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We introduce the method of dynamical renormalization group to study relaxation and damping out of
equilibrium directly in real time and apply it to the study of infrared divergences in scalar QED. This method
allows a consistent resummation of infrared effects associated with the exchange of quasistatic transverse
photons and leads to anomalous logarithmic relaxation of the &t t Y%l for hard momentum charged
excitations. This is in contrast with the usual quasiparticle interpretation of charged collective excitations at
finite temperature in the sense of exponential relaxation of a narrow width resonance for which the width is the
imaginary part of the self-energy on shell. In the case of narrow resonances away from thresholds, this
approach leads to the usual exponential relaxation. The hard thermal loop resummation program is incorpo-
rated consistently into the dynamical renormalization group yielding a picture of relaxation and damping
phenomena in a plasma in real time that transcends the conceptual limitations of the quasiparticle picture and
other types of resummation schemg30556-282(99)02516-3

PACS numbgs): 12.38.Mh, 11.10.Gh, 11.10.Wx, 11.15.Bt

[. INTRODUCTION divergences in the damping rate of charged excitations at
non-zero and largéhard spatial momentuni20]. The infra-

The possibility of studying experimentally the formation red divergences arise from the emission and absorption of
and evolution of the quark gluon plasma at the BNL Rela-long-wavelength magneti¢transversg photons or gluons
tivistic Heavy lon CollideRHIC) and CERN Large Hadron which are not screened by the hard thermal loop corrections
Collider (LHC) motivates a deeper understanding of collec-[20]. Whereas longitudinal photori;istantaneous Coulomb
tive excitations in ultrarelativistic plasmdfor reviews see interaction are screened at finite temperature with a Debye
[1-10)). An important concept in the assessment of whethescreening mass-eT, magnetic photonétransversgare dy-
the quark gluon plasma achieves local thermodynamic equiramically screened for non-zero frequency as a result of
librium is that of the relaxation time scale or damping rateLandau damping13-16,18,20 However, quasistatic long-
which determines the lifetime of excitations in the plasmawavelength magnetic photons are not screened in the Abe-
[9-12. The concept and definition of the damping rate of alian theory, and their emission and absorption by a fast mov-
collective excitation is associated with a quasiparticle deing charged particle results in infrared divergences in the
scription of these excitations in the plasma and imply expoimaginary part of the self-energy on shell.
nential relaxation. The validity of the quasiparticle concept These infrared divergences for charged particles are not
requires that the lifetime must be large compared to the osspecific to particular theories but are somewhat universal in
cillation period of the particular excitation mode. In this qua-the sense that the same structure of divergences is common
siparticle picture the collective excitations are described ato QED, QCD and scalar QED in lowest order in the HTL
narrow resonances, their spectral function is of the Breitresummatior{21—-29. Further studies of the spectral func-
Wigner form and the damping rate is obtained from thetion questioned the validity of the quasiparticle approxima-
width of this resonance. For weakly interacting quasiparti-tion and the exponential relaxation associated with a damp-
cles the narrow resonandguasiparticlg approximation is ing rate [30,3l. Although these studies provided an
expected to be reliable and the damping rate or lifetime isinderstanding of the failure of the quasiparticle pict(ee-
obtained from the imaginary part of the self-energy on theponential relaxationfor hard fermions, the issue of the re-
mass shell of the collective excitati¢f—12]. laxation time scales was only recently clarified by the imple-

Early attempts to calculate the damping rates of quasipammentation of a Bloch-Nordsieck resummation of the infrared
ticles in lowest order perturbation theory obtained gauge dedivergent diagramg32,33 which yields anomalous logarith-
pendent and unphysical result§3]. Braaten and Pisarski mic relaxation. This resummation scheme was previously
[14—19 introduced a resummation scheftiee resummation used at finite temperature to verify the cancellation of infra-
of the hard thermal loopgHTL)] that incorporates the red divergences of soft photofi34].
screening corrections in a gauge invariant manner and render Infrared divergences in the propagators of charged fields
finite transport cross sectiofn9]. These hard thermal loop are not particular of finite temperature field theory. It is well
screening corrections are sufficient to render finite the dampknown that electrons in QED do not have a pole associated
ing rate of excitations at rest in the plasma. However, theswith their mass shell but rather a cut structure. This is a
screening corrections are not sufficient to cure the infraredonsequence of the emission of soft photons which because
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of their masslessness make the putative electron mass shelldirect link between linear response and the study of relax-
pole to become the beginning of a cut. This results in thatation phenomena as an initial value problem out of equilib-
even after ultraviolet renormalization, the wave functionrium. In Sec. Il we introduce and test the method of dynami-
renormalization is logarithmically infrared divergent on cal renormalization group within the simple setting of a field
shell. The implementation of the Bloch-Nordsieck resummadtheory of two interacting scalars, one heavy and the other
tion of these infrared divergences at zero temperature leadBassless. This simpler theory presents the same type of in-
to the correct electron propaga{®5,36|. This resummation frared threshold singularities as scalar QED and QED. Thi_s
at zero temperature is equivalent to a renormalization grouptodel presents the infrared threshold divergences of a criti-
resummation of the leading infrared divergences in the gucal theory at the upper critical dimensionality. In this section
clidean fermion propagator and leads to an anomalous scaft€ compare the Bloch-Nordsieck approximation and the
ing dimension(albeit gauge dependeérfor the threshold be- renormalization group resummation of infrared divergences
havior of fermions in QEO 35]. in the Euclidean propagator to the real time resummation

In this article we introduce dynamical renormalization implemented by the dynamical renormalization approach in
group resummation program that allows one to obtain thedifferent situations at zero temperature. This study shows in
real time dependence of retarded propagators, and leads ufletail the equivalence of all the different approached at
equivocally to the real time dynamics of relaxation and ther-=0. We then implement the dynamical renormalization
malization without any assumptions on quasiparticle strucgroup at finite temperature and find anomalous logarithmic
ture of collective excitations. This resummation scheme ig€laxation as in finite temperature QHEB2]. Section IV is
the dynamicalreal time equivalent of the renormalization devoted to a discussion of the dynamical renormalization
group resummation of divergences in Euclidean Green'@roup to elucidate this resummation program and to make
functions which is so successful in both critical phenomengontact with the usual renormalization in Euclidena space-
and asymptotic freedom and transcends approximations dfme. In Sec. V we study in detail scalar quantum electrody-
the Bloch-Nordsieck type. The main concept in this progranflamics. This theory has been previously studied within the
is the resummation of secular terms in the perturbative soluimaginary time, equilibrium formulatiofi29] and shown to
tion of the equation of evolution aéxpectation valuethat  have the same type of behavior as QED and QCD in leading
determine the real time retarded propagators. This dynamic&rder in the HTL resummation. We study both the exchange
renormalization group was originally developed to improve©f bare photons and include the HTL resummation program
the solutions of ordinaryand partial differential equations ~consistently to leading order into the dynamical renormaliza-
[37], and has been recently implemented in quantum fieldion group. This combined resummation of HTL and infrared
theory out of equilibriun{38,39 where it reveals relaxation Secular terms in real time leads at once to anomalous loga-
with anomalous(and non-perturbatiyeexponentg39] (for rithmic relaxation as in QED in the Bloch-Nordsieck ap-
other applications in quantum mechanics of few degrees dproximation[32] and in the simpler scalar case studied in
freedom se¢40]). Sec. Ill.

In the real time description of the dynamical evolution, We summarize our studies in the conclusion wherein we
the time variable acts as an infrared cutoff. The infrared sinadvocate to use this new approach based on the dynamical
gularities associated with the absorption and emission ofénormalization group to study fermionic excitations in a
massless quanta are manifest as logarithmic secular terms ff@sma and raise further questions and comments. The
the perturbative solution of the initial value problem. The method of dynamical renormalization group leads directly to
dynamical renormalization group implements a non-an understanding of damping and relaxationreal time
perturbativeresummatiorof these secular terms and leads toWithout invoking a quasiparticle picture or any other ap-
anomalous relaxation. In particular for scalar QED we findProximation.
that the charged scalar field expectation value with hard mo- Two appendixes provide technical details and a third ap-
mentum relaxes in absolute value es® Tt at asymp-  pendix provides a very simple and pedagogical example of
totically long times. The asymptotic relaxation is determinedthe dynamical renormalization group.
by the behavior of the density of state&k; w) as a function

Or: w ”iarfthresho'dh‘éz vk “']1 )H The larger 'SP(‘??“’) tihe - PRELIMINARIES: FROM LINEAR RESPONSE
Eieek;e, the faster iIs the decay of the expectatlon value of the TO INITIAL VALUE PROBLEM

The advantage of this method is that it leads to an under- We are interested in studying the real time evolution of
standing of relaxatiolirectly in real timedisplaying clearly — expectation values of field operators. Consider a scalar field
the contributions from different regions of the spectral den-theory with an interacting Lagrangian densityd] the ex-
sity to the long time behavior. Furthermore, it offers a simplepectation value of the scalar fieli can be obtained from
criterion to distinguish exponential relaxation and more comdinear response to an externahumber source terrd. The
plicated relaxational phenomena that cannot be interpreteappropriate formulation of real time, non-equilibrium dy-
within the quasiparticle picture. namics is that of Schwinger and KeldygtL—44] in which a

This method implements renormalization group resummagpath integral along a contour in imaginary time is required to
tions without the need for invoking a quasiparticle picture orgenerate all of the non-equilibrium Green’s functions.
any other approximation. The non-equilibrium Lagrangian density along this con-

The article is organized as follows. In Sec. Il we providetour is therefore given bj41-44
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CNEQ[(ID+'(D_;J]:£[(D+]+J(1)+—ﬁ[q)_]—JQ)‘. where the source coupled to the sigma field has been intro-
duced to provide an initial value problem as explained in the
The non-equilibrium expectation value of the scalar fieldprevious section. Introducing the following renormalizations
in a linear response analysis is given by

. . o=2"0,, w=2"%m., 3,=2),
<(D+(X,t)>:<(1)7(x,t)> o r T r r o Y0

= p(X,t) MGZ,=M{Z,+0m?,  9oZ,Z;°=g:Zg.
= foc d3x’dt’ Gr(x—x',t—t")I(x',t") We now suppress the labewith all quantities being renor-
—o malized, and write the Lagrangian density in terms of renor-

. ) malized quantities and counterterms
with the retarded Green'’s function

Gr(X—X',t—t") =[G~ (x=X",t—t") L= %(8MU)2+%(ﬁMﬂ')2— %mza'z—gozﬂ'+.]0'+£ct
— G (x—x',t—t")]0(t—t")
) - - 1 1 1
=i([P(x,1),P(x',t'])O(t—1t") Lo= E(Zg—l)[(ﬁ#cr)z—mzcr]— §5m202+§(27,—l)
where the expectation value is in the full interacting theory 1 1
but with vanishing source. Consider an external source term X (8,m)%— =m2a?—g(Zy—1)o?m— = Sm> a2
that is adiabatically switched on in time frotw> — o and of . 2 g 2"
the form
. L where we introduced a mass counterterm for théeld to
J(x',t")=J(x")et O(—-t'), e—0". (2.9 keep it massless. The counterterms are adjusted in perturba-
. tion theory as usual.
The retarded nature @r(x—x',t—t") results in that The purpose of studying this simpler model is twofdid:
R _ It provides a simpler setting to implement and test the
(X, 1=0)= p(X) (2.2 method of the dynamical renormalization group and compare
with previous studies of relaxatidqd3,44). (i) The nature of
¢(§,t<0)=0 (2.3 the infrared divergences in this simpler theory is similar to

that of gauge theories in lowest order, i.e. the exchange of a
whereg(x) is determined by)(x) [or, vice versa, the initial massless field in the self-energy of a massive field. These
value d)o()z) can be used to find(f)] and the vanishing of infrared divergences are very similar to those found in scalar
the derivative fort<0O is a consequence of the retarded QED ,[29]’ QED [32] gnd Iowes; order Q.CIZ[10]. Afte(
nature of Gg. The linear response problem with the studyln'g the resummathn of the infrared divergences via the
initial conditions att=0 given by Egs.(2.2) and (2.3) can dynamical renormalization group, we apply the method to

now be turned into an initial value problem for the 92uge theories. ) R )

equation of motiorof the expectation value by using the ~ Writing  o(X,) =¢(x,) +S(x,t)  with  ((x1))

(integroydifferential operator®;, inverse of Gg(x—x',t  =0; ¢(X,t)=(a(x.t)) using the tadpole condition and tak-

—t), ing spatial Fourier transforms we find the equation of motion
in the amplitude expansion:

Oind(X,)=J(X,1),  $(X,t=0)= ¢g(X),

R0 (1) +(Z,— D dil(t) + 0f pi(1) ]+ [ wf + SM?] gy (1)
X,t<0)=0,

t
for the source term given by Ed2.1). Within the non- +f_w2k(t_t )i(t7) dt'=Jy(1)
equilibrium formulation the equation of motion of the expec-
tation value is obtained via the tadpole method and automati- . 2 12, 2 I
cally leads to a retarded initial value problem by coupling anW'th w =K+ m". We have absorbed the contribution of a

external source that satisfies E8.1). momentum and time independent tadp@lkraviolet and in-

frared divergentin a renormalization of the mass. As dis-
cussed in the previous section, the source is chosen so that
H(t=0)= ¢ (0), ¢ (t<0)=0. S(t—t’) is the retarded

We begin by considering a simple scalar theory of a masself-energy. Writing2,(t—t’) = (d/dt’) y,(t—t’) [with the
sive and a massless scalar field with Lagrangian density boundary conditiony,(—=)=0 corresponding to adiabatic
switching on of the interactigrand imposing thaf, (t>0)
=0, after an integration by parts the equation of motion for
t>0 becomes

lll. SIMPLE EXAMPLE: A SCALAR THEORY

1 1 1
L= E(ﬁﬂa)zﬂ—z(&ﬂﬂ')z— Eméoz—goazﬂ'-l-\lo(r
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(1) 4+ (Z— DI bu(t) + 2 t As it will be seen and understood below the spectral den-
O+ (2= DIAO i dilb)] sity (3.6) leads to threshold infrared divergences. These will
+wi+ 6m?+ ¥, (0) ] i(t) be studied in detail for the cas@s=0, T+#0 separately in
t the next subsections.
_ ot (4 ' The equation of motior{3.1) can be solved by Laplace
fo PG dt'=0. @D ransform. In terms of the Laplace transformsd¢af(t) and
' yi(t) given by é,(s) and y,(s) respectively, withs the
To one loop order we find Laplace transform variable, we find
9?2 [ dq ~ bi(0) wiC
S(t—t)y=——— 1+Ng+n S)= 1- 3.7
k( ) 4773 qwk+q{( q k+q) d’k( s sz+wﬁ+H(S)
XSir[(CH'wk+q)(t_t,)]_(Nq_nk+q) with
XS (q—wisq) (t=t") ]} (3.2 C=1+(Z,— 1) +[ M2+ y(0) ]/ w2 (3.8

whereN, is the Bose-Einstein distribution function for the ~
q — (a2 2 _ 2 _
massless fieldr andny, 4 is the corresponding distribution M(s)=(s"+ @) (Zy= 1)+ oM™+ (0) =syils).
for the massive fieldr. It proves convenient to write the The term

self-energy in the form of a dispersion relation

G(k,s)=[s*+ wi+1I(s)]*

(t=t)= J’_md“’f’(k;‘”)sﬁw(t—t’)] 33 s recognized as the propagator in terms of the Laplace vari-
ables. The retarded Green'’s function is obtained by the ana-
lytic continuation

2 3
.9 d°q
PUG@I= "1 5] Guig 1T Na T M) 047 o) Gredk)=G(k,s=iw+ )|, o-.
—(Ng—Nyiq) 80— g+ wyiq)} (3.9 The Laplace transform of the self-energy is recognized to
be

and consequently

S ~ w
2(8)=(0)—sy(s)= | dwp(w)
ni= [ ptkwrcoson. (35 J St w?

and its analytic continuation is then given by

A simple calculation yields _
S(s=iw+0")=3g(w)+id(w)

(ki) gzuwz—wg
pkio)=—— '
2m? || 0?—K? ER(w)=fdw’p(k,w’)7’ ,zw >
R

w
T (1—e @ /M)(1—g (0-a)IT)
TR n(l_e—q*/T)(l_e—(w—q*)/T)

(3.9

O(w—wy)

3 1(0)= = 5l p(k o)) = p(k,~|w]) sgrw).
(3.10

Thereforell(s) is recognized as the twice subtracted self-
(3.6) energy which is rendered finite by a proper choice of coun-
' terterms. Furthermore, choosing to renormalize?at — »?

T (1—e 9T
+ —In

k m [O(k—w)+0O(k+w)],

. wz—wﬁ with the counterterms given by
qQ =5—-.
2(w¥k) 7 _1_ 2 R(K, @)
There are some noteworthy features of the spectral density Jw? 0=w,
(3.6) above: (i) Whereas the zero temperature contribution
vanisheg(linearly) near threshold ab= w, the finite tem- ®'
perature contributioroes notvanish at threshold(ii) The 5m2=—f p(K,w" )P do’
finite temperature contribution below the light conk<w w' z w2

<k has its origin in Landau damping type processes in
which theo particle scatters off a particle in the medium. we find that
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p(k,o’)
P

e [ 2
1)
(w

is finite even for renormalizable theories in whigl{k, )

~ w? at largew, leading to quadratic and logarithmic diver-
gences with logarithmically divergent wave function renor-
malizations. Thisfinite wave function renormalization will

wg

do’

(3.1)

2. 2y2
>~ wE)

be seen to emerge naturally from the dynamical renormaliza-

tion group.

The real time evolution is obtained by performing the
inverse Laplace transform along a path in the comglex-
plane parallel to the imaginary axis to the right of all the
singularities of g (s). We note that the putative pole at
=0 has vanishing residue.

A. Bloch-Nordsieck and renormalization group atT=0
At T=0 we find after renormalizing the mass

2 2 p2 2
2 PE+m* Pg+m

In
2
I:)E

5(5)= (0~ SHW(9)=5

m2

(3.12
P2=s%+k?

where P2 is identified with theEuclideanfour momentum

squared. Since in this theory the wave function renormaliza-

tion is finite, we choos&,=1 in what follows. Therefore up

to this one loop order we obtain the Euclidean irreducible

two point function(the inverse of the Green’s functipto be
given by

P2
F(k,S)=[G(k,S)]1=mﬁ<—§+l)
m
R
2 Pé
x| 1+ In| —+1]1|. 3.1
47?PE |\ m3 313

We clearly see thaPE-»—mﬁ is no longer a pole but the
end point of a logarithmic branch cut, corresponding to th
threshold for the intermediate state oérgarticle and a soft
masslessr particle.

This logarithmic infrared divergence near threshold is th

PHYSICAL REVIEW D60 065003

Using this resummed expression for the propagator the in-
verse Laplace transform can be performed by wrapping the
contour around the branch cuts along the imaginary axis
from s==*iw, to *iw. Computing the discontinuity of
Ggn(k,s) across these cuts the real time evolution of the
expectation value is given by

&r(0)
K(t)= e

»dw  coq wt)

2
wﬁCmZ(l_)‘);Sir{Tr)\] o ® W
with w2=k?+m?,

Using now the resulf46]
= dxcogxy)
fl X (x2—1)17r
77_2

:m{‘]llz—)\(Y)[N—llz—)\(Y)

—H_12-2(Y)]

—J_ 12 N[N\ (Y) = Hap\(Y) 1}

with J,(z) a Bessel function an@,(z) a Struve function,
we find the asymptotic long time behavior

0T A0 e [mT 2
() = —— = F(i=N) w_ﬁ Py
™M1t = 3.1
X Cco wkt+7 + a)_kt . ( . 6)
Here we used the asymptotic formykb]
= 1 ARG 1
H,(2)=Ny,(2z) = 12 1+0| /|-
\/;F V+§

We see that the Bloch-Nordsieck resummation of the infra-

red divergences leads to relaxation witharomalous expo-
nent This is similar to the case of QED. We now argue that

the infrared divergence and the emergence of anomalous di-

mensions can be understood by establishing a parallel with

Sstatic critical phenomena at the upper critical dimensionality
in Euclidean space-time. This connection will pave the way
to using the renormalization group to sum up infrared diver-

nces non-perturbatively much in the same manner as in the

e
same phenomenon as in gauge theories wherein the Ssﬁweory of critical phenomena. In order to establish this con-
energy of charged fields has an infrared logarithmic divernection more clearly we now introduce the dimensionless
gence at threshold associated with the emission of soffyriaple

guanta. The Bloch-Nordsieck resummation exponentiates the

logarithmic divergences near threshold leading to =, P"é
P2=— +1.
1 é A—1 mé
k,s)=—| —<+1 A . . . . . :
Gen(ks) m32 | m3 2,2 (3.19 The main reason for introducing this variable is that when
PZ/mi~—1 — _
EMR PZ——m3, P?—0; therefore the threshold behavior is
with the dimensionless coupling mapped onto the zero Euclidean four momentum region in
terms of the new variable. In critical phenomena logarithmic
g2 divergences appear when the Euclidean four momentum
=— - (3.19 goes to zero at criticality at the upper critical dimension. We
4m°mg now introduce a wave function renormalization constant
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Z¢(E)=1+)\ InK2 ing from the scaling behavior o_f the Green’s function near

_ _ _ _ _ threshold in terms of the variabR. This scaling behavior, a
and a renormalized irreducible two-point function result of the infrared divergences associated with the emis-
sion of soft quanta, is akin to those in static critical phenom-

FR(PvK):Z(f)(K)F(P) ena.

Furthermore, this structure of anomalous dimension of the
Euclidean propagator as a result of threshold infrared diver-
gences is similar to that found in QED &t=0 either via a
_ Bloch-Nordsieck or renormalization group resummation
where\ is the dimensionless couplin@.15 andK is an  [35,36.
arbitrary renormalization point. The bare irreducible function  |n preparation to the forthcoming discussion presented be-
['(P) is independent of the renormalization poikt i.e.  low on the real time interpretation of the renormalization
KdI'/dK=0, which leads to the renormalization group equa-9roup resummation of infrared divergences, it proves illumi-
tion nating to obtain the perturbative form of the real time solu-

tion. This will allow us to identify the real time manifestation

_ of infrared divergences. The naive perturbative expansion of
I'r(K,P)=0 (3.17  the renormalization group improved propagdati 4 to first

order in the coupling. near threshold leads obviously to the
one-loop result(3.13. After performing the Fourier trans-

=maP? 1+\

=7 InP2+1In Kz)

Ka
K

_ 9Z 4(K) — o form and obtaining the real time evolution given by Eq.
IlInK ' (3.16 we can now expand naively in the coupling constant,
and find
Near threshold, whe®—0,
_ 2= P (ﬁk(t)%AkCOS(wkt)[l_)\ |n(0)kt)]+ B (319)
Ir(K,P)=mgP“®| =
with @ a dimensionless function of its argument. The renor-With A the amplitude read off from E¢3.16. This expres-
malization group equatiof8.17 then leads to sion reveals that if we attemptperturbativesolution of the
real-time equation of motio(8.1) we would findlogarithmic
_ 9 P secular termsi.e. terms that grow in time and invalidate the
P—+7|®|=|=0 perturbative solution at long times. In this case a perturbative
aP K expansion of the real-time equation of motion will break

down at time scalesy,e.~e* w,. The renormalization

with the solution group in the energy representation provides a resummation

5 " of the infrared divergences in the propagator, which leads to
O =|=d(1)|= a real-time evolution that is asymptotically decreasing func-
K K tion of time.

We now study the perturbative solution of E.1) that
finally leading to the renormalization group improved two- reveals indeed these secular terms, and implement a real-
point function time version of the renormalization group that implements
precisely this resummation.

— K
Gra(k,s)=[D(1)mZK?]? Y (3.19

_'; +1 B. Dynamical renormalization group at T=0
m . . . .
R Having established the resummation of threshold infrared

which coincides with the one obtained by the Bloch- divergences both yvithin the BIoch-Nordsiepk approximation

Nordsieck resummation, E¢3.14), up to an overall multi- and the renormahzaﬂqn_group, we now m_troduc_e a novel

plicative factor. We can now retrace the same steps that leffethod that allows a similar resummation biirectly in real

to the real-time evolution of the expectation value by per-imé Consider seeking a solution of the equation of motion

forming the analytic continuation for the retarded correlation(3-1) in perturbation theory in the coupling. Writing the self

function and the inverse Laplace transform, leading to th&n€rgy as an expansion in terms of the dimensionless cou-

relaxation with anomalous dimension given by E8.16. pling X given by Eq.(3.15, 2=2,-,\"S{" a perturbative
The equivalence between the renormalization group imsolution obtained as a power series expansion is given by

proved and the Bloch-Nordsieck re-summed propagator i€(t)= & (t) +Xo((t)+ - - with the hierarchy of equa-

fairly well known [35,36. The main purpose of our analysis tions

is to make the point that the anomalous dimension in the - (0) 2.,(0)

amplitude of the expectation value can be understood as aris- @k (1) + @i (1)=0
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HIO + o gDt = —[om*+ %D(0)]¢{(t)

PHYSICAL REVIEW D60 065003

The higher order corrections are eadibut tediously com-
puted using the spectral representation of the self-energy.
The first order term is given by

t .
+ L%kl)(t—t'w(k(”(t')dt'

where we note that the contribution from the wave-function
renormalization vanishes by virtue of the zeroth-order equa-
tion of motion. The solution to the zeroth-order equation is

¢(k0)(t) :Akeiwkt+A; e—imkt

and the initial conditionsg,(t=0)= ¢,(0), ¢ (t=0)=0
implies A=Ay = ¢,(0)/2, but we will leave both constants
to recognize more easily the different contributions and we
will use this condition at the end of the calculations. The
solution to the above hierarchy of equations can be found in
terms of the retarded Green’s function of the unperturbed

()= (1)+ (1)
1 do t t’
(1a) _ ' H Y
HP0= o f —p(w) fodt JO dtysif wy(t—t")]
X cof w(t' —t1)]1pO(ty)
1 dw
(Ab) 4y — — _
¢ (= wk(5m2+J wp(on)

X ftsir{wk(t—t’)]¢(°)(t’)dt’
0

problem:
1
Or(ti—ty)= w_ks”'[wk(tl_tz)](tl_tz)-

i [(dw

where the spectral densipf w) is given to one loop order by
Eq. (3.4) and its leading infrared contribution fdr+# 0 given

by Eqg.(3.6). The integral over the time variables can be done
straightforwardly; the result is given by

ei(wfwk)t_ 1

HP (0=

J

_ Ake* i (A)kt

2 jp(w)

Akel (I)kt
w

eZiwkt_

(
t
w

1 ei(wk+w)t_ 1

i(w—wk) +w—>—w}

wk—w( 2iw

e—Ziwkt

+tw——w

K (0t o)

-1 e—i(wk—w)t_l

+Af el

wtw

el

—2iwk

+to——w

i(w—w)

wt+ o)t _ 1

_Aikc e—iwkt

ot ow

i dw . .
d)(kl'b)(t):E(észrfjp(w))[Ake""ktt—A’k‘e_""ktt
k
A it 2iwkt_1 A* iwkte*Ziwkt_l
B ke 2|(l)k B ke 2|(1)k '
(3.2)

Secular terms will arise from the contributions of the form
e'(*=@dt—1 if the coefficients of these terms produce singu-
larities in the integration region.

i(w+wy)

(3.20

+to——w

from thresholds ¢y,), either above, in which case there is a
resonance, or below in which case the particle is stable.

1. wkvﬁwth

For o< wy, there are no singularities in the integration
region; therefore the only secular terms are those linear in
time in ¢{"?(t), ) (1). If on the other hand, > wy, and
far away from threshold, there are singularitissmple and
double polesin the integration region.

We can extract the secular terms in the above expression
in both casesv, > wy, and w<w;, by using the results of

We are now in condition to analyze different cases. Al-Appendix B or alternatively taking the long time limit using
though we are primarily interested in applying the method ofthe distributionssee Appendix B

dynamical renormalization group to the situation of infrared
divergences, in order to gain insight and test this method wi

begin by studying situations in which results are known. To

this purpose we address the familiar case of a generic inte
acting scalar theory in which the pole frequeneyis away

e
lim

It —lat=sinat]=P| —
a

2

)[at—sinat]
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1 bative expansion was only valid for times such that the con-
_2) (1—cosat) tribution from the secular terms remain very small compared
o to the unperturbed value, the renormalized expresS®b
) _ remains valid for interval¢-7 such that the secular terms

where thes(a) accounts for resonant denominators. ThiSiemain small. By choosing arbitrarily close tot we have
term is recognized from the familiar Fermi’s golden rule. improved the perturbative expansion. Howevég(t) does

Gathering the secular terms from both contributions depend onr: a change of the renormalization poinis
(3.20,(3.2) and takingA,= Ay we find compensated by a change in the complex amplituje
This leads to the&lynamical renormalization group equation
to lowest order:

lim 1 —cosat
t—0 ———=7td(a)+P
a2

P =Ae K

{i SM?+ S p(wy) 2|(wk)t

Zwk Zwk
JA(T) [ omP+3p(w)  Ii(wy) A(P=0
dw wE Er I 20y 2wy K(7)=
+ 79((1))7’—( 2_ 72
D@ with the obvious solution
do . w? ; _
- f —e""tp(w)Pz—kzz +cC.C. Ak(7)=Ak(0)e'5"’kTe Pyr
w wp— )
(3.22 _ Sm?+ S p( wy)
YT 20
where we have used the expressions for the real and imagi-
nary parts of the analytically continued self-energy given by S (@)
Egs.(3.9),(3.10. The last terms are non-secular at long times I'= 17k

and remain perturbatively small. 2wy

In this manner the resummation of the secular terms is
obvious and correspond to a shift in the pole position
— w,+ dwy (finite by a proper choice ofm?) and a width
or decay ratd’, given by the imaginary and real part respe
tively of the first order correction above. Since this is the
simplest and most familiar setting to introduce the dynamical
renormalization group, we now present the resummation of do o2
the secular terms via this method. This is achieved by intro- X f jeiwtp(w)p—kJFCIC_ (3.26

Choosing the arbitrary scaleto coincide with the time
we obtain theresummedexpression for the expectation
c.value:

Bi(t) =CA(0)e'pMie Tk — 4,(0)

ducing a(compleX renormalization of the amplitude and wi— w?)?
writing [37,3§
2
A= A7) Z(7) (323 c—1+ f do oyp—k
w wﬁ—wz)2

Zd D=1+ NP (D +ingB(r) + - -
(3.249 with w(k) the pole position shifted by one-loop corrections
) ) ) ~and 'y is identified with the decay or damping rate. The
wherer is an arbitrary time scale that acts as a renormalizaggnstantC is the same as in Eq3.11). The on-shell renor-
tion point and thez{')(~) are real functions. Choosing malization leading to Eq3.11) is here a consequence of the
s Sm24S perturbative expansion in terms of the solutions of the equa-
A7) = (@) . M+ 2 (i) - tions of motion.
2w 2wy After some straightforward algebra, the constahtis
] found to be the same as the residue of the Laplace transform
we obtain (3.7) at the pole(or resonanceat w,. The last, non-secular
S+ 3 () terms in Eq.(3.26), allows us to make contact with previous
1+i R @k (t—7) results[44]. The long time dynamics of this integral is domi-
2wy nated by the threshold contributi¢a4]. If the spectral den-
sity vanishes near threshold péw)~(w— wy,) ¢, then the
+c.c+regular terms asymptotic time evolution is described by a power law relax-
ationt™ ! (long time tail3. Thus we see that the dynamical
(3.25  renormalization group resummation has obtained all of the
features of the solution via the Laplace transfdB1v) which
where the regular terms refer to the non-secular last termvere previously obtainef4].
The meaning of the above expression is clear: a change in The resummation via the dynamical renormalization
the time scale corresponds to a change in(tdoepley am-  group has led to #&asymptoti¢ convergent perturbative ex-
plitude of the expectation value. Whereas the original perturpansion for the time evolution of the expectation value.

AN (r)=—

Pi(t) = A(r)el

_El(wk)
2wk

(t—7)
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This simple case provides for a clear understanding of théeading to the following expression fah,(t):
resummations implied by the dynamical renormalization
group and paves the way for understanding the more com- _ t
plicated cases of threshold singularities and finite tempera-  #k(t) = A(7)e' K| 1+idw\(t—7)—\ In—| +c.c.
ture below.

+regular terms.
2. Threshold singularities

Having established the reliability of the dynamical renor- ¢(t) is independent of the arbitrary time scalgleading to
malization program in more familiar settings, we are now ina renormalization group equation obeyed by the complex
position to apply this method to study the case of thresholdmplitude, which is now given this order by
infrared divergences arising from the emission of soft mass-
less quanta. Thus we now return to the theory of a massive AA(T)
and a massless scalar fields of the beginning of this section. 97
We begin by analyzing the situation B0 to make contact
with the Bloch-Nordsieck and Euclidean renormalization
group resummations, but now implementing tihgamical
renormalization grougesummation. TN

Since near thrgshold the spectral densBy6) for T=0 AK(T):AK(TO)elawkT[_O} )
becomeg \ is defined by Eq(3.15)]

] N
i Swy— ;} A (7)=0

with the solution

u)—)wk

p(Kw) = —ANo0—w)+O(o—ny)? Again, choosing the scale to coincide with the time, we
' - kl @ Wi WK

finally obtain the asymptotic dynamics of the expectation

besides the linear secular terms @'® , (' [see Egs. value in this case to be given by

(3.20,(3.21)] there is a potentially infrared divergent term
arising from ¢(k1'a) which is real and using the results of bi(t) = A(79) € kRE To
Appendix B, found to be given by t

A
+c.cHsmall (3.2

1(do  1-cof(w—awyt] where wy = wy+ dwy. The terms denoted by small remain
4 jp(k-“’ perturbative at all times and decay faster than the term with
the anomalous dimension in weak coupling. This expression
coincides with the long time behavior found in the previous
ut>1 sections via the Bloch-Nordsieck and the renormalization
= —A(Inut+y)+O(\) group resummation of the logarithmic infrared divergences
of the propagator given by E3.16). We thus conclude that
wherey is Euler-Mascheroni consta(gee details in Appen- the dynamical renormalization group implements a resum-
dix B). We note that time acts as an infrared cutoff in themation inreal timewhich is complementary to the renormal-
sense that fow~ w at finite time the integral is convergent. ization group or Bloch-Nordsieck resummations in the fre-
The infrared divergences are now manifest in a logarithmiaquency representation of the propagator.
time dependence. The linear secular terms combine just as in
the previous case to provide anaginarysecular term given
by i[ Sm?+ 3 () ]/2wy just as in Eq(3.22 which in this
case is simply frequency shift as can be seen from the ex- At finite temperature the infrared divergences are en-
pression for the self-energy given by E.12. This shiftis hanced by the Bose-Einstein distribution function of mass-
made finite with a proper choice @m?. Thus in this case less particledN,~T/q, g/T<1. This can be seen at the level
we find of the spectral density(k; w) given by Eq.(3.6). Whereas
the zero temperature contribution vanishes linearly near

(0= wy?

C. T+#0: Dynamical renormalization group resummation

(ot oM+ 3 g(wy) — threshold, the finite temperature contribution remains con-
(D) =A™ 1+ 20r t=Alnut|+cc. stant there providedn#0. In particular we find that near
threshold the Laplace transform of the retarded propagator
+regular terms behaves as
with w=ue”. Similarly to the previous case, we introduce I'(k,s;T)=[G(k,sT)]™*
the complex amplitud€3.24) and choose ) p2
g E
— =(PZ+m3)| 1+——In| —+1
AZ(m)=NInpr; =R 4P mg
SM2+ 3 5(wy) _ P2+ m3
aD(ry= - RO s —g(T.K)In——=
2wy %
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9(T.k) g (T) itk g T tfmdzl Z 1 ) 9 i

K)= —|In — —t| —In|—|(1-cosz)=— n ut,

g 472\ K| o=k w2 2k? Jo 22 | 2tT 47k? K
w=2Ter ! (3.29

where u is an arbitrary infrared cutoff scale and assumed
that the external momenta is not too hard. Thus whereas the

zero temperature inverse propagator actually vanishes athere we have quoted the leading contribution in the

threshold(with an infrared divergent slopehe finite tem-

asymptotic time regime. Subleading terms can be consis-

perature propagator diverges there, reflecting the stronger inently obtained using the formulas of Appendix B. The coef-

frared divergence at finite temperature. In this situation &icient of A

e'“d has a potential infrared divergence; how-

Bloch-Nordsieck resummation of the Euclidean propagatoever, the contribution, from both cuts cancel each other,

is not clear as was emphasized in R&2] and a multipli-

leaving an infrared(and ultraviolet finite result without

cative(wave function renormalization cannot cure the infra- secular terms. The zero temperature contribution and that of

red divergence since the finite temperature pamdspro-
portional toP2+m3.

It is precisely in this situation that the power of the dy-
namical renormalization group is revealed. We will study

two different cases in detaili) hard external momenturk
>m (or m=0) and(ii) soft external momenturk=m.

1. Hard external momentum (n+0)

#(* lead to a finite frequency shift. Implementing the dy-
namical renormalization group resummation we find

2

g

¢k(t) — Ak(to)eiwkvR(t_to)e_ak T tin[t/tg] +c.c.,
477k?

ag=

In this case the Landau damping cut coalesces with thwhere we have solved the renormalization group equation

cut for o=k and both terms of the spectral dens{B.6)
contribute. Because of the symmet®/—~ — w of the time
dependent terms in E¢3.20 the frequency integral in the
interval —k<w<k plus the integral in the intervéf<w
< can be folded into an integral in the range®<« in
terms of the effective finite temperature spectral density

g2 T 1_ef\w+k|/2T

p(kiw)=—— =1 0O(w).
pliw)=——= 1 In (o)

1— e—\w—k|/2T

The asymptotic time dependence is dominated by the region
w~k which gives the infrared divergences of the propagator.

In this region the effective spectral density

(ka))_g—ZE [ ;|®(w)+(’)(w k),

= T
Tk_l_e—k/T'

(3.28

with an initial condition at a timety=1/u. This solution
reveals clearly the renormalization group invariance, a
change in the arbitrary time, is compensated for by a
change in the amplitude and an overall phase.

2. Soft external momentum (#0)

Form#0 the Landau damping cut and the production cut
are separated and the infrared divergences arise only from
the production cutv,<w. In the high temperature limit we
find near threshold

w— oK 2
plkio) = — 25 L INM1+ 00— 0100w
a2 k
(3.30
2k
MkEl-FW(k'ka).

We note that in this case the spectral denpitl; w) ap-
proaches a constant value at threshold.
The terms proportional t¢/(w+ wy) in qb(la)(t) do not

We start by analyzing the different contributions to the in-have infrared divergences but they remain as secular terms

frared behavior of the coefficient #.e'“<. A simple analy-
sis leads to the following conclusion§) The contribution
near threshold to thienaginarypart of the coefficient cancels
out between the production cuw{k) and the Landau-
damping cut (6<w<Kk), leaving a linear secular term with-
out infrared divergences that renormalizes the m@gsThe
contributions near threshold to theal part are the same for
both cuts B<w<k and w>k and add up. This contribution

in the asymptotic long time limit is obtained from the formu-

las in Appendix B and given by

that combine with those oeb(lb)(t) to give a renormaliza-
tion of the frequency just as in the previous cases. The infra-
red divergences arise from terms with denominatorso 1/(
_O)k).

In this case these infrared divergences are manifest as
logarithmic secular terms in the real and imaginary parts
leading to damping and anomalous logarithmic phases.

These contributions are the following) The imaginary
part of the coefficient oA€ “' is given asymptotically by
(see Appendix B
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Sin(w— w)t
~ (0—wt

it [ k; 1
Ty p(k;w)

1)
4o, 0 0w

S(k; ;T)

=1 ig2ln M

= — Ttin[ute? !
47Kk L ]
© d K; k;

+itf o [p(kio) p(kioy

wkw—wk[ w Wy

2
e ) (3.3)

t

XO(u— o+ wy)

14 15 16 17 18

Notice that Eq.(3.3)) is independenbf the scalew as one ' ' ' ' oW,

can easily see since the derivative with respect.tof the

right-hand sidgRHYS) identically vanishes. The scale has FIG. 1. The spectral density for the field S(k,w;T) [Eq.

been introduced just to have a dimensionless argument in th8.33)] near threshold fop(k, w,)= —0.005.

logarithms.(ii) Thereal part is asymptotically given bisee

Appendix B for details It is interesting to try and understand the exponential

damping in this case. For this we show in Fig. 1 the spectral

17>  p(kiw) density for the sigma field in this soft case near threshold:

—| dw
4],

[1-coqw— wy)t]

(0= wy)? ST S i(w,k;T)
T [0P = 0E—SR(0,k TIPS (w,k;T)]?

1
200~ wy) ,

1 W — wy
el g2Te 92T ER(w’k;T):_EP(k:wk)ln >— T O0(w—wy)
- _87Tkwkn k_4772m2wi
aa
3m? — 2|(w,k§T)=—Ep(k,wk)JFO(w—wk) (3.33
X| 1+ S —In M In[wte?]+O(g?).
k

where p(k,w)) is given by Eq.(3.30 and for the figure it
The remaining secular but infrared safe terms inwas taken to be(k,w)=—0.005. S(k,w;T) vanishes at

»1); $(1P) contribute to the imaginary part a term propor- threshold but with a singular slope; this results in that the

tional to t which can be absorbed in a redefinition of the spectral density features a sharp peak near threshold, which

arbitrary scalex in Eq. (3.31). The logarithmic divergence is found to be atw~ w+ 5 p(K, ) Injp(k,w)|+- - .

as k/m—x reflects precisely the logarithmic time depen- The decay rate is given by (12)(wy)/(2w)), the extra

dence found in the previous case of hard momentwn0  factor 1/2 being simply a result of the fact thaf is the

and that results in the anomalous relaxation proportional tghreshold, i.e. the end point of the integral, and therefore the

tIn ut as given by Eq(3.29. on-shell delta function only picks up half of the contribution.
Implementing a resummation of the secular terms with thel he logarithmic dependence of the phase is a consequence of

dynamical renormalization group following the steps out-the logarithmic infrared threshold divergences and prevents

lined above leads to the asymptotic form an interpretation in terms of quasiparticle poles.
This case must be contrasted to thatrof 0, wherein the

b imaginary part of the self-energy imfrared singular at
e "+cc. (332  threshold. This is revealed in the logarithmic singularity in
the limit k/m—oo which reflects precisely the logarithmic
time dependence found in the previous case of hard momen-

¢k(t)=Ak(t0)ei¢k(t,to)“_°

(D)= g(t—to) + g°In M KTt Inl tum m~0, leading to the anomalous relaxation proportional
’ 4%kwy to to t In[ut] as given by Eq(3.29.
— gZT IV. DISCUSSION AND INTERPRETATION
K In Mk
8’7Tk K
Before proceeding further to the case of a gauge theory, it
o 92T 3 m2 is co_nvenient to pause gnd analyze_the results that we hav_e
K= | 1T T INM, obtained so far and elucidate the main aspects of the dynami-
47°m° wy Wk cal renormalization group. The scalar model chosen in the
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previous section is a non-trivial example of a superrenormal- This interpretation in the simple exercise extends to the
izable theory that displays the same type of infrared divermore complex situations with the same underlying mecha-
gences as a critical theory at the upper critical dimensionnism; the secular divergences are absorbed in the complex
The usual renormalization group leads to a Bloch-Nordsieclamplitudes and the perturbative expansion is then carried in
resummation and anomalous dimension§ at0. Perform-  terms of the renormalized amplitudes. The differential form
ing the Fourier transform we recognized that the real-timepf this process is the dynamical renormalization group equa-
interpretation of the renormalization group resummation corjon, Thus the similarities with the usual renormalization pro-
responds to a power law relaxation with the power detersequre are manifest.

mined by the anomalous dimension. A naive perturbative |, the same manner that the usual renormalization group

expansion in the dimensionless coupling results in seculag, s the leading logarithms when the renormalization group
terms, i.e. terms that grow in time anq signal the bre""kdov‘“?unctions are computed to one loop order, the dynamical
of the per.turbat|ve expansion at Iong' time spales. These SaM&normalization group sums the leading secular terms when
secular divergences are obtained directly in real time Wher'[1he coefficients are computed to lowest order. This is mani-

the equation of motion for the expectation value is solved infestly revealed by the naive perturbative expansion of the

a perturbative expansion. The dynamical renormahzatlonreal time propagatof3.16).

group |mplgments a resummanon of these sgcular d|yer- The main objective of studying the different cases in the
gences which leads to an improved perturbative solution,

The renormalization procedure can be understood with scalar theory of the previous section was to thorougabt

verv simple and pedadoaical examole. the weakly damped'® method with a non-trivial example that can be studied
y simple and pedagog pe, Y PE€With different methods. By studying these examples in detalil
harmonic oscillator. Consider the equation of motion

we have learned that the dynamical renormalization gfoup

. . provides a real-time equivalent of the resummation via the
yty=—ey, e<l. renormalization group in Euclidean space tifequivalent to

Bloch-Nordsieck resummationin the case of infrared

Attempting to solve this equation in a perturbative expansionthreshold divergences & =0 leading to relaxation with

in € leads to the lowest order solutigsee Appendix € anomalous exponentéj) provides the usual mass shift and

damping rates in the case of narrow resonances (and

leads to a similar resummation schemeTat0 when the

threshold infrared divergences are more severe. This detailed

analysis then provides confidence on this novel method to

where the term that grows in time; i.e., the linear seculastudy the more interesting and relevant case of a gauge

term leads to the breakdown of the perturbative expansion dheory.

time scaleg,,.4 1/e. The dynamical renormalization intro-

duces a time scale in the form A=A(7)Z(7), Z(7)=1

+ez4(7)+ - - -; choosingz, to cancel the secular term at this V. GAUGE THEORY: SQED

time scale leads to the renormalization group equation

. €
y(t)=Ag" 1_§t +c.c.

We are now in position to apply the method of the dy-
namical renormalization group to implement the resumma-
+ EA(’T):O tion of infrared divergences in gauge theories, which is our
2 primary goal.

_ We will study the case of scalar QE(BQED), since to
and the improved solutiop(t) =e™ (“?'[A(0)e''+c.c] after  lowest order in hard thermal loops this theory has shme
setting 7=t in the solution. This obviously is the correct properties as those of QED and QCI0,18,29,32, in par-
solution to O(e). The interpretation of the renormalization ticular the infrared divergences associated with the propaga-
group resummation is very clear in this simple example: theion of the charged fields.
perturbative expansion is carried out to a time scale Since we are primarily interested in studying the real-time
<1/e within which perturbation theory is valid. The correc- manifestation of the finite temperature infrared divergences,
tion is recognized as a change in the amplitude, so at thigie will focus on the relaxation of the charged scalar field at
time scale the correction is absorbed in a renormalization dfinite temperature. Furthermore, we will only consider the
the amplitude and the perturbative expansion is carried out toontribution of transverse photons to the charged scalar self
a longer time but in terms of th@mplitude at the renormal- energy, since longitudinal photons are Debye screened at fi-
ization scale The dynamical renormalization group equation nite temperaturerqip=~eT) and do not contribute to the in-
is the differential form of this procedure of evolving in time, frared divergences.
absorbing the corrections into the amplitutend phases In this Abelian theory it is rather straightforward to imple-
and continuing the evolution in terms of the renormalizedment a gauge invariant formulation by projecting the Hilbert
amplitudes and phases. This is the same spirit as thspace on states annihilated by Gauss’ law. Gauge invariant
momentum-shell renormalization in critical phenomena. Theoperators can be constructed and the Hamiltonian and La-
details of the second order calculation and implementation ofrangian can be written in terms of these. The resulting La-
the renormalization group for this simple problem are of-grangian is exactly the same as that in Coulomb gddgé
fered in Appendix C to illustrate the shift in the frequency. and is given by

JA(T)
or
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1 . . N motion for the charged scalar field is obtained by writing
£=3,0" "> —m’dTd + 5 0uAT " Ar—ehrjr (43,45

D (X,)=@(X,1) +AT(X,t), (AT(X,))=0

and similarly for the Hermitian congujate fields.
In obtaining the equation of motion to one-loop order, we
j1=i(®VD-V0TD), p=—i(0dT-DdTd) neglect the contribution from the Coulomb interaction. The
reason as explained above is that the long-range Coulomb
where we have traded the instantaneous Coulomb interactidnteraction will be screened by finite temperature effects with
for a gauge invariant Lagrange multiplier fieldy which  a Debye screening lengtimy~eT and hence the screened
should not be confused with a time component of the gaug€oulomb interaction will be free of infrared divergences.
field. At is the transverse component satisfyiWigA;(x,t) ~ However in an Abelian plasma the magnettcansversg
=0. Since we are only interested in obtaining the infraredPhotons are not screengdo static screening, only dynami-
behavior arising from finite temperature effects, we do notcal screening through Landau dampiregid the exchange of
introduce the renormalization counterterms to facilitate thesoft magnetic photons will lead to threshold infrared diver-
study. The finite temperature behavior is ultraviolet finite.9eNCes. R
The non-equilibrium generating functional requires the fields In terms of the spatial Fourier transform gfx,t) we find
on the forward and backward brancid§]. The equation of the equation of motion

- 1
—e?A;- A TD+ E(VAO)2+ e?AZD D +eAyp,

C— Tk 24 24 @2/ A2(v % -zx,d3qi*'*
P(—Kt)+ (kK2+m?+ X AX(x,1))) (—K,1) —die Ldt f(ZT)Skﬂq)k'T(q)

X{[(AT(AHATI(=q,t))(AT(—K=g,)AT* (k+q,t")
—(ATU(QDAT (= t)(AT (—K=a,HAT " (k+q,t" ) ]e(—K,t)}=I(—K kr(q)=k—q(k-q)

where we coupled an external sourcel(k,t)  Where @b)e{+,~},
=J(E)e5t®(—t) (e—0") to provide an initial value prob- P - , s ,
lem with an adiabatic switching on of the expectation value. G (L) =G (1,1)O(t—t") + G (1,1)O (' 1),
The initial conditions for the expectation value are
Gy (4Lt) =G (t,t")O(t' —t)+ G (t,t)O(t—t’),
K,t=0)=¢,(0), ¢(k,t=0)=0. L
¢( )=¢k(0), o ) G (L) = —GEP) (L),
Infrared phenomena are associated with the soft limit of .
the inter_mediate p_hoton, a_nd therefore require the HTL re- Gk>(t,t’)= I_[(1+nk)e—iwk(t—t’)+nkeiwk(t—t/)]’
summation of the intermediate photon propagator. However, 2wy
we begin our study of SQED by implementing the dynamical
renormalization group to resum the perturbative expansion in - i et ot t1)
the case in which the self-energy of the charged field only ~ Gi (t.1") = 5—[n@ T+ (1+n e 7],
includes the exchange of a bare transverse photon. The study K
of this situation will shed light on the different physical pro- 1
cesses that contribute and those that do not because of dy- >2 2
. : ) . i = Vk+ =

namical screening via Landau damping. In the next section o= VKM, eBok— 1
we will include the HTL resummation of the exchanged pho-
ton and implement the dynamical renormalization group.  photon propagators

- - d3k e
A. Bare photon propagators (A(T"’i‘)(x,t)A(T'})(x,t’D: _iJ . gie}b(k;t,tr)e—lk(x—x ),
The necessary free-field non-equilibrium Green’s func- (2m)
tions are given by scalar propagators R
3 G Tkt t) =Py(K[G (t,t)O(t—t")

- - 9K e iR
(@O GEOOOG) = [ e ke FOLL)O )], (5.1
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G (tt)=P(K[ G (Lt)O(t' —t) Ny= !
+G (L) O(t—t")], L
gﬁi(k;t,t'):_Pij(lz)glf(>)(t’t/)’ (52

HerePij(E) is the transverse projection operator:
i : ,
Ge(tt)= oL+ Ny)e k=t
N eik(t—t')] 73.4(|Z)=5.4_m_
K y i i k2
i .
< N —ik(t—t")
Gt 2k[Nke

Finally we find the equation of motion for>0 to be
+(1+Nekt-t7, given by

e(—K.0)+[K2+MA(T)]o(—K,t) + ﬁ S(Kt—t)e(—kt)dt'=0

d®q 1-cog4

(2m)? m{(H Ng+ Nkt g)Si(@is g+ ) (t—=t") + (Ng—ngs ) sinf(wi g— ) (t—t')}

E(E,t—t')z—seZsz

M2(T)=m?+e?(A?)

and 6 is the angle betweek andg. We see that the self- With g an upper momentum cutoff*<T and
energy has a form very similar to that of the scalar case, Eq.

(3.2), the only difference being thie? in front (reflecting the X(w,q) = w?— wg—20q
exchange of transverse photpasd the 1-cosé inside the d 2kq '
integral. Integrating by parts and using the initial conditions

the resulting equation of motion can be written in the same . wz—wE

form as in Eq.(3.1) with y,(t) as in Eq.(3.5) in terms of the O =5 =

spectral density:

- The second contribution with support below the light cone is
(k)= — ij qdq (1—co0) identified with the Landau damping cut. Since the time de-
' 2m2) opiq pendent correlation functions involve the product of
p(k;w)coswt, the frequency integral in the rangek<w
X dcost{(1+Ng+ N, q) S(w—q— wy4q) <0 arising from the Landau damping cut can be combined
with the contribution from the positive frequency range by
~(Ng™Nirq) (@ =T 0p1g)l- 53 e symmetry of the integrand in E(.20). After a straight-

As in the scalar case, we are mainly interested in thdorward calculation we finally find the finite temperature
infrared effects associated with the emission and absorptiofPntribution to the spectral density near threshold to be given
of soft photons in the intermediate state and only the finite?y
temperature contribution. Therefore we wil) neglect the

contribution of the distribution function of the intermediate Kw)=— e_z(_) (02— K2)In w_—k 4ok
charged scalar, i.e. the termy.,, and (i) replace N pir(K 0)= o2\ K/ w+kK w
~T/q in the expression and neglect the vacuum contribution
(the one, thus obtaining X[O(w—w)+0(k—w)]0(w). (5.9
e’kT( (q*dq There are several noteworthy features of these spectral
p(Kiw)=——— [J’ —[1-X*(0,0) 10 (0~ ) density near threshold, as compared to the simpler case of
2m a9 the scalar theory studied in Sec. [Hee Eq.(3.28)]. In this
qedgq case the spectral density is constant at threshold. The term
- Jq+F[l—X2(w,q)]®(k2— w?) w? [multiplying the logarithms in Eq(5.4)] and the last term
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8wk arise from the region of the integral for which ées Where we used the expressi@10 and the fact that for the

~1 which would give a vanishing integrand were it not for productlon cut the spectral Qensny only has support for posi-
the fact that there is a linear divergence as+k. These tve frequencies. We then find the same phenomenon as in
contributions arise from the emission and absorption of photh€ Previous case of the scalar particles in that the damping
tons which are almost collinear with the incoming charged'@t€ is one-half of the expected value. The reason again is

scalar.

that the full spectral density for the charged scalar is very

We will now study the case of a massive scalar in twoSimilar to that featured in Fig. 1 with a prominent peak near

important limits: (i) k/w,=v<1l (m#0), (i) k/w,=v~1.

threshold that is almost half of a Breit-Wigner peak. How-

In both cases the leading contribution is easily recognized t§Ver the logarithmic phase clearly exhibits the fact that can-

arise from the production cui= w,. Form+0 there are no
infrared divergences associated with the Landau damping

cut.

1l.v<l

Since the spectral density is slowly varying near thresh-
old, we can find the asymptotic behavior in time of the co-
efficient of A, €' “k' in Eq. (3.20 at large times following the

not be interpreted as a quasiparticle resonance.

The contributions from the coefficient & e'“x' and the
linear secular term fronp{* that contributes to the imagi-
nary part are both subleading. We now renormalize the am-
plitude as in Eqs(3.23,(3.24 with the choice

2
Az V(7)) = ﬂf In w:
(1) 82 (VTinur

same method as in previous sections and Appendix B. We

find the following results{i) The imaginary part of the co-

efficient of Ae' <! is given by

i'{fOo plkiw) 1 Sin(w— w)t
—| do _
4) o, 0 0w (0—wp)t
w=l o je?T — (= do [pkio)
= - f(v)tln,u,t-l—ltf
8772 @O o
k; e?
—M(M—w-f-wk) +O(—) (5.5
Wy t
with
. _1—v2| 1-v b,y
(V)— ner , V_w_k

the function 0<f(v)<2 for O<v=1. .
(i) The real part of the coefficient ok.e'“k in the as-
ymptotically large time limit is given bysee Appendix B

1(~dw "
1 wkjp( ;)

1—coq w— wy)t

(0= wy)?

ut>1 2
= —I't+— te”
- og(ute?)

143, ;
X Fk—Za—w(k,wk) +(9(e T) (57)

with T", given by

Cmpke) 13(0) 7

= esz 5.8
T4 20, 2 20, 8lagz2) V) 5.8

- 193, ’
K Z%( , 0k)

A1) =T 7— i|og( pre?)
T Wy

The solution of the dynamical renormalization group equa-
tion now leads to the asymptotic behavior of the expectation
value of the charged fields

by
+c.c.,

</>k(t>=Ak(to)eimt,to)e—rk(r—ro)(tt_o

B e’T t
ei(t,to) = oy pt— Qf(V)t In%,

b= 2
k_7T(1)k

193,

=Ty Z%(k,wk) (5.9

where we integrated the dynamical renormalization group
equation with initial condition aty which is taken as some
arbitrary renormalization point replacing the infrared cutoff

©. The renormalization group invariance @i (t) is now
explicit; a change of the arbitrary scalgis compensated by
a change in the amplitudd,(t,).

2.v—1

The limit v—1 must be studied carefully. Ae— w
~k the term @2—k?)In|o—k| cannot be taken outside of the
integral. However, upon the change of variable k=z/t in
the integral in the same manner as that leading to(&Qq)
leads to a term that is of the form[jat]/t for this contribu-
tion, which then becomes subleading compared with the term
in p; r(K; w) that does not vanish as—1. The asymptotic
large time behavior is therefore obtained from the previous
section withv# 1 by simply settingy=1. The contribution
to the final result in this limit arises solely from the emission
and absorption of collinear photons.

It is illuminating to try and understand this result in the
hard limitv—1. The delta functions in Eq5.3) in the limit
k>m becomed(w—k—qg+qcosé); therefore aso—k the
whole contribution arises from photons that are emitted or
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absorbed collinearlyy= 0,7 with the moving(hard scalar. 4000 1
However, as pointed out originally by PisargRD], the con-
tribution from collinear photons does not survive screening.,
effects arising from higher order contributions to the photon § seo
propagator. In particular, dynamical screening as a conses
guence of Landau damping of the intermediate photons cut:;'g
off the contribution of collinear photons, and leads to a |
greater contribution of photons emitted or absorbed at right
angles with respect to the moving charged particle.

The analysis of this section is illustrative of the power of
the dynamical renormalization group to obtain the
asymptotic long time behavior. For the case of QED, QCD
or SQED, the analysis presented in this section in terms of . . . . JL ‘ . . . .
the bare propagators for the scalars and photons has ver ©10 008 005 004 002 000 o002 004 006 008 010
limited validity. For soft external momentum, the infrared 9,
region of the internal loop requires HTL resummation of the 2 _ . .
internal lines and verticef20,32,29. The main purpose of eT/FIﬂ% 2. pr(0o.Q)(a%/0o) for =0.1(eT/12) vsgo in units of
our analysis in this section, however, was to illustrate how '
the dynamical renormalization group is capable of revealing . 2
novel forms of relaxation with logarithmic corrections, ~ 1 21(d0,9)0(q°— )
power laws, anomalous dimensions, etc. These alternative pT(qO’q)_w (02— 92— Sr(do, @) 12+ 22(q0,0)
forms of relaxation cannot be found by attempting to de-

1000 [

scribe exponential relaxation and computing an imaginary +sgr(q0)Z(q)5(q§—wf)(q))
part of the self-energy on shell.
We now include screening corrections via HTL resumma- me?T2 q, 02
tion of internal lines. We will consider the case of hard ex- 21(90,9)= 2 ali =2
ternal momentum for which only the internal photon line q q
must be HTL resumme(the scalar is massive and hard ) )
3 e o o) %) [deta
rR(do, ) = 122 q @ a0

B. Hard thermal loop-resummed photon propagators

We now focus on the case of hard external momentum oWhere w,(q) is the plasmon pole and(q) its (momentum
the charged scalar. In this case only the internal photon lindependentresidue, which will not be relevant for the fol-
receives HTL corrections, since the scalar in the loop is magowing discussion. Inserting these propagators in the expres-
sive and hard; the vertex does not require resummation beion for the self-energy, keeping only the teri(qg)
cause one of the momenta into the vertex is Hénd scalar  =~T/qg in the resulting expressions, and focusing on the hard
[20,32,29. Hence this situation is simpler than the case ofscalar limit k~=T>m we find that the self-energy can be
soft external momentum that will be studied elsewhere.  written in the form of a dispersion relation just as in E8.3)

In order to include the leading order screening effects irbut with
the photon propagator, we must use the hard thermal loop
resummed propagatof&0]. The generalization of the HTL e’Tk ) 1 )
resummation program in the Matsubara formulation of finite p(kiw)=— 2 f q dqfﬁldX(l—X )
temperature field theory to the real time formulation is de-
scribed in detail in Appendix A; we collect here only the xf ] 1(do,q) 5

o

main ingredients.

The photon propagators can be written as in E§sl),
(5.2) but now with the resummed Wightmann functiqisee
Appendix A

; (0—k=0o—0X).
The infrared region corresponds to smalland we find
that forq<eT the integrangb(do.q)/qo is strongly peaked

~ I at go=0. Figure 2 show1(q0,9)g%/do VS g in units of
> 4y — (t t)
Gq(t=t") J ddopr(do, A1+ N(gp)Je™" eT/\/12. We find that fog<eT the photon spectral density
is well approximated by32]

pr(do.) 1 T

Ga(t—t")= f daopr(do,q)N(gg)e 9ottt

do w2+ as
where in the hard thermal loop limit the spectral density for r:q?)i_
transverse photons is given 9,45 me?T?
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When this Lorentzian distribution is integrated with smooth A(7) = Ad(tg) e o7 to) g™ aTrIn(7/to)

functions, it can be expanded in the width, obtaining

where we have chosep= ! as an initial condition for the

, integration. Now choosing the arbitrary renormalization

P l«qug” 8(qo) == 8"(Qo) + - -~ scaler to coincide with the time we finally arrive at one of
the main results of this article which is the asymptotic be-

and the infrared behavior is dominated by t#(g|o). Finally ~ havior in time of the expectation value of the charged scalar
we find the infrared behavior of the spectral density of thefield
self-energy to be given by

e’kT [q* dq (w—k)?| e*kT |o—K|
f q 1- > ~—-In thus displaying the renormalization group invariance of the
o=k q 77 K solution: a change of the arbitrary time scaje(inverse of

(5.10 the infrared cutoff is compensated by a change in the am-

whereq* ~u<eT is an arbitrary upper momentum cutoff, plitude. The quantity, is the renormalized mass including
which physically is of the order of the plasma frequency. Wethe (infrared finit¢ HTL corrections.

thus see that dynamical screening originating in Landau A similar behavior for the asymptotic dynamics of the
damping for the photon propagator suppresses the contribfiermion field in QED has been obtained via the Bloch-
tion of collinear photons and as—k the contribution to the ~ Nordsieck resummation in Ref32]. The power of the dy-
self-energy arises primarily from photons emitted or ab-namical renormalization group has now become explicit in
sorbed at right anglei20]. This is the same situation as in that it transcends any approximation and implements a re-
QED[32]. summation of the logarithmic infrared divergences that in

The final spectral density for the self-energy, E5.10,  this case includes the resummation of the hard thermal loops.
is therefore of thesame formas the finite temperature self
energy of the simple scalar theory studied in the earlier sec- VI. CONCLUSIONS, COMMENTS
tions [see Eq.(3.28] and thus justifies our excursion into AND MORE QUESTIONS
that simpler theory. ) _ _

We can now follow the same steps to study the secular N this article we h_ave introduced a no_vel method of dy-
terms in the real time perturbative expansion, which lead td1@mical renormalization group resummation to study relax-
Eq. (3.29. ation in real time. The first 'step of the program is to relgte

The long time asymptotic behavior is obtained by insert-the retarded Green's functions that contain the dynamical
ing the spectral density, Eq(5.10, in the expressions |_nformat|0n on the tlm_e_e_zvolutlon away from eqU|I|br|u_m in
(3.20,(3.2) with w,=k. The asymptotic dependence on linéar response to an initial value problem for thepectation
time is extracted by changing variables do-k=z/t and value of the fl_elds. This initial value problem in real time
upon settingA,= A} , we find that(i) the imaginary contri- allows one to implement the method of dynamical renormal-

bution to ¢+ 41 is given by aninfrared finite and ization, improving the perturbative solution by a resumma-

linear in time secular term which is interpreted as a renortion- This resummation is the real time counterpart of the

malization of the frequency an@) the real contribution to resummation via the renormalization group in Euclidean

2

d,k(t):Ak(to)eizk(t—to)e—an It 4 e (5.10)

K,w)~—
p(k;w) =

(12) + 4(1) is given b field theory. We first apply our met.hods toa sca}lar_ theory of
¢ ¢ g y one massive and one massless field. The emission and ab-
g2 sorption of the massless field introduced infrared divergences
Redp(t)=—aTtinut, a=7—. akin to those found in gauge theories. We compare in such a
model the late behavior of the massive field amplitude at
The first order correction is thus found to be given by zero temperatur¢Eq. (3.27] to results based on Bloch-
Nordsieck resummationgEqg. (3.16] as well as the renor-
HM(t) =AE K[ S t— aTtIn ut]+c.c. malization group applied to Euclidean Green’s functions
_ [Eq. (3.18].
+regular perturbative terms. Furthermore, for large temperature we compute the late

. L . . behavior of the massive field amplitude both for hard and
Introducing the renorm_allzanon of the amplitude as in EAS.qu¢ external momenta. For hard modes, the field amplitude
(3.23,(3.29 and choosing

relaxes ag~(9° 74m thivld \whereg stands for the coupling

)\ZS)( N=aT7rinur, )\Z(Rz)(r) =— SwyT constant. ) ) _ )
In real time the infrared divergences are manifest as secu-
we obtain the renormalization group equation lar terms in the perturbative solution of the evolution equa-
tion for the expectation value of the fields. The dynamical
dA(T) | B renormalization group implements a resummation of this
o, Ldw—aT(npr+1)JA(r)=0 secular terms that leads to an asymptotically convergent so-

lution and clearly describes relaxation in real time.
with the solution After applying our method to the scalar model, we fo-
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cused our attention on implementing the dynamical renorMonte Carlo simulations, the validity in a general case is at
malization group to resum the infrared divergences assocbest questionable foczl_. The € expansion resums some
ated with massless transverse photons in scalar QED at finigibset of the Feynman diagrams and only some part of them

temperature. The infrared divergences in this theory are simi47] the leading logarithms. )
lar to those found in QED and in lowest order in QCD. The dynamical renormalization group therefore provides

We have included the resummation of the hard thermaf” alternative to study the infrared divergences directly in

- ) real time by resumming secular terms in the perturbative
loops and Landau damping in the internal transverse phOtoJa:'olution of the equation of motion. In the case of infrared

propagators, and implemented a dynamical renormalizatiogjyergences the secular terms reflect these in the form of
group resummation. The renormalization group improveggarithmic dependence on time. However, the uselfulness of
ment leads to an anomalous logarithmic relaxation for hardhe dynamical renormalization group is not restricted to these
modes as a consequence of infrared divergences associaiggarithmic divergences, as explicitly shown in Sec. lll; in
with the emission and absorption of photons at right anglesthe usual case of narrow resonances, the secular terms are
These anomalous logarithmic relaxations are similar to thginear (in lowest order and their resummation through the
scalar field behavior and consistent with those found in QEDenormanzaﬂon group equation leads to the usual quasipar-
via the Bloch-Nordsieck resummati¢82]. ticle real-time evolution.

In all cases investigatethoth in the scalar model and in There is a translation between the resummation implied
QED) the field behavior prevents an interpretation of thepy the usualEuclidean renormalization group and that by
relaxation of CharQEd excitations in the medium in the formthe dynamica| version: the Euclidean version sums the lead-
of a simple exponential with a damping rate determined bying logarithms[36,47 and the dynamical version sums the
the imaginary part of the self-energy on shell. leading secular term87].

The advantage of the dynamical renormalization group is |t has been shown in Refi37] using the formal theory of
that its implementation is rather simple and transcends an¥nvelopes that the dynamical renormalization groR®)
approximations of the Bloch-Nordsieck type; it can be con-resummation of secular terms provides an uniform approxi-
sistently improved by considering higher orders in the hiermation to the exact solution for systems of ordinary differ-
archy of equations obtained in perturbation theory. ential equations. This is true to any given order of perturba-

Furthermore, the real time dynamics obtained via this retion for arbitrary ordinary differential equatiof87]. It will
summation program leads to a clear interpretation of the repe very interesting to extend such a proof to the evolution
laxational processes and time scaléthoutany assumptions equations considered in the present paper.
about the validity of the quasiparticle picture of collective Thus, for the moment, the situation with the dynamical
excitations. The analysis of secular terms in lowest ordeRG is similar to that of the expansion in critical phenom-
prOVideS a Simple criterion for deCiding if the collective ex- ena forezl: it provides a resummation Scheme for the in-
citations can be described as narrow resonances with a widtfgred behavior in a consistent manner and it agrees with
determined by the imaginary part of the self-energy on shellinown results in cases where it can be compared. Further-
linear secular terms lead to such a quasiparticle descriptiogjore, in the case in which the renormalization group and
non-linear secular terms in lowest order signal anomalousgjoch Nordsieck lead to non-trivial exponentiation of infra-
non-exponential relaxation. red divergences, the dynamical RG reproduces the results in

The dynamical renormalization is a different resummationyea| time. Thus we believe that the cases analyzed in detail in
scheme than the HTL resummation, and the latter can bgjs article and those analyzed in the literature provide very
consistently included in the former as was shown in thisstrong evidence for the validity of this approach. The prom-
article. ise of the dynamical RG as a powerful method to study trans-

We are currently implementing this method to study re-port phenomena warrants a deeper study on the renormaliza-
laxation of soft and hard fermion and gauge fields in QEDtjon aspects of the evolution equations in real time and a
and QCD directly in real time, thus bypassing the conceptuahore formal proof of the applicability of the dynamical RG

limitations of the quasiparticle picture in the sense of expoin these problems. This avenue of study is currently in
nential relaxation and a damping rate determined by thgrogress.

imaginary part of the self-energy on shell. We expect to re-
port results in the near future. ACKNOWLEDGMENTS
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APPENDIX A: EXACT RETARDED PROPAGATORS
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ture field theory{10], to real time.

Consider theexact equilibrium Wightman and retarded

Green’s functions for a real scalar field:

—IG (=) =( PP (1))

:—if dwGy (w)e -1
—iG (=) =(P_g(t")DK(1))

=—if doGy (w)e et-t)
—iGri(t—t")=—i[G(t—t') =Gy (t—t")]O(t—t")

[ ddo~ -
:_IJEGR,k(qo)e igo(t—t").

PHYSICAL REVIEW D60 065003

(Cbl;(t)d),lz(t')):J ddop(do,K)[ 1+ N(go)Je ™ d=t)
<<1>7§(t’)<bg(t)>=f dqoep(do,K)N(qg)e ™ dot=t")

N(ao)= (A2)

quO— 1 ’

Using the KMS condition, and relabelling the sum indices
in the spectral representation we find that(qg,k)

=—"p(—0o.k). The same steps lead to an equivalent expres-
sion for the transverse gauge fields, whose Wightmann and
Green'’s functions are proportional to the transverse projec-

Inserting a complete set of eigenstates of the full interacttion operator.
ing Hamiltonian, we obtain the spectral representations for The advantage of the representati@®) is that once we

the Fourier transforms given by
~ 1 _
~iBy (0)=7 2, e En|(m|0y(0)|m)|?8(w~ By~ Em))

1
—iGi(@)=5 2 e #El(m|®(0)|n) 25w~ (En~—Ey)

=e 7[~iGy (w)] (A1)
where the last equality, the Kubo-Martin-Schwing&iMS)
condition is obtained by relabellingm—n in the sum and
Z=3 e #Emis the equilibrium partition function. Inserting
a representation of the theta function we finally obtain

N p(w,k)
Gri(Og)=— f dwm
p(w,K)=—i[G () -Gy (w)]

1| ~
=M Gr(w)].

Using the KMS conditior{A1) we can finally write theexact
non-equilibrium Wightmann functions in terms of teeact
spectral density as follows:

t—oo

oody
f —(1—cosyt)p(y) =
oy

=dy = =dy
fo 7 (1=cosytip(y) = p(O)[In(ut)+ 7]+f y P =PO O =y ]+ O

0

t—o

edy sinyt
f —(t——) p(y) = tp(O)[In(p t)+y—1]+t
oY y

T =dy
Stp(0)+p (0)[In(u )+ y]+ fo F[p(y)_ pP(0)—yp'(0)6(n—y)]+O

compute the spectral functign(qy,k) in some approxima-

tion, we can insert the Wightmann functions in the internal
loops thus providing a resummation of the perturbative se-
ries. The results from the first section allow to obtain the

retarded propagat(fBR,k(qO) from the solution of the initial
value problem with an external source through the relation to
linear response as detailed in the first section. For example
by studying the equation of evolution for the expectation
value of the transverse photon fields in the HTL approxima-
tion as was done if45] we can obtain the spectral represen-
tation of the transverse fields in the HTL approximation and
the results of this appendix allow us to implement a resum-
mation of screened photon propagators into the real time
description.

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF SPECTRAL INTEGRALS

We summarize in this appendix the late time behavior of
integrals over the density of states used in Secs. Ill and IV.
In the formulas belowp(y) stands for a smooth function

for 0<y=<<w. Herep(0) as well ap’(0) are finite. For large

y, p(y) decreases as a power such that the integrals ypver
converge at infinity. These properties are satisfied in all cases
where these formulas were used in the paper:

i)

1
Y 1

~dy 1
f7[p(y)—p(0)0(u—y)]+0(;>,

0
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wherey=0.577215 ... isEuler's constant.
Notice that the formulas aiadependentf the scaleuw as one can easily see since the derivative with respegtdbthe

RHS identically vanishes. The scalehas been introduced just to have a dimensionless argument in the logarithms.
We have also used similar integrals when the resonance was away from the threshold. We have, for such a case,

= dy = = dy 1
f —5(1—cosyt)p(y) = wtp(0)+7>f —z[p(y)—p(O)]+O(—>,
AY —-AY t

© dy siny toe = dy ) 1
f —(t ) p(y) = f Vp(y)—wp(O)JrO Y)
whereA is a fixed positive number.

-AY
In addition, we needed in Secs. Il and IV integrals where the spectral density has a logarithmic singularity at a finite point:

= dy y|t=” — © dy |yl
B 2(1 cosyt)p(y)ln—T = tp(0)[1-y=In(2tT)]+P| z[p(y) p(0) ]In——+O
il

APPENDIX C: A SIMPLE EXAMPLE: THE DAMPED Note that this solution contains secular terms that grow in
HARMONIC OSCILLATOR t; the terms denoted hyon-secularemain finite at all times.
We see that the perturbative expansion breaks down at a time
In this appendix we give a rather simple example of the
Sscale~1/e. The expression in the brackets can be interpreted
dynamical renormalization group for pedagogical reason$
as a change in the complex amplitude. The dynamical renor-

and to illustrate the fundamental features within a simple alization is achieved by introducing a time scale at
setting. We consider the equation of motion of a dampetin y 9 e

o e
f d_y( smyt) lnm tpf p(y )|nM_7Tp (0)[|n(2tT)+’)’]+O
~-AY y

. . which the secular terms are absorbed in a renormalization of
harmonic oscillator, the complex amplitude. We writd=A(7)Z(7) with Z(7)
Jry=—ey, e<l (C1) =1+ ez,(7)+ €%z,(7) and choose;(7) to cancel the secu-

lar terms at the scale, this is similar to choosing the renor-
and seek a solution in a perturbative expansior iof the ~ Malization scale in the usual renormalization program. Up to
. 2 ;
form y=yo+ ey, + €2y, + - - - where they; are solutions to  O(€°) we find
the following hierarchy of equations:

Yot+Yo=0, r 2

. . 21(7)_5, 22(7)_§_|§'

Y1tY1=—VYo.

Vot Yo=—Y1, After renormalization the solution is given by
2 2

€ €
These equations can be solved iteratively by starting from y(t,7)=A(7)e'{|1- —(t—r)+ —(t—r)2+| —(t—r)
the zero order solution

- + c.c.+non-secular. Cc2
yo(t)=Ae'+c.c., (€2

in terms of the retarded Green’s function
Since 7 is an arbitrary scale, the solution cannot depend

Gre(t—t")=sin(t—t") o(t—t"). on it; thus the statementy(t, 7)/d==0 leads to the dynami-

. L cal renormalization group equation to this order:

Up to second order i, the solution is given by group 9
2 62

_adil 1 € -~ | IA(T) A e € o
y(t)=A¢€ —§t+§t +|§t +c.c.+non-secular. P +A(T7) > |§ =

065003-20
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where we have expanded thelerivative of the amplitude in
a power series expansion inconsistently to second order.

PHYSICAL REVIEW D60 065003

y(t)=A(0)e (#D7el =Bty ¢ ¢

Obviously the solution to the renormalization group equation

is given by
A( T) — A(O)e—(f/z)Tei(EZ/S)T.

Settingt= 7 in Eq. (C2) we finally find

which is obviously the correct solution to second order. Fur-
ther simple and not-so-simple examples can be found in Ref.
[37].
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