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Gravitational mass in asymptotically de Sitter space-times with compactified dimensions
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We define the gravitational mass in asymptotically de Sitter space-times with compactified dimensions. It is
shown that the mass can be negative for a space-time with matter spreading beyond the cosmological horizon
scale or having a large outward “momentum” in four dimensions. We give simple examples with negative
energy in higher dimensions even if the matter is not beyond the horizon or the system does not have a large
“momentum.” They do not have the lower bound on the mass. We also give a positive energy argument in
higher dimensions and realize that the elementary fermion cannot exist in our examples.
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[. INTRODUCTION helps us discuss the lower bound of the energy in asymptoti-
cally de Sitter space-times. Since a positive cosmological

Superstring or M theory may offer the proper theory of constant prompts the rapid expansion of the universe, we
gravity [1]. Such kinds of theories are formulated in higher might be able to obtain an implication about the effect to the
dimensions and it is believed that the extra dimension spacghergy from the dynamics of the compactified dimensions.
will be compactified to be less than the Planck length. The rest of the present paper is organized as follows. In

The stability of such space-times is important and haghe next section we give the definition of gravitational mass
been discussed. It was shown that there is an instanton whidf @symptotically de Sitter space-time with extra dimensions
may indicate the decay of Kaluza-Klein vaculith4]. As  and write down the expression in terms of canonical quanti-
Witten pointed out, the decay mode is excluded by the existies on the hypersurfaces. Since a part of this is a straightfor-
tence of a(masslesselementary fermion related to super- Ward extension of the work by Nakaet al. [10] based on
symmetry[5]. Refs.[12,13, we give a brief discussion. We will point out

On the other hand, the stability of the asymptoticallythat the expression is a special case of the gravitational
anti—de Sitter(AdS) space-time with compactified dimen- Hamiltonian defined by Hawking and Horowitz4]. In Sec.
sions has been focused on recently by Horowitz and Myerd! we show two examples which have negative energy and
[6] because the AdS/CFT Correspondeﬁz:b”nks the sta- no naked Singulal’ity._ In Sec. IV, We .ConSider the pOSitiVe
bility of super Yang-Mills theory to that of AdS space-time. €nergy theorem to discuss the stability of de Sitter space-
So they suggested a positive energy conjecture in locallfime. As a result we confirm that elementary fermion cannot
asymptotically AdS space-times. exist in the examples given by us. Finally we give a sum-

In the actual cosmological context, the same argument ofary in Sec. IV.
stability is important. In this paper, for simplicity, we con-
sider D-dimensional Einstein gravity with a positive cosmo-  Il. GRAVITATIONAL MASS IN ASYMPTOTICALLY
logical constant. A positive cosmological constant is essenbDE SITTER SPACE-TIMES WITH HIGHER DIMENSIONS
tial for the inflationary univers¢8] and the acceleration of . . . . . .
the universe confirmed gradually by recent observations of . We.con3|de_|D-d|n_1enS|ona_I ;pace-hmes Wh'Ch satisfy the
supernovad9]. In the study of Nakaet al, it was shown Einstein equation with a positive cosmological constant
that the gravitational mass can be negative in four- 1
dimensional space-times when the matter distributes beyond Riy— 59uR+AQ;=87GpTy;, (2.)
the cosmological horizon scalé0,11]. In other words, the 2
mass is negative if the space-time has a large outward “mo- i .
mentum.” Evaluating the electric part of Weyl tensor, they Where sufficesl,J runs over 0,1,...D—1, T, is the
also checked that the mass is related to gravitational tiddfnNergy-momentum tensor, ai@, is D-dimensional New-
force. In this paper we find an initial data set whose mass caff"'s constant. We decompose the space-time metric into the
be negative and does not have the lower bound even if thB-dimensional de Sitter metrig,; and the resh,;;
space-time does not have momentum. Furthermore, we give o
another dynamical solution which also does not have mo- g3=0;+th;. (2.2
mentum.

In asymptotically flat space-times with compactified extraHereafter the overbar indicates quantities of the background
dimensions, there are examples of momentarily static initiatle Sitter space-time. We remember thatis not necessarily
slices such that the energy can be negative regardless of tiseall, but we impose that it vanishes at infinity. We will give
size of the compactified dimensiof®|. A parallel argument a further description below.
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Here we note that Einstein equation is written as EAD:a(t)[EADM+APADM(_E)]
RY_ E_IJR —AhY=(—g) Y27 (2.3 = at) f dS(a:hll =gl a:hk)
| 2g | g ’ . lG’JTGD J itk
wherehV=g'"g’thy, , R\’ is the linear part of Ricci tensor ~anc_ | USIK;—K&+(D-2)H 518,
R,; with respect toh,;, and all the higher order terms are D
included in7" of the right-hand side. As the left-hand side (2.9

of Eq. (2.3 satisfies the Bianchi identity, we see that where K;; is the extrinsic curvature oft=constant

- (D —1)-dimensional hypersurface. By using the momentum
Vi 77=0 (24 7, =K; —q;K, whereq;; is the metric oft=const hypersur-
j = M i j
- face, the second term in the second line of ExJ9) can be
holds, whereV, is the covariant derivative with respect to Written as

= _ the __ : B o -
gga{cggmgactmgf with the Killing vector of de Sitter AP aont(—8) = Paout(— &) — Paoy(—&)
1 .
3 =— [J—_
T=T"¢, (2.5 8wGDf dS(m—m)é. (2.10

As a result,E,p is written in terms of the sum of the ADM
energy and net momentum. We note that the momentum of
background de Sitter space-time is subtracted automatically.
The above net momentum is the term “momentum” used in
the Introduction. The above argument does not depends on
whether the extra dimensions are compactified or not.

Now we compare the above expression with the gravita-
tional energy defined via a “physical Hamiltoniar14].

we obtain the local conservation low
8,T'=0. (2.6)

Thus,fd®~1x7° is conserved if the surface terfu® S 7'
vanishes. We define

1 _ 9. :
Enp= J’ 4P~ I TOKE, The gravitational energy has the expression
87TGD 1
E =——f dS(Nk—Nk)
1 _ . [ HH
- 5o | PSR -KOT I, (27 87Go
8’7TGD J 1
B B B B t5o de(Nimj—WEj)ri, (2.10)
where KIJKL:(1/2)(gILHKJ+gKJHIL_gIKHJL_gJLHIK)’ TOp

HY=h"—(1/2)g"”hK, andi=1,2,...,D—1. In the case that wherek andr' are the trace of the extrinsic curvature and the

& is a timelike Killing vectorE ,, is regarded as the Killing unit normal vector of D —2)-dimensional surface at the in-

energy, the so called Abbott-Des@&D) mass. finity, respectively.N andN' are the lapse function and the
Next, we rewrite Eq.(2.7) in a more familiar form in  shift vector. N .

order to obtain its physical meaning. First of all, we need to  The “physical Hamiltonian™ is defined by the substrac-

take the asymptotic region carefully. In asymptotic flat cases{ion the Hamiltonian of a background space-time from the

the extrinsic curvaturé&;; of slices has the behavidt;—0 original Hamiltonian. As Hawking and Horowitz showed,

toward the spatial infinityi®. As we know, we can expect the first term of Eq(2.1])_|s just the AmOW|tt-DeS|r-M|sner

that such a slice does not have an asymptotic region in a$ADM) energy. Comparing Eq2.9) with Eq. (2.11), one

ymptotically de Sitter space-time because static slices witlf@" Seé€ that they have the same expression except for scale

Ki;=0 have no boundary in de Sitter space-time. So wdactor, |.e.,I_EAD=a(t)EHH, if one chooses the lapse function

remember that the flat chart of de Sitter space-time has @nd the shift vector as follows:

boundary and its spatial metric is conformally flaee Fig. 2 = v

in Ref.[10]). Thus, we realize that the most natural condition N=N=1 andN'=N'=-¢. (212

is given by Ki—»Hé, or K—(D—1)H [15], where H It is likely that the priority is given to our definition in as-

=2A/(D—1)(D—2). In this chart the metric of the back- ymptotically de Sitter space-times because the Hawking and

ground de Sitter space-time is written as Horowitz construction of the physical Hamiltonian has the
operation of artificial substraction to keep it finite.
. D-1 In asymptotically flat cases, the ADM energy is defined
g= —dt?+ a(t)zz1 dxiz, (2.8 by view point of a static observer witN=1 and N'=0 at
=

spatial infinityi®. The naturalness of observer selection to

_ define the energy is related to the timelike translation sym-

wherea(t) =e"". The Killing vector has the componest! metry at infinity. On the other hand, in asymptotically de
=(—1Hx"). After simple calculations we obtain Sitter space-time, we must consider hypersurfaces which
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have infinity in order to define the nonzero energy. As we As a second example, we take a dynamical solujtiof.

have done, the most convenient slices is one which correFhe metric is

sponds to the flat slices in de Sitter space-time. This slices 42

reach into timelike infinityZ " (see Fig. 2 in Ref[10]). 2 29X 2, 2A2402

However, the slices is not associated with the timelike trans- ds’=—dt*+a(t) A TAdrrTATO ), (32

lation symmetry which de Sitter space-time possesses, that

is, the slice is not orthogonal to timelike Killing vector. where A(r)=1-m/r, a(t)=e*", and H=A/6. The

Thus, it may be natural that the ADM momentum term enterg =const hypersurface has the extrinsic curvatut

into the expression of the mass. + H5} . However, this space-time has timelike naked singu-
In four dimensions the AD mass can be negative whenarity at r=m. Since the expansion of outgoing null geode-

system has a large outward moment{ib®]. On the other sics congruence is

hand, the positivity of the AD or ADM mass is guaranteed

for systems without the net momentutiP opy, =0, in four 1 N 4r —
dimensiong 16]. 9+_E —2H+m , (3.3
Il. EXAMPLES IN FIVE DIMENSIONS the apparent horizon does not exist in the expanding chart

with a=e"t. In collapsing chart witm=e !, apparent ho-

In the same way as four-dimensional cases, the AD masgzon also does not exist although surfaces such éhat 0
can be negative regardless of the compactification of the eXxists. The curvature invariant is given by

tra dimension if the system has a large momentum. However,
the physical reason of the negativity is the dynamics of the
four-dimensional part of space-time, rather than thean- Rigk RV*=5H*+3
tum) stability. Now we are only interested in stability. So, we

consider the situation only where the contribution of the net
ADM momentum does not exist. We give two examples in

five dimensions which are regular everywhere and have

negative energy. . . _
Let us consider an initial slice with(;;=*Hg;; andH To avoid the naked singularity at=m, we change the

= JAJ6. In this slice the Hamiltonian constraint becomesSi9n Of the mass parameten— —m. After that the radial

(“R=0. Thus one can use the argument on the momentarilfoCrdinater can run up tor=0 and the conical singularity
static slices in asymptotically flat cases because the HamiCCUrs atr=0 in general cases. Near=0, the metric is
tonian constraint is just same one. written as

One can see easily that the Euclidian Reissner-Nonastro
metric with imaginary “charge” satisfies the Hamiltonian ds’=—dt’+a(t)?
constraint{4]. This metric of the hypersurface is given by

m
2a%(r—m)3
2

. (3.9

H2—

2 m

a’(r—-m)3

r m
de2+ Tdr2+ mzdﬂg}. (3.5

Here we introduce a new coordind®e= (rm)*? and the met-

drz .
@g=V(r)dy*+ W—i—rzdﬂz, 3y fes
2
X
ds?=—dt>+a? 4 dR?+ de(— ]+m2d02}

where V(r)=1-2m/r—e?r? and r=r, :=m+ Jm?+e’. 2m 2

To avoid a conical singularity at=r , , we assume the pe- (3.6
. _ ) _ 2 _ irec-

trilcc))g Xp=A4m/V'(r)=2mr5/(r, —m) along they direc Hence, the metric is regular everywhere exceptferO sin-

. . ularity if one assumes the perigg,=4m7m along they

AD%”;;‘:rpre(f:nqt (S)l:(;%’téhe inéss Is_cr:;)ns/tzrgctgdml;)%/ %nly thgirection. The physical size of the compactified dimensions

the same gry umeﬁt as BriﬁDa;ld AHDc')VIrc:V\ﬁt)ﬂfpit isss_hown. thét is given by 4ra(t)m. Thus, it decreases or increases if one
9 ' takes the collapsing or expanding chart. A cosmological con-

the mass becomes negative and doe_s not havg the low; {ant make the compactified space dynamical as well as the
bound. The mass can be set to be arbitrary negative regarg-

. e - . four-dimensional part. The AD m [
less of the radius of the compactified space. However, it iso! dimensional part. The assis
not obvious whether the AD energy is conserved or not in a(t)3my

; ; P
the course of time development because of the existence of E=Eapy=— G =
the cosmological constant and momentarily nonstatic slices. 5

In fact we will see that the energy is not conserved in theryg js not conserved due to the expansion of the universe!

next example. This comes from the nonvanishing boundary term
JdP~25 7" which vanishes for asymptotically flat cases. At
first glance, best we can do might be choosing the collapsing
'Here we used the fact that the five-dimensional Newton’s conchart and we can keep the radius of the compactified space to
stant is written a$5s= x,G, in terms of the four-dimensional one. be less than Planck length. In the chart, we observe the value

—as(t)ym. (3.7
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of the energy approaches zero. One may t_hink that a large ,yi@iezol 4.3
cosmological constant stabilizes the space-times because the

extra dimension shrinks rapidly and the energy becomes zefpne solution is given by a constant spineg satisfying

before space-time decays. At the same time the shrinkingﬁé — _ie in the expanding flat slice of de Sitter space-
however, means the big crunch of the space-time and thef ° €o P 9 P
. . . : . fime.

this case does not give attractive model. Since there is no
reason why one has to choose the collapsing chautiori,

we need to consider the expanding chart too. In this char
the compactified space expands till the end of the inflation

and the absolute value of the AD energy increases. Naively J ds}'e’f@iE:J dV[|Viel?
speaking, the decay rate of the de Sitter space-time into the

space-time with the large compactified space is suppressed.

By using the Bianchi identity, the Hamiltonian and mo-
tmentum constraints, we obtain the identity

+47Gp(e'Tope+ €' Tigy 766)].

IV. POSITIVE ENERGY THEOREM, ELEMENTARY (4.9

FERMION, AND STABILITY . .
Let us evaluate the left-hand side. We follow Witten’s argu-

In locally asymptotically flat cases with compactified di- ment[21] carefully. First, the constant spinor satisfies
mensions, the break down of positive energy theorem means
the Witten spinor does not exi$b]. In supergravity, that & _ it _ i(D-1) [
means there is no supersymmetry because the spinor is re- Yi€o= Y T'i€o=7v Tieo+ E[_KJ’(D_l)H]GO'
lated to the infinitesimal generator of local supersymmetry (4.5
[18].

In asymptotically de Sitter cases, the situation is differentypere (0~ = —(1/8)ej'2 (Dfl)vieL[ vi,7i] and we used
from above. As we stated, the energy can be negative even if
the extra dimension is not compactified and the topology is 1 .
trivial. In this section, we discuss the positive energy theo- /=011 + 5Kij ¥+
rem, based on Reff16,19,? in cases where the extra dimen-
sion is not compactified. Conversely, we can see easily thaﬁ we supposeK =(D— 1)H+O(14°1), the same argu-

the Wltten Spinor cannot exist for examples given in thement of the existence of solution as asymptotic flat holds and
previous section. we obtain

Following Kastor and Traschei9], we define the cos-
mological supercovariant derivative operator on a spinas

f ds'efﬁiezfds'eg(r(—yiyir;)eo. 4.7

€=

i
(9|+F|+§H')’|

R i
V|€:(V|+§H’Y| EZ:((?|+F{)E,

4.1 Inserting the decompositio@.6) of the spin connection into

the above, we obtain the familiar expression
whereTl’, is the spin connection,

1 co & f ds'eT@-e=J’ dSel(C I — 5,9 ®-Ur)e
r=— e vielly, vid, 4.2 | R A

1 : ! S
ande'j is the quasiorthogonal basis. The cosmological Witten + Ef ds Eg[K} —5,K+(D-2)H5;1Y' ¥’
equatiori is defined by

10 . . . 1 .
:Zf dSej(9;hl—g;hl)eg— Ef dSKjeoy e

°The argument in Ref16] is a prototype of the proof. Rigorously
speaking, the “supercovariant derivative” defined there is not co-
variant for full space-times. An excellent approach bearing super- oy .
gravity in mind was given in Ref19]. However, both approaches Where K| is the traceless part ok;. Here we note that
were not presented in the present refined form. The explicit evalu?oyi €0= _e|(3|fo|2: O(l/rD’3) due to 3,060: —ieyg. This
ation of the left-hand side of Eq4.4) was not done in Ref.19].
See Ref[20] for asymptotically AdS space-times.

3The vectorg' = ey' e defined by spinok satisfyingV,e=0 is a
conformal Killing vector, not a Killing vector in de Sitter space-
time. That is,e is a conformal Killing spinor, not a Killing spinor. _ a(t)
This point is the main reason why one cannot prove the positivity of 47Gp
the AD mass for asymptotically de Sitter space-times having the net
momentum because the left-hand side of @) cannot be the AD  under the dominant energy conditi¢82] on the energy-
mass. momentum tensof ;. Unfortunately, we cannot say some-

=47Gp[Eppm| €02+ APapm(€0ven)], (4.8

and K;=0(1/r°"2) lead us that the net momentum term
APpm(€gyep) vanishes. Finally we obtain the inequality

f dS.ETﬁiEZa(t)EADN”Eolzzo, (49)
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thing aboute =0 case because Witten spinor approaching tdained a refined expression related to the ADM energy and
€, at infinity is uniquely determine8iThus, there is not con- momentum associated to the timelike Killing vector of the
tradiction with the existence of nontrivial solution which has background de Sitter space-time. Furthermore, we gave one
zero ADM mass and is given in RefLO]. dynamical solution and one initial data with the negative
We can see thaE is not equal to the AD mas£,,.  energy in five dimensions. Do these solutions indicate the
WhenR} =0(1/r°~1) holds and the momentum term of the quantum decay of de Sitter space-time? We cannot reply to
AD mass vanishes, the AD mass equals to the ADM energyhe question instantly because we do not know whether the
and the positivity is guaranteed. For our purpose, it is worthinstanton exists or not. Naively speaking, we can guess from
imposingR}zO(ler’l) because we are interest in the sta-the previous section that the decay occurs unless one im-
bility of space-time, not its dynamics. As with E@.9), this ~ poses the existence of an elementary fermion or supersym-
implies the positivity of the AD mass. The apparent contra-metry.
diction with examples given in the previous section indicates Finally, we should stress the fact that the energy seems to
that the Witten spinor does not exist in such examples. depend on the time in general although the definition is rea-

sonable. This means that the contribution from the boundary
V. SUMMARY is not negligible.

In this paper we defined the gravitational mass in asymp-

totically de Sitter space-time with extra dimensions and ob-
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