in the Landau gauge is precisely the kernel of the
Since their introduction[1], topological field theories Gauss integrafl), i.e.,
have been responsible for many applicati¢f$ and have

been the object of continuous investigations. Nowadays they 1 (x—y)”
represent an important chapter of quantum fit_eld theory. The (ALOALY)) ses=™ 22 Eme . s (4
original motivation was related to the possibility of describ- [x—y|

ing topological invariants by means of standard field-theory, ,
techniqueg 1,3]. The correlator(3) may thus be regarded as a field-theory

In order to give an idea of this framework, we presentdeScription of the linkingy(y1,7.). The action(2) can be

here the field-theory characterization of one of the mosfUitably extended to higher dimensions, providing a field-
simple and familiar topological invariants, namely, the link- theory characterization of the generalizations of the linking

ing numbery(y;,7,) of two nonintersecting smooth closed n_umber_[4]. Moreover,_the non-AbeIian version of the three-
oriented curves iR 3 (see Fig. 1[3,4]. dimensional Chern-Simons actig@) has been proven to

As is well known, the linking numbeg(y;,y,) is an  Play a very relevant role in knot theofg,3]. .
integer which counts the number of times that one curve Although the topological field theories possess their own

winds around the other. It is independent from the shape ofterests and applications, it is worth underlining here that
the curves and can be represented by the Gauss integral 0Pological terms appear frequently as parts of more general
effective actions useful for the theoretical description of a

large number of phenomena in different space-time dimen-
1 . L, (x=y)P sions. For instance, the effective action corresponding to the
X(71’72)_E ﬁldx yzdy € uvp PEVER @) bosonization[5] of relativistic three-dimensional massive
fermionic systems at =0 can be written as the sum of the
Expression(1) is in fact easily seen to be an integer by use ofChern-Simons terni2) and of an infinite series of higher-
the Stokes’ theoreni3,4]. Taking a field theory point of Order terms in the curvatufe,, and its derivatives, i.e.,
view, the linking numbery(y4,7y,) may be obtained by in-
troducing the topological Abelian Chern-Simons actjth ScA)+S(F) 5)

1 with S(F) being a combination of terms of the type
ScdA)= 5 f d*xe#"PA,d,A,, ()

and by evaluating the correlation function of two-loop vari-

ables§ ,dx*A,,, i.e.,

dyVA,,> . €)

Scs

< dx“A,
Y1

Y2

That expressiori3) reproduces the linking number follows
from the observation that the propagator of the gauge field FIG. 1. Linking betweeny,, y,.
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5 o 5 a 5 6 curvatureF ,, as well as to the higher-dimensional cageH
f d°xF f d°xF J d°xF>, . ... (6)  as, for instance, the effective action of Eg).

This result means that the loop correlat®ris stable with

This kind of action turns out to be useful in order to studyrespect to the perturbations which can be added to the start-
several three-dimensional phenomena such as the Fernifg topological action. In other words, the expressi@nwill
Bose transmutatiof6,7] and the quantum Hall effe¢s]. give the linking number of the two curveg , y,, regardless

A second interesting example is provided by the five-of any F-dependent perturbation term that can be introduced
dimensional generalization of Ed5), obtained from the and of their power-counting nonrenormalizability character.
anti—de Sitter(AdS)/conformal field theory(CFT) corre- Two remarks are now in order. First, we will limit here
spondencd9,10], which relates the conform&=4 super- ourselves only to effective actions which are Abelian. Sec-
Yang-Mills theory to a type-1IB superstring on Ag8S°. In ond, we shall consider only-dependent terms which can be
fact, in the conformal case, the dual supergravity on AdS treated as true perturbations. Therefore, we shall avoid in the
possesses a Chern-Simons term obtained fro®L&2,7) effective action(10) the inclusion of a term of the Maxwell
doublet of two-formsBRR BN® In this case, the relevant type
effective action foB,B),> looks like[10]

1
SMaxsz d3XFAF,,, (12)
J d°xe P BERg BNS+S(dB), 7)
AdSs

where m is a mass parameter. The presence of this term
where the termS(dB) collects all the higher-order terms in would completely modify the original properties of the
the curvaturesiBRR dBNS. The correlation functiori3) gen-  model. In fact, expressiofil) being quadratic in the gauge
eralizes now to fields, it cannot be considered as a perturbation term, as it
will be responsible for the presence of massive excitations in
the spectrum of the theoij12]. Rather, the presence of the
< d(]"‘“’BRsJ' da')‘pB’;IS>’ (8) Maxwell term in the effective actiofiL.0) will give rise to the
2 s, ’ existence of two distinct regimes corresponding to the long
. and short distance behaviors, respectively. For distances
whereX.,,%., are appropriate two surfaces. larger than the inverse of the mass parameteti.e., the
In view of f[hese applications, it seems natural to ask OUrow-energy regimg the topological term will prevail, while
selves what is the response of a correlator of the #)e he Maxwell term will become the relevant one at short dis-
when the corresponding topological field theory is perturbeQances(i.e., the high-energy regimelt is worth mentioning
by th_e introduction of a nontopological interaction term de-pare that these two regimes can be accessed in a very simple
pending on the curvature. _ way by means of suitable gauge-invariant field redefinitions
This is the aim of the present paper. More precisely, W& the gauge connectiof,, [13]. However, their full under-
shall report on the four-loop computation of the correlator gianding is a difficult and delicate task, which is beyond the
aim of the present paper, being under investigation.
We should also underline here that, in the Abelian case,
dy”Ay> ' ©  the loop variable$ ,dx*A , is gauge invariant for closed

Y. . . .
2 Seif curves, and so there is no need to take into account its expo-

< dx“A,
Y1

nentiatione'¥»¥**A«, as would be required in the non-Abelian

case. This feature has a useful consequence. It allows one,
indeed, to avoid the case in which the double-line inte@al

has to be taken along the same curve. This case, usually
referred to as the self-linking, would be automatically gener-
ated by the perturbative Taylor expansion of the exponential

e'$9"A. In other words, as far as the Abelian case is con-
cerned, the loop variables in E() do not need to be expo-
_ nentiated. Therefore, the two curves and v, will always
with F#= %s‘”PFVp andr being an arbitrary parameter with refer to two distinct curves which do not intersect each other.
negative mass dimension, reflecting the power-counting nonAs we shall see in the following, this point will be relevant in
renormalizability of the perturbation. order to establish the independence from the parametér

In particular, we shall be able to prove that the correlationexpression(9).
function (9) turns out to be independent from yielding the
linking numbery(y1,v>) of the two curvesy,,y,. Although
the loop analysis will be worked out only up to the fourth
order, this conclusion holds to all orders of perturbation
theory and may be easily generalized to any local nontopo- In order to discuss the perturbative expansion of the loop
logical interaction term containing arbitrary powers of thecorrelator(9), let us first define the gauge-fixed version of

when the three-dimensional Chern-Simons ac{@®nis per-
turbed by a nontopological interaction term of the kiffe®*,
namely, expressiof9) will be evaluated with an effective
action S given by

1 T ~ o~
Sett=> f d*xe P A0, A+ o7 f d*xF+F,F'F, (10

Il. PERTURBATIVE EXPANSION AND FEYNMAN
DIAGRAMS
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the effective action which shall be used throughout the
present article, namely,

1
Seﬁzif d3X8MVpAﬂ(9VAp+j d3xboA

T ~ o~ o~ o~
+ | dxFAFL R,

al R LEE, 12

where the Lagrange multipliérhas been introduced in order

to implement the Landau gauge. Notice that we have Wick FIG. 2. Two-loop contribution.
ordered the quartic interaction term, which will allow us to . ) )
rule out tadpole diagrands. action term of expressiofil2). Therefore, besides contrac-

As usual in this kind of problem, we shall make use of thetions of the typgFF), the corresponding Feynman integrals
configuration space rather than the momentum space. Let will always contain two contractions of the kifd\F). How-
now give the elementary Wick contractions which shall beever, we note that in the second term of Etd) one of the
needed for the evaluation of the Feynman diagrams. Recall-orentz indices of the two space-time derivatives corre-
ing that sponds to the vector index of a gauge field lying on either
or y,. It thus refers to a total derivative with respect to the
variable running along one of the closed loops, implying a
a2m=—4w53(x—y), (13 vanishing contribution. In other words, the second term of
y Eg. (14) may be neglected. As a consequence, all the Wick
contractions entering the Feynman integrals will basically
lead to a product ob functions. After the introduction of a
1 suitable regulariﬁon, the latter can be integrated out, fi-
= _ _ nally resulting in a5°(x—y), where, we note thatandy run
<A“(X)Fy(y)>_g“V§3(X Y)+0uds mlx—y|’ (149 along each of the two curves, respectively. As these variables
never coincide, the whole expression vanishes identically,
and ensuring the independence from the parametef the cor-
relator (9). The same mechanism can be seen to occur at
= = _ _ higher loop orders, as it will be explicitly shown later on.
(FLOOF()= S“VPapr(x y): (15) Apart from an irrelevant global symmetry coefficient, the
Concerning now the perturbative loop expansion, it is easiifi2gram of Fig. 2 therefore corresponds to the following in-
checked that the first Feynman diagram which contributes t&f9ra'"
the correlation functior(9) is of two-loop order. In Fig. 2,
the wavy and dashed lines refer, respectively, to the Wick
contractiong AF) and(FF).
The Feynman integrals corresponding to the diagram of

from Eq. (4) one obtains

1 (@)= § dX"‘% dy“f d321d322<AM(X)ﬁa(Zl)>
Y1 V2

Fig. 2 are easily written down by means of E4$4) and X(A(F (22))(F p(20)F (22))[4(F“(20)F?(2,))
(15). However, before computing them, let us spend a few =g =y ey By
words on the mechanism which is responsible for the inde- X(FA(z1)F7(22)) + 2(F*(21)F(2))

pendence on the parameterof expression(9). From the =g \Ep
structure of the diagram of Fig. 2, we observe that the gauge X(FAz)F#(22))]. (16

fields A, (x) andA,(y) lying on the two curvesy; andy,  Let us analyze the first term of the above expression. Making
will be always contracted with thE’s present in the inter- use of the propagatod4) and(15), we obtain

1
— B _ B A _
g,u,a&o’(x Zl)+(9,u,(9a4ﬂ_|x_zl| gvyb\o’(y 22)+(9v(974ﬂ_|y_22| [Sﬁp)\(? é\"E(Zl ZZ)]

—4 fﬁ dx* é dy”f d3z,d%z,
Y1 Y2

X[£979,6%(2,—2,) [P 0,6%(2,— 2,)]. 0

We remind the reader that, in the present Abelian case, the normal-ordering prescription is compatible with the requirement of gauge
invariance. This follows from the observation that the positive- and negative-frequench*’glrquFE[V) of the field strength,, are each

gauge invariant. 065008-3
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FIG. 3. Three-loop contribution. FIG. 4. Four-loop contribution, first type.

As previously mentioned, the terms containing the deriva-
tivesd,, andd, do not contribute, as they correspond to total lim 4 3€ dx* ® dy”8%(x—2,) 8 (y—2,)
derivatives on closed curves. Expressi@i) then becomes e—0 M Y2

X[eppnd 8e(21—22) 1 £,79.8:(21— 25)]

4 f# dx# fﬁ dy”f d3z,d3%2,6%(x—2;) 83(y— z,)
" 72 X[eP7,0,6%(21-2,)]. (21)

X [8;3,])\(9%\3(21_ Zz)][SMPTafée(Zl_ ;)]

X[eP7,0,8%z,—25)]. (18  Whatever the order of integration, we get, before taking the
limit, an expression containing®>(x—y), which leads to a

In spite of the presence of the productséfunctions with  null result.
the same arguments, the above expression is easily seen toThe second term of Eq16) follows analogously, so that
vanish. Let us show this claim in two ways. First, we observethe two-loop diagram of Fig. 2 does not contribute to the
that there is always a possible order of taking the integrationgorrelator(9).
over theé functions, such that we end up with products of  Concerning the higher-order contributions in the perturba-
8%(x—y) and not of8%(0). In thepresent case, this would tion theory, the results are of a similar nature. The topologi-
amount to integrating out first the twd functions with ar-  cally distinct diagrams contributing to the three- and four-

gumentsx—z; andy—z,, which would lead to loop are given in Figs. 3, 4, and 5.
It is sufficient to present here just one typical term of each
4 jg dxt jg dy"[e g, 83 (x—Yy)] order. A notational simplification is convenient. We define

71 2 the transverse derivative operator

X[£,F73,8%(x=y)1[P7,9,6°(x—y)]=0,
19 9

sincex—y never vanishes. It is worth remarking that this
possibility exists, in fact, for the higher-order diagrams, as_ . , . ) ) ,
will be shown below. For instance, a typical contraction from Fig. 3 is proportional

Second, we can adopt a more rigorous treatment by regl}9
larizing the § functions with coinciding arguments through
the point-splitting procedure already used by Polyal@y

P
v slwp& .

1 2
58(2 -z ): —e—(zl—zz) /28,
1 2 (2’778)3/2
lim 8,(z,— 2,) = 6%(z,— 2,). (20)

£—0

More precisely, whenever a product of 6 functions with
coinciding arguments occurs, it will be understood as

[6%(2,-2)1"=[8,(2,—2,)]" 1 6%(2,— 2,),

where the limite—0 is meant to be taken at the end of all
calculations. Accordingly, expressiqid8) will be replaced
by its regularized version, FIG. 5. Four-loop contribution, second type.
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|(3): % dx* § dyVJ d321d322dszggﬂaé\?(x_Zl)gvyé\?(y_ZZ)
71 72
X[0°78%(21~ 25) [ 0350%(21— 23) [ 9" 8%(21 = 23) 1[I, 0322~ 2) 1[9°°8%(2,— 23) |

= ff dx* ff dy”J d°25[9,,,6%(X—Y) [ 0p565(x—23)J[0” 8% (X 25) I 9\ Sy — 23)][7°8°(y — 23)], (22
Y1 Y2
while the diagram of Fig. 4 gives

9= ¢ ax § ay [ 2y 020,80 200,570~ 2)
Y1 Y2

X[3%76%(2y—2,) [P 6%(20— 23) [ 9 5 0%(21— 24) 11077 6%(25— 24) 1[0, 1. 0%(22— 23) 1[0 6%(25— 24) ]

X[5¢w83(z3_z4)]
= § @ § ay' [ PadalF I 2 k- 2 [y~ 20)]
Y1 Y2

X[ 8%y~ 23)1[0°°6,(25— 24) 1[0 0%(23— 24)]. (23

In order to obtain the above expressions we have followedvhat we could expect by defining the theory through the
the same prescription established before for regularizing thinclusion of a regularizingnontopological Maxwell term
¢ functions with identical arguments. Notice also that we(11) in the action(12), to be removed at the end by letting
have integrated out first the twé functions whose argu- the mass parameten go to infinity, after a suitable renor-
ments depend on pointsandy of the two curves. malization procedure. The regularizing role of the Maxwell
All terms in all possible diagrams may then be seen to bgerm is easily understood by observing that the ultraviolet
proportional tos*(x—y) (or its derivatives One may easily pehavior of the propagator is nowpt/instead of 1 for the
convince oneself that this mechanism also applies to anjyre Chern-Simons case. This point of view has been taken,
order in perturbation theory. As we always hawvey, these  for instance, in the evaluation of the two-loop effective po-
diagrams all amount to a null correction to the basic diagramyential for the Maxwell-Chern-Simons-Higgs scalar electro-
so that the correlation functio®) for two closed smooth dynamics [14], using the dimensional renormalization
nonintersecting curveyy,y, gives their linking number to  scheme. In particular, Polyakov’s dimensional transmutation
all orders: [6] takes place in the limit in which the Maxwell term is
removed, after properly renormalizing the parameters of the
(ALOAY) s = X(Y1,72)- (24)  theory, through the introduction of local counterterms.
We also emphasize that the same approach had already
been employed in the computatiph5] of the vacuum ex-
IIil. CONCLUSIONS pectation value of the Wilson loop in the Abelian Maxwell-

We have been able to show in the present article, that thEhern-Simons theory, in which the mass parameter of Eq.

correlation functior(9) is unaffected by the radiative correc- (11) was sent at infinity at the end. The final result, obtain(?d
tions, providedy, , v, are two nonintersecting closed curves. after re_zn(_)rmahzmg _the Wilson loop accordmg_to _Polyakov S
Although we have given explicit expressions for Hig* prescription, was given by the so-called self-linking number

turbation. th it mav be achieved for anv loc |, thus respecting the topological character of the Chern-
perturbation, the same resu y 1ev y imons theory. A similar result may be expected to be gen-

interaction term of the typ¢F". _  eralized in the case of the linking number of two non-
We may interpret this result as a kind of nonrenormalizantersecting curves.

tion property of the linking number, reflecting its stability
with respect to any local gauge invariant perturbation of the
starting Chern-Simons action. Further generalizations to
higher dimensions as well as to the non-Abelian case are
under investigationl11]. The Conselho Nacional de Pesquisa e Desenvolvimento
The spirit of the computation presented in this paper iSCNPq/Brazi), the Fundaao de Amparo aPesquisa do Es-

that of analyzing the effects of perturbing a pure topologicatado do Rio de Janeird-aper) and the SR2-UERJ are grate-
field theory. However, it is worth adding a few comments onfully acknowledged for financial support.
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