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Dynamical renormalization group resummation of finite temperature infrared divergences
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We introduce the method of dynamical renormalization group to study relaxation and damping out of
equilibrium directly in real time and apply it to the study of infrared divergences in scalar QED. This method
allows a consistent resummation of infrared effects associated with the exchange of quasistatic transverse
photons and leads to anomalous logarithmic relaxation of the forme2a T t ln[t/t0] for hard momentum charged
excitations. This is in contrast with the usual quasiparticle interpretation of charged collective excitations at
finite temperature in the sense of exponential relaxation of a narrow width resonance for which the width is the
imaginary part of the self-energy on shell. In the case of narrow resonances away from thresholds, this
approach leads to the usual exponential relaxation. The hard thermal loop resummation program is incorpo-
rated consistently into the dynamical renormalization group yielding a picture of relaxation and damping
phenomena in a plasma in real time that transcends the conceptual limitations of the quasiparticle picture and
other types of resummation schemes.@S0556-2821~99!02516-3#

PACS number~s!: 12.38.Mh, 11.10.Gh, 11.10.Wx, 11.15.Bt
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I. INTRODUCTION

The possibility of studying experimentally the formatio
and evolution of the quark gluon plasma at the BNL Re
tivistic Heavy Ion Collider~RHIC! and CERN Large Hadron
Collider ~LHC! motivates a deeper understanding of colle
tive excitations in ultrarelativistic plasmas~for reviews see
@1–10#!. An important concept in the assessment of whet
the quark gluon plasma achieves local thermodynamic e
librium is that of the relaxation time scale or damping ra
which determines the lifetime of excitations in the plasm
@9–12#. The concept and definition of the damping rate o
collective excitation is associated with a quasiparticle
scription of these excitations in the plasma and imply ex
nential relaxation. The validity of the quasiparticle conce
requires that the lifetime must be large compared to the
cillation period of the particular excitation mode. In this qu
siparticle picture the collective excitations are described
narrow resonances, their spectral function is of the Br
Wigner form and the damping rate is obtained from t
width of this resonance. For weakly interacting quasipa
cles the narrow resonance~quasiparticle! approximation is
expected to be reliable and the damping rate or lifetime
obtained from the imaginary part of the self-energy on
mass shell of the collective excitation@9–12#.

Early attempts to calculate the damping rates of quasi
ticles in lowest order perturbation theory obtained gauge
pendent and unphysical results@13#. Braaten and Pisarsk
@14–18# introduced a resummation scheme@the resummation
of the hard thermal loops~HTL!# that incorporates the
screening corrections in a gauge invariant manner and re
finite transport cross sections@19#. These hard thermal loop
screening corrections are sufficient to render finite the da
ing rate of excitations at rest in the plasma. However, th
screening corrections are not sufficient to cure the infra
0556-2821/99/60~6!/065003~22!/$15.00 60 0650
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divergences in the damping rate of charged excitations
non-zero and large~hard! spatial momentum@20#. The infra-
red divergences arise from the emission and absorption
long-wavelength magnetic~transverse! photons or gluons
which are not screened by the hard thermal loop correcti
@20#. Whereas longitudinal photons~instantaneous Coulomb
interaction! are screened at finite temperature with a Deb
screening mass'eT, magnetic photons~transverse! are dy-
namically screened for non-zero frequency as a resul
Landau damping@13–16,18,20#. However, quasistatic long
wavelength magnetic photons are not screened in the A
lian theory, and their emission and absorption by a fast m
ing charged particle results in infrared divergences in
imaginary part of the self-energy on shell.

These infrared divergences for charged particles are
specific to particular theories but are somewhat universa
the sense that the same structure of divergences is com
to QED, QCD and scalar QED in lowest order in the HT
resummation@21–29#. Further studies of the spectral func
tion questioned the validity of the quasiparticle approxim
tion and the exponential relaxation associated with a da
ing rate @30,31#. Although these studies provided a
understanding of the failure of the quasiparticle picture~ex-
ponential relaxation! for hard fermions, the issue of the re
laxation time scales was only recently clarified by the imp
mentation of a Bloch-Nordsieck resummation of the infrar
divergent diagrams@32,33# which yields anomalous logarith
mic relaxation. This resummation scheme was previou
used at finite temperature to verify the cancellation of inf
red divergences of soft photons@34#.

Infrared divergences in the propagators of charged fie
are not particular of finite temperature field theory. It is w
known that electrons in QED do not have a pole associa
with their mass shell but rather a cut structure. This is
consequence of the emission of soft photons which beca
©1999 The American Physical Society03-1
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of their masslessness make the putative electron mass
pole to become the beginning of a cut. This results in th
even after ultraviolet renormalization, the wave functi
renormalization is logarithmically infrared divergent o
shell. The implementation of the Bloch-Nordsieck resumm
tion of these infrared divergences at zero temperature le
to the correct electron propagator@35,36#. This resummation
at zero temperature is equivalent to a renormalization gr
resummation of the leading infrared divergences in the
clidean fermion propagator and leads to an anomalous s
ing dimension~albeit gauge dependent! for the threshold be-
havior of fermions in QED@35#.

In this article we introduce adynamical renormalization
group resummation program that allows one to obtain
real timedependence of retarded propagators, and leads
equivocally to the real time dynamics of relaxation and th
malization without any assumptions on quasiparticle str
ture of collective excitations. This resummation scheme
the dynamical~real time! equivalent of the renormalizatio
group resummation of divergences in Euclidean Gree
functions which is so successful in both critical phenome
and asymptotic freedom and transcends approximation
the Bloch-Nordsieck type. The main concept in this progr
is the resummation of secular terms in the perturbative s
tion of the equation of evolution ofexpectation valuesthat
determine the real time retarded propagators. This dynam
renormalization group was originally developed to impro
the solutions of ordinary~and partial! differential equations
@37#, and has been recently implemented in quantum fi
theory out of equilibrium@38,39# where it reveals relaxation
with anomalous~and non-perturbative! exponents@39# ~for
other applications in quantum mechanics of few degree
freedom see@40#!.

In the real time description of the dynamical evolutio
the time variable acts as an infrared cutoff. The infrared s
gularities associated with the absorption and emission
massless quanta are manifest as logarithmic secular term
the perturbative solution of the initial value problem. T
dynamical renormalization group implements a no
perturbativeresummationof these secular terms and leads
anomalous relaxation. In particular for scalar QED we fi
that the charged scalar field expectation value with hard
mentum relaxes in absolute value ase2a T t ln[t/t0] at asymp-
totically long times. The asymptotic relaxation is determin
by the behavior of the density of statesr(k;v) as a function
of v near threshold (v5Ak21m2). The larger isr(k;v)
there, the faster is the decay of the expectation value of
field.

The advantage of this method is that it leads to an und
standing of relaxationdirectly in real timedisplaying clearly
the contributions from different regions of the spectral de
sity to the long time behavior. Furthermore, it offers a sim
criterion to distinguish exponential relaxation and more co
plicated relaxational phenomena that cannot be interpr
within the quasiparticle picture.

This method implements renormalization group resumm
tions without the need for invoking a quasiparticle picture
any other approximation.

The article is organized as follows. In Sec. II we provi
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a direct link between linear response and the study of re
ation phenomena as an initial value problem out of equi
rium. In Sec. III we introduce and test the method of dynam
cal renormalization group within the simple setting of a fie
theory of two interacting scalars, one heavy and the ot
massless. This simpler theory presents the same type o
frared threshold singularities as scalar QED and QED. T
model presents the infrared threshold divergences of a c
cal theory at the upper critical dimensionality. In this secti
we compare the Bloch-Nordsieck approximation and
renormalization group resummation of infrared divergen
in the Euclideanpropagator to the real time resummatio
implemented by the dynamical renormalization approach
different situations at zero temperature. This study show
detail the equivalence of all the different approaches aT
50. We then implement the dynamical renormalizati
group at finite temperature and find anomalous logarithm
relaxation as in finite temperature QED@32#. Section IV is
devoted to a discussion of the dynamical renormalizat
group to elucidate this resummation program and to m
contact with the usual renormalization in Euclidena spa
time. In Sec. V we study in detail scalar quantum electro
namics. This theory has been previously studied within
imaginary time, equilibrium formulation@29# and shown to
have the same type of behavior as QED and QCD in lead
order in the HTL resummation. We study both the exchan
of bare photons and include the HTL resummation progr
consistently to leading order into the dynamical renormali
tion group. This combined resummation of HTL and infrar
secular terms in real time leads at once to anomalous lo
rithmic relaxation as in QED in the Bloch-Nordsieck a
proximation @32# and in the simpler scalar case studied
Sec. III.

We summarize our studies in the conclusion wherein
advocate to use this new approach based on the dynam
renormalization group to study fermionic excitations in
plasma and raise further questions and comments.
method of dynamical renormalization group leads directly
an understanding of damping and relaxationin real time
without invoking a quasiparticle picture or any other a
proximation.

Two appendixes provide technical details and a third
pendix provides a very simple and pedagogical example
the dynamical renormalization group.

II. PRELIMINARIES: FROM LINEAR RESPONSE
TO INITIAL VALUE PROBLEM

We are interested in studying the real time evolution
expectation values of field operators. Consider a scalar fi
theory with an interacting Lagrangian densityL@F# the ex-
pectation value of the scalar fieldF can be obtained from
linear response to an externalc-number source termJ. The
appropriate formulation of real time, non-equilibrium d
namics is that of Schwinger and Keldysh@41–44# in which a
path integral along a contour in imaginary time is required
generate all of the non-equilibrium Green’s functions.

The non-equilibrium Lagrangian density along this co
tour is therefore given by@41–44#
3-2
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LNEQ@F1,F2;J#5L@F1#1JF12L@F2#2JF2.

The non-equilibrium expectation value of the scalar fie
in a linear response analysis is given by

^F1~xW ,t !&5^F2~xW ,t !&

5f~xW ,t !

5E
2`

`

d3xW8dt8GR~xW2xW8,t2t8!J~xW8,t8!

with the retarded Green’s function

GR~xW2xW8,t2t8!5@G.~xW2xW8,t2t8!

2G,~xW2xW8,t2t8!#Q~ t2t8!

5 i ^@F~xW ,t !,F~xW8,t8#&Q~ t2t8!

where the expectation value is in the full interacting theo
but with vanishing source. Consider an external source t
that is adiabatically switched on in time fromt˜2` and of
the form

J~xW8,t8!5J~xW8!eet8Q~2t8!, e˜01. ~2.1!

The retarded nature ofGR(xW2xW8,t2t8) results in that

f~xW ,t50!5f0~xW ! ~2.2!

ḟ~xW ,t,0!50 ~2.3!

wheref0(xW ) is determined byJ(xW ) @or, vice versa, the initial
valuef0(xW ) can be used to findJ(xW )] and the vanishing of
the derivative for t,0 is a consequence of the retard
nature of GR . The linear response problem with th
initial conditions att50 given by Eqs.~2.2! and ~2.3! can
now be turned into an initial value problem for th
equation of motionof the expectation value by using th
~integro-!differential operatorO(xW ,t) inverse ofGR(xW2xW8,t
2t8),

O(xW ,t)f~xW ,t !5J~xW ,t !, f~xW ,t50!5f0~xW !,

ḟ~xW ,t,0!50,

for the source term given by Eq.~2.1!. Within the non-
equilibrium formulation the equation of motion of the expe
tation value is obtained via the tadpole method and autom
cally leads to a retarded initial value problem by coupling
external source that satisfies Eq.~2.1!.

III. SIMPLE EXAMPLE: A SCALAR THEORY

We begin by considering a simple scalar theory of a m
sive and a massless scalar field with Lagrangian density

L5
1

2
~]ms!21

1

2
~]mp!22

1

2
m0

2s22g0s2p1J0s
06500
y
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where the source coupled to the sigma field has been in
duced to provide an initial value problem as explained in
previous section. Introducing the following renormalizatio

s5Zs
1/2s r , p5Zp

1/2p r , Jr5Zs
1/2J0 ,

m0
2Zs5mr

2Zs1dm2, g0ZsZp
1/25grZg .

We now suppress the labelr with all quantities being renor-
malized, and write the Lagrangian density in terms of ren
malized quantities and counterterms

L5
1

2
~]ms!21

1

2
~]mp!22

1

2
m2s22gs2p1Js1Lct

Lct5
1

2
~Zs21!@~]ms!22m2s#2

1

2
dm2s21

1

2
~Zp21!

3~]mp!22
1

2
m2s22g~Zg21!s2p2

1

2
dmp

2 p2

where we introduced a mass counterterm for thep field to
keep it massless. The counterterms are adjusted in pertu
tion theory as usual.

The purpose of studying this simpler model is twofold:~i!
It provides a simpler setting to implement and test t
method of the dynamical renormalization group and comp
with previous studies of relaxation@43,44#. ~ii ! The nature of
the infrared divergences in this simpler theory is similar
that of gauge theories in lowest order, i.e. the exchange
massless field in the self-energy of a massive field. Th
infrared divergences are very similar to those found in sca
QED @29#, QED @32# and lowest order QCD@10#. After
studying the resummation of the infrared divergences via
dynamical renormalization group, we apply the method
gauge theories.

Writing s(xW ,t)5c(xW ,t)1f(xW ,t) with ^c(xW ,t)&
50; f(xW ,t)5^s(xW ,t)& using the tadpole condition and tak
ing spatial Fourier transforms we find the equation of mot
in the amplitude expansion:

f̈k~ t !1~Zs21!@f̈k~ t !1vk
2fk~ t !#1@vk

21dm2#fk~ t !

1E
2`

t

Sk~ t2t8!fk~ t8! dt85Jk~ t !

with vk
25k21m2. We have absorbed the contribution of

momentum and time independent tadpole~ultraviolet and in-
frared divergent! in a renormalization of the mass. As dis
cussed in the previous section, the source is chosen so
fk(t50)5fk(0), ḟk(t<0)50. S(t2t8) is the retarded
self-energy. WritingSk(t2t8)5(d/dt8)gk(t2t8) @with the
boundary conditiongk(2`)50 corresponding to adiabati
switching on of the interaction# and imposing thatJk(t.0)
50, after an integration by parts the equation of motion
t.0 becomes
3-3
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f̈k~ t !1~Zs21!@f̈k~ t !1vk
2 fk~ t !#

1@vk
21dm21gk~0!#fk~ t !

2E
0

t

gk~ t2t8!ḟk~ t8! dt850. ~3.1!

To one loop order we find

Sk~ t2t8!52
g2

4p3E d3q

qvk1q
$~11Nq1nk1q!

3sin@~q1vk1q!~ t2t8!#2~Nq2nk1q!

3sin@~q2vk1q!~ t2t8!#% ~3.2!

whereNq is the Bose-Einstein distribution function for th
massless fieldp and nk1q is the corresponding distributio
for the massive fields. It proves convenient to write the
self-energy in the form of a dispersion relation

Sk~ t2t8!5E
2`

`

dvr~k;v!sin@v~ t2t8!# ~3.3!

r~k;v!52
g2

4p3E d3q

qvk1q
$~11Nq1nk1q!d~v2q2vk1q!

2~Nq2nk1q!d~v2q1vk1q!% ~3.4!

and consequently

gk~ t !5E dv

v
r~k;v!cos~vt !. ~3.5!

A simple calculation yields

r~k;v!52
g2

2p2 H Fv22vk
2

v22k2

1
T

k
ln

~12e2q1/T!~12e2(v2q2)/T!

~12e2q2/T!~12e2(v2q1)/T!
GQ~v2vk!

1
T

k
ln

~12e2q1
!/T

~12e2(q12v)/T!
J @Q~k2v!1Q~k1v!#,

~3.6!

q65
v22vk

2

2~v7k!
.

There are some noteworthy features of the spectral den
~3.6! above:~i! Whereas the zero temperature contributi
vanishes~linearly! near threshold atv5vk , the finite tem-
perature contributiondoes notvanish at threshold.~ii ! The
finite temperature contribution below the light cone2k,v
,k has its origin in Landau damping type processes
which thes particle scatters off ap particle in the medium.
06500
ity

n

As it will be seen and understood below the spectral d
sity ~3.6! leads to threshold infrared divergences. These w
be studied in detail for the casesT50, TÞ0 separately in
the next subsections.

The equation of motion~3.1! can be solved by Laplace
transform. In terms of the Laplace transforms offk(t) and
gk(t) given by f̃k(s) and g̃k(s) respectively, withs the
Laplace transform variable, we find

f̃k~s!5
fk~0!

s H 12
vk

2C
s21vk

21P~s!
J ~3.7!

with

C511~Zs21!1@dm21gk~0!#/vk
2 ~3.8!

P~s!5~s21vk
2!~Zs21!1dm21gk~0!2sg̃k~s!.

The term

G~k,s!5@s21vk
21P~s!#21

is recognized as the propagator in terms of the Laplace v
ables. The retarded Green’s function is obtained by the a
lytic continuation

Gret~k,v!5G~k,s5 iv1e!ue501.

The Laplace transform of the self-energy is recognized
be

S̃k~s!5gk~0!2sg̃k~s!5E dvr~v!
v

s21v2

and its analytic continuation is then given by

S̃~s5 iv101!5SR~v!1 iS I~v!

SR~v!5E dv8r~k,v8!P v8

v822v2
~3.9!

S I~v!52
p

2
@r~k,uvu!2r~k,2uvu!#sgn~v!.

~3.10!

ThereforeP(s) is recognized as the twice subtracted se
energy which is rendered finite by a proper choice of co
terterms. Furthermore, choosing to renormalize ats252vk

2

with the counterterms given by

Zs215
]SR~k,v!

]v2 U
v5vk

dm252E r~k,v8!P v8

v822vk
2

dv8

we find that
3-4
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C511E r~k,v8!

v8
P

vk
2

~v822vk
2!2

dv8 ~3.11!

is finite even for renormalizable theories in whichr(k,v)
;v2 at largev, leading to quadratic and logarithmic dive
gences with logarithmically divergent wave function reno
malizations. Thisfinite wave function renormalization wil
be seen to emerge naturally from the dynamical renormal
tion group.

The real time evolution is obtained by performing t
inverse Laplace transform along a path in the comples
plane parallel to the imaginary axis to the right of all t
singularities off̃k(s). We note that the putative pole ats
50 has vanishing residue.

A. Bloch-Nordsieck and renormalization group at T50

At T50 we find after renormalizing the mass

S̃~s!5gk~0!2sg̃k~s!5
g2

4p2

PE
21m2

PE
2

ln
PE

21m2

m2

~3.12!

PE
25s21k2

where PE
2 is identified with theEuclideanfour momentum

squared. Since in this theory the wave function renormal
tion is finite, we chooseZs51 in what follows. Therefore up
to this one loop order we obtain the Euclidean irreduci
two point function~the inverse of the Green’s function! to be
given by

G~k,s!5@G~k,s!#215mR
2S PE

2

mR
2

11D
3F11

g2

4p2PE
2

lnS PE
2

mR
2

11D G . ~3.13!

We clearly see thatPE
2
˜2mR

2 is no longer a pole but the
end point of a logarithmic branch cut, corresponding to
threshold for the intermediate state of as particle and a soft
masslessp particle.

This logarithmic infrared divergence near threshold is
same phenomenon as in gauge theories wherein the
energy of charged fields has an infrared logarithmic div
gence at threshold associated with the emission of
quanta. The Bloch-Nordsieck resummation exponentiates
logarithmic divergences near threshold leading to

GBN~k,s!5
1

mR
2 S PE

2

mR
2

11D l21U
P

E
2 /m

R
2'21

~3.14!

with the dimensionless coupling

l5
g2

4p2mR
2

. ~3.15!
06500
-

a-

-

e

e

e
lf-
-
ft

he

Using this resummed expression for the propagator the
verse Laplace transform can be performed by wrapping
contour around the branch cuts along the imaginary a
from s56 ivk to 6 i`. Computing the discontinuity of
GBN(k,s) across these cuts the real time evolution of t
expectation value is given by

fk~ t !5
fk~0!

m2 vk
2Cm2(12l)

2

p
sin@pl#E

vk

` dv

v

cos~vt !

@v22vk
2#12l

with vk
25k21m2.

Using now the result@46#

E
1

` dx cos~xy!

x ~x221!12l

5
p2y

4 sinpl
$J1/22l~y!@N21/22l~y!

2H21/22l~y!#

2J2 1/2 2l~y!@N1/22l~y!2H1/22l~y!#%

with Jn(z) a Bessel function andHn(z) a Struve function,
we find the asymptotic long time behavior

fk~ t ! 5
t˜`

2
fk~0!

m2

vk
2C

G~12l! Fm2

vk
2G 12lF 2

vk t G
l

3cosS vk t1
pl

2 D F11OS 1

vkt
D G . ~3.16!

Here we used the asymptotic formula@46#

Hn~z!2Nn~z! 5
z˜` 1

Ap GS n1
1

2D S z

2D n21F11OS 1

z2D G .
We see that the Bloch-Nordsieck resummation of the inf
red divergences leads to relaxation with ananomalous expo-
nent. This is similar to the case of QED. We now argue th
the infrared divergence and the emergence of anomalou
mensions can be understood by establishing a parallel
staticcritical phenomena at the upper critical dimensional
in Euclidean space-time. This connection will pave the w
to using the renormalization group to sum up infrared div
gences non-perturbatively much in the same manner as in
theory of critical phenomena. In order to establish this co
nection more clearly we now introduce the dimensionle
variable

P̄25
PE

2

mR
2

11.

The main reason for introducing this variable is that wh
PE

2
˜2mR

2 , P̄2
˜0; therefore the threshold behavior

mapped onto the zero Euclidean four momentum region
terms of the new variable. In critical phenomena logarithm
divergences appear when the Euclidean four momen
goes to zero at criticality at the upper critical dimension. W
now introduce a wave function renormalization constant
3-5
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Zf~K̄ !511l ln K̄2

and a renormalized irreducible two-point function

GR~ P̄,K̄ !5Zf~K̄ !G~ P̄!

5mR
2 P̄2F11lS 1

P̄221
ln P̄21 ln K̄2D G

where l is the dimensionless coupling~3.15! and K̄ is an
arbitrary renormalization point. The bare irreducible functi
G( P̄) is independent of the renormalization pointK̄, i.e.
K̄dG/dK̄50, which leads to the renormalization group equ
tion

F K̄
]

]K̄
2hGGR~K̄,P̄!50 ~3.17!

h5
]Zf~K̄ !

] ln K̄
52l.

Near threshold, whenP̄˜0,

GR~K̄,P̄!5mR
2 P̄2FS P̄

K̄
D

with F a dimensionless function of its argument. The ren
malization group equation~3.17! then leads to

F P̄
]

] P̄
1hGFS P̄

K̄
D 50

with the solution

FS P̄

K̄
D 5F~1!F P̄

K̄
G2h

finally leading to the renormalization group improved tw
point function

GRG~k,s!5@F~1!mR
2K̄2#21F K̄2

PE
2

mR
2

11G 12l

~3.18!

which coincides with the one obtained by the Bloc
Nordsieck resummation, Eq.~3.14!, up to an overall multi-
plicative factor. We can now retrace the same steps that
to the real-time evolution of the expectation value by p
forming the analytic continuation for the retarded correlat
function and the inverse Laplace transform, leading to
relaxation with anomalous dimension given by Eq.~3.16!.

The equivalence between the renormalization group
proved and the Bloch-Nordsieck re-summed propagato
fairly well known @35,36#. The main purpose of our analys
is to make the point that the anomalous dimension in
amplitude of the expectation value can be understood as
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ing from the scaling behavior of the Green’s function ne

threshold in terms of the variableP̄. This scaling behavior, a
result of the infrared divergences associated with the em
sion of soft quanta, is akin to those in static critical pheno
ena.

Furthermore, this structure of anomalous dimension of
Euclidean propagator as a result of threshold infrared div
gences is similar to that found in QED atT50 either via a
Bloch-Nordsieck or renormalization group resummati
@35,36#.

In preparation to the forthcoming discussion presented
low on the real time interpretation of the renormalizati
group resummation of infrared divergences, it proves illum
nating to obtain the perturbative form of the real time so
tion. This will allow us to identify the real time manifestatio
of infrared divergences. The naive perturbative expansion
the renormalization group improved propagator~3.14! to first
order in the couplingl near threshold leads obviously to th
one-loop result~3.13!. After performing the Fourier trans
form and obtaining the real time evolution given by E
~3.16! we can now expand naively in the coupling consta
and find

fk~ t !'Akcos~vkt !@12l ln~vkt !#1••• ~3.19!

with Ak the amplitude read off from Eq.~3.16!. This expres-
sion reveals that if we attempt aperturbativesolution of the
real-time equation of motion~3.1! we would findlogarithmic
secular terms, i.e. terms that grow in time and invalidate th
perturbative solution at long times. In this case a perturba
expansion of the real-time equation of motion will bre
down at time scalestbreak'e1/l/vk . The renormalization
group in the energy representation provides a resumma
of the infrared divergences in the propagator, which lead
a real-time evolution that is asymptotically decreasing fu
tion of time.

We now study the perturbative solution of Eq.~3.1! that
reveals indeed these secular terms, and implement a
time version of the renormalization group that impleme
precisely this resummation.

B. Dynamical renormalization group at T50

Having established the resummation of threshold infra
divergences both within the Bloch-Nordsieck approximati
and the renormalization group, we now introduce a no
method that allows a similar resummation butdirectly in real
time. Consider seeking a solution of the equation of moti
~3.1! in perturbation theory in the coupling. Writing the se
energy as an expansion in terms of the dimensionless
pling l given by Eq.~3.15!, Sk5(n51lnSk

(n) a perturbative
solution obtained as a power series expansion is given
fk(t)5fk

(0)(t)1lfk
(1)(t)1••• with the hierarchy of equa-

tions

f̈k
(0)~ t !1vk

2fk
(0)~ t !50
3-6
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f̈k
(1)~ t !1vk

2fk
(1)~ t !52@dm21gk

(1)~0!#fk
(0)~ t !

1E
0

t

gk
(1)~ t2t8!ḟk

(0)~ t8!dt8

A5A

where we note that the contribution from the wave-funct
renormalization vanishes by virtue of the zeroth-order eq
tion of motion. The solution to the zeroth-order equation

fk
(0)~ t !5Ake

ivkt1Ak* e2 ivkt

and the initial conditionsfk(t50)5fk(0), ḟk(t50)50
implies Ak5Ak* 5fk(0)/2, but we will leave both constant
to recognize more easily the different contributions and
will use this condition at the end of the calculations. T
solution to the above hierarchy of equations can be foun
terms of the retarded Green’s function of the unperturb
problem:

GR~ t12t2!5
1

vk
sin@vk~ t12t2!#Q~ t12t2!.
m
u

l
o

ed
w

T
te
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The higher order corrections are easily~but tediously! com-
puted using the spectral representation of the self-ene
The first order term is given by

fk
(1)~ t !5fk

(1,a)~ t !1fk
(1,b)~ t !

fk
(1,a)~ t !5

1

vk
E dv

v
r~v!E

0

t

dt8E
0

t8
dt1sin@vk~ t2t8!#

3cos@v~ t82t1!#ḟ (0)~ t1!

fk
(1,b)~ t !52

1

vk
S dm21E dv

v
r~v! D

3E
0

t

sin@vk~ t2t8!#f (0)~ t8!dt8

where the spectral densityr(v) is given to one loop order by
Eq. ~3.4! and its leading infrared contribution forTÞ0 given
by Eq.~3.6!. The integral over the time variables can be do
straightforwardly; the result is given by
fk
(1,a)~ t !52

i

4E dv

v
r~v!H Ake

ivktF 1

vk2v S t2
ei (v2vk)t21

i ~v2vk!
D1v˜2vG

2Ake
2 ivktF 1

vk2v S e2ivkt21

2ivk
2

ei (vk1v)t21

i ~vk1v! D1v˜2vG
1Ak* eivktF 1

vk1v S e22ivkt21

22ivk
1

e2 i (vk2v)t21

i ~vk2v! D1v˜2vG
2Ak* e2 ivktF 1

vk1v S t2
ei (v1vk)t21

i ~v1vk!
D1v˜2vG J ~3.20!
a

n
r in

sion

g

fk
(1,b)~ t !5

i

2vk
S dm21E dv

v
r~v! D H Ake

ivktt2Ak* e2 ivktt

2Ake
2 ivkt

e2ivkt21

2ivk
2Ak* eivkt

e22ivkt21

2ivk
J .

~3.21!

Secular terms will arise from the contributions of the for
ei (v2vk)t21 if the coefficients of these terms produce sing
larities in the integration region.

We are now in condition to analyze different cases. A
though we are primarily interested in applying the method
dynamical renormalization group to the situation of infrar
divergences, in order to gain insight and test this method
begin by studying situations in which results are known.
this purpose we address the familiar case of a generic in
acting scalar theory in which the pole frequencyvk is away
-

-
f

e
o
r-

from thresholds (v th), either above, in which case there is
resonance, or below in which case the particle is stable.

1. vkÞv th

For vk,v th there are no singularities in the integratio
region; therefore the only secular terms are those linea
time in fk

(1,a)(t),fk
(1,b)(t). If on the other handvk.v th and

far away from threshold, there are singularities~simple and
double poles! in the integration region.

We can extract the secular terms in the above expres
in both casesvk.v th and vk,v th by using the results of
Appendix B or alternatively taking the long time limit usin
the distributions~see Appendix B!

t˜`
lim 1

a2
@at2sinat#5PS 1

a2D @at2sinat#
3-7
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t˜`
lim 12cosat

a2
5ptd~a!1PS 1

a2D ~12cosat !

where thed(a) accounts for resonant denominators. Th
term is recognized from the familiar Fermi’s golden rule.

Gathering the secular terms from both contributio
~3.20!,~3.21! and takingAk5Ak* we find

fk
(1)~ t !5Ake

ivktH F i
dm21SR~vk!

2vk
t2

S I~vk!

2vk
t G

1E dv

v
r~v!P

vk
2

~vk
22v2!2

2E dv

v
eivtr~v!P

vk
2

~vk
22v2!2J 1c.c.

~3.22!

where we have used the expressions for the real and im
nary parts of the analytically continued self-energy given
Eqs.~3.9!,~3.10!. The last terms are non-secular at long tim
and remain perturbatively small.

In this manner the resummation of the secular terms
obvious and correspond to a shift in the pole positionvk
˜vk1dvk ~finite by a proper choice ofdm2) and a width
or decay rateGk given by the imaginary and real part respe
tively of the first order correction above. Since this is t
simplest and most familiar setting to introduce the dynam
renormalization group, we now present the resummation
the secular terms via this method. This is achieved by in
ducing a ~complex! renormalization of the amplitude an
writing @37,38#

Ak5Ak~t!Zk~t! ~3.23!

Zk~t!511lzR
(1)~t!1 ilzI

(1)~t!1•••

~3.24!

wheret is an arbitrary time scale that acts as a renormal
tion point and thezR,I

(n)(t) are real functions. Choosing

lzR
(1)~t!5

S I~vk!

2vk
t, lzI

(1)~t!52
dm21SR~vk!

2vk
t

we obtain

fk~ t !5Ak~t!eivktF11 i
dm21SR~vk!

2vk
~ t2t!

2
S I~vk!

2vk
~ t2t!G1c.c.1regular terms

~3.25!

where the regular terms refer to the non-secular last te
The meaning of the above expression is clear: a chang
the time scale corresponds to a change in the~complex! am-
plitude of the expectation value. Whereas the original per
06500
s

gi-
y
s
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l
of
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-

.
in

r-

bative expansion was only valid for times such that the c
tribution from the secular terms remain very small compa
to the unperturbed value, the renormalized expression~3.25!
remains valid for intervalst-t such that the secular term
remain small. By choosingt arbitrarily close tot we have
improved the perturbative expansion. However,fk(t) does
not depend ont: a change of the renormalization pointt is
compensated by a change in the complex amplitudeAk .
This leads to thedynamical renormalization group equatio
to lowest order:

]Ak~t!

]t
2F i

dm21SR~vk!

2vk
2

S I~vk!

2vk
GAk~t!50

with the obvious solution

Ak~t!5Ak~0!eidvkte2Gkt

dvk5
dm21SR~vk!

2vk

Gk5
S I~vk!

2vk
.

Choosing the arbitrary scalet to coincide with the timet
we obtain the resummedexpression for the expectatio
value:

fk~ t !5CAk~0!eivp(k)te2Gkt2Ak~0!

3E dv

v
eivtr~v!P

vk
2

~vk
22v2!2

1c.c. ~3.26!

C511E dv

v
r~v!P

vk
2

~vk
22v2!2

with vp(k) the pole position shifted by one-loop correctio
and Gk is identified with the decay or damping rate. Th
constantC is the same as in Eq.~3.11!. The on-shell renor-
malization leading to Eq.~3.11! is here a consequence of th
perturbative expansion in terms of the solutions of the eq
tions of motion.

After some straightforward algebra, the constantC is
found to be the same as the residue of the Laplace trans
~3.7! at the pole~or resonance! at vp . The last, non-secula
terms in Eq.~3.26!, allows us to make contact with previou
results@44#. The long time dynamics of this integral is dom
nated by the threshold contribution@44#. If the spectral den-
sity vanishes near threshold asr(v)'(v2v th)a, then the
asymptotic time evolution is described by a power law rela
ation t2a21 ~long time tails!. Thus we see that the dynamic
renormalization group resummation has obtained all of
features of the solution via the Laplace transform~3.7! which
were previously obtained@44#.

The resummation via the dynamical renormalizati
group has led to a~asymptotic! convergent perturbative ex
pansion for the time evolution of the expectation value.
3-8
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This simple case provides for a clear understanding of
resummations implied by the dynamical renormalizat
group and paves the way for understanding the more c
plicated cases of threshold singularities and finite temp
ture below.

2. Threshold singularities

Having established the reliability of the dynamical reno
malization program in more familiar settings, we are now
position to apply this method to study the case of thresh
infrared divergences arising from the emission of soft ma
less quanta. Thus we now return to the theory of a mas
and a massless scalar fields of the beginning of this sec
We begin by analyzing the situation atT50 to make contact
with the Bloch-Nordsieck and Euclidean renormalizati
group resummations, but now implementing thedynamical
renormalization groupresummation.

Since near threshold the spectral density~3.6! for T50
becomes@l is defined by Eq.~3.15!#

r~k,v! 5

v˜vk

24 lvk~v2vk!1O~v2vk!
2,

besides the linear secular terms infk
(1,a) ,fk

(1,b) @see Eqs.
~3.20!,~3.21!# there is a potentially infrared divergent ter
arising from fk

(1,a) which is real and using the results o
Appendix B, found to be given by

1

4E dv

v
r~k;v!

12cos@~v2vk!t#

~v2vk!
2

5
mt@1

2l~ ln mt1g!1O~l!

whereg is Euler-Mascheroni constant~see details in Appen
dix B!. We note that time acts as an infrared cutoff in t
sense that forv'vk at finite time the integral is convergen
The infrared divergences are now manifest in a logarithm
time dependence. The linear secular terms combine just a
the previous case to provide animaginarysecular term given
by i @dm21SR(vk)#/2vk just as in Eq.~3.22! which in this
case is simply frequency shift as can be seen from the
pression for the self-energy given by Eq.~3.12!. This shift is
made finite with a proper choice ofdm2. Thus in this case
we find

fk~ t !5Ake
ivktF11 i

dm21SR~vk!

2vk
t2l ln m̄t G1c.c.

1regular terms

with m̄5meg. Similarly to the previous case, we introduc
the complex amplitude~3.24! and choose

lzR
(1)~t!5l ln m̄t;

lzI
(1)~t!52

dm21SR~vk!

2vk
t52dvkt
06500
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leading to the following expression forfk(t):

fk~ t !5Ak~t!eivktF11 idvk~ t2t!2l ln
t

tG1c.c.

1regular terms.

fk(t) is independent of the arbitrary time scalet, leading to
a renormalization group equation obeyed by the comp
amplitude, which is now given this order by

]Ak~t!

]t
2F idvk2

l

t GAk~t!50

with the solution

Ak~t!5Ak~t0!eidvktFt0

t Gl

.

Again, choosing the scalet to coincide with the timet, we
finally obtain the asymptotic dynamics of the expectati
value in this case to be given by

fk~ t !5Ak~t0!eivk,RtFt0

t Gl

1c.c.1small ~3.27!

wherevk,R5vk1dvk . The terms denoted by small rema
perturbative at all times and decay faster than the term w
the anomalous dimension in weak coupling. This express
coincides with the long time behavior found in the previo
sections via the Bloch-Nordsieck and the renormalizat
group resummation of the logarithmic infrared divergenc
of the propagator given by Eq.~3.16!. We thus conclude tha
the dynamical renormalization group implements a resu
mation inreal timewhich is complementary to the renorma
ization group or Bloch-Nordsieck resummations in the f
quency representation of the propagator.

C. TÞ0: Dynamical renormalization group resummation

At finite temperature the infrared divergences are
hanced by the Bose-Einstein distribution function of ma
less particlesNq'T/q, q/T!1. This can be seen at the lev
of the spectral densityr(k;v) given by Eq.~3.6!. Whereas
the zero temperature contribution vanishes linearly n
threshold, the finite temperature contribution remains c
stant there providedmÞ0. In particular we find that nea
threshold the Laplace transform of the retarded propag
behaves as

G~k,s;T!5@G~k,s;T!#21

5~PE
21mR

2 !F11
g2

4p2PE
2

lnS PE
2

mR
2

11D G
2ḡ~T,k!ln

PE
21mR

2

m2
3-9
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ḡ~T,k!5
g2

4p2 S T

k D ln
vk1k

vk2k

where m is an arbitrary infrared cutoff scale and assum
that the external momenta is not too hard. Thus whereas
zero temperature inverse propagator actually vanishe
threshold~with an infrared divergent slope! the finite tem-
perature propagator diverges there, reflecting the stronge
frared divergence at finite temperature. In this situation
Bloch-Nordsieck resummation of the Euclidean propaga
is not clear as was emphasized in Ref.@32# and a multipli-
cative~wave function! renormalization cannot cure the infra
red divergence since the finite temperature part isnot pro-
portional toPE

21mR
2 .

It is precisely in this situation that the power of the d
namical renormalization group is revealed. We will stu
two different cases in detail:~i! hard external momentumk
@m ~or m50) and~ii ! soft external momentumk<m.

1. Hard external momentum (m'0)

In this case the Landau damping cut coalesces with
cut for v>k and both terms of the spectral density~3.6!
contribute. Because of the symmetryv˜2v of the time
dependent terms in Eq.~3.20! the frequency integral in the
interval 2k,v,k plus the integral in the intervalk,v
,` can be folded into an integral in the range 0,v,` in
terms of the effective finite temperature spectral density

r̄~k;v!52
g2

p2

T

k
lnF12e2uv1ku/2T

12e2uv2ku/2TGQ~v!.

The asymptotic time dependence is dominated by the re
v'k which gives the infrared divergences of the propaga
In this region the effective spectral density

r̄~k;v! 5
v˜kg2

p2

T

k
ln

uv2ku

2T̄k

Q~v!1O~v2k!,

T̄k5
T

12e2k/T
. ~3.28!

We start by analyzing the different contributions to the
frared behavior of the coefficient ofAke

ivkt. A simple analy-
sis leads to the following conclusions:~i! The contribution
near threshold to theimaginarypart of the coefficient cancel
out between the production cut (v.k) and the Landau-
damping cut (0,v,k), leaving a linear secular term with
out infrared divergences that renormalizes the mass.~ii ! The
contributions near threshold to thereal part are the same fo
both cuts 0,v,k andv.k and add up. This contribution
in the asymptotic long time limit is obtained from the form
las in Appendix B and given by
06500
d
he
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in-
a
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e

n
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-

g2

p2

T

2k2
tE

0

`dz

z2
lnF z

2tT̄
G ~12cosz!52

g2

4pk2
Tt ln m̄t,

m̄52T̄eg21 ~3.29!

where we have quoted the leading contribution in t
asymptotic time regime. Subleading terms can be con
tently obtained using the formulas of Appendix B. The co
ficient of Ak* eivkt has a potential infrared divergence; how
ever, the contribution, from both cuts cancel each oth
leaving an infrared~and ultraviolet! finite result without
secular terms. The zero temperature contribution and tha
fk

(1,b) lead to a finite frequency shift. Implementing the d
namical renormalization group resummation we find

fk~ t !5Ak~ t0!eivk,R(t2t0)e2ak T t ln[ t/t0]1c.c., ak5
g2

4pk2

where we have solved the renormalization group equa
with an initial condition at a timet051/m̄. This solution
reveals clearly the renormalization group invariance,
change in the arbitrary timet0 is compensated for by a
change in the amplitude and an overall phase.

2. Soft external momentum (mÞ0)

For mÞ0 the Landau damping cut and the production c
are separated and the infrared divergences arise only f
the production cutvk,v. In the high temperature limit we
find near threshold

r~k;v! 5

v˜vk

2
g2

p2

T

k
lnMk@11O~v2vk!#Q~v2vk!

~3.30!

Mk[11
2 k

m2 ~k1vk!.

We note that in this case the spectral densityr(k;v) ap-
proaches a constant value at threshold.

The terms proportional tot/(v1vk) in fk
(1,a)(t) do not

have infrared divergences but they remain as secular te
that combine with those offk

(1,b)(t) to give a renormaliza-
tion of the frequency just as in the previous cases. The in
red divergences arise from terms with denominators 1v
2vk).

In this case these infrared divergences are manifes
logarithmic secular terms in the real and imaginary pa
leading to damping and anomalous logarithmic phases.

These contributions are the following:~i! The imaginary
part of the coefficient ofAeivkt is given asymptotically by
~see Appendix B!
3-10
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i t

4Evk

`

dv
r~k;v!

v

1

v2vk
F12

sin~v2vk!t

~v2vk!t
G

5
mt@1

2
i g2 lnM k

4p2kvk

Tt ln@mt eg21#

1 i t E
vk

` dv

v2vk
Fr~k;v!

v
2

r~k;vk!

vk

3Q~m2v1vk!G1OS g2

t D . ~3.31!

Notice that Eq.~3.31! is independentof the scalem as one
can easily see since the derivative with respect tom of the
right-hand side~RHS! identically vanishes. The scalem has
been introduced just to have a dimensionless argument in
logarithms.~ii ! The real part is asymptotically given by~see
Appendix B for details!

1

4Evk

`

dv
r~k;v!

v
@12cos~v2vk!t#F 1

~v2vk!
2

2
1

2vk~v2vk!
G

5
mt@1

2
g2 Tt

8 p k vk
lnMk2

g2 T

4 p2 m2 vk
2

3F11
3 m2

2 k vk
lnMkG ln@m̄ t eg#1O~g2!.

The remaining secular but infrared safe terms
f (1,a);f (1,b) contribute to the imaginary part a term propo
tional to t which can be absorbed in a redefinition of t
arbitrary scalem in Eq. ~3.31!. The logarithmic divergence
as k/m˜` reflects precisely the logarithmic time depe
dence found in the previous case of hard momentumm'0
and that results in the anomalous relaxation proportiona
t ln mt as given by Eq.~3.29!.

Implementing a resummation of the secular terms with
dynamical renormalization group following the steps o
lined above leads to the asymptotic form

fk~ t !5Ak~ t0!eiwk(t,t0)F t0

t G b̄k

e2Ḡkt1c.c. ~3.32!

wk~ t !5vk,R~ t2t0!1
g2 lnM k

4p2kvk

Tt ln
t

t0

Ḡk5
g2T

8pkvk
lnMk

b̄k5
g2T

4p2m2 vk
F11

3 m2

2 k vk
lnMkG .
06500
he
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e
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It is interesting to try and understand the exponen
damping in this case. For this we show in Fig. 1 the spec
density for the sigma field in this soft case near threshol

S~k,v;T!5
S I~v,k;T!

@v22vk
22SR~v,k;T!#21@S I~v,k;T!#2

SR~v,k;T!52
1

2
r~k,vk!ln

v22vk
2

m2
1O~v2vk!

S I~v,k;T!52
p

2
r~k,vk!1O~v2vk! ~3.33!

wherer(k,vk) is given by Eq.~3.30! and for the figure it
was taken to ber(k,vk)520.005. S(k,v;T) vanishes at
threshold but with a singular slope; this results in that
spectral density features a sharp peak near threshold, w
is found to be atv'vk1 1

2 r(k,vk)lnur(k,vk)u1••• .
The decay rate is given by (1/2)S I(vk)/(2vk), the extra

factor 1/2 being simply a result of the fact thatvk is the
threshold, i.e. the end point of the integral, and therefore
on-shell delta function only picks up half of the contributio
The logarithmic dependence of the phase is a consequen
the logarithmic infrared threshold divergences and preve
an interpretation in terms of quasiparticle poles.

This case must be contrasted to that ofm50, wherein the
imaginary part of the self-energy isinfrared singular at
threshold. This is revealed in the logarithmic singularity
the limit k/m˜` which reflects precisely the logarithmi
time dependence found in the previous case of hard mom
tum m'0, leading to the anomalous relaxation proportion
to t ln@mt# as given by Eq.~3.29!.

IV. DISCUSSION AND INTERPRETATION

Before proceeding further to the case of a gauge theor
is convenient to pause and analyze the results that we h
obtained so far and elucidate the main aspects of the dyn
cal renormalization group. The scalar model chosen in

FIG. 1. The spectral density for thes field S(k,v;T) @Eq.
~3.33!# near threshold forr(k,vk)520.005.
3-11
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previous section is a non-trivial example of a superrenorm
izable theory that displays the same type of infrared div
gences as a critical theory at the upper critical dimens
The usual renormalization group leads to a Bloch-Nordsi
resummation and anomalous dimensions atT50. Perform-
ing the Fourier transform we recognized that the real-ti
interpretation of the renormalization group resummation c
responds to a power law relaxation with the power de
mined by the anomalous dimension. A naive perturbat
expansion in the dimensionless coupling results in sec
terms, i.e. terms that grow in time and signal the breakdo
of the perturbative expansion at long time scales. These s
secular divergences are obtained directly in real time w
the equation of motion for the expectation value is solved
a perturbative expansion. The dynamical renormalizat
group implements a resummation of these secular di
gences which leads to an improved perturbative solut
The renormalization procedure can be understood wit
very simple and pedagogical example, the weakly dam
harmonic oscillator. Consider the equation of motion

ÿ1y52e ẏ, e!1.

Attempting to solve this equation in a perturbative expans
in e leads to the lowest order solution~see Appendix C!

y~ t !5AeitF12
e

2
t G1c.c.

where the term that grows in time; i.e., the linear secu
term leads to the breakdown of the perturbative expansio
time scalestbreak}1/e. The dynamical renormalization intro
duces a time scalet in the form A5A(t)Z(t), Z(t)51
1ez1(t)1•••; choosingz1 to cancel the secular term at th
time scale leads to the renormalization group equation

]A~t!

]t
1

e

2
A~t!50

and the improved solutiony(t)5e2(e/2)t@A(0)eit1c.c.# after
setting t5t in the solution. This obviously is the correc
solution toO(e). The interpretation of the renormalizatio
group resummation is very clear in this simple example:
perturbative expansion is carried out to a time scalet
!1/e within which perturbation theory is valid. The corre
tion is recognized as a change in the amplitude, so at
time scale the correction is absorbed in a renormalization
the amplitude and the perturbative expansion is carried ou
a longer time but in terms of theamplitude at the renormal-
ization scale. The dynamical renormalization group equati
is the differential form of this procedure of evolving in tim
absorbing the corrections into the amplitude~and phases!
and continuing the evolution in terms of the renormaliz
amplitudes and phases. This is the same spirit as
momentum-shell renormalization in critical phenomena. T
details of the second order calculation and implementatio
the renormalization group for this simple problem are
fered in Appendix C to illustrate the shift in the frequenc
06500
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This interpretation in the simple exercise extends to
more complex situations with the same underlying mec
nism; the secular divergences are absorbed in the com
amplitudes and the perturbative expansion is then carrie
terms of the renormalized amplitudes. The differential fo
of this process is the dynamical renormalization group eq
tion. Thus the similarities with the usual renormalization pr
cedure are manifest.

In the same manner that the usual renormalization gr
sums the leading logarithms when the renormalization gr
functions are computed to one loop order, the dynam
renormalization group sums the leading secular terms w
the coefficients are computed to lowest order. This is ma
festly revealed by the naive perturbative expansion of
real time propagator~3.16!.

The main objective of studying the different cases in t
scalar theory of the previous section was to thoroughlytest
the method with a non-trivial example that can be stud
with different methods. By studying these examples in de
we have learned that the dynamical renormalization group~i!
provides a real-time equivalent of the resummation via
renormalization group in Euclidean space time~equivalent to
Bloch-Nordsieck resummation! in the case of infrared
threshold divergences atT50 leading to relaxation with
anomalous exponents,~ii ! provides the usual mass shift an
damping rates in the case of narrow resonances and~iii !
leads to a similar resummation scheme atTÞ0 when the
threshold infrared divergences are more severe. This deta
analysis then provides confidence on this novel method
study the more interesting and relevant case of a ga
theory.

V. GAUGE THEORY: SQED

We are now in position to apply the method of the d
namical renormalization group to implement the resumm
tion of infrared divergences in gauge theories, which is o
primary goal.

We will study the case of scalar QED~SQED!, since to
lowest order in hard thermal loops this theory has thesame
properties as those of QED and QCD@10,18,29,32#, in par-
ticular the infrared divergences associated with the propa
tion of the charged fields.

Since we are primarily interested in studying the real-tim
manifestation of the finite temperature infrared divergenc
we will focus on the relaxation of the charged scalar field
finite temperature. Furthermore, we will only consider t
contribution of transverse photons to the charged scalar
energy, since longitudinal photons are Debye screened a
nite temperature (mD'eT) and do not contribute to the in
frared divergences.

In this Abelian theory it is rather straightforward to imple
ment a gauge invariant formulation by projecting the Hilb
space on states annihilated by Gauss’ law. Gauge invar
operators can be constructed and the Hamiltonian and
grangian can be written in terms of these. The resulting
grangian is exactly the same as that in Coulomb gauge@45#
and is given by
3-12
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L5]mF† ]mF2m2F†F1
1

2
]mAW T•]mAW T2eAW T• jWT

2e2AW T•AW TF†F1
1

2
~¹A0!21e2A0

2F†F1eA0r,

jWT5 i ~F†¹W TF2¹W TF†F!, r52 i ~FḞ†2F†Ḟ!

where we have traded the instantaneous Coulomb interac
for a gauge invariant Lagrange multiplier fieldA0 which
should not be confused with a time component of the ga
field. AW T is the transverse component satisfying¹W •AW T(xW ,t)
50. Since we are only interested in obtaining the infrar
behavior arising from finite temperature effects, we do
introduce the renormalization counterterms to facilitate
study. The finite temperature behavior is ultraviolet fini
The non-equilibrium generating functional requires the fie
on the forward and backward branches@45#. The equation of
ue

o
re

ve
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n
nl
tu

o-
f
tio
o

c

06500
on
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motion for the charged scalar field is obtained by writi
@43,45#

F6~xW ,t !5w~xW ,t !1D6~xW ,t !, ^D6~xW ,t !&50

and similarly for the Hermitian congujate fields.
In obtaining the equation of motion to one-loop order, w

neglect the contribution from the Coulomb interaction. T
reason as explained above is that the long-range Coul
interaction will be screened by finite temperature effects w
a Debye screening lengthmD'eT and hence the screene
Coulomb interaction will be free of infrared divergence
However in an Abelian plasma the magnetic~transverse!
photons are not screened~no static screening, only dynam
cal screening through Landau damping! and the exchange o
soft magnetic photons will lead to threshold infrared dive
gences.

In terms of the spatial Fourier transform ofw(xW ,t) we find
the equation of motion
ẅ~2kW ,t !1~k21m21e2^AW T
2~xW ,t !&!w~2kW ,t !24ie2E

2`

`

dt8E d3q

~2p!3
kT

i ~qW !kT
j ~qW !

3$@^AT
1 i~qW ,t !AT

1 j~2qW ,t8!&^D1~2kW2qW ,t !D†,1~kW1qW ,t8!&

2^AT
1 i~qW ,t !AT

2 j~2qW ,t8!&^D1~2kW2qW ,t !D†,2~kW1qW ,t8!&#w~2kW ,t8!%5J~2kW ,t !kWT~qW !5kW2q̂~kW•q̂!
where we coupled an external sourceJ(kW ,t)
5J(kW )eetQ(2t) (e˜01) to provide an initial value prob-
lem with an adiabatic switching on of the expectation val
The initial conditions for the expectation value are

w~kW ,t50!5wk~0!, ẇ~kW ,t50!50.

Infrared phenomena are associated with the soft limit
the intermediate photon, and therefore require the HTL
summation of the intermediate photon propagator. Howe
we begin our study of SQED by implementing the dynami
renormalization group to resum the perturbative expansio
the case in which the self-energy of the charged field o
includes the exchange of a bare transverse photon. The s
of this situation will shed light on the different physical pr
cesses that contribute and those that do not because o
namical screening via Landau damping. In the next sec
we will include the HTL resummation of the exchanged ph
ton and implement the dynamical renormalization group.

A. Bare photon propagators

The necessary free-field non-equilibrium Green’s fun
tions are given by scalar propagators

^F (a)†~xW ,t !F (b)~xW ,t8!&52 i E d3k

~2p!3 Gk
ab~ t,t8!e2 ikW•(xW2x8W ),
.

f
-
r,
l
in
y
dy

dy-
n
-

-

where (a,b)P$1,2%,

Gk
11~ t,t8!5Gk

.~ t,t8!Q~ t2t8!1Gk
,~ t,t8!Q~ t82t !,

Gk
22~ t,t8!5Gk

.~ t,t8!Q~ t82t !1Gk
,~ t,t8!Q~ t2t8!,

Gk
67~ t,t8!52Gk

,(.)~ t,t8!,

Gk
.~ t,t8!5

i

2vk
@~11nk!e

2 ivk(t2t8)1nke
ivk(t2t8)#,

Gk
,~ t,t8!5

i

2vk
@nke

2 ivk(t2t8)1~11nk!e
ivk(t2t8)#,

vk5AkW21m2, nk5
1

ebvk21

photon propagators

^ATi
(a)~xW ,t !AT j

(b)~xW ,t8!&52 i E d3k

~2p!3G i j
ab~k;t,t8!e2 ikW•(xW2x8W ),

G i j
11~k;t,t8!5Pi j ~kW !@G k

.~ t,t8!Q~ t2t8!

1G k
,~ t,t8!Q~ t82t !#, ~5.1!
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G i j
22~k;t,t8!5Pi j ~kW !@G k

.~ t,t8!Q~ t82t !

1G k
,~ t,t8!Q~ t2t8!#,

G i j
67~k;t,t8!52Pi j ~kW !G k

,(.)~ t,t8!, ~5.2!

G k
.~ t,t8!5

i

2k
@~11Nk!e

2 ik(t2t8)

1Nke
ik(t2t8)#,

G k
,~ t,t8!5

i

2k
@Nke

2 ik(t2t8)

1~11Nk!e
ik(t2t8)#,
-
E

n
m

th
tio
it

te

io

q

06500
Nk5
1

ebk21
.

HerePi j (kW ) is the transverse projection operator:

Pi j ~kW !5d i j 2
kikj

k2
.

Finally we find the equation of motion fort.0 to be
given by
ẅ~2kW ,t !1@k21M2~T!#w~2kW ,t !1E
2`

t

S~kW ,t2t8!w~2kW ,t8!dt850

S~kW ,t2t8!528e2k2E d3q

~2p!3

12cos2u

4qvkW1qW
$~11Nq1nkW1qW !sin~vkW1qW1q!~ t2t8!1~Nq2nkW1qW !sin~vkW1qW2q!~ t2t8!%

M2~T!5m21e2^AW 2&
is
e-
of

ed
by

re
ven

ctral
e of

term
and u is the angle betweenkW and qW . We see that the self
energy has a form very similar to that of the scalar case,
~3.2!, the only difference being thek2 in front ~reflecting the
exchange of transverse photons! and the 12cos2u inside the
integral. Integrating by parts and using the initial conditio
the resulting equation of motion can be written in the sa
form as in Eq.~3.1! with gk(t) as in Eq.~3.5! in terms of the
spectral density:

r~k;v!52
e2k2

2p2E qdq

vk1q
~12cos2u!

3dcosu$~11Nq1nk1q!d~v2q2vk1q!

2~Nq2nk1q!d~v2q1vk1q!%. ~5.3!

As in the scalar case, we are mainly interested in
infrared effects associated with the emission and absorp
of soft photons in the intermediate state and only the fin
temperature contribution. Therefore we will~i! neglect the
contribution of the distribution function of the intermedia
charged scalar, i.e. the termnk1q , and ~ii ! replace Nq
'T/q in the expression and neglect the vacuum contribut
~the one!, thus obtaining

r~k;v!52
e2kT

2p2 H E
q2

q1dq

q
@12X2~v,q!#Q~v2vk!

2E
1

qcdq

q
@12X2~v,q!#Q~k22v2!J
q.

s
e

e
n

e

n

with qc an upper momentum cutoffqc!T and

X~v,q!5
v22vk

222vq

2kq
,

q65
v22vk

2

2~v7k!
.

The second contribution with support below the light cone
identified with the Landau damping cut. Since the time d
pendent correlation functions involve the product
r(k;v)cosvt, the frequency integral in the range2k,v
,0 arising from the Landau damping cut can be combin
with the contribution from the positive frequency range
the symmetry of the integrand in Eq.~3.20!. After a straight-
forward calculation we finally find the finite temperatu
contribution to the spectral density near threshold to be gi
by

r IR~k;v!52
e2

2p2 S T

k D H ~v22k2!lnUv2k

v1kU12kvJ
3@Q~v2vk!1Q~k2v!#Q~v!. ~5.4!

There are several noteworthy features of these spe
density near threshold, as compared to the simpler cas
the scalar theory studied in Sec. III@see Eq.~3.28!#. In this
case the spectral density is constant at threshold. The
v2 @multiplying the logarithms in Eq.~5.4!# and the last term
3-14
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8vk arise from the region of the integral for which cos2u
'1 which would give a vanishing integrand were it not f
the fact that there is a linear divergence asv˜k. These
contributions arise from the emission and absorption of p
tons which are almost collinear with the incoming charg
scalar.

We will now study the case of a massive scalar in t
important limits: ~i! k/vk5v!1 (mÞ0), ~ii ! k/vk5v'1.
In both cases the leading contribution is easily recognize
arise from the production cutv>vk . For mÞ0 there are no
infrared divergences associated with the Landau damp
cut.

1. v!1

Since the spectral density is slowly varying near thre
old, we can find the asymptotic behavior in time of the c
efficient ofAk eivkt in Eq. ~3.20! at large times following the
same method as in previous sections and Appendix B.
find the following results:~i! The imaginary part of the co
efficient of Ake

ivkt is given by

i t

4Evk

`

dv
r~k;v!

v

1

v2vk
F12

sin~v2vk!t

~v2vk!t
G

5
mt@1

2
i e2 T

8p2
f ~v !t ln m̄t1 i t E

vk

` dv

v2vk
Fr~k;v!

v

2
r~k;vk!

vk
Q~m2v1vk!G1OS e2 T

t D ~5.5!

with

f ~v !5
12v2

v
ln

12v
11v

12, v5
k

vk

m̄5meg21 ~5.6!

the function 0, f (v),2 for 0,v<1.
~ii ! The real part of the coefficient ofAke

ivkt in the as-
ymptotically large time limit is given by~see Appendix B!

1

4Evk

` dv

v
r~k;v!

12cos~v2vk!t

~v2vk!
2

5
mt@1

2Gkt1
2

p vk
log~mteg!

3FGk2
1

4

]S I

]v
~k,vk!G1O~e2 T! ~5.7!

with Gk given by

Gk52
p

4

r~k;vk!

2vk
5

1

2

S I~vk!

2vk
5

p

8 S e2T

2p2D f ~v ! ~5.8!
06500
-
d

to

g

-
-

e

where we used the expression~3.10! and the fact that for the
production cut the spectral density only has support for po
tive frequencies. We then find the same phenomenon a
the previous case of the scalar particles in that the damp
rate is one-half of the expected value. The reason agai
that the full spectral density for the charged scalar is v
similar to that featured in Fig. 1 with a prominent peak ne
threshold that is almost half of a Breit-Wigner peak. Ho
ever, the logarithmic phase clearly exhibits the fact that c
not be interpreted as a quasiparticle resonance.

The contributions from the coefficient ofAk* eivkt and the
linear secular term fromfk

(1,b) that contributes to the imagi
nary part are both subleading. We now renormalize the a
plitude as in Eqs.~3.23!,~3.24! with the choice

lzI
(1)~t!5

e2T

8p2
f ~v !t ln m̄t

lzR
(1)~t!5Gkt2

2

p vk
log~mteg!FGk2

1

4

]S I

]v
~k,vk!G .

The solution of the dynamical renormalization group equ
tion now leads to the asymptotic behavior of the expectat
value of the charged fields

fk~ t !5Ak~ t0!eiwk(t,t0)e2Gk(t2t0)S t0

t D bk

1c.c.,

wk~ t,t0!5vk,Rt2
e2T

8p2
f ~v !t ln

t

t0
,

bk5
2

p vk
F2Gk1

1

4

]S I

]v
~k,vk!G ~5.9!

where we integrated the dynamical renormalization gro
equation with initial condition att0 which is taken as some
arbitrary renormalization point replacing the infrared cuto
m̄. The renormalization group invariance offk(t) is now
explicit; a change of the arbitrary scalet0 is compensated by
a change in the amplitudeAk(t0).

2. v˜1

The limit v˜1 must be studied carefully. Asv˜vk
'k the term (v22k2)lnuv2ku cannot be taken outside of th
integral. However, upon the change of variablev2k5z/t in
the integral in the same manner as that leading to Eq.~5.7!
leads to a term that is of the form ln@mt#/t for this contribu-
tion, which then becomes subleading compared with the t
in r I .R.(k;v) that does not vanish asv˜1. The asymptotic
large time behavior is therefore obtained from the previo
section withvÞ1 by simply settingv51. The contribution
to the final result in this limit arises solely from the emissi
and absorption of collinear photons.

It is illuminating to try and understand this result in th
hard limit v˜1. The delta functions in Eq.~5.3! in the limit
k@m becomed(v2k2q7q cosu); therefore asv˜k the
whole contribution arises from photons that are emitted
3-15
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absorbed collinearlyu50,p with the moving~hard! scalar.
However, as pointed out originally by Pisarski@20#, the con-
tribution from collinear photons does not survive screen
effects arising from higher order contributions to the pho
propagator. In particular, dynamical screening as a con
quence of Landau damping of the intermediate photons
off the contribution of collinear photons, and leads to
greater contribution of photons emitted or absorbed at r
angles with respect to the moving charged particle.

The analysis of this section is illustrative of the power
the dynamical renormalization group to obtain t
asymptotic long time behavior. For the case of QED, QC
or SQED, the analysis presented in this section in term
the bare propagators for the scalars and photons has
limited validity. For soft external momentum, the infrare
region of the internal loop requires HTL resummation of t
internal lines and vertices@20,32,29#. The main purpose o
our analysis in this section, however, was to illustrate h
the dynamical renormalization group is capable of revea
novel forms of relaxation with logarithmic correction
power laws, anomalous dimensions, etc. These alterna
forms of relaxation cannot be found by attempting to d
scribe exponential relaxation and computing an imagin
part of the self-energy on shell.

We now include screening corrections via HTL resumm
tion of internal lines. We will consider the case of hard e
ternal momentum for which only the internal photon lin
must be HTL resummed~the scalar is massive and hard!.

B. Hard thermal loop-resummed photon propagators

We now focus on the case of hard external momentum
the charged scalar. In this case only the internal photon
receives HTL corrections, since the scalar in the loop is m
sive and hard; the vertex does not require resummation
cause one of the momenta into the vertex is hard~the scalar!
@20,32,29#. Hence this situation is simpler than the case
soft external momentum that will be studied elsewhere.

In order to include the leading order screening effects
the photon propagator, we must use the hard thermal l
resummed propagators@20#. The generalization of the HTL
resummation program in the Matsubara formulation of fin
temperature field theory to the real time formulation is d
scribed in detail in Appendix A; we collect here only th
main ingredients.

The photon propagators can be written as in Eqs.~5.1!,
~5.2! but now with the resummed Wightmann functions~see
Appendix A!

G q
.~ t2t8!5E dq0r̃T~q0 ,q!@11N~q0!#e2 iq0(t2t8)

G q
,~ t2t8!5E dq0r̃T~q0 ,q!N~q0!e2 iq0(t2t8)

where in the hard thermal loop limit the spectral density
transverse photons is given by@29,45#
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n
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-

r

r̃T~q0 ,q!5
1

p

S I~q0 ,q!Q~q22q0
2!

@q0
22q22SR~q0 ,q!#21S I

2~q0 ,q!

1sgn~q0!Z~q!d„q0
22vp

2~q!…

S I~q0 ,q!5
pe2T2

12

q0

q S 12
q0

2

q2D
SR~q0 ,q!5

e2T2

12 F2
q0

2

q2
1

q0

q S 12
q0

2

q2D lnUq01q

q02qUG
wherevp(q) is the plasmon pole andZ(q) its ~momentum
dependent! residue, which will not be relevant for the fol
lowing discussion. Inserting these propagators in the exp
sion for the self-energy, keeping only the termN(q0)
'T/q0 in the resulting expressions, and focusing on the h
scalar limit k'T@m we find that the self-energy can b
written in the form of a dispersion relation just as in Eq.~3.3!
but with

r~k;v!52
e2Tk

p2 E q2dqE
21

1

dX~12X2!

3E dq0

r̃T~q0 ,q!

q0
d~v2k2q02qX!.

The infrared region corresponds to smallq, and we find
that forq!eT the integrandr̃T(q0 ,q)/q0 is strongly peaked
at q050. Figure 2 showsr̃T(q0 ,q)q2/q0 vs q0 in units of
eT/A12. We find that forq!eT the photon spectral densit
is well approximated by@32#

r̃T~q0 ,q!

q0
5

1

pq2

G

G21q0
2

G5q3
12

pe2T2
.

FIG. 2. rT(q0 ,q)(q2/q0) for q50.1(eT/A12) vsq0 in units of
eT/A12.
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When this Lorentzian distribution is integrated with smoo
functions, it can be expanded in the width, obtaining

1

p

G

G21q0
2
'd~q0!2

G2

2
d9~q0!1•••

and the infrared behavior is dominated by thed(q0). Finally
we find the infrared behavior of the spectral density of
self-energy to be given by

r~k;v!'2
e2kT

p2 E
uv2ku

q* dq

q S 12
~v2k!2

q2 D '
e2kT

p2
ln

uv2ku
m

~5.10!

whereq* ;m<eT is an arbitrary upper momentum cutof
which physically is of the order of the plasma frequency. W
thus see that dynamical screening originating in Land
damping for the photon propagator suppresses the cont
tion of collinear photons and asv˜k the contribution to the
self-energy arises primarily from photons emitted or a
sorbed at right angles@20#. This is the same situation as i
QED @32#.

The final spectral density for the self-energy, Eq.~5.10!,
is therefore of thesame formas the finite temperature se
energy of the simple scalar theory studied in the earlier s
tions @see Eq.~3.28!# and thus justifies our excursion int
that simpler theory.

We can now follow the same steps to study the sec
terms in the real time perturbative expansion, which lead
Eq. ~3.29!.

The long time asymptotic behavior is obtained by inse
ing the spectral density, Eq.~5.10!, in the expressions
~3.20!,~3.21! with vk5k. The asymptotic dependence o
time is extracted by changing variables tov2k5z/t and
upon settingAk5Ak* , we find that~i! the imaginarycontri-
bution to f (1,a)1f (1,b) is given by aninfrared finite and
linear in time secular term which is interpreted as a ren
malization of the frequency and~ii ! the real contribution to
f (1,a)1f (1,b) is given by

Redfk~ t !52aT t ln mt, a5
e2

4p
.

The first order correction is thus found to be given by

fk
(1)~ t !5Ake

ivkt@ idvkt2aTt ln mt#1c.c.

1regular perturbative terms.

Introducing the renormalization of the amplitude as in E
~3.23!,~3.24! and choosing

lzR
(1)~t!5aTt ln mt, lzR

(2)~t!52dvkt

we obtain the renormalization group equation

]Ak~t!

]t
2@ idvk2aT~ ln mt11!#Ak~t!50

with the solution
06500
e

e
u
u-

-

c-

r
o

-
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.

Ak~t!5Ak~ t0!eidvk(t2t0)e2aTt ln(t/t0)

where we have chosent05m21 as an initial condition for the
integration. Now choosing the arbitrary renormalizati
scalet to coincide with the timet we finally arrive at one of
the main results of this article which is the asymptotic b
havior in time of the expectation value of the charged sca
field

fk~ t !5Ak~ t0!ei ṽk(t2t0)e2aTt ln[ t/t0]1c.c. ~5.11!

thus displaying the renormalization group invariance of
solution: a change of the arbitrary time scalet0 ~inverse of
the infrared cutoff! is compensated by a change in the a
plitude. The quantityṽk is the renormalized mass includin
the ~infrared finite! HTL corrections.

A similar behavior for the asymptotic dynamics of th
fermion field in QED has been obtained via the Bloc
Nordsieck resummation in Ref.@32#. The power of the dy-
namical renormalization group has now become explicit
that it transcends any approximation and implements a
summation of the logarithmic infrared divergences that
this case includes the resummation of the hard thermal lo

VI. CONCLUSIONS, COMMENTS
AND MORE QUESTIONS

In this article we have introduced a novel method of d
namical renormalization group resummation to study rel
ation in real time. The first step of the program is to rela
the retarded Green’s functions that contain the dynam
information on the time evolution away from equilibrium i
linear response to an initial value problem for theexpectation
value of the fields. This initial value problem in real tim
allows one to implement the method of dynamical renorm
ization, improving the perturbative solution by a resumm
tion. This resummation is the real time counterpart of t
resummation via the renormalization group in Euclide
field theory. We first apply our methods to a scalar theory
one massive and one massless field. The emission and
sorption of the massless field introduced infrared divergen
akin to those found in gauge theories. We compare in suc
model the late behavior of the massive field amplitude
zero temperature@Eq. ~3.27!# to results based on Bloch
Nordsieck resummations@Eq. ~3.16!# as well as the renor-
malization group applied to Euclidean Green’s functio
@Eq. ~3.18!#.

Furthermore, for large temperature we compute the
behavior of the massive field amplitude both for hard a
soft external momenta. For hard modes, the field amplit
relaxes ase2(g2 T/4p) t ln[t/t0] whereg stands for the coupling
constant.

In real time the infrared divergences are manifest as se
lar terms in the perturbative solution of the evolution equ
tion for the expectation value of the fields. The dynamic
renormalization group implements a resummation of t
secular terms that leads to an asymptotically convergent
lution and clearly describes relaxation in real time.

After applying our method to the scalar model, we f
3-17



o
oc
n

im

a
to

tio
ve
ar
ia
le
th
E

n
he
rm
b

an
n
er

re
r

ve
de
x-
id
e

tio
u

io
b

hi

re
D

tu
po
th
re

re

e
uc
tio
ea

al
io
g-
o

at
e
hem

es
in

ive
ed

of
s of
ese
in
s are
e
par-

lied
y
ad-
e

xi-
r-

ba-

ion

al
-
in-

ith
her-
nd

a-
ts in
il in
ery
m-
ns-
liza-

d a
G
in

ts
r-
d
E

om

s of
ra-

BOYANOVSKY, de VEGA, HOLMAN, AND SIMIONATO PHYSICAL REVIEW D 60 065003
cused our attention on implementing the dynamical ren
malization group to resum the infrared divergences ass
ated with massless transverse photons in scalar QED at fi
temperature. The infrared divergences in this theory are s
lar to those found in QED and in lowest order in QCD.

We have included the resummation of the hard therm
loops and Landau damping in the internal transverse pho
propagators, and implemented a dynamical renormaliza
group resummation. The renormalization group impro
ment leads to an anomalous logarithmic relaxation for h
modes as a consequence of infrared divergences assoc
with the emission and absorption of photons at right ang
These anomalous logarithmic relaxations are similar to
scalar field behavior and consistent with those found in Q
via the Bloch-Nordsieck resummation@32#.

In all cases investigated~both in the scalar model and i
QED! the field behavior prevents an interpretation of t
relaxation of charged excitations in the medium in the fo
of a simple exponential with a damping rate determined
the imaginary part of the self-energy on shell.

The advantage of the dynamical renormalization group
that its implementation is rather simple and transcends
approximations of the Bloch-Nordsieck type; it can be co
sistently improved by considering higher orders in the hi
archy of equations obtained in perturbation theory.

Furthermore, the real time dynamics obtained via this
summation program leads to a clear interpretation of the
laxational processes and time scaleswithoutany assumptions
about the validity of the quasiparticle picture of collecti
excitations. The analysis of secular terms in lowest or
provides a simple criterion for deciding if the collective e
citations can be described as narrow resonances with a w
determined by the imaginary part of the self-energy on sh
linear secular terms lead to such a quasiparticle descrip
non-linear secular terms in lowest order signal anomalo
non-exponential relaxation.

The dynamical renormalization is a different resummat
scheme than the HTL resummation, and the latter can
consistently included in the former as was shown in t
article.

We are currently implementing this method to study
laxation of soft and hard fermion and gauge fields in QE
and QCD directly in real time, thus bypassing the concep
limitations of the quasiparticle picture in the sense of ex
nential relaxation and a damping rate determined by
imaginary part of the self-energy on shell. We expect to
port results in the near future.

Comments and further questions.As we have seen in the
example worked out in detail in Sec. III, at finite temperatu
the infrared divergences are akin to those of asuperrenor-
malizabletheory of critical phenomena, in the sense that th
are no longer logarithmic because the temperature introd
a new scale. There are very few methods for renormaliza
of infrared divergences in superrenormalizable theories n
the critical point, one of the most popular being thee expan-
sion wheree5d24 is the departure from the upper critic
dimension. Whereas the validity of the epsilon expans
appended by Pade´ resummation has been confirmed in Isin
like models via either strong coupling lattice expansion
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Monte Carlo simulations, the validity in a general case is
best questionable fore51. The e expansion resums som
subset of the Feynman diagrams and only some part of t
@47# the leading logarithms.

The dynamical renormalization group therefore provid
an alternative to study the infrared divergences directly
real time by resumming secular terms in the perturbat
solution of the equation of motion. In the case of infrar
divergences the secular terms reflect these in the form
logarithmic dependence on time. However, the uselfulnes
the dynamical renormalization group is not restricted to th
logarithmic divergences, as explicitly shown in Sec. III;
the usual case of narrow resonances, the secular term
linear ~in lowest order! and their resummation through th
renormalization group equation leads to the usual quasi
ticle real-time evolution.

There is a translation between the resummation imp
by the usual~Euclidean! renormalization group and that b
the dynamical version: the Euclidean version sums the le
ing logarithms@36,47# and the dynamical version sums th
leading secular terms@37#.

It has been shown in Ref.@37# using the formal theory of
envelopes that the dynamical renormalization group~RG!
resummation of secular terms provides an uniform appro
mation to the exact solution for systems of ordinary diffe
ential equations. This is true to any given order of pertur
tion for arbitrary ordinary differential equations@37#. It will
be very interesting to extend such a proof to the evolut
equations considered in the present paper.

Thus, for the moment, the situation with the dynamic
RG is similar to that of thee expansion in critical phenom
ena fore51: it provides a resummation scheme for the
frared behavior in a consistent manner and it agrees w
known results in cases where it can be compared. Furt
more, in the case in which the renormalization group a
Bloch Nordsieck lead to non-trivial exponentiation of infr
red divergences, the dynamical RG reproduces the resul
real time. Thus we believe that the cases analyzed in deta
this article and those analyzed in the literature provide v
strong evidence for the validity of this approach. The pro
ise of the dynamical RG as a powerful method to study tra
port phenomena warrants a deeper study on the renorma
tion aspects of the evolution equations in real time an
more formal proof of the applicability of the dynamical R
in these problems. This avenue of study is currently
progress.
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APPENDIX A: EXACT RETARDED PROPAGATORS

In this appendix we gather and generalize some result
the HTL resummation program in Matsubara finite tempe
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ture field theory@10#, to real time.
Consider theexact equilibrium Wightman and retarde

Green’s functions for a real scalar field:

2 iGk
.~ t2t8!5^FkW~ t !F2kW~ t8!&

52 i E dvG̃k
.~v!e2 iv(t2t8)

2 iGk
,~ t2t8!5^F2kW~ t8!FkW~ t !&

52 i E dvG̃k
,~v!e2 iv(t2t8)

2 iGR,k~ t2t8!52 i @Gk
.~ t2t8!2Gk

,~ t2t8!#Q~ t2t8!

52 i E dq0

2p
G̃R,k~q0!e2 iq0(t2t8).

Inserting a complete set of eigenstates of the full intera
ing Hamiltonian, we obtain the spectral representations
the Fourier transforms given by

2 iG̃k
.~v!5

1

Z (
m,n

e2bEmu^muFk~0!un&u2d„v2~En2Em!…

2 iG̃k
,~v!5

1

Z (
m,n

e2bEnu^muFk~0!un&u2d„v2~Em2En!…

5e2bv@2 iG̃k
.~v!# ~A1!

where the last equality, the Kubo-Martin-Schwinger~KMS!
condition is obtained by relabellingm˜n in the sum and
Z5(me2bEm is the equilibrium partition function. Inserting
a representation of the theta function we finally obtain

G̃R,k~q0!52E dv
r̃~v,k!

q02v1 i e

r̃~v,k!52 i @G̃k
.~v!2G̃k

,~v!#

5
1

p
Im@G̃R,k~v!#.

Using the KMS condition~A1! we can finally write theexact
non-equilibrium Wightmann functions in terms of theexact
spectral density as follows:
06500
t-
r

^FkW~ t !F2kW~ t8!&5E dq0r̃~q0 ,k!@11N~q0!#e2 iq0(t2t8)

^F2kW~ t8!FkW~ t !&5E dq0r̃~q0 ,k!N~q0!e2 iq0(t2t8)

N~q0!5
1

ebq021
. ~A2!

Using the KMS condition, and relabelling the sum indic
in the spectral representation we find thatr̃(q0 ,k)
52 r̃(2q0 ,k). The same steps lead to an equivalent expr
sion for the transverse gauge fields, whose Wightmann
Green’s functions are proportional to the transverse pro
tion operator.

The advantage of the representation~A2! is that once we
compute the spectral functionr̃(q0 ,k) in some approxima-
tion, we can insert the Wightmann functions in the intern
loops thus providing a resummation of the perturbative
ries. The results from the first section allow to obtain t
retarded propagatorG̃R,k(q0) from the solution of the initial
value problem with an external source through the relation
linear response as detailed in the first section. For exam
by studying the equation of evolution for the expectati
value of the transverse photon fields in the HTL approxim
tion as was done in@45# we can obtain the spectral represe
tation of the transverse fields in the HTL approximation a
the results of this appendix allow us to implement a resu
mation of screened photon propagators into the real t
description.

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF SPECTRAL INTEGRALS

We summarize in this appendix the late time behavior
integrals over the density of states used in Secs. III and

In the formulas belowp(y) stands for a smooth function
for 0<y<`. Herep(0) as well asp8(0) are finite. For large
y , p(y) decreases as a power such that the integrals ovy
converge at infinity. These properties are satisfied in all ca
where these formulas were used in the paper:
E
0

`dy

y2 ~12cosyt!p~y! 5
t˜`p

2
tp~0!1p8~0!@ ln~m t !1g#1E

0

`dy

y2 @p~y!2p~0!2yp8~0!u~m2y!#1OS 1

t D ,

E
0

`dy

y
~12cosyt!p~y! 5

t˜`

p~0!@ ln~m t !1g#1E
0

`dy

y
@p~y!2p~0!u~m2y!#1OS 1

t D ,

E
0

`dy

y S t2
sinyt

y D p~y! 5
t˜`

tp~0!@ ln~m t !1g21#1tE
0

`dy

y
@p~y!2p~0!u~m2y!#1OS 1

t D ,
3-19
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whereg50.5772157 . . . isEuler’s constant.
Notice that the formulas areindependentof the scalem as one can easily see since the derivative with respect tom of the

RHS identically vanishes. The scalem has been introduced just to have a dimensionless argument in the logarithms.
We have also used similar integrals when the resonance was away from the threshold. We have, for such a case

E
2A

` dy

y2 ~12cosyt!p~y! 5
t˜`

ptp~0!1PE
2A

` dy

y2 @p~y!2p~0!#1OS 1

t D ,

E
2A

` dy

y S t2
sinyt

y D p~y! 5
t˜`

tPE
2A

` dy

y
p~y!2p p8~0!1OS 1

t D
whereA is a fixed positive number.

In addition, we needed in Secs. III and IV integrals where the spectral density has a logarithmic singularity at a finit

E
2A

` dy

y2 ~12cosyt!p~y!ln
uyu

2T̄
5

t˜`

ptp~0!@12g2 ln~2 t T̄!#1PE
2A

` dy

y2 @p~y!2p~0!# ln
uyu

2T̄
1OS 1

t D ,

E
2A

` dy

y S t2
sinyt

y D p~y!ln
uyu

2T̄
5

t˜`

tPE
2A

` dy

y
p~y!ln

uyu

2T̄
2p p8~0!@ ln~2 t T̄!1g#1OS 1

t D .
th
on
pl
e

om

in

time
ted
or-

n of

-
-
to

nd
APPENDIX C: A SIMPLE EXAMPLE: THE DAMPED
HARMONIC OSCILLATOR

In this appendix we give a rather simple example of
dynamical renormalization group for pedagogical reas
and to illustrate the fundamental features within a sim
setting. We consider the equation of motion of a damp
harmonic oscillator,

ÿ1y52e ẏ, e!1 ~C1!

and seek a solution in a perturbative expansion ine of the
form y5y01ey11e2y21••• where theyi are solutions to
the following hierarchy of equations:

ÿ01y050,

ÿ11y152 ẏ0 ,

ÿ21y252 ẏ1 ,

A A.

These equations can be solved iteratively by starting fr
the zero order solution

y0~ t !5Aeit1c.c.,

in terms of the retarded Green’s function

Gret~ t2t8!5sin~ t2t8!u~ t2t8!.

Up to second order ine, the solution is given by

y~ t !5AeitF12
e

2
t1

e2

8
t21 i

e2

8
t G1c.c.1non-secular.
06500
e
s

e
d

Note that this solution contains secular terms that grow
t; the terms denoted bynon-secularremain finite at all times.
We see that the perturbative expansion breaks down at a
scale'1/e. The expression in the brackets can be interpre
as a change in the complex amplitude. The dynamical ren
malization is achieved by introducing a time scalet; at
which the secular terms are absorbed in a renormalizatio
the complex amplitude. We writeA5A(t)Z(t) with Z(t)
511ez1(t)1e2z2(t) and choosezi(t) to cancel the secu
lar terms at the scalet, this is similar to choosing the renor
malization scale in the usual renormalization program. Up
O(e2) we find

z1~t!5
t

2
, z2~t!5

t2

8
2 i

t

8
.

After renormalization the solution is given by

y~ t,t!5A~t!eitF12
e

2
~ t2t!1

e2

8
~ t2t!21 i

e2

8
~ t2t!G

1c.c.1non-secular. ~C2!

Sincet is an arbitrary scale, the solution cannot depe
on it; thus the statementdy(t,t)/dt50 leads to the dynami-
cal renormalization group equation to this order:

]A~t!

]t
1A~t!S e

2
2 i

e2

8 D50
3-20
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where we have expanded thet derivative of the amplitude in
a power series expansion ine consistently to second orde
Obviously the solution to the renormalization group equat
is given by

A~t!5A~0!e2(e/2)tei (e2/8)t.

Settingt5t in Eq. ~C2! we finally find
a

-

th
9

06500
n

y~ t !5A~0!e2(e/2)tei (12e2/8)t1c.c.

which is obviously the correct solution to second order. F
ther simple and not-so-simple examples can be found in R
@37#.
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