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Gravitational mass in asymptotically de Sitter space-times with compactified dimensions
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We define the gravitational mass in asymptotically de Sitter space-times with compactified dimensions. It is
shown that the mass can be negative for a space-time with matter spreading beyond the cosmological horizon
scale or having a large outward ‘‘momentum’’ in four dimensions. We give simple examples with negative
energy in higher dimensions even if the matter is not beyond the horizon or the system does not have a large
‘‘momentum.’’ They do not have the lower bound on the mass. We also give a positive energy argument in
higher dimensions and realize that the elementary fermion cannot exist in our examples.
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I. INTRODUCTION

Superstring or M theory may offer the proper theory
gravity @1#. Such kinds of theories are formulated in high
dimensions and it is believed that the extra dimension sp
will be compactified to be less than the Planck length.

The stability of such space-times is important and h
been discussed. It was shown that there is an instanton w
may indicate the decay of Kaluza-Klein vacuum@2–4#. As
Witten pointed out, the decay mode is excluded by the e
tence of a~massless! elementary fermion related to supe
symmetry@5#.

On the other hand, the stability of the asymptotica
anti–de Sitter~AdS! space-time with compactified dimen
sions has been focused on recently by Horowitz and My
@6# because the AdS/CFT correspondence@7# links the sta-
bility of super Yang-Mills theory to that of AdS space-tim
So they suggested a positive energy conjecture in loc
asymptotically AdS space-times.

In the actual cosmological context, the same argumen
stability is important. In this paper, for simplicity, we con
siderD-dimensional Einstein gravity with a positive cosm
logical constant. A positive cosmological constant is ess
tial for the inflationary universe@8# and the acceleration o
the universe confirmed gradually by recent observations
supernovae@9#. In the study of Nakaoet al., it was shown
that the gravitational mass can be negative in fo
dimensional space-times when the matter distributes bey
the cosmological horizon scale@10,11#. In other words, the
mass is negative if the space-time has a large outward ‘‘
mentum.’’ Evaluating the electric part of Weyl tensor, th
also checked that the mass is related to gravitational t
force. In this paper we find an initial data set whose mass
be negative and does not have the lower bound even if
space-time does not have momentum. Furthermore, we
another dynamical solution which also does not have m
mentum.

In asymptotically flat space-times with compactified ex
dimensions, there are examples of momentarily static in
slices such that the energy can be negative regardless o
size of the compactified dimensions@4#. A parallel argument
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helps us discuss the lower bound of the energy in asymp
cally de Sitter space-times. Since a positive cosmolog
constant prompts the rapid expansion of the universe,
might be able to obtain an implication about the effect to
energy from the dynamics of the compactified dimension

The rest of the present paper is organized as follows
the next section we give the definition of gravitational ma
in asymptotically de Sitter space-time with extra dimensio
and write down the expression in terms of canonical qua
ties on the hypersurfaces. Since a part of this is a straight
ward extension of the work by Nakaoet al. @10# based on
Refs.@12,13#, we give a brief discussion. We will point ou
that the expression is a special case of the gravitatio
Hamiltonian defined by Hawking and Horowitz@14#. In Sec.
III we show two examples which have negative energy a
no naked singularity. In Sec. IV, we consider the positi
energy theorem to discuss the stability of de Sitter spa
time. As a result we confirm that elementary fermion can
exist in the examples given by us. Finally we give a su
mary in Sec. IV.

II. GRAVITATIONAL MASS IN ASYMPTOTICALLY
DE SITTER SPACE-TIMES WITH HIGHER DIMENSIONS

We considerD-dimensional space-times which satisfy th
Einstein equation with a positive cosmological constantL:

RIJ2
1

2
gIJR1LgIJ58pGDTIJ , ~2.1!

where sufficesI ,J runs over 0,1,. . . ,D21, TIJ is the
energy-momentum tensor, andGD is D-dimensional New-
ton’s constant. We decompose the space-time metric into
D-dimensional de Sitter metricḡIJ and the resthIJ ;

gIJ5ḡIJ1hIJ . ~2.2!

Hereafter the overbar indicates quantities of the backgro
de Sitter space-time. We remember thathIJ is not necessarily
small, but we impose that it vanishes at infinity. We will giv
a further description below.
©1999 The American Physical Society19-1
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Here we note that Einstein equation is written as

Rl
IJ2

1

2
ḡIJRl2LhIJ5~2ḡ!21/2T IJ, ~2.3!

wherehIJ5ḡIK ḡJLhKL , Rl
IJ is the linear part of Ricci tenso

RIJ with respect tohIJ , and all the higher order terms ar
included inT IJ of the right-hand side. As the left-hand sid
of Eq. ~2.3! satisfies the Bianchi identity, we see that

¹̄ IT IJ50 ~2.4!

holds, where¹̄ I is the covariant derivative with respect
ḡIJ . ContractingT IJ with the Killing vector of de Sitter
space-time

T I5T IJj̄J , ~2.5!

we obtain the local conservation low

] IT I50. ~2.6!

Thus,*dD21xT 0 is conserved if the surface term*dD22SiT i

vanishes. We define

EAD5
1

8pGD
E dD21xT 0Kj̄K

5
1

8pGD
E dD22Si@¹̄ IK

0iJM2K0 jJi¹̄ j #j̄J , ~2.7!

where KIJKL5(1/2)(ḡILHKJ1ḡKJHIL2ḡIKHJL2ḡJLHIK),
HIJ5hIJ2(1/2)ḡIJhK

K, andi 51,2,. . . ,D21. In the case tha

j̄ I is a timelike Killing vectorEAD is regarded as the Killing
energy, the so called Abbott-Deser~AD! mass.

Next, we rewrite Eq.~2.7! in a more familiar form in
order to obtain its physical meaning. First of all, we need
take the asymptotic region carefully. In asymptotic flat cas
the extrinsic curvatureKi j of slices has the behaviorK j

i
˜0

toward the spatial infinityi 0. As we know, we can expec
that such a slice does not have an asymptotic region in
ymptotically de Sitter space-time because static slices w
Ki j 50 have no boundary in de Sitter space-time. So
remember that the flat chart of de Sitter space-time ha
boundary and its spatial metric is conformally flat~see Fig. 2
in Ref. @10#!. Thus, we realize that the most natural conditi
is given by K j

i
˜Hd j

i or K˜(D21)H @15#, where H
5A2L/(D21)(D22). In this chart the metric of the back
ground de Sitter space-time is written as

ḡ52dt21a~ t !2 (
i 51

D21

dxi
2 , ~2.8!

wherea(t)5eHt. The Killing vector has the componentj̄M

5(21,Hxi). After simple calculations we obtain
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EAD5a~ t !@EADM1DPADM~2 j̄ !#

5
a~ t !

16pGD
E dS̄i~] jh

i j 2ḡi j ] jhk
k!

2
a~ t !

8pGD
E dS̄i@K j

i 2Kd j
i 1~D22!Hd j

i #j̄ j ,

~2.9!

where Ki j is the extrinsic curvature oft5constant
(D21)-dimensional hypersurface. By using the moment
p i j 5Ki j 2qi j K, whereqi j is the metric oft5const hypersur-
face, the second term in the second line of Eq.~2.9! can be
written as

DPADM~2 j̄ !5PADM~2 j̄ !2 P̄ADM~2 j̄ !

52
1

8pGD
E dS̄i~p j

i 2p̄ j
i !j̄ j . ~2.10!

As a result,EAD is written in terms of the sum of the ADM
energy and net momentum. We note that the momentum
background de Sitter space-time is subtracted automatic
The above net momentum is the term ‘‘momentum’’ used
the Introduction. The above argument does not depends
whether the extra dimensions are compactified or not.

Now we compare the above expression with the grav
tional energy defined via a ‘‘physical Hamiltonian’’@14#.
The gravitational energy has the expression

EHH52
1

8pGD
E dS~Nk2N̄k̄!

1
1

8pGD
E dS~Nip i j 2N̄ip̄ i j !r

j , ~2.11!

wherek andr i are the trace of the extrinsic curvature and t
unit normal vector of (D22)-dimensional surface at the in
finity, respectively.N andNi are the lapse function and th
shift vector.

The ‘‘physical Hamiltonian’’ is defined by the substra
tion the Hamiltonian of a background space-time from t
original Hamiltonian. As Hawking and Horowitz showe
the first term of Eq.~2.11! is just the Arnowitt-Desir-Misner
~ADM ! energy. Comparing Eq.~2.9! with Eq. ~2.11!, one
can see that they have the same expression except for
factor, i.e.,EAD5a(t)EHH , if one chooses the lapse functio
and the shift vector as follows:

N5N̄51 and Ni5N̄i52 j̄ i . ~2.12!

It is likely that the priority is given to our definition in as
ymptotically de Sitter space-times because the Hawking
Horowitz construction of the physical Hamiltonian has t
operation of artificial substraction to keep it finite.

In asymptotically flat cases, the ADM energy is defin
by view point of a static observer withN51 andNi50 at
spatial infinity i 0. The naturalness of observer selection
define the energy is related to the timelike translation sy
metry at infinity. On the other hand, in asymptotically d
Sitter space-time, we must consider hypersurfaces wh
9-2



w
rr
ice

n
th
r.
er

e

ed

a
e

ve
th

e
ne
in

av

es
r

m

ro
n

-

th

ow
a

it
t i
e
e

th

u-
e-

hart

ns
ne
on-
the

rse!
rm
At
ing
e to

alue
on
.
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have infinity in order to define the nonzero energy. As
have done, the most convenient slices is one which co
sponds to the flat slices in de Sitter space-time. This sl
reach into timelike infinityI1 ~see Fig. 2 in Ref.@10#!.
However, the slices is not associated with the timelike tra
lation symmetry which de Sitter space-time possesses,
is, the slice is not orthogonal to timelike Killing vecto
Thus, it may be natural that the ADM momentum term ent
into the expression of the mass.

In four dimensions the AD mass can be negative wh
system has a large outward momentum@10#. On the other
hand, the positivity of the AD or ADM mass is guarante
for systems without the net momentum,DPADM50, in four
dimensions@16#.

III. EXAMPLES IN FIVE DIMENSIONS

In the same way as four-dimensional cases, the AD m
can be negative regardless of the compactification of the
tra dimension if the system has a large momentum. Howe
the physical reason of the negativity is the dynamics of
four-dimensional part of space-time, rather than the~quan-
tum! stability. Now we are only interested in stability. So, w
consider the situation only where the contribution of the
ADM momentum does not exist. We give two examples
five dimensions which are regular everywhere and h
negative energy.

Let us consider an initial slice withKi j 56Hgi j and H
5AL/6. In this slice the Hamiltonian constraint becom
(4)R50. Thus one can use the argument on the momenta
static slices in asymptotically flat cases because the Ha
tonian constraint is just same one.

One can see easily that the Euclidian Reissner-Nordst¨m
metric with imaginary ‘‘charge’’ satisfies the Hamiltonia
constraint@4#. This metric of the hypersurface is given by

~4)g5V~r !dx21
dr2

V~r !
1r 2dV2

2, ~3.1!

where V(r )5122m/r 2e2/r 2 and r>r 1ªm1Am21e2.
To avoid a conical singularity atr 5r 1 , we assume the pe
riod xp54p/V8(r 1)52pr 1

2 /(r 12m) along thex direc-
tion.

On the present slice, the mass is constructed by only
ADM energy component1 EAD5EADM5mxp/2G55m/2. By
the same argument as Brill and Horowitz@4#, it is shown that
the mass becomes negative and does not have the l
bound. The mass can be set to be arbitrary negative reg
less of the radius of the compactified space. However,
not obvious whether the AD energy is conserved or no
the course of time development because of the existenc
the cosmological constant and momentarily nonstatic slic
In fact we will see that the energy is not conserved in
next example.

1Here we used the fact that the five-dimensional Newton’s c
stant is written asG55xpG4 in terms of the four-dimensional one
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As a second example, we take a dynamical solution@17#.
The metric is

ds252dt21a~ t !2Fdx2

D
1Ddr21r 2D2dV2

2G , ~3.2!

where D(r )512m/r , a(t)5e6Ht, and H5AL/6. The
t5const hypersurface has the extrinsic curvatureK j

i 5

6Hd j
i . However, this space-time has timelike naked sing

larity at r 5m. Since the expansion of outgoing null geod
sics congruence is

u15
1

A2
S 62H1

4r 2m

2aD3/2r 2D , ~3.3!

the apparent horizon does not exist in the expanding c
with a5eHt. In collapsing chart witha5e2Ht, apparent ho-
rizon also does not exist although surfaces such thatu150
exists. The curvature invariant is given by

RIJKLRIJKL55H413FH22
m

2a2~r 2m!3G 2

1FH22
m

a2~r 2m!3G 2

. ~3.4!

To avoid the naked singularity atr 5m, we change the
sign of the mass parameter,m˜2m. After that the radial
coordinater can run up tor 50 and the conical singularity
occurs atr 50 in general cases. Nearr 50, the metric is
written as

ds2.2dt21a~ t !2F r

m
dx21

m

r
dr21m2dV2

2G . ~3.5!

Here we introduce a new coordinateR5(rm)1/2 and the met-
ric is

ds2.2dt21a2F4H dR21R2dS x

2mD 2J 1m2dV2
2G .

~3.6!

Hence, the metric is regular everywhere except fora50 sin-
gularity if one assumes the periodxp54pm along thex
direction. The physical size of the compactified dimensio
is given by 4pa(t)m. Thus, it decreases or increases if o
takes the collapsing or expanding chart. A cosmological c
stant make the compactified space dynamical as well as
four-dimensional part. The AD mass is

E5EADM52
a~ t !3mxp

G5
52a3~ t !m. ~3.7!

This is not conserved due to the expansion of the unive
This comes from the nonvanishing boundary te
*dD22SiT i which vanishes for asymptotically flat cases.
first glance, best we can do might be choosing the collaps
chart and we can keep the radius of the compactified spac
be less than Planck length. In the chart, we observe the v
-

9-3
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TETSUYA SHIROMIZU PHYSICAL REVIEW D60 064019
of the energy approaches zero. One may think that a la
cosmological constant stabilizes the space-times becaus
extra dimension shrinks rapidly and the energy becomes
before space-time decays. At the same time the shrink
however, means the big crunch of the space-time and
this case does not give attractive model. Since there is
reason why one has to choose the collapsing charta priori,
we need to consider the expanding chart too. In this ch
the compactified space expands till the end of the inflat
and the absolute value of the AD energy increases. Naiv
speaking, the decay rate of the de Sitter space-time into
space-time with the large compactified space is suppres

IV. POSITIVE ENERGY THEOREM, ELEMENTARY
FERMION, AND STABILITY

In locally asymptotically flat cases with compactified d
mensions, the break down of positive energy theorem me
the Witten spinor does not exist@5#. In supergravity, that
means there is no supersymmetry because the spinor i
lated to the infinitesimal generator of local supersymme
@18#.

In asymptotically de Sitter cases, the situation is differ
from above. As we stated, the energy can be negative ev
the extra dimension is not compactified and the topology
trivial. In this section, we discuss the positive energy th
rem, based on Refs.@16,19#,2 in cases where the extra dime
sion is not compactified. Conversely, we can see easily
the Witten spinor cannot exist for examples given in t
previous section.

Following Kastor and Traschen@19#, we define the cos-
mological supercovariant derivative operator on a spinore as

¹̂ Ie5S ¹ I1
i

2
Hg I D e5S ] I1G I1

i

2
Hg I D e5:~] I1G I8!e,

~4.1!

whereG I is the spin connection,

G I52
1

8
eJK̂¹ IeJ

L̂@g L̂ ,g K̂#, ~4.2!

andeĴ
I is the quasiorthogonal basis. The cosmological Wit

equation3 is defined by

2The argument in Ref.@16# is a prototype of the proof. Rigorousl
speaking, the ‘‘supercovariant derivative’’ defined there is not
variant for full space-times. An excellent approach bearing su
gravity in mind was given in Ref.@19#. However, both approache
were not presented in the present refined form. The explicit ev
ation of the left-hand side of Eq.~4.4! was not done in Ref.@19#.
See Ref.@20# for asymptotically AdS space-times.

3The vectorj I5 ēg Ie defined by spinore satisfying¹̂ Ie50 is a
conformal Killing vector, not a Killing vector in de Sitter space
time. That is,e is a conformal Killing spinor, not a Killing spinor
This point is the main reason why one cannot prove the positivity
the AD mass for asymptotically de Sitter space-times having the
momentum because the left-hand side of Eq.~4.4! cannot be the AD
mass.
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g i¹̂ ie50. ~4.3!

The solution is given by a constant spinore0 satisfying
g 0̂e052 i e0 in the expanding flat slice of de Sitter spac
time.

By using the Bianchi identity, the Hamiltonian and m
mentum constraints, we obtain the identity

E dSie†¹̂ ie5E dV@ u¹̂ ieu2

14pGD~e†T0̂0̂e1e†Ti 0̂g ig 0̂e!#.

~4.4!

Let us evaluate the left-hand side. We follow Witten’s arg
ment @21# carefully. First, the constant spinor satisfies

g i¹̂ ie05g iG i8e05g i ~D21)G ie01
i

2
@2K1~D21!H#e0 ,

~4.5!

where (D21)G i52(1/8)ejk̂ (D21)¹ iek
l̂ @g l̂ ,g k̂# and we used

G i85 (D21)G i1
1

2
Ki j g

ig 0̂1
i

2
Hg i . ~4.6!

If we supposeK5(D21)H1O(1/r D21), the same argu-
ment of the existence of solution as asymptotic flat holds
we obtain

E dSie†¹̂ ie5E dSie0
†~G i82g ig

jG j8!e0 . ~4.7!

Inserting the decomposition~4.6! of the spin connection into
the above, we obtain the familiar expression

E dSie†¹̂ ie5E dSie0
†~ (D21)G i2g ig

j (D21)G j !e0

1
1

2E dSie0
†@K j

i 2d j
i K1~D22!Hd j

i #g jg 0̂e0

5
1

4E dSie0
†~] jhi

j2] ihj
j !e02

1

2E dSiK̃ j
i ē0g je0

54pGD@EADMue0u21DPADM~ ē0ge0!#, ~4.8!

where K̃ j
i is the traceless part ofK j

i . Here we note that

ē0g ie052e0̂
i ue0u25O(1/r D23) due to g 0̂e052 i e0 . This

and K̃ j
i 5O(1/r D22) lead us that the net momentum ter

DPADM( ē0ge0) vanishes. Finally we obtain the inequality

E5
a~ t !

4pGD
E dSie†¹̂ ie5a~ t !EADMue0u2>0, ~4.9!

under the dominant energy condition@22# on the energy-
momentum tensorTIJ . Unfortunately, we cannot say some
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thing aboutE50 case because Witten spinor approaching
e0 at infinity is uniquely determined.4 Thus, there is not con
tradiction with the existence of nontrivial solution which h
zero ADM mass and is given in Ref.@10#.

We can see thatE is not equal to the AD mass,EAD .
WhenK̃ j

i 5O(1/r D21) holds and the momentum term of th
AD mass vanishes, the AD mass equals to the ADM ene
and the positivity is guaranteed. For our purpose, it is wo
imposingK̃ j

i 5O(1/r D21) because we are interest in the s
bility of space-time, not its dynamics. As with Eq.~4.9!, this
implies the positivity of the AD mass. The apparent cont
diction with examples given in the previous section indica
that the Witten spinor does not exist in such examples.

V. SUMMARY

In this paper we defined the gravitational mass in asym
totically de Sitter space-time with extra dimensions and

4In asymptotically flat space-times,e0 is arbitrary constant spinor
This means that there is an independent solution of theD’s of the
Witten equation. As a result, we obtainRIJKL50 from 0
5@¹ i ,¹ j #e5(1/4)Ri jKL @gK,gL#e.
av

ev
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tained a refined expression related to the ADM energy
momentum associated to the timelike Killing vector of t
background de Sitter space-time. Furthermore, we gave
dynamical solution and one initial data with the negati
energy in five dimensions. Do these solutions indicate
quantum decay of de Sitter space-time? We cannot repl
the question instantly because we do not know whether
instanton exists or not. Naively speaking, we can guess f
the previous section that the decay occurs unless one
poses the existence of an elementary fermion or supers
metry.

Finally, we should stress the fact that the energy seem
depend on the time in general although the definition is r
sonable. This means that the contribution from the bound
is not negligible.
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