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Borel summation of the derivative expansion and effective actions
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Department of Physics, University of Connecticut, Storrs, Connecticut 06269

~Received 5 February 1999; published 9 August 1999!

We argue that the derivative expansion of the QED effective action is a divergent but Borel summable
asymptotic series, for a particular inhomogeneous background magnetic field. A duality transformationB
˜ iE gives a non-Borel-summable perturbative series for a time dependent background electric field, and Borel
dispersion relations yield the non-perturbative imaginary part of the effective action, which determines the pair
production probability. Resummations of leading Borel approximations exponentiate to give perturbative cor-
rections to the exponents in the non-perturbative pair production rates. Comparison with a WKB analysis
suggests that these divergence properties are general features of derivative expansions and effective actions.
@S0556-2821~99!06516-9#

PACS number~s!: 11.15.Bt, 11.10.Ef, 11.10.Jj
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I. INTRODUCTION

The effective action plays a central role in quantum fie
theory. Here we consider the one-loop effective action
quantum electrodynamics~QED! for electrons in the pres
ence of a background electromagnetic field:

S52 i ln det~ iD” 2m!52
i

2
ln det~D” 21m2! ~1!

whereD” 5gn(]n1 ieAn), andAn is a fixed classical gaug
potential with field strength tensorFmn5]mAn2]nAm .
When the background is a static magnetic field, the effec
action S is equal to minus the effective energy of the ele
trons in that background; and when the background is
electric field,S has an imaginary part which determines t
pair-production rate for electron-positron pair creation@1–4#.
For a uniform background field strengthFmn5const, the ef-
fective actionScan be computed exactly@1,2,5–7#. For more
general backgrounds, withFmn not constant, the situation is
more complicated. One standard approach is to make a ‘
rivative expansion’’@8–12# ~or ‘‘gradient expansion’’@13#!
which is a formal perturbative expansion in increasing nu
bers of derivatives ofFmn :

S5S(0)@F#1S(2)@F,~]F !2#1•••. ~2!

In this paper we address two questions concerning the Q
effective actionS in a nonuniform background. First, w
consider the convergence or divergence properties of the
turbative derivative expansion in Eq.~2!. Second, we ask
how such a perturbative expansion can lead to correction
Schwinger’s nonperturbative pair-production rate~computed
for a constant background! when there are inhomogeneitie
in the background electric field. We can answer these qu
tions by considering some exactly solvable cases with s
cial inhomogeneous backgrounds@14–16#. The derivative
expansion is found to be a divergent series, and the rat
divergence at high orders can be used to compute the c
sponding non-perturbative imaginary part of the effective
tion when the background is a time-dependent electric fi
This divergence of the derivative expansion is not a b
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thing; it is completely analogous to generic behavior tha
well known in perturbation theory in both quantum fie
theory and quantum mechanics. For example, Dyson@17#
argued physically that QED perturbation theory is not a
lytic at the origin, as an expansion in the fine structure c
stanta, because the theory is unstable whena is negative.
While this does not strictly speaking prove divergence
identifies an important physical source of non-analyticity a
potential divergence. The divergent nature of field theore
perturbation theory was found long ago in scalarf3 theories
@18# by studying large orders of perturbation theory.

Our analysis of the convergence or divergence proper
of the QED effective action uses Borel summation@19,20#, a
mathematical tool that can be used to relate the rate of di
gence of high orders of perturbation theory to no
perturbative decay and tunneling rates, thereby providin
bridge between perturbative and non-perturbative phys
Other well known explicit cases of this connection appear
quantum mechanical examples such as the anharmonic o
lator @21# and the Stark effect@22#, and in quantum field
theory in semi-classical analyses of scalar field theories@23#
and asymptotic estimates of large orders of QED pertur
tion theory@24#. For an excellent review of a broad range
examples, see Ref.@25#. Typically one finds that in a stable
situation~i.e., no tunneling or decay processes! perturbation
theory is divergent, with expansion coefficients that altern
in sign and grow factorially in magnitude. On the other han
in an unstable situation, perturbation theory is generally
vergent with coefficients that grow factorially in magnitud
but do not alternate in sign. Borel summation is an appro
to the summation of divergent series that makes phys
sense out of these two different types of behavior. We s
see that the divergence of the derivative expansion can
understood naturally in this Borel framework.

In addition to these theoretical considerations of und
standing the connections between the perturbative deriva
expansion and non-perturbative pair-production rates,
other motivation for this work is provided by the attempt
observe electron-positron pair creation due to QED vacu
effects in the presence of strong electric fields. Schwinge
constant field pair-production rate is far too small to be
cessible with present electric field strengths. However,
©1999 The American Physical Society02-1
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constant field approximation is somewhat unrealistic, and
one can ask how this rate is modified by a time variation
the electric background. For sinusoidal time variation Bre´zin
and Itzykson found a WKB result with fairly weak frequenc
dependence@26#, while Balantekinet al have applied group
theory and uniform WKB to electric backgrounds with mo
general time dependence@27#. The QED effective action ha
recently been computed@15# as a closed form~single inte-
gral! expression for the particular time-dependent elec
background withE(t)5E sech2(t/t), and in this paper we
consider the numerical implications of this result for pa
production rates in such a background. It is important to n
that another related approach to observing pair-productio
to use highly relativistic electrons as intermediate states
has been done in recent experiments@28,29#.

Finally, we note that the derivative expansion~2! is an
example of aneffective field theoryexpansion@30#, such as is
used in operator product expansions@31# and chiral pertur-
bation theory@32#. In the effective field theory approach, th
massm of the electrons~which are ‘‘integrated out’’ in the
one-loop approximation! sets an energy scale, and the phy
ics at energiesE!m should be described by a low energ
effective action with the formal expansion

S5m4(
n

an

O(n)

mn
~3!

whereO(n) is an operator of dimensionn. For the case of the
QED effective action, the simplest way to produce high
derivative operators in such an expansion is to take hig
powers of the field strengthF. Thus, even the leading~i.e.,
constant background! term S(0)@F# in the derivative expan-
sion ~2! is itself an effective field theory expansion of th
form ~3!. This is simply the Euler-Heisenberg effective a
tion which is a perturbative series expansion in powers
e2F2/m4. This series is known to be divergent@33–35#, and
there are important physical consequences of this di
gence, as we review below. Another way to produce hig
dimension operators in the expansion~3! is to include deriva-
tives ofF, with each derivative balanced by an inverse pow
of m. This is what is done in the derivative expansion~2!.
Thus, we can view the derivative expansion~2! as a
‘‘double’’ series expansion, both in powers ofF and in de-
rivatives ofF. In this paper we study the divergence prop
ties of such an expansion. It has been suggested, based o
behavior of the constant field case@36#, that the effective
field theory expansion~3! is generically divergent. Here w
provide an explicit demonstration of this divergence for
homogeneous background fields.

For energies well below the scale set by the fermion m
m, the divergent nature of the effective action is not imp
tant, as the first few terms provide an accurate approxi
tion. However, the divergence properties do become imp
tant when the external energy scale approaches the ferm
mass scalem, and/or when the inhomogeneity scale becom
short compared to a characteristic scale of the system.
divergence is also important for understanding how the n
perturbative imaginary contributions to the effective acti
arise fromreal perturbation theory.
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In Sec. II we review briefly the mathematical technique
Borel summation, and in Sec. III we apply this to the Eule
Heisenberg-Schwinger constant-background effective act
Section IV gives the Borel summation analysis of the p
ticular exactly solvable cases with inhomogeneous magn
and electric backgrounds. In Sec. V we show how this
related to a WKB analysis, and Sec. VI contains some c
cluding remarks.

II. BRIEF REVIEW OF BOREL SUMMATION

In this section we review briefly the basics of Borel sum
mation @19,20#. Consider an asymptotic series expansion
some functionf (g)

f ~g!; (
n50

`

angn ~g˜01! ~4!

whereg.0 is a ~small! dimensionless perturbation expa
sion parameter and thean are real coefficients. In an ex
tremely broad range of physics applications@25,35# it has
been found that perturbation theory leads not to a converg
series but to a divergent series like Eq.~4! in which the
expansion coefficientsan have large-order behavior of th
form

an;~21!nanG~bn1g!F11OS 1

nD G ~n˜`! ~5!

for some real constantsa, b.0, andg. When a.0, the
perturbative expansion coefficientsan alternate in sign and
their magnitude grows factorially. Borel summation is a p
ticularly useful approach for this case of a divergent, b
alternating series. We shall see below that non-alterna
series must be treated somewhat differently.

Consider, for example, the series~4! with an
5(21)nann!, anda.0. This series is clearly divergent fo
any value of the expansion parameterg. Borel summation of
this divergent series can be motivated by the following f
mal procedure. Write

n! 5E
0

`

ds sne2s ~6!

and then formally interchange the order of summation a
integration, to yield

f ~g!;
1

agE0

`

dsS 1

11sDexpF2
s

agG ~g˜01!. ~7!

This integral is convergent for allg.0, and so can be
used to define the sum of the divergent serie
(n50

` (21)nann!gn. To be more precise, the formula~7!
should be read from right to left: forg˜01, we can use
Laplace’s method@20# to make an asymptotic expansion
the integral, and we obtain the asymptotic series in Eq.~4!
with expansion coefficientsan5(21)nann!.

The Borel integral~7! can be analytically continued of
the g.0 axis and in this case is in fact@19,20# an analytic
2-2
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BOREL SUMMATION OF THE DERIVATIVE EXPANSION . . . PHYSICAL REVIEW D60 065002
function of g in the cutg plane:uarg(g)u,p. Thus, we can
use a simple dispersion relation~using the discontinuity
across the cut along the negativeg axis! to definethe imagi-
nary part of f (g) for negative values of the expansion p
rameter:

Imf ~2g!;
p

ag
expF2

1

agG ~g˜01!. ~8!

Note, of course, that an alternating series with negativeg is
the same as anon-alternatingseries with positiveg. If the
expansion coefficients in Eq.~4! are non-alternating~with
g.0) then the situation is very different, both physically a
mathematically. Formal application of Borel summati
yields

(
n50

`

ann!gn;
1

agE0

`

dsS 1

12sDexpF2
s

agG ~g˜01!.

~9!

However, the integrand in Eq.~9! has a pole on the integra
tion contour, and so some prescription must be given
handling this pole. A principal parts prescription for such
pole gives an imaginary part in agreement with Eq.~8!. Fur-
thermore, we shall see in the following sections that this
of the principal parts prescription, when applied to the ima
nary part of the QED effective action, gives answers
agreement with independent results, in all cases where
comparisons are available. This imaginary contribution
non-perturbative~it clearly does not have an expansion
positive powers ofg) and has important physical cons
quences. Generically, this Borel-inspired approach sign
the possible presence of such non-perturbative physics if
perturbative expansion coefficients grow rapidly~factorially!
in magnitude and are non-alternating. The associated dis
sion relations provide a bridge between the perturba
physics @i.e. the an’s# and the non-perturbative imaginar
parts@i.e. the exp(21/ag) factors#. We will see explicit ex-
amples of this below.

We should note at this point that for a general diverg
series these Borel summation approximations and the a
ciated Borel-inspired dispersion relations may be com
cated by the appearance of additional poles and/or cuts in
complexg plane@37–40#. For example, physically interes
ing poles, known as renormalons, are indeed found in cer
resummations of perturbation theory for both QED a
QCD. Here, for the one-loop QED effective action in a fix
external background we find that we do not encounter s
poles.

The Borel summation construction discussed above
the casean5(21)nann!, generalizes in the obvious way t
the case where the perturbative coefficients arean
5(21)nanG(bn1g), which corresponds to the leading
order growth indicated in Eq.~5!:
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f ~g!; (
n50

`

~21!nanG~bn1g!gn

;
1

bE0

`ds

s S 1

11sD S s

agD g/b

expF2S s

agD 1/bG
~g˜01!. ~10!

The corresponding imaginary part for negative values of
expansion parameter is

Imf ~2g!;
p

b S 1

agD g/b

expF2S 1

agD 1/bG ~g˜01!.

~11!

Notice that the parameterb affects the exponent, while th
combinationg/b is important for the prefactor.

These last two formulas, the Borel integral~10! and the
Borel dispersion relation~11!, will be used repeatedly below

III. EULER-HEISENBERG-SCHWINGER EFFECTIVE
ACTION

Now consider applying this Borel summation machine
to QED effective actions. Effective actions can be expand
perturbatively in terms of the coupling constante, and also in
terms of derivatives of the background field strengthFmn .
To begin, we review the well-known Euler-Heisenber
Schwinger effective action which corresponds to a unifo
background field strength; thus the only expansion is
terms of the perturbative coupling constante. We consider
first a magnetic background, and then we consider an ele
background. For a uniform backgroundmagneticfield of
strengthB, the exact renormalized effective action can
expressed as a ‘‘proper-time’’ integral@2#

S52
e2B2L3T

8p2 E
0

`ds

s2 S coths2
1

s
2

s

3De2m2s/(eB). ~12!

The 1/s term is a subtraction of the zero field (B50) effec-
tive action, while thes/3 subtraction corresponds to a log
rithmically divergent charge renormalization@2#. The L3T
factor is the space-time volume factor. It is straightforward
develop, for smalleB/m2, an asymptotic expansion of thi
integral:

S;2
2e2B2L3T

p2

e2B2

m4

3 (
n50

` B2n14

~2n14!~2n13!~2n12! S 2eB

m2 D 2n

5
m4L3T

p2 F 1

360S eB

m2D 4

2
1

630S eB

m2D 6

1
1

315S eB

m2D 8

2•••G S eB

m2
˜01D . ~13!
2-3
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GERALD V. DUNNE AND THEODORE M. HALL PHYSICAL REVIEW D60 065002
Here theB2n are Bernoulli numbers@41#. The perturbative
series~13! is the Euler-Heisenberg@1,5# perturbative expres
sion for the QED effective action in a uniform magne
backgroundB. It is an expansion in powers of the couplinge,
with thenth power ofe being associated with a one-fermio
loop diagram withn external photon lines@we have not in-
cluded the divergent O(e2) self-energy term as it contribute
to the bare action by charge renormalization#. Note that only
even powers ofeB appear in the perturbative expansion~13!.
This is due to charge conjugation invariance~Furry’s theo-
rem!. The expansion~13! is also an expansion in invers
powers of m2, as is familiar for an effective field theor
action ~3!, with the higher dimensional operators in the e
pansion simply being higher powers ofB2.

The Euler-Heisenberg perturbative effective action~13! is
not a convergent series. Rather, it is an asymptotic serie
the form ~4! with expansion parameter

g5
4e2B2

m4
. ~14!

The expansion coefficients in Eq.~13! alternate in sign@be-
cause: sign(B2n)5(21)n11], and grow factorially in mag-
nitude:

an5
B2n14

~2n14!~2n13!~2n12!

;~21!n11
2

~2p!2n14
G~2n12!, n˜`. ~15!

The growth of these coefficients is of the form indicated
the example in Eq.~5!, with a51/(4p2), and b5g52. If
we keep just the leading large-n behavior for the coefficie
an indicated in Eq.~15!, then we can immediately read o
from the Borel summation formula~10! the leading-order
Borel approximation for the sum of the divergent series~13!:

Sleading;
e2B2L3T

4p6 E
0

`

dsS s

11s2/p2De2m2s/(eB)

S eB

m2
˜01D . ~16!

It is straightforward to evaluate this integral numerically, a
one finds approximately 10–15 % agreement with the ex
answer~12! even when the perturbative expansion parame
g is as large as 50, as is shown in Fig. 1.@Note that Eq.~15!
suggests it is perhaps more ‘‘‘natural’’ to take the expans
parameter to beg/(2p)2'g/40, so we have plotted the lead
ing Borel approximation~16! for g up to 50.#

But in this case we can do much better, because we a
the unusual situation of knowing theexactperturbative ex-
pansion coefficientsan for all n ~not simply their leading-
order growth!
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an5
B2n14

~2n14!~2n13!~2n12!

5~21!n11
2

~2p!2n14
G~2n12!z~2n14!

52~21!n11G~2n12!(
k51

`
1

~2pk!2n14
. ~17!

For eachk in this sum, the coefficient is once again of th
leading form in Eq.~5!, with a51/(4p2k2), andb5g52.
Thus, we can apply the Borel summation formula~10! di-
rectly to yield

S;
e2B2L3T

4p6 (
k51

` E
0

`

dsS s

k2~k21s2/p2! De2m2s/(eB)

S eB

m2
˜01D . ~18!

The sum overk gives successive corrections to the leadi
Borel approximation in Eq.~16!. The contributions with one
two and three terms are plotted in Fig. 1, each compare
the exact result~12!. Note that only three terms are needed
obtain 1% accuracy, even when the expansion parameterg is
as large as 50. In fact, the expansion@42#

coths2
1

s
5

2s

p2 (
k51

`
1

k21s2/p2 ~19!

together with the fact thatz(2)[(k51
` 1/k25p2/6, shows

that the Borel integral~18! agrees precisely with the
Schwinger proper-time result~12!. That is, Schwinger’s for-
mula ~12! can be viewed as the Borel sum of the~divergent!
Euler-Heisenberg perturbative series~13!. Or, in other
words, the Euler-Heisenberg perturbative series~13! can be

FIG. 1. This figure plots, as a function of the dimensionle
expansion parameterg defined in Eq.~14!, the ratio of the exact
effective action~12! to the Borel summation approximation in Eq
~18!. The dashed line refers to just the leading Borel approximat
in Eq. ~16!, while the dot-dash line refers to taking the first tw
terms in the expansion~18!, and the solid line refers to taking th
first three terms in Eq.~18!.
2-4
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BOREL SUMMATION OF THE DERIVATIVE EXPANSION . . . PHYSICAL REVIEW D60 065002
obtained by an asymptotic expansion of Schwinger’s integ
representation formula~12!, wheneB/m2 is small.

To get a sense of the size of the expansion parameter~14!
appearing in the Euler-Heisenberg series, it is instructive
re-instate factors of\ andc:

g54S \
eB

mc

mc2
D 2

54S \/~mc!

A\c/~eB!
D 4

. ~20!

The first equality in Eq.~20! expressesg in terms of the
square of the ratio of the cyclotron energy\vc to the elec-
tron rest mass energymc2, while the second equality ex
presses it in terms of the fourth power of the ratio of t
electron Compton wavelengthh/mc to the ‘‘magnetic
length’’ scaleA\c/eB set by the magnetic field. The critica
magnetic field strength at which the dimensionless param
g in Eq. ~20! is order 1 isBc5 1

2 m2c3/(e\);1013 G. This is
well above currently available laboratory static magne
field strengths, which are approximately 1052106 G, in
which caseg;10216210214 is extremelysmall. However,
the critical fieldBc is comparable to the scale of magne
field strengths observed in astrophysical objects such as
pernovae and neutron stars which can have magnetic fi
of the order of 1015 G @43#.

Now consider the Euler-Heisenberg-Schwinger effect
action in a uniform backgroundelectric field of strengthE,
instead of the uniform magnetic backgroundB. Perturba-
tively, the only difference is thatB2 is replaced by2E2,
which amounts to changing the sign of the expansion par
eter g in Eq. ~14!. Therefore, in a uniform electric back
ground, the Euler-Heisenberg perturbative effective act
~13! becomes anon-alternatingseries

S;2
2e2E2L3T

p2

e2E2

m4

3 (
n50

`
~21!nB2n14

~2n14!~2n13!~2n12! S 2eE

m2 D 2n

S eE

m2
˜01D . ~21!

@Recall that sign(B2n14)5(21)n11, so (21)nB2n14 is non-
alternating.# This series is clearly divergent and since t
coefficients are non-alternating, it is not Borel summab
Nevertheless, using the Borel dispersion relations we
extract the imaginary part of the effective action. If we ke
just the leading large-n growth ~15! of the expansion coeffi-
cients, then we can immediately read off from the Bo
dispersion relation result~11! the leading behavior of the
imaginary part of the effective action in the electric bac
ground:

Im Sleading;L3T
e2E2

8p3
expF2

m2p

eE G S eE

m2
˜01D .

~22!
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This imaginary part has direct physical significance—it giv
half the electron-positron pair production rate in the unifo
electric fieldE @2#. Actually, as in the magnetic case, we ca
do better than just the leading behavior~22!. Combining the
expansion coefficients~17! with the Borel dispersion formula
~11! we immediately find

Im S;L3T
e2E2

8p3 (
k51

`
1

k2
expF2

m2pk

eE G S eE

m2
˜01D

~23!

which is precisely Schwinger’s classic proper-time result@2#.
This agreement supports our use of the principal parts
scription in extracting the imaginary part of the effectiv
action from the large-order behavior of the perturbative
efficients, as discussed in Sec. II.

Note that in the electric case the relevant small dim
sionless parameter is@compare with Eq.~20!#

eE\/~mc!

mc2 ~24!

which is ~up to a factor ofp) the ratio of the work done by
the electric fieldE accelerating a particle of chargee through
an electron Compton wavelength, to the energy required
pair production. For typical electric fields this is a very sm
number, so the exponential factors in Eqs.~22! and ~23! are
extremely small. The critical electric field at which the no
perturbative factors become significant isEc5m2c3/(e\)
;1016 V cm21. This is still several orders of magnitude b
yond the field obtainable in current lasers@29#.

To conclude this section, we stress that this constant-fi
case provides an explicit example of Dyson’s argument@17#
that QED perturbation theory is non-analytic at the origin,
a series in the fine structure constanta5e2/(4p), because
this would mean that the stable vacuum, witha positive, is
smoothly connected to the unstable vacuum, witha nega-
tive, at least in a small neighborhood of the origin. The p
turbative Euler-Heisenberg series in Eqs.~13! and ~21! are
expansions in powers ofe2B2/m4 and e2E2/m4, respec-
tively. Changing from a magnetic background to an elec
background involves replacinge2B2 with 2e2E2, which
amounts to changing the sign ofe2 ~i.e., the fine structure
constant!, sincee always appears aseB or eE. If the Euler-
Heisenberg perturbative series were analytic ate2B250,
then the change frome2B2 to 2e2E2 would not produce any
non-perturbative imaginary part in the effective action. Th
there would be no pair production and we would miss
genuine physical instability of the QED vacuum in an ext
nal electric field.

IV. SOLVABLE INHOMOGENEOUS BACKGROUNDS

So far, we have re-phrased well-known QED results in
language of Borel summation. Now we turn to the ma
point of this paper, which is to go beyond the Eule
Heisenberg-Schwinger constant field results for the QED
fective action. Perturbatively, this leads to a derivative e
pansion ~2! which is a formal expansion in increasin
2-5



ld

in
s

e
ti

ne
o

th

u
k-
re
an
e

n-
to
io
o
r

w

ab
te

n
pe
in

th
pr

tru

-
is

m
e

ld
in

as
ath
tor

er-
ect

an

tion

n
ase

the

a-
ba-
n-

o-
a

e-

xact
-

the
i-

ion

ive

ing
ing

GERALD V. DUNNE AND THEODORE M. HALL PHYSICAL REVIEW D60 065002
numbers of derivatives of the background field strength

S5S(0)@Fmn#1S(2)@Fmn ,]mFnr#1••• ~25!

whereS(0) involves no derivatives of the background fie
strengthFmn , while the first correctionS(2) involves two
derivatives of the field strength, and so on. The increas
powers of derivatives are balanced by increasing power
1/m.

Unfortunately, it is very difficult to say anything precis
about the convergence or divergence of such a deriva
expansion because it is not an actual series, as in Eq.~4!, in
terms of a dimensionless expansion parameter. For a ge
background there is a rapid proliferation of the number
independent terms with a given number of derivatives of
field strength~see @9,11# for the first order and@12# for
higher orders!. Even a first order derivative expansion calc
lation is quite non-trivial. Moreover, for a general bac
ground field, it is extremely difficult to estimate and compa
the magnitude of the various terms in the derivative exp
sion ~25!. So a perturbative analysis to high orders in a d
rivative expansion appears prohibitively difficult for a ge
eral background field strength. This makes it difficult
reconcile a perturbative derivative expansion calculat
with the calculation of the non-perturbative imaginary part
the effective action for an electric background. We explo
this question below.

As a first step towards overcoming these obstacles,
can consider restricted classes of special backgrounds
which the derivative expansion reduces to a manage
form. The QED effective action has recently been compu
exactlyfor either~not both! of the following special inhomo-
geneous background magnetic@14# and electric fields@15#:

BW ~x!5BW sech2S x

l D
EW ~ t !5EW sech2S t

t D . ~26!

It has of course long been known that the Dirac equatio
exactly solvable for such backgrounds, a fact that has
mitted many authors to study the QED effective action
these backgrounds@44–47#. The new feature of@14,15# is
that all the momentum traces have been performed so
the effective action is expressed as a simple integral re
sentation@involving a single integral#, as in Schwinger’s
classic result~12! for the uniform background field. This
then permits the expansion of the effective action as a
series, whose convergence/divergence properties can
studied in detail.

On the right side of Eq.~26!, BW andEW are constant vec
tors. Thus,BW (x) points in a fixed direction in space and
static, but its magnitude varies in thex direction, with a
characteristic length scalel that is arbitrary. Similarly,EW (t)
points in a fixed direction in space and is spatially unifor
but its magnitude varies in time, with a characteristic tim
scalet that is arbitrary. These electric and magnetic fie
satisfy the homogeneous Maxwell equations, but not the
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homogeneous ones, so classically we should think of them
being supported by external currents. Within a quantum p
integral they simply correspond to some particular vec
potential Am . Note that in the limitsl˜` and t˜` we
regain the uniform field cases relevant for the Eul
Heisenberg-Schwinger effective action. We therefore exp
that, for the inhomogeneous backgrounds~26!, the derivative
expansion of the effective action should correspond to
expansion for largel and larget. We concentrate first on the
magnetic field case, and then use a duality transforma
B˜ iE to convert to the electric field case.

Since each derivative of the magnetic field in Eq.~26!
produces a factor of 1/l, a natural dimensionless expansio
parameter for the derivative expansion in the magnetic c
is ~restoring factors of\ andc)

\c

eBl2 5SA\c/~eB!

l D 2

. ~27!

This dimensionless parameter is the square of the ratio of
magnetic length scaleA\c/eB ~which is set by the peak
magnetic field magnitudeB[uBW u) to l, the length scale of
the spatial inhomogeneity of the magnetic field. Altern
tively, we can combine this with the dimensionless pertur
tion parameter~20! of the constant field case, to obtain a
other dimensionless expansion parameter

S \c

eBl2D S eB\

m2c3D5
\2

m2c2l2 5S \/~mc!

l D 2

~28!

which is essentially~up to factors of 2p) the square of the
ratio of the Compton wavelength of the electron to the inh
mogeneity scalel. Thus, for a magnetic background with
macroscopic inhomogeneity scalel, the ratio 1/(m2l2) is
extremely small. In this form, we clearly recognize the d
rivative expansion as an expansion in inverse powers ofm2,
as in a general effective field theory expansion~3!.

Indeed, these expectations are borne out by the e
renormalized effective action@14#, which has the double per
turbative expansion~we setc and\ to 1 again!

S;2
L2lTm4

8p3/2 (
j 50

`
1

j ! S 1

m2l2D j

3 (
k51

`
G~2k1 j !G~2k1 j 22!B2k12 j

G~2k11!GS 2k1 j 1
1

2D S 2eB

m2 D 2k

.

~29!

In Eq. ~29! it is understood that the double sum excludes
( j 50,k51) term, as this term contributes to the logarithm
cally divergent charge renormalization of the bare act
@2,14#.

We emphasize that the summation indexed byj in Eq.
~29! corresponds precisely to the orders of the derivat
expansion. This has been verified@14# by comparison with
independent derivative expansion calculations of the lead
and first-correction term, computations that were done us
the proper-time method@10,11#. For example, to make the
2-6
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comparison with the leading term of the derivative expans
we simply take the Euler-Heisenberg constant field ans
~13!, replaceB by B(x)5B sech2(x/l) and do thex inte-
grals, using the fact that *2`

` sech4n(x)dx
5ApG(2n)/G(2n11/2). This reproduces thej 50 term in
Eq. ~29!. A similar argument@14# holds for the first correc-
tion term in the derivative expansion, which reproduces
j 51 term in Eq.~29!.

It is important to note that the perturbative express
~29! for the effective action is an explicit double sum~with
no remaining integrals! in terms of two dimensionless pa
rameters. One parametereB/m2 characterizes the perturba
tive expansion in powers of the couplinge, while the other
parameter 1/(m2l2) characterizes the derivative expansio
Moreover, all the expansion coefficients are known exac
Thus, we can apply to this effective action the standard te
niques for the analysis of divergent series~such as Borel
summation!.

A. Leading order in derivative expansion

Consider a fixed orderj of the derivative expansion. Thi
still involves a perturbative expansion in powers of the co
pling e. For j 50, from Eq.~29! we see that the perturbativ
expansion in the magnetic case is

S( j 50);2
L2lTm4

8p3/2 S 2eB

m2 D 4

3 (
k50

`
G~2k14!G~2k12!B2k14

G~2k15!GS 2k1
9

2D S 2eB

m2 D 2k

S eB

m2
˜01D . ~30!

The expansion coefficients alternate in sign and grow fa
rially with k:

G~2k14!G~2k12!B2k14

G~2k15!GS 2k1
9

2D ;
2~21!k11

~2p!2k14
GS 2k1

3

2D

3F11OS 1

kD G , k˜`.

~31!

Thus, we are in the situation described by Eq.~5! with re-
spect to the large-order behavior of the expansion coe
cients. Applying the Borel summation formula~10!, the lead-
ing Borel approximation for the series~30! is

S( j 50);
L2lTm4

4p11/2 S eB

m2D 5/2E
0

`

ds
As

11s2/p2

3expF2
m2

eB
sG S eB

m2
˜01D . ~32!
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It is instructive to compare this with the leading Borel a
proximation~16! to the effective action for auniform mag-
netic backgroundB. To make this comparison we replace th
uniform backgroundB in Eq. ~16! with the inhomogeneous
backgroundB(x)5B sech2(x/l), and then perform thex in-
tegration. Thus

Sleading;
e2

4p6E
0

`

dsS s

11s2/p2D E d4x B~x!2e2m2s/„eB(x)…

5
L2lTe2B2

4p11/2 E
0

`

ds
s

11s2/p2 expF2
m2

eB
sG

3CS 1

2
,21;

m2

eB
sD ~33!

where C(a,b;z) is the confluent hypergeometric function
with integral representation

C~a,b;z!5
1

G~a!
E

0

`

e2ztta21~11t !b2a21dt. ~34!

Noting thatC(a,b;z);z2a for largez, we see that Eq.~33!
is indeed in agreement with Eq.~32! when the perturbative
expansion parametereB/m2 is small.

Now consider thej 50 term of the derivative expansio
for the inhomogeneous electric backgroundE(t)
5E sech2(t/t). Perturbatively, we replaceB2 by 2E2 in the
expansion~30!, so that the expansion coefficients are no
non-alternating. Thus, in the electric case the series is di
gent butnot Borel summable. Nevertheless, we can use
Borel dispersion relations~11! to compute the imaginary par
of the effective action. A direct application of Eq.~11! leads
to

Im S( j 50);
L3tm4

8p3 S eE

m2D 5/2

expF2
m2p

eE G S eE

m2
˜01D .

~35!

Now compare this with the leading result~22! for a uniform
electric backgroundE. ReplacingE in Eq. ~22! by the inho-
mogeneous fieldE(t)5E sech2(t/t) and then performing
the t integration, we find

Im Sleading;
L3te2E2

8p5/2
expF2

m2p

eE GCS 1

2
,21;

m2p

eE D
S eE

m2
˜01D . ~36!

When the perturbative parametereE/m2 is small, this agrees
precisely with the resummed answer in Eq.~35!.

B. First correction in derivative expansion

A similar analysis for thej 51 term~i.e., the first deriva-
tive expansion correction term! in Eq. ~29! shows that in the
magnetic case the perturbative expansion in powers
2-7
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(2eB/m2)2 has coefficients that alternate in sign and gr
factorially in magnitude. The leading Borel approximatio
for this series is

S( j 51);
L2lTm4

16p11/2 S eB

m2D 5/2S m4

e3B3l2D E
0

`ds

s S s5/2

11s2/p2D
3expF2

m2

eB
sG . ~37!

We can compare this with the first correction in the deriv
tive expansion which has been computed independently
ing proper-time methods@10,11#:

Sfirst;2
1

64p2E
0

`ds

s FsS coth~s!2
1

s
2

s

3D G-
3E d4x

„eB8~x!…2

eB~x!
expF2

m2

eB~x!
sG . ~38!

With the inhomogeneous backgroundB(x)5Bsech2(x/l),
the space-time integrals can be done to yield

Sfirst;2
L2lT

32p3/2S eB

l2 D E0

`ds

s FsS coth~s!2
1

s
2

s

3D G-
3expF2

m2

eB
sGCS 3

2
,0;

m2

eB
sD . ~39!

For small perturbative parametereB/m2 this reduces~after
some integrations by parts ins) to the expression~37! which
was obtained by Borel summation of thej 51 term of the
double series~29!. This agreement with an independe
proper-time calculation of the first-order derivative expa
sion further supports our use of the Borel summation
proach for the magnetic background case.

In the electric case, thej 51 term in Eq.~29! is a pertur-
bative series expansion that is divergent but not Borel s
mable, as the expansion coefficients are non-alternating.
can compute the imaginary contribution to the effective
tion using the Borel dispersion relation result~11!:

Im S( j 51);
L3tm4

32p2 S 1

m2t2D S eE

m2D 21/2

expF2
m2p

eE G
S eE

m2
˜01D . ~40!

This should be compared to the first-order derivative exp
sion result from a field-theoretic calculation@16,11#:

Im Sfirst;
m6

64pE d4x
„]0E~ t !…2

E~ t !4
expF2

m2p

eE~ t !G . ~41!

With the inhomogeneous backgroundE(t)5Esech2(t/t),
the space-time integrals can be done to yield
06500
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Im Sfirst;
L3m6

8pte2E2E
1

`

dzAz221z2expF2
m2p

eE
z2G

S eE

m2
˜01D

5
L3m6

32Apte2E2
expF2

m2p

eE GCS 3

2
,3;

m2p

eE D
~42!

which agrees precisely with Eq.~40! wheneE/m2 is small.
Once again, this agreement with an independent proper-
result further supports our use of the Borel-inspired disp
sion relations~11! for the electric background case.

C. Resumming the derivative expansion

Having verified explicitly that the Borel techniques wo
for the first two orders of the derivative expansion, for bo
the magnetic and electric background, we now turn to
higher ordersj >2 of the derivative expansion. These a
very difficult to compute with field theory techniques@12#.
Nevertheless, for the particular inhomogeneous backgrou
in Eq. ~26!, the exact result~29! containsall orders in the
derivative expansion, and so it is a simple matter to study
divergence properties of each orderj of the derivative expan-
sion.

From Eq.~29!, the j th order derivative expansion contr
bution to the effective action is (j >1)

S( j );2
L2lTm4

8p3/2

1

j ! S 1

m2l2D j S 2eB

m2 D 2

3 (
k50

`
G~2k1 j !G~2k1 j 12!B2k12 j 12

G~2k13!GS 2k1 j 1
5

2D S 2eB

m2 D 2k

.

~43!

For fixed j this contribution is itself a perturbative serie
expansion in terms of the dimensionless parameterg
54e2B2/m4, with expansion coefficients

ak
( j )5

G~2k1 j !G~2k1 j 12!B2k12 j 12

G~2k13!GS 2k1 j 1
5

2D

;2~21! j 1k

GS 2k13 j 2
1

2D
~2p!2 j 12k12

~k˜`; j fixed!.

~44!

These coefficients alternate in sign and grow factorially w
k, for any fixed j >1. Using the leading largek behavior in
Eq. ~44! together with the Borel integral~7!, the leading
Borel approximation to thej th order of the derivative expan
sion is ~for j >1)
2-8
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S( j );2
L2lTm4

4p7/2 S eB

m2D 5/2E
0

` ds

s3/2

expF2
m2

eB
sG

11s2/p2

3
1

j ! S 2m4s3

4p2l2e3B3D j S eB

m2
˜01D . ~45!

Note the remarkable fact that these leading Borel approxi
tions, for each orderj of the derivative expansion, can b
resummed into an exponential. Thej 50 term must be
treated separately@because the sum in Eq.~29! begins atk
52 when j 50, because of charge renormalization#. Com-
bining the j 50 result~30! with the j >1 result~45! we find

S;2
L2lTm4

2p3 S eB

m2D 2

2
L2lTm4

4p7/2 S eB

m2D 5/2E
0

` ds

s3/2

1

11s2/p2

3expF2
m2s

eB H 11S m

eBl D 2 s2

4p2J G . ~46!

The first term is a finite charge renormalization, on top of
usual infinite charge renormalization for the uniform fie
case@2#. In the second term, we see the interesting result
the leading Borel approximations to each order of the der
tive expansionexponentiatewhen they are resummed.

A similar phenomenon occurs with the electric bac
ground. For anyj >1, a straightforward application of th
Borel dispersion result~11!, using the growth estimate of th
coefficients in Eq.~44! gives

Im S( j );
L3tm4

8p3 S eE

m2D 5/2

expF2
m2p

eE G 1

j ! S m4p

4t2e3E3D j

S eE

m2
˜01D . ~47!

In fact, comparing with Eq.~35! we see that this result fo
the imaginary part also holds forj 50. Thus, resumming the
derivative expansion, the result immediately exponentia1

to

Im S;
L3tm4

8p3 S eE

m2D 5/2

expF2
m2p

eE H 12
1

4 S m

eEt D 2J G
S eE

m2
˜01D . ~48!

It is very interesting to see that the leading Borel approxim
tions to each order of the derivative expansion can be
summed into an exponentiated form. Thus, resumming
leading Borel contributions amounts to a resummed per

1Of course, the finite renormalization found in the magnetic c
~46! does not affect the imaginary part of the effective action in
electric case.
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bative modification of the non-perturbative expone
pm2/(eE) in the Schwinger uniform field result~22!.
Clearly, the modification of the exponent derived in Eq.~48!
is much more significant than a modification of the prefact
which is all that is obtained by looking at a single~low!
order of the derivative expansion@11,15#. We stress that we
are able to exponentiate the corrections because in this
we know the large order perturbative behavior foreveryor-
der of the derivative expansion. Finally, notice the appe
ance of the dimensionless parameterm/(eEt) in the correc-
tion to the exponent in Eq.~48!. We will address the
significance of this parameter below.

D. Divergence of the derivative expansion

In the previous section we took the leading Borel appro
mation to the perturbative expansion@the sum overk in Eq.
~29!# and then performed the derivative expansion@the sum
over j in Eq. ~29!# exactly. Actually, it is possible to re-sum
the perturbativek expansion in Eq.~29!, and express it as an
integral. That is, we can write the effective action as a sin
~derivative expansion! series:

S;2
L2lTm4

8p3/2 (
j 50

`

aj S 1

m2l2D j S 1

m2l2
˜01D ~49!

where the expansion coefficientsaj are nowfunctionsof the
parametereB/m2. To study the divergence properties of th
derivative expansion we need to know the rate of growth,
large j, of the expansion coefficientsaj appearing in Eq.
~49!. For j >3 there is a simple integral representation f
these coefficients@this amounts to summing the perturbativ
expansion in the double series~29!, thereby reducing Eq
~29! to the single series in Eq.~49!#:

aj5~21! j 11
pG~ j 22!

2 j GS j 1
1

2D E0

`

cosech2~ps!s2 j

3F 2F1S j , j 22; j 1
1

2
;
2ieBs

m2 D
12F1S j , j 22; j 1

1

2
;2

2ieBs

m2 D 22Gds. ~50!

Here, 2F1(a,b;c;z) is the standard hypergeometric functio
@42#:

2F1~a,b;c;z!5
G~c!

G~a!G~b! (
k50

`
G~a1k!G~b1k!

G~c1k!

zk

k!
.

~51!

For any j it is straightforward to evaluate these coefficien
aj numerically for various values of the dimensionless p
rametereB/m2. We find that the coefficientsaj alternate in
sign and grow in magnitude~for large j ) like a jG(2 j 1g),
with some reala, g. This is illustrated in Fig. 2, where the
ratio of successive magnitudesuaj 11u/uaj u shows a clear qua

e
e

2-9
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dratic growth, for various values ofeB/m2. This shows that
the derivative expansion itself~49! is a divergent series.

E. Resumming the perturbative expansion

In this section we apply the leading Borel approximati
to the derivative expansion, for a given order of the pert
bative expansion, and then re-sum the perturbative exp
sion.

First, take a fixed orderk>2 of the perturbative expan
sion in Eq.~29!:

S(k);2
L2lTm4

8p3/2

1

G~2k11! S 2eB

m2 D 2k

3(
j 50

`
G~2k1 j !G~2k1 j 22!B2k12 j

G~ j 11!GS 2k1 j 1
1

2D S 1

m2l2D j

S 1

m2l2
˜01D . ~52!

This is a derivative expansion in terms of the dimensionl
parameter 1/(m2l2), with expansion coefficients

aj
(k)5

G~ j 12k!G~ j 12k22!B2 j 12k

G~ j 11!GS j 12k1
1

2D

;2~21! j 1k11

27/222kGS 2 j 14k2
5

2D
~2p!2 j 12k

~ j˜`; k fixed!. ~53!

FIG. 2. This figure plots the ratiosuaj 11 /aj u of the successive
expansion coefficientsaj in the derivative expansion~49!, for two
different values of the dimensionless expansion parameterg defined
in Eq. ~14!. The solid line refers tog50.1 and the dashed line
corresponds tog50.0001. Note the quadratic growth of this rati
indicating thatuaj u;a jG(2 j 1g) for large j.
06500
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Thus, the coefficientsaj
(k) alternate in sign and grow facto

rially with j, for any fixed k>2. Therefore, for any fixed
order of perturbation theory ineB/m2, the derivative expan-
sion is a divergent series.

Now consider resumming the leading Borel approxim
tion of each orderk of the perturbative expansion for th
inhomogeneous electric background in Eq.~26!. From Eq.
~53! and the Borel dispersion relation~11! the imaginary part
of the effective action at orderk of the perturbative expan
sion is

Im S(k);
L3m3/2

4p3t3/2

~2peEt2!2k

~2k!!
e22pmt S 1

mt
˜01D .

~54!

This is in fact valid for allk>1. Resumming these leadin
Borel contributions gives the leading behavior, for lar
eEt2 ~as is appropriate for the derivative expansion!,

Im S;
L3m3/2

8p3t3/2
expF22pmtS 12

eEt

m D G S 1

mt
˜01D .

~55!

Once again, we see that the resummation of the lead
Borel contributions exponentiates, producing an expon
that is modified from that found in the Schwinger unifor
field result~22!.

However, the exponential behavior in Eq.~55! is very
different from the exponential behavior in Eq.~48!, and in-
deed from the exponential behavior in the uniform case~22!.
To understand this difference, we first recall that the ex
nential behavior in Eq.~48! was obtained by resumming th
leading Borel approximations to each order of the derivat
expansion, while the exponential behavior in Eq.~55! was
obtained by resumming the leading Borel approximations
each order of the perturbative expansion. That is, to ob
Eq. ~48! we take the leading Borel approximation for thek
summation in Eq.~29!, for each fixedj, and then resum ove
j; while to obtain Eq.~55! we take the leading Borel approx
mation for thej summation in Eq.~29!, for each fixedk, and
then resum overk.

The difference between these two approaches is gove
by the relative size of the two dimensionless expansion
rameters. In the perturbative expansion we assume
eE/m2 is small, and in the derivative expansion we assu
that 1/(mt) is small. The distinction between the two a
swers~48! and ~55! depends on the dimensionless combin
tion:

eEt

m
5

S eE

m2D
S 1

mt D . ~56!

There are two natural regimes of interest:

non-perturbative regime:
eEt

m
@1 ~57!
2-10
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BOREL SUMMATION OF THE DERIVATIVE EXPANSION . . . PHYSICAL REVIEW D60 065002
perturbative regime:
eEt

m
!1

In the non-perturbative regime,eEt/m@1 implies that

mt@
m2

eE
⇒e2m2p/(eE)@e22pmt. ~58!

Therefore, in this regime we expect the leading exponen
contribution to ImS to be the Schwinger uniform field facto
exp@2m2p/(eE)#, as indeed is found in Eq.~48!. The resum-
mation of leading Borel approximations derived in Eq.~48!
gives corrections to this leading exponent

m2p

eE
˜

m2p

eE F12
1

4 S m

eEt D 2G ~59!

which has the form of a small correction in terms of t
parameterm/(eEt), which is small in this non-perturbativ
regime.

On the other hand, in the perturbative regime,eEt/m
!1 implies that

mt!
m2

eE
⇒e22pmt@e2m2p/(eE). ~60!

In this regime, the exponential factore22pmt dominates the
Schwinger factore2m2p/(eE) and gives a new leading contr
bution to ImS. The resummation of leading Borel approx
mations in Eq.~55! gives corrections to this leading expo
nent

2pmt˜2pmtF12
eEt

m G ~61!

where in the perturbative regime the parametereEt/m is
small.

Now ask the question: how does the time dependenc
the inhomogeneous electric background in Eq.~26! modify
Schwinger’s constant field result~22!? The answer depend
critically on how the characteristic time scalet of the inho-
mogeneity relates to the time scalem/(eE) set by the peak
electric fieldE. This then determines@see Eq.~56!# the rela-
tive magnitude of the two expansion parameters 1/(mt) ~cor-
responding to the derivative expansion! and eE/m2 ~corre-
sponding to the perturbative expansion!.

In the non-perturbative regime, the smaller of the tw
parameters is the derivative expansion parameter: 1/(mt)
!eE/m2. Thus, we apply the leading Borel approximation
the perturbative expansion@the sum in powers ofeE/m2],
and then resum the derivative expansion@the sum in powers
of 1/(mt)] exactly. This is exactly what was done in deri
ing the result~48!.

In the perturbative regime, the smaller of the two para
eters is the perturbative parameter:eE/m2!1/(mt). Thus,
we apply the leading Borel approximation to the derivat
expansion@the sum in powers of 1/(mt)], and then resum the
06500
al

of

-

perturbative expansion@the sum in powers ofeE/m2] ex-
actly. This is exactly what was done in deriving the res
~55!.

Note that, in each case, our ability to treat the remain
sumexactlyrelied on the fact that the leading Borel approx
mations came out in a form that could be exponentiated.
not a priori obvious that this dramatic simplification had
occur. However, in the next section we will see that th
exponentiation is very natural in terms of a WKB formul
tion.

V. RELATION TO WKB ANALYSIS

In a general background,Fmn5Fmn(xW ,t), the effective ac-
tion is too complicated to permit such a detailed Borel ana
sis as has been done in the previous sections for the unif
background and for the special inhomogeneous backgrou
in Eq. ~26!. Clearly, we do not know the spectrum of th
Dirac operator for a general background, so some sor
approximate expansion method, such as the derivative
pansion, is required. But the formal derivative expans
~25! is not a series expansion, because more and more~inde-
pendent! tensor structures appear with each new order of
derivative expansion. This is because with more derivati
there are more indices to be contracted in various ways.
other way of saying this is that the inhomogeneity of a ge
eral background cannot be characterized by a single~or even
a finite number of! scale parameter~s!, such as the length
scalel or the time scalet in Eq. ~26!. Another problem is
that in general it is difficult to estimate the size of vario
terms in such a derivative expansion when the backgro
field strengthFmn is an arbitrary function of space-time. S
even if we could organize the derivative expansion into
sensible series, it would be difficult to estimate the mag
tude of the coefficients at very high orders in the series, a
needed for a Borel analysis.

Nevertheless, it is still instructive to consider a furth
generalization of the particular inhomogeneous backgrou
in Eq. ~26!. In this section we relax the condition that w
know the exact spectrum of the Dirac operator, but keep
restriction that the backgrounds only depend on one sp
time coordinate. This has the effect of reducing the spec
problem to that of an ordinary differential operator. As
clear from Eq.~1!, the effective action is determined by th
spectrum of the operator

m21D” 25@m21DmDm#11
e

2
Fmnsmn ~62!

wheresmn[ i /2 @gm,gn#. If we restrict our attention to in-
homogeneous backgrounds that point in a fixed direction
space~say, thez direction! and depend on just one spac
time coordinate, then the operator in Eq.~62! can be diago-
nalized with a suitable gauge choice and a suitable D
basis. For example, the spatially inhomogeneous magn
field

BW ~x!5 ẑ B f8S x

l D ~63!
2-11
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can be realized with the vector potentialAW
5„0,Bl f (x/l),0…. Then, in the standard Dirac represen
tion @48# for the gamma matrices, the operatorm21D” 2 is
diagonal, with diagonal entries~appearing twice each on th
diagonal!:

m21DmDm6eB~x!5m22k0
21kz

22]x
21S ky2eBl f S x

l D D 2

6eB f8S x

l D . ~64!

Similarly, the time-dependent electric field

EW ~ t !5 ẑ E f8S t

t D ~65!

can be realized with the vector potentialAW 5„0,0,Et f (t/t)….
Then, in the standard chiral representation@48# for the
gamma matrices, the operatorm21D” 2 is diagonal, with di-
agonal entries~appearing twice each on the diagonal!:

m21DmDm6 ieE~ t !5m21kx
21ky

21]0
21S kz2eEt f S t

t D D 2

6 ieE f8S t

t D . ~66!

Therefore, in each case~63! and ~65!, the spectrum is
determined by a one-dimensional ordinary differential ope
tor. However, note the appearance of the factors ofi in the
electric case~66!. This shows immediately the fundament
difference between a magnetic background and an ele
background. In the magnetic case, the eigenvalues of
associated ordinary differential operator are real, while
the electric case, the eigenvalues of the associated ordi
differential operator have an imaginary part.~Note that in the
magnetic case the boundary condition for the ordinary
ferential operator is for solutions that decay atx56`, while
in the electric case we seek solutions going likee7 i et at t
56`, corresponding to the particle/antiparticle pair@26,46#.
The reader is encouraged to check all this explicitly for
simple case of a uniform background.!

Schwinger’s uniform field case corresponds to choos
the function f appearing in Eqs.~63! and ~65! to be f (u)
5u, while the inhomogeneous backgrounds in Eq.~26! cor-
respond to choosingf (u)5tanh(u). It is well known that in
each case the spectrum of the associated ordinary differe
operator in Eqs.~64! and ~66! is exactly solvable@49#. This
explains why it is possible to compute the effective act
exactly for these backgrounds. For the more general field
Eqs. ~63! and ~65! it is not possible to find the exact spe
trum. However, we can still use a WKB approach to appro
mate the spectrum. For a time-dependent, but spatially
form, electric background this leads to the following WK
expression for the imaginary part of the effective acti
@27,15,16#:
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Im S5S L

2p D 3

(
n51

`
1

nE d3ke2npV ~67!

where the WKB exponent is

V5
2i

p E
TP

Am21f2~ t !dt. ~68!

Herem25m21kx
21ky

2 and

f~ t !5kz2eAe~ t !5kz2eEt f ~ t/t! ~69!

for the electric field in Eq.~65!. The integration in Eq.~68! is
between the turning points of the integrand@this expression
is somewhat symbolic—in practice, the evaluation ofV re-
quires careful phase choices, depending on the form of
function f (u) @26,27,16# #. For the constant field case, wit
f (u)5u, one finds

V5
m2

eE
. ~70!

Then the momentum integrals in Eq.~67! can be done~recall
the density of states integral:*dkz5E) to yield the familiar
Schwinger result~23!.

In the inhomogeneous electric fieldE(t)5E sech2(t/t),
which corresponds tof (u)5tanh(u), we can also computeV
exactly @27,15#:

V5t„Am21~eEt1kz!
21Am21~eEt2kz!

222eEt….
~71!

It is a straightforward, but somewhat messy, computation
check that by doing the momentum integrals in Eq.~67! with
this expression forV, one arrives at the exact integral re
resentation, derived in@15#, for the effective action in this
inhomogeneous background. The WKB expression gives
exactresult in this case because the uniform WKB appro
mation gives the exact spectrum of the differential operat
~64! and ~66! when f (u)5tanh(u) @50#.

Now consider this WKB exponentV in Eq. ~71! in the
non-perturbative and perturbative limits~57!. In the non-
perturbative limit we can expandV in inverse powers ofe as

Vnon-pert5
m2

eEF11
kz

2

~eEt!2
2

1

4 S m

eEt D 2

1•••G . ~72!

In the perturbative limit, we obtain instead

Vpert52mtF11
1

2

kz
2

m2
2

eEt

m
1•••G . ~73!

Doing the momentum trace overkz , the momentum in the
direction of the field, in the WKB expression~67! modifies
the prefactor, but not the exponent. The traces over the tr
verse momenta can be done by approximatingm
5Am21k'

2 'm1k'
2 /(2m)1••• . This effectively replaces

m with m in Eqs.~72! and ~73!, and thek' integrals in Eq.
~67! contribute to the prefactor. Then comparing Eqs.~72!
2-12
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and ~73! with Eqs. ~59! and ~61!, we see that we regain
exactly the Borel resummed results~48! and ~55! obtained
for the two extreme limits~57!. Thus, this WKB analysis
explains why we found two different expressions, Eqs.~48!
and ~55!, by Borel resummation of the double series~29!,
depending on the relative size of the two dimensionless
pansion parameters.

To conclude this discussion of the WKB approach, it
instructive to compare theE(t)5E sech2(t/t) case with the
case of an oscillating electric fieldE(t)5E sin(vt) which
was studied in detail using WKB methods by Bre´zin and
Itzykson@26#. This is not an exactly solvable case, but WK
provides a semiclassical result. Heref (u)52cos(u) and so
the WKB exponent is

V5
2i

p E
TP
Am21Fkz1

eE

v
cos~vt !G2

dt. ~74!

While this integral cannot be done in closed form, one c
consider the non-perturbative and perturbative limits@26#. In
the non-perturbative regime, wheremv/eE!1,

Vnon-pert'
m2

eEF11
1

2 S v

eED 2

kz
22

1

8 S mv

eED 2

1•••G ~75!

which is clearly analogous to the non-perturbative limit~72!
of the E(t)5E sech2(t/t) case. Thus, in this regime, th
Schwinger pair production rate has a modified exponent

m2p

eE
˜

m2p

eE F12
1

8 S mv

eE D 2G . ~76!

On the other hand, in the perturbative regime, wh
mv/eE@1,

Vpert'
4m

pv
logS 2mv

eE D ~77!

which is very different from the perturbative limit~73! of the
E(t)5E sech2(t/t) case. In this regime, the WKB pair pro
duction rate for an oscillating time-dependent electric ba
ground becomes@26#

ImS;
e2E2

32p S e2E2

4m2v2D 2m/v

. ~78!

This is a perturbative expression, with the perturbative
rameter„eE/(mv)…2 raised to a power 2m/v which is the
number of photons of frequencyv required to match the pai
creation energy 2m.

So, while the non-perturbative results~72! and ~75! are
very similar for the casesE(t)5Esech2(t/t) and E(t)
5E sin(vt) respectively, the corresponding perturbative
sults are very different from one another for these two tim
dependent electric backgrounds. This difference can
traced to the different perturbative limits~73! and~77! of the
WKB exponentV. Physically, this is not so surprising if w
recall that the perturbative limits,eEt/m!1 andeE/(mv)
!1, can also be thought of as short-pulse and hi
06500
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e
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e

-

frequency limits~respectively!, in which case the sech2(t/t)
and sin(vt) profiles of the electric background are signi
cantly different.

VI. CONCLUSION

In conclusion, by analyzing the large order behavior
the expansion coefficients we have shown that the QED
fective action is a divergent double series for the inhomo
neous magnetic backgroundB(x)5Bsech2(x/l) and for the
inhomogeneous electric backgroundE(t)5Esech2(t/t). In
particular, we have also demonstrated that for these inho
geneous background fields the derivative expansion is it
divergent. Borel summation techniques have been use
relate the rate of divergence at large orders in perturba
theory to the non-perturbative imaginary part of the effect
action, which determines the pair-production rate in the tim
dependent electric background. Remarkably, the lead
Borel approximations exponentiate to yield corrections to
familiar exponent appearing in the constant field case. Th
resummations can also be explained using a WKB anal
of the imaginary part of the effective action.

While we have not proven rigorously that these Bo
techniques are unique, we have provided strong suppor
evidence by comparison with independent field theoretic
sults whenever such a comparison is available. A rigor
proof of uniqueness would require an analysis of the ana
ticity properties@20,51# of the function being expanded—
here the effective action—in addition to the analysis of t
convergence properties of the series. We cannot answer
precisely without knowing the detailed analytic structure
the effective action, which is not known for nontrivial bac
grounds. Instead, we have taken the simplest and most n
ral Borel approximation, and we have compared it to ind
pendent calculations whenever these independ
calculations are available. In our opinion, the results are v
convincing.

Finally, we conclude by considering the question of Bo
summability of the perturbative effective action when t
inhomogeneous background has the more general form
Eq. ~63! or Eq. ~65!. The exponential form of the WKB
expression~67! for the imaginary part of the effective actio
is very suggestive of the exponential imaginary parts fou
from the Borel dispersion relation~11!. Indeed, writing

(
n51

1

n
e2npV5

1

pV (
n51

1

n2
~npV!e2npV ~79!

we can read the Borel dispersion relation backwards@with
b52, g51, andA1/(ag)5npV] to obtain the correspond
ing asymptotic expansion of the real part of the effect
action

S;22TS L

2p D 3

(
l

B2l 12

~2l 12!~2l 11!
E d3kS 2

V D 2l 11

~80!

where in the magnetic caseV˜2 iV. This expression is
consistent with the result from the resolvent method~al-
though to be strictly correct we need to specify carefu
2-13
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phase conventions forV @15,16#!. For example, in the con
stant magnetic caseV5m2/(eB), and it is easy to verify
@recalling that*dkz5B] that the expansion~80! reproduces
the Euler-Heisenberg expansion~13!.

Interestingly, the expansion~80! is a reorganization of the
usual perturbative expansion of the effective action, and
reorganized form already makes manifest the generic di
gence properties of the effective action, since
Bernoulli numbers have leading behaviorB2n
;(21)n112(2n)!/(2p)n. Thus, we see that in the magnet
case the expansion~80! has coefficients that alternate in sig
and grow factorially in magnitude. In this formal sense, t
divergence properties of the effective action discussed in
paper, for the special cases withB5const and B(x)
5B sech2(x/l), appear to extend to more general bac
, s

nn

. B
-
r,’

l

06500
is
r-
e

is

-

grounds. However, we caution that this argument is form
as it neglects the possible appearance of other poles an
cuts in the Borel plane which might invalidate the naive u
of the Borel dispersion relation~11!. Nevertheless, it is sug
gestive to associate the non-perturbative WKB express
~67! for the imaginary part of the effective action with th
divergent expansion~80! for the real part.
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@6# A. Nikishov, Zh. Éksp. Teor. Fiz.57, 1210~1969! @ Sov. Phys.
JETP30, 660 ~1970!#.

@7# For some more recent analyses of the constant field case
S. Blau, M. Visser, and A. Wipf, Int. J. Mod. Phys. A6, 5409
~1991!; R. Soldati and L. Sorbo, Phys. Lett. B426, 82 ~1998!.

@8# I. Aitchison and C. Fraser, Phys. Rev. D31, 2605~1985!.
@9# H.W. Lee, P.Y. Pac, and H.K. Shin, Phys. Rev. D40, 4202

~1989!.
@10# D. Cangemi, E. D’Hoker, and G. Dunne, Phys. Rev. D51,

R2513~1995!.
@11# V.P. Gusynin and I.A. Shovkovy, Can. J. Phys.74, 282~1996!.
@12# D. Fliegner, P. Haberl, M.G. Schmidt, and C. Schubert, A

Phys.~N.Y.! 264, 51 ~1998!.
@13# I. Kosztin, S. Kos, M. Stone, and A. J. Leggett, Phys. Rev

58, 9365~1998!; S. Kos and M. Stone, ‘‘The Gradient Expan
sion for the Free-Energy of a Clean Superconducto
cond-mat/9809182.

@14# G. Dunne and T. Hall, Phys. Lett. B419, 322 ~1998!. This
paper generalizes an earlier result for QED211: D. Cangemi, E.
D’Hoker, and G. Dunne, Phys. Rev. D52, R3163~1995!.

@15# G. Dunne and T. Hall, Phys. Rev. D58, 105022~1998!.
@16# T. Hall, Ph.D. thesis, University of Connecticut, 1998.
@17# F. J. Dyson, Phys. Rev.85, 631 ~1952!.
@18# C. A. Hurst, Proc. R. Soc. LondonA214, 44 ~1952!; Proc.

Cambridge Philos. Soc.48, 625 ~1952!; W. Thirring, Helv.
Phys. Acta26, 33 ~1953!.

@19# G. Hardy, Divergent Series~Oxford University Press, New
York, 1949!.

@20# C. M. Bender and S. A. Orszag,Advanced Mathematica
Methods for Scientists and Engineers~McGraw-Hill, New
York, 1978!.
ee

.

’

@21# C. M. Bender and T. T. Wu, Phys. Rev. Lett.27, 461 ~1971!;
Phys. Rev. D7, 1620~1973!.

@22# I. Herbst and B. Simon, Phys. Rev. Lett.41, 67 ~1978!.
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