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Borel summation of the derivative expansion and effective actions
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We argue that the derivative expansion of the QED effective action is a divergent but Borel summable
asymptotic series, for a particular inhomogeneous background magnetic field. A duality transforBiation
—IiE gives a non-Borel-summable perturbative series for a time dependent background electric field, and Borel
dispersion relations yield the non-perturbative imaginary part of the effective action, which determines the pair
production probability. Resummations of leading Borel approximations exponentiate to give perturbative cor-
rections to the exponents in the non-perturbative pair production rates. Comparison with a WKB analysis
suggests that these divergence properties are general features of derivative expansions and effective actions.
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PACS numbgs): 11.15.Bt, 11.10.Ef, 11.10.Jj

[. INTRODUCTION thing; it is completely analogous to generic behavior that is
well known in perturbation theory in both quantum field

The effective action plays a central role in quantum fieldtheory and quantum mechanics. For example, Dyjsbf
theory. Here we consider the one-loop effective action inargued physically that QED perturbation theory is not ana-
quantum electrodynamicd®QED) for electrons in the pres- Iytic at the origin, as an expansion in the fine structure con-
ence of a background electromagnetic field: stanta, because the theory is unstable wheris negative.
While this does not strictly speaking prove divergence, it
identifies an important physical source of non-analyticity and
potential divergence. The divergent nature of field theoretic
perturbation theory was found long ago in scajgrtheories
whereD = y"(d,+ieA,), andA, is a fixed classical gauge [18] by studying large orders of perturbation theory.
potential with field strength tensoF,,=d,A,—d,A,. Our analysis of the convergence or divergence properties
When the background is a static magnetic field, the effectivef the QED effective action uses Borel summati8,20], a
action Sis equal to minus the effective energy of the elec-mathematical tool that can be used to relate the rate of diver-
trons in that background; and when the background is agence of high orders of perturbation theory to non-
electric field,S has an imaginary part which determines theperturbative decay and tunneling rates, thereby providing a
pair-production rate for electron-positron pair creafibra4]. bridge between perturbative and non-perturbative physics.
For a uniform background field streng#),,=const, the ef-  Other well known explicit cases of this connection appear in
fective actionScan be computed exactl§,2,5-7. For more  quantum mechanical examples such as the anharmonic oscil-
general backgrounds, with,,, not constant, the situation is lator [21] and the Stark effecf22], and in quantum field
more complicated. One standard approach is to make a “dgheory in semi-classical analyses of scalar field thed@&$
rivative expansion’[8—12] (or “gradient expansion’T13])  and asymptotic estimates of large orders of QED perturba-
which is a formal perturbative expansion in increasing num+ion theory[24]. For an excellent review of a broad range of

S=—i Inde(iD—m)z—IEInde(D2+m2) (1)

bers of derivatives oF ,,,: examples, see R€f25]. Typically one finds that in a stable
situation(i.e., no tunneling or decay processesrturbation
S=SO[F]+SP[F,(9F)?]+---. (2)  theory is divergent, with expansion coefficients that alternate

in sign and grow factorially in magnitude. On the other hand,
In this paper we address two questions concerning the QEIh an unstable situation, perturbation theory is generally di-
effective actionS in a nonuniform background. First, we vergent with coefficients that grow factorially in magnitude
consider the convergence or divergence properties of the pelput do not alternate in sign. Borel summation is an approach
turbative derivative expansion in Eq). Second, we ask to the summation of divergent series that makes physical
how such a perturbative expansion can lead to corrections teense out of these two different types of behavior. We shall
Schwinger’s nonperturbative pair-production r&demputed see that the divergence of the derivative expansion can be
for a constant backgrouhdvhen there are inhomogeneities understood naturally in this Borel framework.
in the background electric field. We can answer these ques- In addition to these theoretical considerations of under-
tions by considering some exactly solvable cases with spestanding the connections between the perturbative derivative
cial inhomogeneous backgrounfis4—16. The derivative expansion and non-perturbative pair-production rates, an-
expansion is found to be a divergent series, and the rate afther motivation for this work is provided by the attempt to
divergence at high orders can be used to compute the correbserve electron-positron pair creation due to QED vacuum
sponding non-perturbative imaginary part of the effective aceffects in the presence of strong electric fields. Schwinger’s
tion when the background is a time-dependent electric fieldconstant field pair-production rate is far too small to be ac-
This divergence of the derivative expansion is not a badessible with present electric field strengths. However, the
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constant field approximation is somewhat unrealistic, and so In Sec. Il we review briefly the mathematical technique of
one can ask how this rate is modified by a time variation ofBorel summation, and in Sec. Ill we apply this to the Euler-
the electric background. For sinusoidal time variationZBre Heisenberg-Schwinger constant-background effective action.
and Itzykson found a WKB result with fairly weak frequency Section IV gives the Borel summation analysis of the par-
dependencg26], while Balantekinet al have applied group ticular exactly solvable cases with inhomogeneous magnetic
theory and uniform WKB to electric backgrounds with more and electric backgrounds. In Sec. V we show how this is
general time dependenf27]. The QED effective action has related to a WKB analysis, and Sec. VI contains some con-
recently been computeld 5] as a closed forngsingle inte-  cluding remarks.

gral) expression for the particular time-dependent electric

background withE(t) =E secK(t/7), and in this paper we Il. BRIEF REVIEW OF BOREL SUMMATION

consider the numerical implications of this result for pair- ) ) ) ] .

production rates in such a background. It is important to note In this section we review briefly the basics of Borel sum-
that another related approach to observing pair-production ig1ation[19,20. Consider an asymptotic series expansion of
to use highly relativistic electrons as intermediate states, a&ome functionf (g)

has been done in recent experimel#8,29. w
Finally, we note that the derivative expansi@®) is an _ n +
example of areffective field theorgxpansion30], such as is f(g) Z‘o g’ (9—07) @)

used in operator product expansididd]| and chiral pertur-

bation theon{32]. In the effective field theory approach, the whereg>0 is a(smal) dimensionless perturbation expan-
massm of the electrongwhich are “integrated out” in the sion parameter and tha, are real coefficients. In an ex-
one-loop approximationsets an energy scale, and the phys-tremely broad range of physics applicatio5,35 it has

ics at energies<m should be described by a low energy been found that perturbation theory leads not to a convergent

effective action with the formal expansion series but to a divergent series like Eg) in which the
expansion coefficients,, have large-order behavior of the
om form
S=m*>, a, 3
n mn"

ap,~(—=1)"a"T'(Bn+1y) 1+O(%” (n—>w) (5

whereO" is an operator of dimensiam For the case of the
QED effective action, the simplest way to produce higher-
derivative operators in such an expansion is to take highdP’ Some real constanis, >0, andy. When «>0, the
powers of the field strength. Thus, even the leading.e.,  Perturbative expansion coefficiends alternate in sign and
constant backgrounderm SC[F] in the derivative expan- thelr magnitude grows factorlally. Borel summaﬁlon is a par-
sion (2) is itself an effective field theory expansion of the ticularly useful approach for this case of a divergent, but
form (3). This is simply the Euler-Heisenberg effective ac- alte_rnatlng series. We shall see bglow that non-alternating
tion which is a perturbative series expansion in powers of€les must be treated somewhat differently.
e’F2/m*. This series is known to be divergdi®3—35, and Consnld(ner, for example, the serie4) with a,
there are important physical consequences of this diver=(—1)"a"n!, anda>0. This series is clearly divergent for
gence, as we review below. Another way to produce highefY value of the expansion paramegeBorel summation of
dimension operators in the expansi@is to include deriva- this divergent series can be motivated by the following for-
tives of F, with each derivative balanced by an inverse powefMal procedure. Write
of m. This is what is done in the derivative expansi@). .
Thus, we can view the derivative expansid®) as a n! :f ds e~ s (6)
“double” series expansion, both in powers Bfand in de- 0
rivatives ofF. In this paper we study the divergence proper- ) _
ties of such an expansion. It has been suggested, based on ## then formally interchange the order of summation and
behavior of the constant field ca§g6], that the effective integration, to yield
field theory expansioii3) is generically divergent. Here we .
provide an explicit demonstration of this divergence for in- f(g)~ if ds
homogeneous background fields. agJo
For energies well below the scale set by the fermion mass
m, the divergent nature of the effective action is not impor-This integral is convergent for al§>0, and so can be
tant, as the first few terms provide an accurate approximadsed to define the sum of the divergent series
tion. However, the divergence properties do become imporZ,-o(—1)"a"n!g". To be more precise, the formul@)
tant when the external energy scale approaches the fermiahould be read from right to left: fog—0*, we can use
mass scalen, and/or when the inhomogeneity scale becomegd.aplace’s method20] to make an asymptotic expansion of
short compared to a characteristic scale of the system. THbe integral, and we obtain the asymptotic series in @j.
divergence is also important for understanding how the nonwith expansion coefficients,=(—1)"a"n!.
perturbative imaginary contributions to the effective action The Borel integral(7) can be analytically continued off
arise fromreal perturbation theory. the g>0 axis and in this case is in faft9,20 an analytic

s
exr{ - —} (g—0%). (7

1+s ag
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function of g in the cutg plane:|arg(@)|<. Thus, we can *
use a simple dispersion relatiofusing the discontinuity f(g)~2 (=1)"a"T'(Bn+y)g"
across the cut along the negatiyexis) to definethe imagi- n=0
nary part off(g) for negative values of the expansion pa- 1 (=ds/ 1 s \ 7B s \UB
~shslmallal -]
+
- - 1 . ) (g—0"). (10
mf(=g) a—gex a_g (9=07). ® The corresponding imaginary part for negative values of the

expansion parameter is

Note, of course, that an alternating series with negajive Imf(— )Nz 1 ylﬁex N He (g—0")
the same as aon-alternatingseries with positiveg. If the 9 B\ ag ag g '
expansion coefficients in Ed4) are non-alternating(with (11

g>0) then the situation is very different, both physically and

mathematically. Formal application of Borel summationNotice that the parametes affects the exponent, while the
yields combinationy/ B8 is important for the prefactor.

These last two formulas, the Borel integfal) and the
Borel dispersion relatiofil1), will be used repeatedly below.

- 1 (= 1 s
> ann!g”~—f ds(T>ex;{——} (g—07). Il. EULER-HEISENBERG-SCHWINGER EFFECTIVE
n=0 aglo \1-s @9 ACTION

©)

Now consider applying this Borel summation machinery

to QED effective actions. Effective actions can be expanded
However, the integrand in Eq9) has a pole on the integra- perturbatively in terms of the coupling constanand also in
tion contour, and so some prescription must be given foterms of derivatives of the background field strength, .
handling this pole. A principal parts prescription for such aTo begin, we review the well-known Euler-Heisenberg-
pole gives an imaginary part in agreement with B). Fur-  Schwinger effective action which corresponds to a uniform
thermore, we shall see in the following sections that this us@ackground field strength; thus the only expansion is in
of the principal parts prescription, when applied to the imagi-terms of the perturbative coupling constantWe consider
nary part of the QED effective action, gives answers infirst a magnetic background, and then we consider an electric
agreement with independent results, in all cases where sudfackground. For a uniform backgroumdagneticfield of
comparisons are available. This imaginary contribution isstrengthB, the exact renormalized effective action can be
non-perturbative(it clearly does not have an expansion in expressed as a “proper-time” integri]
positive powers ofg) and has important physical conse-
guences. Generically, this Borel-inspired approach signals e?B2L3T r~ds 1 s )
the possible presence of such non-perturbative physics if the S=— —Zf (coths— s §) e MR (12
perturbative expansion coefficients grow rapictorially) 8w

in magnitude and are non-alternating. The associated dispe{_—he 15 term is a subtraction of the zero fiel € 0) effec-

sion relations provide a bridge between the perturbaﬂve{-ive action, while thes/3 subtraction corresponds to a loga-

physics[i.e. thea,’s] and the non-perturbative imaginary ..~ " : o 3
. : .=~ rithmically divergent charge renormalizatig@]. The LT
parts[i.e. the exp(-1/ag) factord. We will see explicit ex factor is the space-time volume factor. It is straightforward to

amples of this below. velop. for smaleB/m2. an mptotic expansion of thi
We should note at this point that for a general divergen%?egr:?’ or sma + @n asymplotic expansion o S

series these Borel summation approximations and the asso-
ciated Borel-inspired dispersion relations may be compli-
cated by the appearance of additional poles and/or cuts in the

0 &2

2e?B2L 3T e?B?

complexg plane[37-40. For example, physically interest- 2 m*
ing poles, known as renormalons, are indeed found in certain . o
resummations of perturbation theory for both QED and Bon+ta 2eB
QCD. Here, for the one-loop QED effective action in a fixed Xngo (2n+4)(2n+3)(2n+2) | m? )
external background we find that we do not encounter such
poles. m*L3T[ 1 [eB|® 1 [eB\|®

The Borel summation construction discussed above for =2 |380| =2| 530\ 2
the casea,,=(—1)"a"n!, generalizes in the obvious way to & m m
the case where the perturbative coefficients ag 1 [eB\® eB
=(—1)"a"T'(Bn+ ), which corresponds to the leading- +_(_> .. (——>O+>. (13)
order growth indicated in Eq5): 315\ m? m?
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Here theB,, are Bernoulli number$41]. The perturbative
series(13) is the Euler-Heisenberd.,5] perturbative expres-
sion for the QED effective action in a uniform magnetic
backgroundB. It is an expansion in powers of the couplieg
with thenth power ofe being associated with a one-fermion-
loop diagram withn external photon linefwe have not in-
cluded the divergent @f) self-energy term as it contributes
to the bare action by charge renormalizatiddote that only
even powers o B appear in the perturbative expansias).
This is due to charge conjugation invarian@rry’s theo-
rem). The expansion(13) is also an expansion in inverse
powers ofm?, as is familiar for an effective field theory
action (3), with the higher dimensional operators in the ex-
pansion simply being higher powers BFf.

The Euler-Heisenberg perturbative effective actidp) is

PHYSICAL REVIEW D60 065002
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FIG. 1. This figure plots, as a function of the dimensionless
expansion parametey defined in Eq.(14), the ratio of the exact

not a convergent series. Rather, it is an asymptotic series @ffective action(12) to the Borel summation approximation in Eq.

the form(4) with expansion parameter

4e?B?
4

9= : (14

m

The expansion coefficients in E(L3) alternate in sigribe-
cause: signB,,)=(—1)"*1], and grow factorially in mag-
nitude:

_ 82n+4
"~ (2n+4)(2n+3)(2n+2)

an

N(_l)n+l

(2W>2n+4r(2n+2),

n—oo,

(19

(18). The dashed line refers to just the leading Borel approximation
in Eq. (16), while the dot-dash line refers to taking the first two
terms in the expansio(18), and the solid line refers to taking the
first three terms in Eq(18).

62n+4
(2n+4)(2n+3)(2n+2)

an=

;F(2n+2)§(2n+4)

-1 n+1
( ) (277_)2n+4

[’

=2(—1)”+1F(2n+2)k21

1

@mors

For eachk in this sum, the coefficient is once again of the
leading form in Eq.(5), with a=1/(4w?k?), and 8= y=2.

The growth of these coefficients is of the form indicated in Thus, we can apply the Borel summation form{#) di-

the example in Eq(5), with a=1/(47?), and B=y=2. If

we keep just the leading large-n behavior for the coefficients

a, indicated in Eq.(15), then we can immediately read off
from the Borel summation formul&l0) the leading-order
Borel approximation for the sum of the divergent sefiE3:

2R2| 3 -
di Ne B°L TJ ds S efmzs/(eB)
eading 445 |, 1+ %/ 7?
eB
——0"]. (16
m

It is straightforward to evaluate this integral numerically, an

one finds approximately 10—15 % agreement with the exact
answer(12) even when the perturbative expansion parameter

gis as large as 50, as is shown in Fig[Nlote that Eq(15)
suggests it is perhaps more *“
parameter to bg/(2)?~g/40, so we have plotted the lead-
ing Borel approximatior(16) for g up to 50|

But in this case we can do much better, because we are
the unusual situation of knowing thexactperturbative ex-
pansion coefficients,, for all n (not simply their leading-
order growth

rectly to yield

e2B2L3T & (= s
S 4775 kgl fods(

)
k2(k2+52/772))e e

e

(mB

_ +
;0

). (18

The sum ovelk gives successive corrections to the leading
Borel approximation in Eq(16). The contributions with one,
two and three terms are plotted in Fig. 1, each compared to
the exact resultl2). Note that only three terms are needed to
obtain 1% accuracy, even when the expansion parargeser

gas large as 50. In fact, the expans|dz]

2s o
—>

772 k=1

1
k2+s?/ 72

1
coths— s (19

natural” to take the expansion

together with the fact that(2)=3;_,1/k?=7/6, shows
that the Borel integral(18) agrees precisely with the
iBchwinger proper-time resull?). That is, Schwinger’s for-
mula(12) can be viewed as the Borel sum of tftévergenj
Euler-Heisenberg perturbative seri€43). Or, in other
words, the Euler-Heisenberg perturbative seflE® can be
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obtained by an asymptotic expansion of Schwinger’s integral his imaginary part has direct physical significance—it gives
representation formulél2), wheneB/m? is small. half the electron-positron pair production rate in the uniform
To get a sense of the size of the expansion paranieder  electric fieldE [2]. Actually, as in the magnetic case, we can
appearing in the Euler-Heisenberg series, it is instructive talo better than just the leading behavi@@). Combining the
re-instate factors ok andc: expansion coefficientd 7) with the Borel dispersion formula
(11) we immediately find

eB)\ 2
. finc [ Amo) ¢ 0 e E 3 1 r{ miak] [eE .
= = . mS~LT— 2, —exg— ——
d mc Jhcl(eB) 873 k=1 k? ek m?
(23)

The first equality in Eq.(20) expresseg in terms of the

square of the ratio of the cyclotron enerfjw. to the elec-  Wwhich is precisely Schwinger’s classic proper-time refilt

tron rest mass energyc?, while the second equality ex- This agreement supports our use of the principal parts pre-

presses it in terms of the fourth power of the ratio of thescription in extracting the imaginary part of the effective

electron Compton wavelengtih/mc to the “magnetic ac@iqn from the_ Iarge-orc_ier behavior of the perturbative co-

length” scale\%c/eB set by the magnetic field. The critical €fficients, as discussed in Sec. II. .

magnetic field strength at which the dimensionless parameter Note that in the electric case the relevant small dimen-

gin Eq.(20) is order 1 isB,= m2c%(e#i)~ 10" G. Thisis  Sionless parameter [sompare with Eq(20)]

well above currently available laboratory static magnetic

field strengths, which are approximately 53010° G, in eEn/(mo) (24)

which caseg~10 16—10"* is extremelysmall. However, mc?

the critical fieldB. is comparable to the scale of magnetic )

field strengths observed in astrophysical objects such as sihich is (up to a factor ofm) the ratio of the work done by

pernovae and neutron stars which can have magnetic field§€ electric fielde accelerating a particle of chargdhrough

of the order of 16° G [43]. an electron Compton wavelength, to the energy required for
Now consider the Euler-Heisenberg-Schwinger effectivePall production. For typlce_ll electric f|_elds this is a very small

action in a uniform backgrounelectric field of strengthE, ~ number, so the exponential factors in E¢&2) and (23) are

instead of the uniform magnetic backgrouBd Perturba- €xtremely small. The critical electric field at which the non-

tively, the only difference is thaB? is replaced by—E2, ~ Perturbative factors become significant I:T§=mzc3_/(eﬁ)

which amounts to changing the sign of the expansion param= 10 Vem™*. This is still several orders of magnitude be-

eter g in Eq. (14). Therefore, in a uniform electric back- yond the field obtainable in current las¢es]. .

ground, the Euler-Heisenberg perturbative effective action TO conclude this section, we stress that this constant-field

(13) becomes aon-alternatingseries case provides an explicit example of Dyson’s argunféid
that QED perturbation theory is non-analytic at the origin, as

2e2E2 3T e2E2 a series in the fine structure constant e?/(4), because

~ T this would mean that the stable vacuum, withpositive, is

7T m smoothly connected to the unstable vacuum, wittega-
o (—1)"B 2eE| 2" tive, at least in a small neighborhood of the origin. The per-

X >, 2n+4 ( ) turbative Euler-Heisenberg series in E¢E3) and (21) are

n=0 (2n+4)(2n+3)(2n+2) | m?2 expansions in powers o&’B2/m* and e’E*/m*, respec-

tively. Changing from a magnetic background to an electric
eE | background involves replacing?B? with —e?E?, which
——0"]. (2D  amounts to changing the sign ef (i.e., the fine structure
m constany, sincee always appears asB or eE. If the Euler-

. . . . 2_
Recall that si —(-1)"1 so0 (—1)"B is non- Heisenberg perturbative series were analytice#2=0,
[ - 9NBzn4)=(~1) > (1)"Bansais then the change froe?B? to — e?E2 would not produce any
alternating] This series is clearly divergent and since the = : - : .
coefficients are non-alternating, it is not Borel Summable_non-perturbanve Imaginary part in the effective action. Thus
' ere would be no pair production and we would miss the

Nevertheless, using the Borel dispersion relations we cal . hvsical instability of the OED . t
extract the imaginary part of the effective action. If we keepggrgigﬁtﬁc);ilcda instability of the QED vacuum in an exter-

just the leading large-growth (15) of the expansion coeffi-
cients, then we can immediately read off from the Borel
dispersion relation resultl1) the leading behavior of the V. SOLVABLE INHOMOGENEOUS BACKGROUNDS
imaginary part of the effective action in the electric back-
ground:

So far, we have re-phrased well-known QED results in the
language of Borel summation. Now we turn to the main

22 2 E point of this paper, which is to go beyond the Euler-
IM Sieaging~ LT exr{ _mm e__,0+ Heisenberg-Schwinger constant field results for the QED ef-
eacng 8 ek m? fective action. Perturbatively, this leads to a derivative ex-

(22 pansion (2) which is a formal expansion in increasing
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numbers of derivatives of the background field strength homogeneous ones, so classically we should think of them as
_ «O) 2) being supported by external currents. Within a quantum path
S=SUIF 1+ STF L, 0uF ]+ - - (29 integral they simply correspond to some particular vector
potential A, . Note that in the limitsh —c and 7—~ we
; : () regain the uniform field cases relevant for the Euler-
zgﬁcgttiT/Zch;f ﬁgliigﬂjes?rr;giﬁm:\%og or:m'?%lgei?]ct;g(;sin Heisenberg-.Schwinger effective action. We therefpre expect
powers of derivatives are balan'ced by incréasing powers c? at, fOI’. the mhomogenepus chkgroun@ﬁ@), the derivative
1m xpansion of the effective action should correspond to an
' expansion for larga and larger. We concentrate first on the

Unfortunately, it is very dn‘_ncult to say anything precise magnetic field case, and then use a duality transformation
about the convergence or divergence of such a derlvatlvg_)iE to convert to the electric field case

expansion because it is not an actual series, as if4ggn

terms of a dimensionless expansion parameter. For a gener, ISince each derivative of the magnetic field in &R6)
; Xpansion pe : 9 roduces a factor of 4/ a natural dimensionless expansion
background there is a rapid proliferation of the number o

inde , . S éaarameter for the derivative expansion in the magnetic case
pendent terms with a given number of derivatives of th is (restoring factors ofi andc)

field strength(see[9,11] for the first order and12] for 9

higher orders Even a first order derivative expansion calcu- ke Jhcl(eB)\?

lation is quite non-trivial. Moreover, for a general back- eB)\ZZ( N ) .

ground field, it is extremely difficult to estimate and compare

the magnitude of the various terms in the derivative expanThijs dimensionless parameter is the square of the ratio of the

sion (25). So a perturbative analysis to high orders in a denagnetic length scalec/eB (which is set by the peak

rivative expansion.appears prohibitiyely difficu.It fqr agen- magnetic field magnitudBE|I§|) to \, the length scale of

eral background field strength. This makes it difficult to the spatial inhomogeneity of the magnetic field. Alterna-

reconcile a perturbative derivative expansion calculation[. | bine this with the di ionl b

with the calculation of the non-perturbative imaginary part of IVely, We can combine this with t € dimension'ess pe_rtur a
) . . tion parameteK20) of the constant field case, to obtain an-

the effective action for an electric background. We explore

) : other dimensionless expansion parameter
this question below.

As a first step towards overcoming these obstacles, we e eBh %2 fi/(mc)\2
can consider rest_rlcted class_es of special backgrounds for BN m2ed) T m2eane N
which the derivative expansion reduces to a manageable
form. The QED effective action has recently been computedvhich is essentiallfup to factors of 2r) the square of the
exactlyfor either(not both of the following special inhomo- ratio of the Compton wavelength of the electron to the inho-

where S( involves no derivatives of the background field

(27)

(28)

geneous background magneftiet] and electric field$15]: mogeneity scalé.. Thus, for a magnetic background with a
macroscopic inhomogeneity scale the ratio 1/m?\?) is
3B X extremely small. In this form, we clearly recognize the de-
B(x)=B sech| — AU : -
A rivative expansion as an expansion in inverse powersof

as in a general effective field theory expansi8@p
- - t Indeed, these expectations are borne out by the exact
E(t)=E Sed?'(;) . (26)  renormalized effective actidii4], which has the double per-
turbative expansiofwe setc and# to 1 again
It has of course long been known that the Dirac equation is

exactly solvable for such backgrounds, a fact that has per- o LATM® & 101 :

mitted many authors to study the QED effective action in 8732 =0 ]!\ ma2

these backgroundst4—47. The new feature of14,15 is

that all the momentum traces have been performed so that o T(2k+ )T (2k+]—2)Boysoj [ 2B 2

the effective action is expressed as a simple integral repre- XKZI 1 >
sentation[involving a single integral, as in Schwinger’s - F(2k+1)T'| 2k+j+ = m

classic result(12) for the uniform background field. This 2

then permits the expansion of the effective action as a true (29

series, whose convergence/divergence properties can be o
studied in detail. In Eq. (29) it is understood that the double sum excludes the

. . s = (j=0k=1) term, as this term contributes to the logarithmi-
On the rLght Sld‘_a of .Eq(2§), B a|.1dE.are. constant vec—. cally divergent charge renormalization of the bare action
tors. Thus,B(x) points in a fixed direction in space and is [ 14].
static, but its magnitude varies in thedirection, with a We emphasize that the summation indexedjliy Eq.
characteristic length scalethat is arbitrary. SimilarIyE(t) (29) corresponds precisely to the orders of the derivative
points in a fixed direction in space and is spatially uniform,expansion. This has been verifigt4] by comparison with
but its magnitude varies in time, with a characteristic timeindependent derivative expansion calculations of the leading
scale r that is arbitrary. These electric and magnetic fieldsand first-correction term, computations that were done using
satisfy the homogeneous Maxwell equations, but not the inthe proper-time methofil0,11. For example, to make the
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comparison with the leading term of the derivative expansiorit is instructive to compare this with the leading Borel ap-
we simply take the Euler-Heisenberg constant field answeproximation(16) to the effective action for aniform mag-
(13), replaceB by B(x)=BsecH(x/\) and do thex inte-  netic backgrounds. To make this comparison we replace the
grals, using the fact that [*_secH"(x)dx  uniform background in Eq. (16) with the inhomogeneous
— @I (2n)/T(2n+1/2). This reproduces the=0 term in  backgroundB(x) =B secK(x/\), and then perform the in-
Eq. (29). A similar argumen{14] holds for the first correc- tegration. Thus
tion term in the derivative expansion, which reproduces the 5
j=1 term in Eq.(29). , ~_fm ( )f 4 2~ m2s/(eB(x))

It is important to note that the perturbative expression Steading™ 7,6 0 48\ 15 57777) | X Be
(29 for the effective action is an explicit double sumith

no remaining integrajsin terms of two dimensionless pa- B LANTe?B? (= s m?

rameters. One parameteB/m? characterizes the perturba- RET Jo dsT 27280 — oS

tive expansion in powers of the coupliey while the other

parameter 1/°\?) characterizes the derivative expansion. m?

Moreover, all the expansion coefficients are known exactly. x¥ E*_l;§35> (33

Thus, we can apply to this effective action the standard tech-
niques for the analysis of divergent seriesich as Borel where ¥ (a,b;z) is the confluent hypergeometric function,
summation. with integral representation

A. Leading order in derivative expansion W (a,b;z)= 1 J'we—ztta—l(l_l_t)b—a—ldt (34)
Consider a fixed ordgrof the derivative expansion. This T'(@)Jo

still involves a perturbative expansion in powers of the cou- , ..
b P b Noting thatW (a,b;z)~z 2 for largez, we see that Eq:33)

gggg:éiggrihzﬂ? é frrr? ;T;]nEec:i.éZCQ;SVéeiss ee that the perturbative is indeed in agreement with E¢B2) when the perturbative

expansion parameteB/m? is small.

L2\ Tm? [ 2eB\* Now consider thg =0 term of the derivative expansion
S=0~ — 7 —2> for the inhomogeneous electric backgroundt(t)
87 m =E secH(t/ 7). Perturbatively, we repladg? by —E? in the
® 2k expansion(30), so that the expansion coefficients are now
> 2 ['(2k+4)T(2k+2) B4 | 2€B non-alternating. Thus, in the electric case the series is diver-
k=0 K K 9 m? gent butnot Borel summable. Nevertheless, we can use the
I'(2k+5)T'| 2k+ 2 Borel dispersion relationd 1) to compute the imaginary part
of the effective action. A direct application of E{.1) leads
eB to
——=0"]. (30
m? L3rm?[ eE|>? m?ar eE
_ o o ImSU=0~ ——| — ex;{— —=| |=—0"].
The expansion coefficients alternate in sign and grow facto- 87" \'m ek m
rially with k: (35

3 Now compare this with the leading res(®2) for a uniform

F(2k+ 5) electric background. ReplacingE in Eq. (22) by the inho-
mogeneous fieldE(t)=E secl(t/7) and then performing
thet integration, we find

T(2k+4)T(2k+2)Borsrgq  2(—1)T1

- (27T)Zk+4

9
r(2k+5)r(2k+E

1 22 2 2
X 1+o(—”, k—»o00, L37e’E S O
k Im SleadingN 8775/2 exp — eE v E y 1,@
(31
Thus, we are in the situation described by E8). with re- ﬂ5_>0+ (36)
spect to the large-order behavior of the expansion coeffi- m2 ’

cients. Applying the Borel summation formul&0), the lead-
ing Borel approximation for the serié80) is When the perturbative parametE/m? is small, this agrees
precisely with the resummed answer in E85).

=0 L°ATm" [eB S/ZF Vs
~ — S —_—
A2 \ m2 0 1+s%/ 72 B. First correction in derivative expansion
m2 eB A similar analysis for thg =1 term(i.e., the first deriva-
Xex;{ s ~—_ ot (32)  tive expansion correction tejnn Eq. (29) shows that in the
eB m? magnetic case the perturbative expansion in powers of
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(2eB/m?)? has coefficients that alternate in sign and grow
factorially in magnitude. The leading Borel approximation

for this series is

-1 LZ"Tm4(ﬂ3>5/2( m* ) f e )
16712 \ m? e’B\?) Jo s | 1+ 72
m2
xexp{ — JBS . (37)

PHYSICAL REVIEW D60 065002

L3m® = m2ar

ImeII‘S'[ m dZ\/ZZ—lzzeXF{—EZZ
eE

m2

m?a

L3
= exg —
32\/mre?E? F{ eE

- 33_m277
2" eE

(42)

We can compare this with the first correction in the deriva-
tive expanS|0n which has been Computed mdependently USvhich agrees prec|se|y with Eq40) WheneE/m is small.

ing proper-time methodgl0,11]:

1 des 1 s\!|”
642, 5 | S\ coths) =g~ 3

Jd4 (eB'(x) )Zex;{— m? .
eB(x) eB(x) |’

With the inhomogeneous backgroum{x) = Bsecl(x/\),
the space-time integrals can be done to yield
L2AT

eB fwds . 1 s\|"”
a2 2] Jo 5 %1753

m? v 30_m2
xXex —e—BS E, ,e—BS .

For small perturbative parameteB/m? this reducegafter

Sfirst'\' -

(39

irst™

(39

Once again, this agreement with an independent proper-time
result further supports our use of the Borel-inspired disper-
sion relationg11) for the electric background case.

C. Resumming the derivative expansion

Having verified explicitly that the Borel techniques work
for the first two orders of the derivative expansion, for both
the magnetic and electric background, we now turn to the
higher ordersj=2 of the derivative expansion. These are
very difficult to compute with field theory techniqués2].
Nevertheless, for the particular inhomogeneous backgrounds
in Eq. (26), the exact resul{29) containsall orders in the
derivative expansion, and so it is a simple matter to study the
divergence properties of each ord@f the derivative expan-
sion.

From Eq.(29), the | order derivative expansion contri-
bution to the effective action is&1)

some integrations by parts 8) to the expressio37) which S LATm* 1 1 \'[2eB)?
was obtained by Borel summation of the-1 term of the 87732 J_| M2\ 2 m2
double series(29). This agreement with an independent
proper-time calculation of the first-order derivative expan- " T(2k+))T(2k+]j +2)32k+2j+2<2e5) 2k
sion further supports our use of the Borel summation ap- X 2 5
proach for the magnetic background case. N [(2k+3)T| 2k+j+ = m

In the electric case, the=1 term in Eq.(29) is a pertur-

bative series expansion that is divergent but not Borel sum-

(43

mable, as the expansion coefficients are non-alternating. We
can compute the imaginary contribution to the effective ac+or fixed | this contribution is itself a perturbative series

tion using the Borel dispersion relation res(t):

im <=1 L3rm?[ 1 \[eE| *? m?m
m 3272 \ mz2 )\ m2)  FH T eE

eE
—2—>0+). (40
m

This should be compared to the first-order derivative expan-

sion result from a field-theoretic calculatiph6,11]:

2 2
4 (80E(t)) ex%_ m=ar (41)

mP
Im Stirst~ %J d*x B0 =ik

With the inhomogeneous backgrouri#(t) = EsecH(t/7),
the space-time integrals can be done to yield

expansion in terms of the dimensionless parameger
=4e?B?/m*, with expansion coefficients

I'(2k+ )T (2k+] +2)Boyspj+2

a(kl):

T'(2k+3)T| 2k+j+ =

r

1
2k+3] - E)

~2(—1)itk (k—oo; | fixed).

(277_)2] +2k+2
(44)

These coefficients alternate in sign and grow factorially with
k, for any fixedj=1. Using the leading largk behavior in
Eq. (44) together with the Borel integral7), the leading
Borel approximation to th¢" order of the derivative expan-
sion is(for j=1)
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bative modification of the non-perturbative exponent
mm?/(eE) in the Schwinger uniform field result22).

i
2 4 5/2 exg — —s
st~ —ﬂ ﬁ) “ds —eB Clearly, the modification of the exponent derived in E4f)
4772\ m? 0892 1+8%x? is much more significant than a modification of the prefactor,
43 ] which is all that is obtained by looking at a singllew)
xi —ms (ﬂa_)oJr) (45  Order of the derivative expansida1,15. We stress that we
il 4722283 m? are able to exponentiate the corrections because in this case

we know the large order perturbative behavior éveryor-
Note the remarkable fact that these leading Borel approximader of the derivative expansion. Finally, notice the appear-
tions, for each ordej of the derivative expansion, can be ance of the dimensionless paramet#eEr) in the correc-
resummed into an exponential. THe=0 term must be tion to the exponent in Eq(48). We will address the
treated separatelypecause the sum in ER9) begins atk  significance of this parameter below.
=2 whenj=0, because of charge renormalizafio@om-
bining thej =0 result(30) with the j=1 result(45 we find D. Divergence of the derivative expansion

ds 1 In the previous section we took the leading Borel approxi-
5 f 1T 2 mation to the perturbative expansifthe sum ovek in Eq.
m 0s s (29)] and then performed the derivative expangitre sum
5 2 overj in Eq. (29)] exactly. Actually, it is possible to re-sum
% exp{ _ E[ 1+ (l) S_] _ (46) the perturbativék expansion in Eq(29), and express it as an
eB eBN) 442 integral. That is, we can write the effective action as a single
(derivative expansionseries:
The first term is a finite charge renormalization, on top of the _
usual infinite charge renormalization for the uniform field LIATm* & ( 1 )J (
]=0

5/2
eB

m2

L2ATm?
a 472

e52

L2ATmM*
273

casd 2]. In the second term, we see the interesting result that S~———5 < ajl ——
the leading Borel approximations to each order of the deriva- 8m N M7\
tive expansiorexponentiatavhen they are resummed.

A similar phenomenon occurs with the electric back-
ground. For anyj=1, a straightforward application of the
Borel dispersion resultll), using the growth estimate of the
coefficients in Eq(44) gives

m2h2—>0+) (49
where the expansmn coefficierds are nowfunctionsof the
parameteeB/m?. To study the divergence properties of this
derivative expansion we need to know the rate of growth, for
large j, of the expansion coefficients; appearing in Eq.
(49). For j=3 there is a simple integral representation for

34 5/2 2 4 i these coefficientfthis amounts to summing the perturbative
Im St~ L TT (ﬂi) exp{— mm i m ;T 3) expansion in the double seri€29), thereby reducing Eq.
87 \m?2 eE |j! | 47°e’E (29) to the single series in Eq49)]:
: al'(j—2 % :
ij_)o ) (47) aj=(—1)‘*1(1—) cosecR(s)s?
m 2jT|j+5
In fact, comparing with Eq(35) we see that this result for
the imaginary part also holds fgr=0. Thus, resumming the .. .. 1 2ieBs
derivative expansion, the result immediately exponentiates Fal 1 =23+ 35 e
to
1 2ieBs
s L3rm?/ eE\ 2 m2m L 1( m\? +,5F; j,j—2;j+§;— > )—2 ds. (50
Mo~ | 2] 97 eE|" aleEr m
Here, ,F,(a,b;c;2) is the standard hypergeometric function
eE :
(——>0*) . (49 [42]:
m2

I'(c) < T(a+kI(b+k) Z
It is very interesting to see that the leading Borel approxima-  2F1(a,0;¢;2)= T'(a)l(b) go T(ctk) k-
tions to each order of the derivative expansion can be re- (51)
summed into an exponentiated form. Thus, resumming the
leading Borel contributions amounts to a resummed perturgor anyj it is straightforward to evaluate these coefficients
a, numencally for various values of the dimensionless pa-
rametereB/m?. We find that the coefficients; alternate in
10f course, the finite renormalization found in the magnetic casésign and grow in magnitudgfor large j) like CYJF(ZJ +7),

(46) does not affect the imaginary part of the effective action in thewith some reaky, y. This is illustrated in Fig. 2, where the
electric case. ratio of successive magnitudgs . 4|/|a;| shows a clear qua-
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ratio

40

30

20

10

J

10 15 20

FIG. 2. This figure plots the ratios; ., /a;| of the successive
expansion coefficienta; in the derivative expansiof9), for two
different values of the dimensionless expansion parangatefined
in Eq. (14). The solid line refers tgg=0.1 and the dashed line
corresponds tg=0.0001. Note the quadratic growth of this ratio,
indicating that|a;|~ /T'(2j + y) for largej.

dratic growth, for various values @B/m?. This shows that
the derivative expansion itselt9) is a divergent series.

E. Resumming the perturbative expansion

PHYSICAL REVIEW D60 065002

Thus, the coefficienta!) alternate in sign and grow facto-
rially with j, for any fixedk=2. Therefore, for any fixed
order of perturbation theory iaB/m?, the derivative expan-
sion is a divergent series.

Now consider resumming the leading Borel approxima-
tion of each ordeik of the perturbative expansion for the
inhomogeneous electric background in EB6). From Eq.
(53) and the Borel dispersion relatidhl) the imaginary part
of the effective action at ordet of the perturbative expan-
sion is

L3m%2 (27eEr®)%

(K)
M R (2K)

e—27Tm7' i_)o-%—
mr '
(54)

This is in fact valid for allk=1. Resumming these leading
Borel contributions gives the leading behavior, for large
eE7? (as is appropriate for the derivative expangjon

e

(55
Once again, we see that the resummation of the leading
Borel contributions exponentiates, producing an exponent

L3m3/2
8’7T3’7'3/2

1
— 0"
mr

eEr

Im S~ 1-—
m

In this section we apply the leading Borel approximationthat is modified from that found in the Schwinger uniform
to the derivative expansion, for a given order of the perturield result(22).

bative expansion, and then re-sum the perturbative expan- However, the exponential behavior in E(5) is very

sion.
First, take a fixed ordek=2 of the perturbative expan-
sion in Eq.(29):
( ) 2k

F'(2k+ )T (2K+] = 2) Bo s

LAATm* 1
g32 T'(2k+1)

2eB

Sk
m2

©

X2

=0

|

—>0+). (52

rg+ur

2+ 5
)

|

This is a derivative expansion in terms of the dimensionles
parameter 1f62\?), with expansion coefficients

m?\?2

w0 TU+2KT(+2k=2) By o

1
r(j+1)r(j+2k+E

27/27 2k1"'

, 5
2j +4k— E)
"‘2(_1)j+k+1

(277)2j+2k

(j—oo; k fixed). (53

different from the exponential behavior in E@8), and in-
deed from the exponential behavior in the uniform c&.

To understand this difference, we first recall that the expo-
nential behavior in Eq48) was obtained by resumming the
leading Borel approximations to each order of the derivative
expansion, while the exponential behavior in Ef5) was
obtained by resumming the leading Borel approximations to
each order of the perturbative expansion. That is, to obtain
Eq. (48) we take the leading Borel approximation for tke
summation in Eq(29), for each fixed, and then resum over

j; while to obtain Eq(55) we take the leading Borel approxi-
mation for thej summation in Eq(29), for each fixed, and
then resum ovek.

The difference between these two approaches is governed
by the relative size of the two dimensionless expansion pa-
rameters. In the perturbative expansion we assume that
eE/m? is small, and in the derivative expansion we assume

That 1/(m7) is small. The distinction between the two an-

swers(48) and (55) depends on the dimensionless combina-

tion:
eE
eEr B m? 56
™oLy 0
mr
There are two natural regimes of interest:
. . eEr
non-perturbative regime: o >1 (57
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) . eEr perturbative expansiofthe sum in powers oBE/m?] ex-
perturbative regime: m <1 actly. This is exactly what was done in deriving the result
(55).

Note that, in each case, our ability to treat the remaining
sumexactlyrelied on the fact that the leading Borel approxi-
m2 , mations came out in a form that could be exponentiated. It is
mrs> — = e M (eBs, g—27m7 (58)  nota priori obvious that this dramatic simplification had to
ek occur. However, in the next section we will see that this

o ) ) _exponentiation is very natural in terms of a WKB formula-
Therefore, in this regime we expect the leading exponentiafign.

contribution to ImS to be the Schwinger uniform field factor
exd —nm?m/(eB)], as indeed is found in E@¢48). The resum-

In the non-perturbative regime Er/m>1 implies that

V. RELATION TO WKB ANALYSIS

m277 m27T 59
eE - eE (59

mation of leading Borel approximations derived in E48)
gives corrections to this leading exponent In a general backgrouné,,,=F,,(x,t), the effective ac-
5 tion is too complicated to permit such a detailed Borel analy-
1— 1(1) sis as has been done in the previous sections for the uniform
4\ eEr background and for the special inhomogeneous backgrounds
in Eqg. (26). Clearly, we do not know the spectrum of the
which has the form of a small correction in terms of theDirac operator for a general background, so some sort of
parametem/(eE7), which is small in this non-perturbative approximate expansion method, such as the derivative ex-

regime. pansion, is required. But the formal derivative expansion
On the other hand, in the perturbative regine&r/m  (25) is not a series expansion, because more and file-

<1 implies that pendenk tensor structures appear with each new order of the

derivative expansion. This is because with more derivatives

m?2 , there are more indices to be contracted in various ways. An-

mr< e_E:e—zme> g~ meR, (600 other way of saying this is that the inhomogeneity of a gen-

eral background cannot be characterized by a sif@leven

. . . —ommr . a finite number of scale parametés), such as the length
In this regime, the exponential facter dominates the scale\ or the time scaler in Eq. (26). Another problem is

. —m? . . .

Schwinger factoe™" mied and gives a new leading contri- {hat in general it is difficult to estimate the size of various
bution to ImS. The resummation of leading Borel approxi- tayms in such a derivative expansion when the background
mations in Eq.(55) gives corrections to this leading expo- fie|d strengthF ,, is an arbitrary function of space-time. So,
nent even if we could organize the derivative expansion into a

sensible series, it would be difficult to estimate the magni-

tude of the coefficients at very high orders in the series, as is
(61) .

needed for a Borel analysis.

Nevertheless, it is still instructive to consider a further
where in the perturbative regime the paramet&r/m is  generalization of the particular inhomogeneous backgrounds
small. in Eqg. (26). In this section we relax the condition that we

Now ask the question: how does the time dependence dfnow the exact spectrum of the Dirac operator, but keep the
the inhomogeneous electric background in E2f) modify ~ restriction that the backgrounds only depend on one space-
Schwinger's constant field resu22)? The answer depends time coordinate. This has the effect of reducing the spectral
critically on how the characteristic time scateof the inho- ~ problem to that of an ordinary differential operator. As is
mogeneity relates to the time scaté(eE) set by the peak clear from Eq.(1), the effective action is determined by the
electric fieldE. This then determingsee Eq(56)] the rela-  spectrum of the operator
tive magnitude of the two expansion parameters;]r))( (cor-
responding to the derivative expansicand eE/m- (corre- 2 2 2 € Y
spo%ding tgo the perturbative exgangion M+ D7=[m"+D,D*]1+ EF’“’UM (62)

In the non-perturbative regime, the smaller of the two
parameters is the derivative expansion parametem#)/( Wwherec*”=i/2[y*,y"]. If we restrict our attention to in-
<eE/m?. Thus, we apply the leading Borel approximation to homogeneous backgrounds that point in a fixed direction in
the perturbative expansidithe sum in powers oeE/m?], space(say, thez direction and depend on just one space-
and then resum the derivative expansjtte sum in powers time coordinate, then the operator in E2) can be diago-
of 1/(m7)] exactly. This is exactly what was done in deriv- halized with a suitable gauge choice and a suitable Dirac
ing the result(48). basis. For example, the spatially inhomogeneous magnetic

In the perturbative regime, the smaller of the two paramfield
eters is the perturbative parameter®/m?<1/(mr). Thus,
we apply the leading Borel approximation to the derivative
expansiorithe sum in powers of 1itf7)], and then resum the

eEr

2mmr—2mm7| 1— —
m

I§(x)=28f’<§) (63)
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can be realized with the vector potentialﬁ 1 0
=(0,BAf(x/\),0). Then, in the standard Dirac representa- Im 52(5) Z ﬁf d*ke™ "7 (67)
tion [48] for the gamma matrices, the operatof+ D? is =t

diagonal, with diagonal entriggppearing twice each on the where the WKB exponent is

diagonal:
X 2
ky— eB\ f X

Q=%j Vpl+ pA(t)dt. (68)
TP

m?+ D ,D*+eB(x)=m?—k3+kZ— a2+

Here u?=m?+kZ+k? and

X
+eBf X)' (64) d(t)=k,—eA(t)=k,— eErf(t/7) (69)
o ) o for the electric field in Eq(65). The integration in E¢(68) is
Similarly, the time-dependent electric field between the turning points of the integraliblis expression
is somewhat symbolic—in practice, the evaluation(bfre-
- ~ [t quires careful phase choices, depending on the form of the
E(t)=zEf (;) 65 function f(u) [26,27,16]. For the constant field case, with
f(u)=u, one finds
can be realized with the vector potentfat (0,0E 7f(t/7)). w?
Then, in the standard chiral representatipt8] for the 0= oF (70)
gamma matrices, the operato’+ D? is diagonal, with di-
agonal entriegappearing twice each on the diagonal Then the momentum integrals in E§7) can be donérecall

the density of states integrgldk,=E) to yield the familiar
t\\2  Schwinger resulf23).
In the inhomogeneous electric fiel(t) = E seck(t/7),
which corresponds té(u) =tanh{i), we can also comput@
exactly[27,15:

m?+D,DFxieE(t)=m?+K;+kj+d5+| k,—eErf

T

*ieEf

T

. (66)

Q= r(Ju?+ (eEr+k,) 2+ Ju?+ (eEr—k,)2— 2eEr).

Therefore, in each cas@3) and (65), the spectrum is 7D
determined by a one-dimensional ordinary differential operatt js a straightforward, but somewhat messy, computation to
tor. However, note the appearance of the factorsiafthe  check that by doing the momentum integrals in B&f) with
electric casg66). This shows immediately the fundamental thjs expression fof), one arrives at the exact integral rep-
difference between a magnetic background and an electrigasentation, derived ifiL5], for the effective action in this
background. In the magnetic case, the eigenvalues of thhomogeneous background. The WKB expression gives the
associated ordinary differential operator are real, while folexactresult in this case because the uniform WKB approxi-
the electric case, the eigenvalues of the associated ordinagyation gives the exact spectrum of the differential operators
differential operator have an imaginary pdMote thatinthe (64) and(66) when f(u) =tanhg) [50].
magnetic case the boundary condition for the ordinary dif- Now consider this WKB exponerf in Eq. (72) in the
ferential operator is for solutions that decayat+, while  on_perturbative and perturbative limits7). In the non-

. - . - ] t . ) . ) )
in the electric case we seek solutions going Ike< att  perturbative limit we can expard in inverse powers of as
= * oo, corresponding to the particle/antiparticle g&6,46.

The reader is encouraged to check all this explicitly for the u? kf 1) p\2

simple case of a uniform backgrouid. Qnon_pen:—E 1+ >~ Z(? (72
Schwinger’s uniform field case corresponds to choosing € (eEm) ekr

the functionf appearing in Egs(63) and (65) to be f(u) L -

— u, while the inhomogeneous backgrounds in E26) cor- In the perturbative limit, we obtain instead

respond to choosin§(u) =tanhg). It is well known that in 1K eEr

each case the spectrum of the associated ordinary differential Qo= 2ut 14 = —— — 4 (73

operator in Eqs(64) and (66) is exactly solvabl¢49]. This P 2,2 u

explains why it is possible to compute the effective action

exactly for these backgrounds. For the more general fields iR0INg the momentum trace ovég, the momentum in the
Egs.(63) and (65) it is not possible to find the exact spec- direction of the field, in the WKB expressidié7) modifies
trum. However, we can still use a WKB approach to approxi-the prefactor, but not the exponent. The traces over the trans-
mate the spectrum. For a time-dependent, but spatially unierse _momenta can be done by approximating
form, electric background this leads to the following WKB = \m?+ kL2~m+ k?/(2m)+ - - - . This effectively replaces
expression for the imaginary part of the effective actionu with min Egs.(72) and(73), and thek, integrals in Eq.
[27,15,16: (67) contribute to the prefactor. Then comparing EG&)
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and (73) with Eqgs. (59) and (61), we see that we regain frequency limits(respectively, in which case the seéft/7)
exactly the Borel resummed resul$8) and (55) obtained  and singt) profiles of the electric background are signifi-
for the two extreme limit57). Thus, this WKB analysis cantly different.

explains why we found two different expressions, E¢®)

and (55), by Borel resummation of the double serig9), VI. CONCLUSION
depending on the relative size of the two dimensionless ex- ) ] )
pansion parameters. In conclusion, by analyzing the large order behavior of

To conclude this discussion of the WKB approach, it isthe expansion coefficients we have shown that the QED ef-
instructive to compare thE(t) = E secR(t/7) case with the fective action is a divergent double series for the inhomoge-
case of an oscillating electric fielEi(t)=E sinwt) which ~ N€ous magnetic backgrou{x) = Bsect(x/\) and for the
was studied in detail using WKB methods by Bire and inhomogeneous electric backgroufqt) =Esech(t/7). In
ltzykson[26]. This is not an exactly solvable case, but WKB particular, we have also demonstrated that for these inhomo-

provides a semiclassical result. Hei1) = — cosgl) and so  9eneous background fields the derivative expansion is itself
the WKB exponent is divergent. Borel summation techniques have been used to

relate the rate of divergence at large orders in perturbation
2i 2 theory to the non-perturbative imaginary part of the effective

0= ;LP ui+ dt. (74)  action, which determines the pair-production rate in the time-

While this integral cannot be done in closed form, one ca
consider the non-perturbative and perturbative lif26). In

eE
k,+ ;cos(wt)

u?

O
non pert“eE

2
+.o..

dependent electric background. Remarkably, the leading
r13orel approximations exponentiate to yield corrections to the
amiliar exponent appearing in the constant field case. These
the non-perturbative regime, whemew/e E< 1 resummations can also be explained using a WKB analysis
' ' of the imaginary part of the effective action.
1/ w\? 1/ pow While we have not proven rigorously that these Borel

1+ 5(—) ki—g(ﬁ (75  techniques are unique, we have provided strong supporting

evidence by comparison with independent field theoretic re-

which is clearly analogous to the non-perturbative li(@ig) ~ Sults whenever such a comparison is available. A rigorous
of the E(t)=E secR(t/7) case. Thus, in this regime, the pr(_)of of unigueness would require an ana_lly5|s of the analy-
Schwinger pair production rate has a modified exponent  ticity properties[20,51 of the function being expanded—
here the effective action—in addition to the analysis of the

m’mr  miar 1/mw\? convergence properties of the series. We cannot answer this

eE " eEl* " 8 E) . (76) precisely without knowing the detailed analytic structure of

the effective action, which is not known for nontrivial back-
On the other hand, in the perturbative regime, wheregrounds. Instead, we have taken the simplest and most natu-

mw/eE>1, ral Borel approximation, and we have compared it to inde-
pendent calculations whenever these independent

4u 2unw calculations are available. In our opinion, the results are very

Qpert El‘)g( E) (77 convincing.

Finally, we conclude by considering the question of Borel
which is very different from the perturbative limif3) of the ~ summability of the perturbative effective action when the
E(t)=E secl(t/7) case. In this regime, the WKB pair pro- inhomogeneous background has the more general form in
duction rate for an oscillating time-dependent electric backEd. (63) or Eq. (65). The exponential form of the WKB

ground becomef26] expression(67) for the imaginary part of the effective action
is very suggestive of the exponential imaginary parts found
e2E2( g2p2 \2Me from the Borel dispersion relatiofi1). Indeed, writing
ImS~ —— (79
327 | 4m?w?
1 1 1
z _e—an:_Q E _z(nﬂ_Q)e—anl (79)

This is a perturbative expression, with the perturbative pa- n=1n T4 n=1n

rameter(e E/(mw))? raised to a power @/ which is the
number of photons of frequeney required to match the pair
creation energy .

So, while the non-perturbative resulfg2) and (75) are
very similar for the case€(t)=EsecH(t/7) and E(t)
=E sin(wt) respectively, the corresponding perturbative re- L\3 Boys o 2\2+1
sults are very different from one another for these two time- S~ —2T<2—) 2 I dgk(—)

; o ] G 21+2)(21+1) Q
dependent electric backgrounds. This difference can be (80)
traced to the different perturbative limitg3) and(77) of the
WKB exponent(). Physically, this is not so surprising if we where in the magnetic case — —i{). This expression is
recall that the perturbative limitgEr/m<1 andeE/(mw) consistent with the result from the resolvent methad
<1, can also be thought of as short-pulse and highthough to be strictly correct we need to specify carefully

we can read the Borel dispersion relation backwdwish
B=2, y=1, andy1/(ag)=nm(}] to obtain the correspond-
ing asymptotic expansion of the real part of the effective
action
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phase conventions fdi [15,16]). For example, in the con-
stant magnetic cas@=pu?/(eB), and it is easy to verify
[recalling thatf dk,=B] that the expansioii80) reproduces
the Euler-Heisenberg expansi@ii).

Interestingly, the expansidi80) is a reorganization of the

PHYSICAL REVIEW D60 065002

grounds. However, we caution that this argument is formal,
as it neglects the possible appearance of other poles and/or
cuts in the Borel plane which might invalidate the naive use
of the Borel dispersion relatiofl1). Nevertheless, it is sug-

gestive to associate the non-perturbative WKB expression

usual perturbative expansion of the effective action, and thigs7) for the imaginary part of the effective action with the
reorganized form already makes manifest the generic diverdivergent expansiofB0) for the real part.

gence properties of the effective action,
Bernoulli numbers have leading behavior,,

~(—1)"*12(2n)!/(2m)". Thus, we see that in the magnetic
case the expansid®0) has coefficients that alternate in sign

since the
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