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Charged AdS black holes and catastrophic holography
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We compute the properties of a class of charged black holes in anti–de Sitter space-time, in diverse
dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravi-
ties, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermo-
dynamic phase structures for these systems, which display classic critical phenomena, including structures
isomorphic to the van der Waals–Maxwell liquid-gas system. In that case, the phases are controlled by the
universal ‘‘cusp’’ and ‘‘swallowtail’’ shapes familiar from catastrophe theory. All of the thermodynamics is
consistent with field theory interpretations via holography, where the dual field theories can sometimes be
found on the world volumes of coincident rotating branes.@S0556-2821~99!02316-4#
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I. INTRODUCTION

There is evidence that there is a correspondence@1–3#
between gravitational physics in anti–de Sitter space-t
and particular types of conformal field theory in one dime
sion fewer. This duality is a form of ‘‘holography’’@4# and a
part of the correspondence operates by identifying the fi
theory as residing on the boundary of anti–de Sitter~AdS!
space-time.

To be more precise, AdSn113Mm is the space-time o
interest, and there is some (n1m11)-dimensional theory of
gravity compactified on it. The manifoldMm can be an
m-sphere, Sm. The corresponding field theory is a
n-dimensional conformal field theory residing on a spa
with the topology of the boundary of AdSn11. The isome-
tries of the manifoldMm appear as global symmetries of th
field theory:R symmetries if the theory is supersymmetric

This particular form of duality between gravity and fie
theory is certainly intriguing. The largeN limit @whereN is
the rank of theSU(N) gauge group for the four dimension
Yang-Mills field theory, with appropriate generalizations f
other dimensions# of the field theory—at strong ’t Hoof
coupling—corresponds to classical supergravity. As poin
out in Ref.@5#, following the observations in Ref.@3#, the old
program of semi-classical quantum gravity finds a new le
on life in this setting, as computations such as those p
formed with gravitational instantons~at least in AdS space
time! should have natural field theory interpretations.

In this paper, we study the thermal properties of Einste
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Maxwell AdS ~EMAdS! charged black holes, and find be
havior consistent with field theory interpretations. We do t
for arbitrary dimensions~greater than 3—see Sec. VII fo
comments onD53) and determine the thermal phase stru
ture of the corresponding field theories. The cases of Ad4 ,
AdS5 and AdS7 are particularly interesting of course, as th
correspond to the theories found on the world volumes
M2-, D3-, and M5-branes, respectively. The D3-brane cas
D54, N54 supersymmetricSU(N) Yang-Mills theory,
while the others are exotic superconformal field theories@6#.
We remark on the field theory interpretation of our new
sults in the light of holography.

This paper is also of relevance beyond mere consid
ations of holography. Some of the black hole solutions a
their properties~thermodynamic or otherwise! are presented
here for the first time.1 In particular, the Lagrangian actio
calculations and subsequent determination of the phase s
ture are presented in their entirety here.

In Sec. II, we present an ansatz for obtaining the Einste
Maxwell truncation of gauged AdS supergravity with appr
priate compactifications ofD511 supergravity onS7 and
D510 type IIB supergravity onS5. In the planar or infinite-
volume limit, the charged black holes in Einstein–Maxwel
anti–de Sitter correspond to the near horizon limits of rot
ing M2- and D3-branes. In Sec. III, we display the solutio
and note some of their properties. The computation of
action of the solutions using a Euclidean section is p
formed in Sec. IV, and their thermodynamic properties
uncovered in Sec. V.

As the Einstein–Maxwell–anti–de Sitter truncation
naturally associated with rotating branes~at least in the case

1The thermodynamics of Reissner–Nordstro¨m–anti–de Sitter
black holes in four dimensions has been studied, with a sligh
different focus, in Ref.@7#.
©1999 The American Physical Society18-1
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 064018
of EMAdS4 and EMAdS5; see Sec. II! it is very natural to
suppose that there is an associated dual field theory ar
on the world volume of some branes. These would be
familiar conformal field theories—theD54, N54 Yang-
Mills theory ~for coincident D3-branes! and the conformal
field theory on the world volume of coincident M2-brane
The case of EMAdS7 ~i.e., without additional scalars! is not
related to a rotating-brane truncation of the AdS73S4

gauged supergravity~becauseS4 is even dimensional! and so
we cannot declare that the dual field theory is the theory
the world volume of a rotating M5-brane. However, we r
gard AdS holography as a phenomenon which exists in
pendently of string- and M-theory contexts@3,5#. Hence, in
other dimensions beyondD54 and 5, we expect that there
a dual theory. In particular, for EMAdS7 the dual field theory
is probably a close cousin of the M5-brane theory.

The dual field theories have their supersymmetry~if they
had any to start with! broken due to coupling to a globa
backgroundU(1) current~as well as turning on a non-zer
temperature!. The conformal field theory~CFT! is in a ther-
mal ensemble for which a certainU(1) charge density ha
also been ‘‘turned on.’’ In the ensemble, the expectat
value of this charge breaks the globalSO(m11) R symme-
try of the CFT. On the AdS side, the electromagnetic cha
carried by the black holes is in the sameU(1) of the corre-
spondingSO(m11) gauge group.

We find very interesting phase structures at intermed
temperatures~in finite field theory volume! as a result of
studying two complementary thermodynamic ensembles:
study thermodynamic ensembles with fixed backgrou
potential—in which case the background is AdS with a co
stant fixed potential—and we also study a fixed localiz
charge ensemble, for which the background is an extre
black hole with that charge.

In all cases, at sufficiently high temperature the physic
dominated by highly non-extreme black holes, and we the
fore recover the ‘‘unconfined’’ behavior characteristic of t
associated field theories@3,8#. The finite horizon size of the
black holes controls the behavior of the expectation value
spatial Wilson lines accordingly, yielding the area law b
havior, as follows from Ref.@8#.

At intermediate temperatures, in the fixed charge
semble, the presence of charge allows a new branch of b
hole solutions to modify the qualitative phase structure in
low charge regime, resulting in a very interesting pha
structure about which we will have more to say later in t
section.

Intriguingly, as there is an extremal—but no
supersymmetric—black hole with non-zero entropy even
zero temperature, we must conclude something interes
about the field theory in the presence of the global ba
ground U(1) current: There must still be atT50 a large
number of states~with the given charge! available to the field
theory in order to generate this entropy. For the case wh
we hold the potential~i.e., not the charge! fixed, we do not
expect that this is the ground state, because the extre
black hole can decay into Kaluza-Klein particles, leavi
06401
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AdS space-time. This is because the extremal black hol
not supersymmetric.2

This subtlety does not arise in the standard Gibbo
Hawking calculus of the thermodynamics of black holes
which we use here—because the calculations are not se
tive to the ability of the black holes to emit charged particle

That the extremal black hole can decay by emitti
charged Kaluza-Klein particles here follows from the fa
that the charge descends from rotation in higher dimensio
There are well-known classical processes for reducing
rotation of objects like black holes by scattering@11#, and
therefore in the context of quantum field theory, one has
analogous processes of emission in superradiant modes@12#.
The same superradiant emission was considered in the
text of charged black holes in Refs.@13,14#. Thus one should
expect the extremal black hole in the EMAdS truncation
decay via such superradiant emission. Of course, the u
thermal Hawking radiation may also tend to discharge n
extremal black holes@14–16#. In the fixed potential en-
semble, as the charge of the black hole is allowed to fluctu
while it is in contact with the thermal reservoir, superradia
and Hawking emission processes can occur to reduce
charge of the black hole, allowing it to decay back to Ad
~plus charge3!. However, in the fixed charge thermodynam
ensemble~with varying potential!, the extremal black hole is
expected to be the long-lived state at zero temperature.

Translating the formula for the entropy to the field theo
we find, for example, that the four dimensional Yang-Mi
theory @in the presence of the global backgroundU(1) cur-
rent# has a zero-temperature entropy which goes likeS;Q̄

for large black holes, whereQ̄ measures the total charge
units of the minimal charge of Kaluza-Klein excitations~i.e.,
1/l ), and is proportional to the volume,V3, of the field
theory. Notice that the result for the four dimensional fie
theory is consistent with confinement atT50, as the result is
independent ofN. Confinement also follows from the fac
that at T50, the Euclidean section of the solution has
bolt, and therefore temporal Wilson lines will always be h
motopic to zero, and therefore have zero expectation va
Meanwhile, spatial Wilson lines cannot interact with the h
rizon to produce an area law dependence, because at e
mality the horizon recedes infinitely far away down
Bertotti-Robinson throat.

The phase structure which we obtain in each thermo

2There do exist supersymmetric solutions here, but they all h
naked singularities@9,10#. Furthermore, due to a lack of horizon
their Euclidean section does not permit a definite temperature t
defined. These solutions are nevertheless interesting. The fact
they do not play a role in the phase structure which we exam
here does not mean that they may not have a role in other
physics and thus ultimately be relevant to the dual field theory.

3Note that the same thought experiments which do not allow
Penrose process to produce a naked singularity@17# will work here
also, preventing us from connecting to the set of solutions rep
senting naked singularities mentioned above, which do not have
standard thermal treatment.
8-2
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CHARGED AdS BLACK HOLES AND CATASTROPHIC . . . PHYSICAL REVIEW D60 064018
namic ensemble is summarized in Fig. 1.
The astute reader will recognize the figure on the right

the classic phase diagram of the liquid-gas system. To tr
late, ourQ is like the temperatureT of the fluid while 1/T is
like the pressureP. The non-extreme black holes of types~1!
~‘‘small’’ ! and ~3! ~‘‘large’’ ! ~see Secs. IV and V for an
explanation! are like the liquid phase and the gaseous pha
respectively. The critical line~‘‘vapor pressure curve’’! rep-
resents the place at which a first order phase transition
tween the liquid and gas occurs. As is well known, there
critical temperature at which the vapor pressure curve ter
nates, representing the fact that above a critical tempera
one can convert a liquid to a gas continuously. This tra
lates here into a critical charge above which the two type
black hole can be continuously converted into one ano
with no discontinuity in their size.

That this system~first modeled by van der Waals@18#,
with a crucial modification by Maxwell! appears in this AdS
black hole thermodynamics is fascinating, and would
have been possible~at least in this way! without the presence

FIG. 1. A summary of the phase structure of the fixed poten
~top! and fixed charge~bottom! thermodynamic ensembles. TheT
50 line gives extremal black holes, although only in the fix
charge case do they not decay into AdS. TheQ50 line is the
Hawking-Page system of uncharged black holes.~Other labeling is
explained in Secs. V and VI.!
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of the extra branches of solutions which appear when ther
negative cosmological constant. We discuss this furthe
Secs. V and IV. Further fascination may be found in the f
that the explicit shape of the free energy surface~as a func-
tion of Q andT) is that of the classic ‘‘swallowtail’’ catas-
trophe, familiar from the study of bifurcations@19#. The con-
trol surface of the ‘‘cusp’’ catastrophe also appears, wh
~of course! follows from the well known fact that it is the
shape of the van der Waals equation of state, viewed a
surface inP,V,T space.

That these shapes appear in this context suggests
there is some exciting universality to be explored here: C
tastrophe theory is largely a classification of the possi
distinct types of bifurcation shapes that can occur in a w
variety of complex systems. This classification~which, for
the common ‘‘elementary’’ cases is of A-D-E type! is
equivalent to the~perhaps more familiar! classfication of sin-
gularities@20#. It is of considerable interest to discover ju
what circumstances might give rise to the other member
the classification. Recalling that this all translates via holo
raphy into properties of a dual field theory, we would learn
great deal about universal phase structures which can o
there also.

II. EINSTEIN-MAXWELL-ADS FROM SPINNING BRANES

Physics near the horizon of supergravity branes can
described in terms of spontaneous compactification of su
gravity. In the case of non-dilatonic branes—which will b
the focus of the paper—when the compactification ta
place on around m-sphere the low energy degrees of fre
dom are described by an effective theory of Einstein grav
with a negative cosmological constant coupled toSO(m
11) gauge fields. The Schwarzschild–anti–de Sitter bla
hole solutions of this theory have been used in the contex
the AdS-CFT correspondence to infer thermal properties
the dual field theories@3,8#.

A natural extension of this program is to study AdS bla
holes which are charged under a subgroup of the gauge s
metry of the gauged supergravity. Solutions of Einstei
Maxwell–anti–de Sitter in some dimensions are known,
in the context of string and M-theories, it is also interesti
to determine how to make a truncation of the type IIB sup
gravity, or of 11 dimensional supergravity, which gives t
EMAdS effective action. In other words, we must make c
tain higher-dimensional choices which will result in the r
moval of the generic coupling of theF2 term to scalars re-
sulting from the Kaluza-Klein reduction.

Amusingly, one simple way to introduce~gauge! charge
on the black holes is by simply spinning—or twisting—th
transverse~angular! sphere that becomes the compact spa
Decoupling of the scalars is accomplished by choosing
spins in a maximally symmetric way. To be concrete, ta
ten dimensional IIB supergravity, with the metric ansatz

ds10
2 5gmn

5 dxmdxn1 l 2(
i 51

3 Fdm i
21m i

2S dw i1
2

A3
AmdxmD 2G ,

~1!

l

8-3
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 064018
wheregmn
5 is a five-dimensional metric,m,n50, . . . ,4, the

variablesm i are direction cosines onS5 ~and therefore are
not independent,( i 51

3 m i
251—we follow the notation of

@21#!, and thew i are rotation angles onS5. The ansatz for the
Ramond-Ramond~RR! 5-form field strength has ‘‘electric’’
components

Fe
(5)52

4

l
« (5)1

l 3

A3
(
i 51

3

dm i
2df i * 5dA, ~2!

while the dual ‘‘magnetic’’ components are given byFm
(5)

5* Fe
(5) . In Eq. ~2!, « (5) is the volume form on the reduce

five-dimensional space, and *5 denotes Hodge duality on thi
space.

The parameterl measures the size of theS5 and is given
by the flux of the 5-form field across theS5. Notice that a
componentAt in the time direction is interpreted as rotatio
of the S5 in its three independent rotation planes, in eq
amounts. Components in the spatial direction would inst
be ‘‘twists.’’ For the sake of brevity, and since in this pap
we will be mainly consideringAt components,4 we will refer
collectively to them as ‘‘rotations.’’

With this ansatz~1!, the effective action in the five non
compact dimensions becomes

I 52
1

16pG5
E d5xA2g5FR1

12

l 2 2 l 2F2

2
l 3

6A3
emabgdAmFabFgdG . ~3!

This is precisely the Einstein–Maxwell–anti–de Sitter effe
tive action we seek, with a Chern-Simons term. The latte
indeed required by supersymmetry inN52 five dimensional
gauged supergravity@9#, whose bosonic sector is precise
described by the action above. Note that the gauge coup
is proportional toAG5/ l .

The AdS53S5 gauged supergravity theory in five dime
sions has anSO(6) gauge symmetry, associated with t
group of isometries ofS5. This is theR-symmetry group of
the dual four dimensionalN54 superconformal Yang-Mills
field theory living on the D3-branes from which this nea
horizon geometry arose. The above spinning compactifi
tion corresponds to introducing rotation in the diagonalU(1)
of the maximal Abelian subgroupU(1)3. Correspondingly,
there must be a dual field theory to the EMAdS truncati
which is simply the field theory on the world volume of th
rotating brane. From the field theory point of view, the ro
tion corresponds to considering states or ensembles in w
the dual globalU(1) current @a subgroup of theSO(6)
R-symmetry group# has a nonvanishing expectation valu
Studying EMAdS gravity and its solutions will therefore b

4In any event ford>5, one cannot define magnetic~vector!
charges on the black holes.
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equivalent to studying properties of the conformal fie
theory in the presence of this background current.5

A similar construction can be obtained by starting fro
11 dimensional supergravity. The compactification in th
case is equivalent to focusing on the near horizon region
M2-branes. In this case, take

ds11
2 5gmn

4 dxmdxn14l 2(
i 51

4

@dm i
21m i

2~dw i1Amdxm!2#,

~4!

leading to the AdS4 theory with a Maxwell term

I 52
1

16pG4
E d4xA2g4FR1

6

l 224l 2F2G . ~5!

The reduction ansatz for the 4-form field strength is

F (4)5
3

l
« (4)14l 2(

i 51

4

dm i
2df i * 4dA, ~6!

where « (4) is the volume form on the reduced fou
dimensional space, and *4 denotes Hodge duality on thi
space.

Chern-Simons terms are absent in four dimensions.
propriate inclusion of fermions leads to four dimensionalN
52 gauged supergravity. The more generalU(1)4 theory
with four independent gauge fields~i.e., four different rota-
tion parameters!, 3 scalars andN58 supersymmetry, as wel
as its black hole solutions, has been recently studied in R
@25#.

We note here that there is no analogous construction
the AdS73S4 gauged supergravity theory. This is becauseS4

is even dimensional and therefore we cannot have a sym
ric split betweenU(1) rotations, asSO(5) does not have an
even torus for its Cartan subalgebra. This means that
cannot relate the physics of the black hole solutions~which
we write later! of the EMAdS7 system to the physics o
rotating M5-branes of 11 dimensional supergravity. Nev
theless, as AdS holography is a phenomenon which is
pected to exist independently of string or M-theory realiz
tions, we expect that the physics does have a hologra
interpretation in terms of a field theory closely related to th
which resides on M5-brane world volumes.

5A more general action can be constructed that contains th
U(1) vector fields, each associated with the three different indep
dent rotations ofS5, and two scalars that, roughly, measure t
relative sizes of the distortions of theS5 caused by rotation. For
simplicity, we will restrict ourselves to the case where all thr
rotations have the same magnitude, since it is only in this case
the scalars decouple and we find EMAdS gravity. This framew
provides the cleanest interpretation in terms of the dual CFT, s
the number of spin parameters or charges precisely matches
number of field theory operators which are ‘‘excited.’’ See Re
@22–24# for a discussion of more general actions and solutions
lated to this.
8-4
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III. CHARGED BLACK HOLES IN ANTI –de SITTER
SPACE-TIME

The black hole solutions of the above supergravity th
ries in D54,5 were originally studied in the past in Ref
@9,10#—more recent investigations appear in Refs.@22,25#.
As we have seen in the previous section, such theories ca
regarded as compactifications of the type IIB andD511
supergravities, where the gauge symmetry groups of
gauged supergravities are broken by a specific choice o
tation planes in the transverse compact spheres. Given t
considerations, it is natural to study the Reissne
Nordström–anti–de Sitter~RNAdS! black holes within the
context of the AdS-CFT correspondence.

Even if the bosonic Einstein–Maxwell–anti–de Sitt
theories admit supersymmetric extensions only in certain
mensions, it is easy and convenient to perform the anal
of their black hole solutions for arbitrary dimension. F
space-time dimensionn11, the action can be written as6

I 52
1

16pGE
M

dn11xA2gFR2F21
n~n21!

l 2 G , ~7!

with L52n(n21)/2l 2 the cosmological constant assoc
ated with the characteristic length scalel. Then the metric on
RNAdS may be written in static coordinates as

ds252V~r !dt21
dr2

V~r !
1r 2dVn21

2 , ~8!

wheredVn21
2 is the metric on the round unit (n21)-sphere,

and the functionV(r ) takes the form

V~r !512
m

r n22
1

q2

r 2n24
1

r 2

l 2
. ~9!

Here, m is related to the Arnowitt-Deser-Misner~ADM !
mass of the hole,M ~appropriately generalized to geometri
asymptotic to AdS@26#!, as

M5
~n21!vn21

16pG
m, ~10!

where vn21 is the volume of the unit (n21)-sphere. The
parameterq yields the charge

Q5A2~n21!~n22!S vn21

8pG Dq, ~11!

of the ~pure electric! gauge potential, which is

A5S 2
1

c

q

r n22
1F D dt, ~12!

where

6We rescale the gauge fieldAm so as to absorb the prefactors
the action.
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c5A2~n22!

n21
, ~13!

andF is a constant~to be fixed below!. If r 1 is the largest
real positive root ofV(r ), then in order for this RNAdS
metric to describe a charged black hole with a non-singu
horizon atr 5r 1 , the latter must satisfy

S n

n22D r 1
2n221 l 2r 1

2n24>q2l 2. ~14!

Finally, we choose

F5
1

c

q

r 1
n22

, ~15!

which then fixesAt(r 1)50. The physical significance of th
quantityF, which plays an important role later, is that it
the electrostatic potential difference between the horizon
infinity.

If the inequality in Eq.~14! is saturated, the horizon i
degenerate and we get an extremal black hole. This ineq
ity imposes a bound on the black hole mass parameter o
form m>me(q,l ). In the cases where the theory admits
supersymmetric embedding one could naively expect to
proach a supersymmetric state as we saturate this m
bound. However, the bound that results from the supers
metry algebra is instead@9,10#: m>2q, with them52q so-
lution being a Bogomol’nyi-Prasad-Sommerfield~BPS!
state.7 Now, it is easy to see that the mass of the extrem
black hole,me is, for finite l, always strictly larger than 2q
and therefore the extremal solution is non-supersymme
On the other hand, for the supersymmetric solution one

V~r !5S 12
q

r n22D 2

1
r 2

l 2 , ~16!

which is strictly positive everywhere and therefore one fin
a naked curvature singularity atr 50. In fact, all the solu-
tions violating the bound~14! are nakedly singular.

In the context of the AdS-CFT correspondence it is int
esting to consider the limit where the boundary of AdSn11 is
Rn instead ofR3Sn21 as was the case above. This can
regarded as an ‘‘infinite volume limit,’’ with particular rel
evance to the discussion of the dual field theory. It should
noted that the existence of black hole solutions in this limi
possible only due to the presence of a negative cosmolog
constant. In fact, black holes~and other bolts! in AdS spaces
with varied topologies~even other than spherical and toro
dal! have been extensively studied in recent years@27#, in-
cluding in M-theory@28#. Here we will only focus on the
planar~toroidal! solutions, which we will obtain by scaling
the ‘‘finite volume’’ solutions above, as done in@8#. To this

7In D54, where the black hole can have magnetic chargeqm ,
there is a magnetic~or dyonic! BPS solution as well@9# with m
50, qm56 l /2.
8-5
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CHAMBLIN, EMPARAN, JOHNSON, AND MYERS PHYSICAL REVIEW D60 064018
effect, introduce a dimensionless parameterl ~which we will
shortly take to infinity! and set

r˜l1/nr , t˜l21/nt,

m˜lm, q˜l (n21)/nq, ~17!

while at the same time blowing up theSn21 as l 2dVn21
2

˜l22/n( i 51
n21dxi

2 . One finds, after takingl˜`,

ds252U~r !dt21
dr2

U~r !
1

r 2

l 2 (
i 51

n21

dxi
2 , ~18!

with

U~r !5
r 2

l 2 2
m

r n22
1

q2

r 2n24
. ~19!

For the supersymmetric solution, the scaling is as above
cept for the scaling ofm. To preserve supersymmetry, on
must fix m52q and som˜ml (n21)/n, yielding

U~r !5
r 2

l 2 1
q2

r 2n24
. ~20!

Notice that, compared with Eq.~19!, the parameterm is zero
in this limit.

The resulting solution can be seen to be supersymme
as well ~i.e., the Killing spinors remain finite in the limitl
˜`, after appropriate rescaling! and nakedly singular. In
this ‘‘infinite volume’’ limit, the solutions asymptote to AdS
space with the horospheric slicing.

These planar solutions can be constructed with the ap
priate decoupling limit@1# of spinning D3- or M2-branes, a
mentioned previously. We refer the reader to Ref.@23# for
the details.

IV. ACTION CALCULATION

The study of the Euclidean section (t˜ i t) of the solu-
tion, identifying the period,b, of the imaginary time with
inverse temperature, will define for us the grand canon
thermodynamic ensemble~for fixed electric potential! or the
canonical ensemble~for fixed electric charge!. We interpret
this in terms of immersing the system into a thermal bath
quanta at temperatureT51/b. For pure AdS, the backgroun
consists of both charged and uncharged quanta free to
tuate in the presence of fixed potentialF. Later, we consider
the fixed Q ensemble. In that case we localize all of t
charge at a specific region and keep it fixed. For suc
background, as AdS with a localized charge isnot a solution
of the EMAdS equations, we use the extremal black h
solution as the background, and retain only neutral quant
the thermal reservoir, in order to keep the charged fixed. T
makes sense, even though the extreme limit has zero
perature, since the Euclidean section has no bolt and so
be assigned an arbitrary periodicity@29#. Hence, the metrics
and gauge fields can be matched in the asymptotic regio
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With all of this in mind we now turn to the action calcu
lations.

A. Fixed potential

With our conventions the full Euclidean action is given b
analytically continuing Eq.~7!, where, as usual when th
space is asymptotically AdS, the Gibbons-Hawking boun
ary term gives a vanishing contribution. The boundary ter
from the gauge field will vanish if we keep the potentialAt
fixed at infinity. Any possible Chern-Simons term will no
contribute when we restrict ourselves to purely electric so
tions. Imposing the equations of motion we can eliminate
factors ofR in order to obtain the on-shell action

I 5
1

16pGE
M

dn11xAgF 2F2

n21
1

2n

l 2 G . ~21!

We obtain, for the action~subtracting the AdS back
ground while remembering to match the geometries of
background and black hole in the asymptotic region!,

I 5
vn21

16pGl2
bS l 2r 1

n222r 1
n 2

q2l 2

r 1
n22D

5
vn21

16pGl2
b@ l 2r 1

n22~12c2F2!2r 1
n #. ~22!

Here, b denotes the period of the Euclidean section of
black hole space-time. Using the usual formula for the
riod, b54p/V8(r 1), a little algebra yields the explicit form

b5
4p l 2r 1

2n23

nr1
2n221~n22!l 2r 1

2n242~n22!q2l 2
. ~23!

This may be rewritten in terms of the potential as

b5
4p l 2r 1

~n22!l 2~12c2F2!1nr1
2

. ~24!

Note that the temperature is zero when the black hole
extremal. This is because the horizon is degenerate there
b diverges, together with the fact that one can smoot
approach the extremal limit from non-zero temperatu
From the form of the equation forb, it is apparent that there
are qualitatively two distinct types of behavior, determin
by whetherF is less than or greater than the critical val
1/c. In particular, forF>1/c, b diverges (T vanishes! at
r 1

2 5 l 2(n22)(c2F221)/n, while for F,1/c, b goes
smoothly towards zero asr 1˜0. It is instructive to plot the
temperature as a function of horizon radius~size of black
hole! for these two regimes~see Fig. 2!.

As can be seen from the figure, the regime of large
tential ~i.e., F>1/c) has a unique black hole radius asso
ated with each temperature. We will see later that this bra
dominates the thermodynamics for all temperatures. Me
while, the small potential regime has two branches of
lowed black hole solutions, a branch with larger radii a
8-6
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FIG. 2. The inverse temperature vs horizon radii,r 1 , at fixed potential forF>1/c, F,1/c, andF50 respectively.~The valuesn
54, G51, l 510 andF51,0.7,0 have been used here.! The divergence in the first graph~here, shown with a vertical line atr e54.08) is
at zero temperature, where the black hole is extremal. This divergence goes away forF,1/c, in general, and the curve is similar to that
the uncharged situation with zero potential, shown last.
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one with smaller. This is qualitatively similar to the familia
case of the uncharged Schwarzschild black holes analyze
Ref. @30# ~or the structure of the Taub bolts discovered in t
thermodynamic studies of Refs.@5,31#!, which is theF50
limit of the situation here. Correspondingly, the smal
branch of holes is unstable, having negative specific h
They do not play any role in the physics.8 @Generally, the
sign of the specific heat for a black hole of radiusr 1 can be
inferred from the local slope of theb(r 1) curve. See also the
discussion in Sec. VI.#

8This may be contrasted with the situation in Ref.@24#.
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B. Fixed charge

If we wish to consider a situation where instead of t
potential at infinity, we fix the charge of the black hole, th
the action ~22! is not appropriate. Upon variation of th
gauge field in the latter action, a boundary term results t
vanishes only if we keepAt(`)5F fixed. That is, the on-
shell action of the previous subsection isI @b,F#. If, instead,
we want to keep the charge fixed, then we must add a bou
ary term toI @32#,

Ĩ 5I 2
1

4pGE dnxAhFmnnmAn , ~25!
8-7
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wherenm is a radial unit vector pointing outwards.@Notice
that this boundary term is determined by the terms com
from the variation of the off-shell action~7!, and not Eq.
~21!, which is on gravity shell. This distinction is only re
evant for n.3.# Then we get a thermodynamic functio
Ĩ @b,Q#, in terms of the variables we wish to control.

To compute the action for the fixed charge ensemble,
ing as background the extremal black hole, we evaluate
~21! for a black hole of massm.me ~and radiusr 1), and
then subtract the contribution from the extremal backgrou
Remembering to match the geometries of the backgro
and black hole in the asymptotic region, a straightforwa
calculation yields the final result

Ĩ 5
vn21b

16pGl2
F l 2r 1

n222r 1
n 1

~2n23!q2l 2

r 1
n22

2
2~n21!

n
l 2r e

n22

2
2~n21!2

n

q2l 2

r e
n22G . ~26!

The inverse temperature,b, is given by Eq.~23!. It is useful
to plot the temperature as a function of horizon radius~size
of black hole! for future use. There are two basic scales
this expression forĨ , set byq and l, and so we expect tha
there will be two distinct regimes which may display distin
phase structure:q>qcrit and q,qcrit . For comparison, we
also show the case ofq50 ~see Fig. 3!.

The critical chargeqcrit is the value ofq at which the
turning points ofb(r 1) appear or disappear. Withq5qcrit ,
the periodicityb5b(r 1 ,q,l ) will have a point of inflection
with respect tor 1 derivatives. Hence we can simultaneous
satisfy

]b

]r 1
505

]2b

]r 1
2 , ~27!

with r 15r crit andq5qcrit . A little algebra then yields

r crit
2 5

~n22!2

n~n21!
l 2 and

qcrit
2 5

1

~n21!~2n23! S ~n22!2

n~n21! D
n22

l 2n24.

~28!

Therefore we have forn53, qcrit5 l /6, and forn54, qcrit

5 l 2/3A15.
In this case, the figures show that for small charge~i.e.,

below qcrit), there can bethreebranches of black hole solu
tions, to which we will refer later. The middle branch
unstable9 while the branch with the smallest radii is new, a
will play an interesting role in the thermodynamics. For ze
charge, we return to the familiar two branch situation

9Its slope is positive and hence its specific heat is negative:
cording to Eq.~29!, ]bS}r 1

n22]br 1 .
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Schwarzschild, while for large charge, we have a situat
analogous to that seen for the large fixed potential.

V. THERMODYNAMICS AND PHASE STRUCTURE

A. Fixed potential

This is the grand canonical ensemble, at fixed tempera
and fixed potential. The grand canonical~Gibbs! potential is
W5I /b5E2TS2FQ. Using the expression in Eq.~22!,
we may compute the state variables of the system as follo

E5S ]I

]b D
F

2
F

b S ]I

]F D
b

5
~n21!vn21

16pG
m5M ,

S5bS ]I

]b D
F

2I 5
vn21r 1

n21

4G
5

AH

4G
,

Q52
1

b S ]I

]F D
b

5A2~n22!~n21!S vn21

8pG Dq.

~29!

Together, they indeed satisfy the first law:dE5TdS
1FdQ.

In order to study the phase structure and stability,
must observe the free energyW5I /b as a function of the
temperature. It is shown in Fig. 4.

The interpretation of this is as follows. At any non-ze
temperature, for large potential (F.1/c) the charged black
hole is thermodynamically preferred, as its free energy~rela-
tive to the background of AdS with a fixed potential! is
strictly negative for all temperatures.

This behavior differs sharply from the small potenti
(F,1/c) situation, which is qualitatively the same as th
uncharged case: In that situation, in finite volume, the f
energy is positive for some range 0,T,Tc , and it is only
above Tc that the thermodynamics is dominated b
Schwarzschild black holes~the larger, stable branch!, after
their free energy is negative.~See the center graphs in Fig
4.!

So for high enough temperature in all cases the physic
dominated by non-extremal black holes. In this case~after
converting gravitational to field theory quantities10! the free
energy and entropy behave at ultra-high temperature as

F;Vn21TnNp(n)

S;Vn21Tn21Np(n), ~30!

whereVn21 is the (n21)-dimensional spatial volume upo
which the field theory resides. This is the ‘‘unconfined’’ b
havior appropriate to the dualn-dimensional field theory.
The functionp(n) is 2 whenn54, 3/2 whenn53, and 3
whenn56. The resulting power ofN shows how the numbe

c-

10We do this using the standard formulas derived from the br
geometry @1,3,8#: For n53, G; l 27 and l;N1/6; for n54, G
; l 25 and l;N1/4; and forn56, G; l 24 and l;N1/3.
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FIG. 3. The inverse temperature vs horizon radii, forq.qcrit , q,qcrit , andq50, respectively.qcrit is the value ofq at which the turning
points ofb(r 1) appear or disappear.~The valuesn54, l 55 andq525,5,0 have been used here.! The divergences~here, shown by the
vertical lines atr e50.98 and 4.05) are at zero temperature, where the black hole is extremal. The final graph, for the uncharged c
be thought of as a limit of the previous graphs where the divergence disappears, showing that small Schwarzschild black holes
temperature.
e
d
em
,

stem

ry
the

the
e,
ind
re.
w
ets
lity,
of unconfined degrees of freedom of the theory goes withN,
by analogy with the case ofn54 whereN2 counts the de-
pendence on the number of degrees of freedom onN for an
SU(N) gauge theory.

At low temperatures, and forF.1/c, we have something
very new. Notice that as we go toT50, the free energy
curve approaches a maximum value which is less than z
This implies that even at zero temperature the thermo
namic ensemble is dominated by a black hole. From the t
perature curve~2! it is clear that it is the extremal black hole
with radius r 15r e . For F51/c, at T50 we recover AdS
space.
06401
ro.
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So this suggests that even at zero temperature the sy
prefers to be in a state with non-zero entropy~given by the
area of the black hole!. Notice that thisT50 situation dis-
plays the ‘‘confined’’ behavior characteristic of the ordina
conformally invariant zero-temperature phase, despite
presence of the black hole. This follows from the fact that
temporal Wilson lines will still have zero expectation valu
as the fundamental strings which define them cannot w
the horizon which has infinite period at zero temperatu
Similarly, spatial Wilson lines will not display the area la
behavior, because the fundamental string world she
cannot be obstructed by the horizon, because at extrema
8-9
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FIG. 4. At the top left is a graph of the free energy vs temperature for fixed potential ensemble for largeF. ~The valuesn54, G
51, l 510, F51 have been used here.! The top right graph depicts a family of free energy curves for different values ofF. Note the
crossover from the cusp (F,1/c) to the single branch (F.1/c) behavior. At the bottom is the free energy curve for the uncharged~or
F50) ensemble, showing the physics familiar from the Schwarzschild case: visible are the two branches consisting of smaller~unstable!
and large~stable! black holes. The entire unstable branch has positive free energy while the stable branch’s free energy goes~rapidly, on this
scale! negative for allT.Tc .
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it is infinitely far away down a throat.
Having pointed out this intriguing possible zero tempe

ture behavior, we expect that for the case offixed potential
considered here, this is not the complete story. We m
allow for the possibility that the extremal black hole mig
decay due to processes involving Kaluza-Klein partic
charged under theU(1). ~See the discussion near the end
Sec. I.! This possibility cannot be discounted because
extremal black hole is not supersymmetric, as pointed
before, and therefore not guaranteed to be stable by the
06401
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persymmetry algebra. We expect that calculations which
clude the effects of charge emission will shift the free ene
back to zero, representing the true, equilibrium situation.
ternatively if we consider the action~7! on its own merit
outside of string- or M-theory compactifications, it may b
regarded as part of a theory without fundamental char
particles.

The resulting thermodynamic phase structure for the fix
potential ensemble is summarized in the left diagram of F
1.
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B. Fixed charge

We have seen that we may consider aT50 background
containing an extremal black hole of chargeQ. Let us now
keep this charge fixed and allow the potential at infinity
vary.

This is the canonical ensemble, and the correspond
thermodynamic potential, the free energy, isĨ /b5F5E
2TS. The energy, entropy and electric potential are co
puted as

E5S ] Ĩ

]b
D

Q

5M2Me , S5bS ] Ĩ

]b
D

Q

2 Ĩ 5
AH

4G
,

F2Fe5
1

b
S ] Ĩ

]Q
D

b

5
1

c S q

r 1
n22

2
q

r e
n22D . ~31!

In this caseE measures the energy above the ground st
which is the extremal black hole. Together, they satisfy
first law, which in this case should be written asdE5TdS
1(F2Fe)dQ.

The free energy as a function of temperature is sho
below for the cases of small and large charge, respecti
~compare to the third graph in Fig.~4! for the uncharged
case!.

That there are three branches for the small charge
follows from the second graph in Fig. 3, which is magnifi
and labeled in Fig. 5, on the right. From there, it is clear t
for low temperature there can only be one solution~‘‘branch
1’’ ! for the black hole radius. At some temperatureT1
51/b1, the origin of two new branches~‘‘branches 2 and
3’’ ! of solutions appears (T150.089,b1511.15 for the cho-
sen parameters in the plot!. Above this temperature~below
b1), there are therefore three distinct branches of solu
until at temperatureT251/b2 (T250.105, b259.55 in the
plot! two of the branches~1 and 2! coalesce and disappea
leaving again only a single branch~3!, which persists for all
higher temperatures.

Returning to the free energy plot, the meaning is n
clear. Starting to the extreme left of the plot~low tempera-
ture! we see that there is a single branch of free ener
corresponding to the branch 1 solutions. AtT1, branches 2
and 3 appear on the graph and separate from each oth
higher temperatures. AtT2, branches 1 and 2 coalesce a
disappear, while branch 3 persists for all higher tempe
tures, continuing to the left.

So from zero temperature the negative free energy
branch 1 means that those non-extreme black holes dom
the thermodynamic ensemble. At temperatureTc (Tc
50.092 in the plot! the free energy of branch 3 is actual
more negative than that of branch 1, and so that branc
non-extremal black holes takes over the physics and con
ues to do so for all higher temperatures.

The situation atTc is a genuine finite temperature pha
transition, of first order.~Notice from the first graph in Fig. 5
that the free energy is continuous, but its first derivative
discontinuous.! This results from the jump~along the dotted
line in the final graph in Fig. 5! from branch 1 to branch 2
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from small to larger 1 black holes, as the temperature i
creases. As the entropy is proportional tor 1

n21 , there is a
jump in the entropy, or a release of ‘‘latent heat.’’

As we approach the critical value,qcrit , of the charge
representing the crossover into the large charge regime
kink in the free energy—and therefore the transition
vanishes, as branches 1 and 3 merge~and branch 2 disap
pears!. The difference in horizon radii between the tw
branches,r15r 1

(3)2r 1
(1) , may be thought of as an order pa

rameter for the transition, as it vanishes aboveqcrit , where
the transition goes away.

As noted before in the case of fixed potential ensemb
branches 2 and 3 are the exact analogues of the small
large Schwarzschild black holes of Hawking and Page@30#
or the small and large Taub bolts discovered in the therm
dynamic studies of Refs.@5,31#. In those papers, above
certain temperatureT1, there were two allowed solutions at
given temperature, the smaller~branch 2! being unstable and
the larger~branch 3! being stable, which persists to domina
the thermodynamics above some critical temperatureTc .
The existence of a stable branch 1 and its merger with bra
2 to disappear atT2 are new features when we add a sm
fixed charge to the story. Conversely, if we start from a si
ation where charge is present on the black hole but the
mological constant vanishes, then we find branches 1 an
and it is only when the negative cosmological constan
turned on that branch 3 appears.

For large charge, there is only a single branch allow
~see Fig. 5; the cusps collide and disappear! and the associ-
ated thermodynamic story is correspondingly simpler. T
free energy shows that the non-extreme charged black h
dominate fromT50.

In all cases~large or smallQ), the ultra-high temperature
phases are dominated by a black hole and the free energy
entropy have the characteristic ‘‘unconfined’’ field theo
behavior shown in Eqs.~30!.

One might examine the approach to the critical po
more closely. In particular, consider the behavior of the s
cific heat

cq[
]M

]T
5

]M /]r 1

]T/]r 1
. ~32!

With q5qcrit , as the temperature approaches the criti
value, one finds a singularity withcq}(T2Tc)

22/3. This be-
havior may be contrasted with the (T2Tc)

21/2 singularity
found in Ref.@24#. The essential difference is of course th
near the critical point we have a point of inflection withT
2Tc}(r 12r crit)

3, while Ref. @24# considers a minimum
with T2Tc}(r 12r crit)

2.
The evolution of the free energy of the system as a fu

tion of charge is particularly interesting as one goes fr
zero charge to large charge. The single cusp of the uncha
~Schwarzschild! system is joined by a second cusp whi
comes in from infinity, forming~with the original one! a
section of the well known ‘‘swallowtail’’ shape, familiar as
bifurcation set or ‘‘catastrophe’’ in singularity or catastrop
theory. The significance of this is discussed in the next s
tion. As we cross over into the large charge regime at so
8-11
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FIG. 5. The first two graphs show the free energy vs temperature for the fixed charge ensemble. The situations forq,qcrit and q
>qcrit , respectively, are plotted.~The valuesn54, G51, l 55 andq51,25 have been used here.! The first graph is the union of thre
branches. Branch 1 emanates from the origin, and merges with branch 2 at a cusp. Branch 3 forms a cusp with the other end of
and continues towards the bottom right. The last graph shows how the branches arise from the inverse temperature curves of Eq~23!. ~See
text for discussion of critical temperatureTc .)
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critical value ofq, the cusps merge and the free energy
comes a simple monotonic function. For completeness,
include a series of plots showing this evolution.~We do not
put them on the same axes, as we did for the fixed poten
case, for the sake of clarity.!

The resulting thermodynamic phase structure for the fi
charge ensemble is summarized in the diagram on the r
in Fig. 1.

VI. CATASTROPHIC HOLOGRAPHY?

We cannot refrain from further general comments up
the meaning and structure of the curves that we have un
06401
-
e

ial

d
ht

n
v-

ered in the previous sections. Although we plotted only
cases for then54 case, representing AdS5 ~and hence four
dimensional field theory!, the same universal structures a
pear in the casesn53 and 6 as well, giving the same plea
ing phase structure for the fixed charge ensemble.

The phase structure that we uncovered for the fix
charge ensemble should remind the reader of the classic
der Waals–Maxwell behavior, modeling the liquid-gas sy
tem. Indeed, they are isomorphic. Theb(r 1) curve ~the
middle graph of Fig. 3! should recall the graph of theP(V)
van der Waals equation of state, whereP ~the pressure! is
replaced here byb andV ~volume! by r 1 .
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The instability of branch 2 is then simply the familia
instability of the corresponding section of the van der Wa
curve. The jump from branch 1 to branch 3 which we d
duced from the form of the free energy is the precise a
logue of the Maxwell construction.11 In the isomorphism be-
tween our parameters and those of the van der Wa
Maxwell system, our chargeQ is equivalent to their
temperatureT.

The instability of branch 2 in both languages makes int
tive sense: as one increases the pressure, the volume s
decrease, and therefore the positively sloped branch is n
stable. A similar statement holds for the black holes a
making the translation to the current situation: For bla
holes in equilibrium with the heat bath, an increase in
temperature results in an increase in the black hole ra
and hence mass, for stable black holes. Notice that this
follows from the first law, recalling that the entropy is
positive power of the radius. So the positive slope branch
the b(r 1) curve is generally unstable.

In the language of catastrophe theory@19#—the study of
jumps in some ‘‘state variables’’ as a result of smoo
changes in ‘‘control variables’’—the physical solutions
the b(r 1 ,q) curve, viewed as a two dimensional surface
(b,q,r 1) space, is the ‘‘control surface’’ of the ‘‘cusp ca
tastrophe.’’ The cusp shape is the union of points in
(b,r 1) plane~the control variables! where the state variabl
~the allowed value ofr 1) jumps from branch 1 to branch 3
as branch 2 is unstable. After applying the minimum fr
energy condition to determine the allowed branches~the
‘‘Maxwell criterion’’ !, the cusp catastrophe appears in t
(q,b) plane@or equivalently the (Q,T) plane# collapsed to
the critical line ~see Fig. 1! ~or ‘‘vapor pressure curve’’!
along which the two types of black hole can coexist a
across which there is a phase transition. The end of the
at the critical valueqcrit , where branch 2 disappears, is t
point where the distinction between branches 1 and 3 g
away. The order parameter,r1 , for this critical point is the
radius difference of the branchesr1[r 1

(3)2r 1
(1) . Beyond the

critical charge there is no phase transition (r150) in going
from branch 1 black holes to branch 3 by increasing
temperature. This is of course the familiar statement t
above a critical temperature, there is no phase transitio
going from a gas to a liquid by increase of pressure.

Intriguing is the fact that the two dimensional free ener
surfaceF(b,Q) forms the shape of the swallowtail catastr
phe~see Fig. 6!. ~Note that forn53, 4 and 6 the shape is th
same.! This naturally follows from the ability of theb(r 1)
curve to produce three branches, and the resulting shap
the free energy curve is the union of three branches.

Here, the swallowtail does not have the usual interpre
tion as a bifurcation surface~like the cusp does above! but it
is natural to wonder whether its appearance tells us that t
is some universality at work here. This is because the

11Although one can formulate an adequate ‘‘equal area law’’
this system, here we have used the lowest free energy cond
from which it follows in the case of the liquid-gas system.
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guage of catastrophe theory is largely a classification of
possible distinct types of bifurcation shapes that can oc
This classification~which, for the common ‘‘elementary’’
cases is of A-D-E type! is equivalent to the~perhaps more
familiar! classfication of singularities@20#. A natural ques-
tion is whether or not the inclusion of more control para
eters will always result in a free energy curve of a shape~and
corresponding phase structure! which falls into the classifi-
cation. It would certainly be amusing to find yet another ca
of the A-D-E classification appearing in string and M-theo
physics.

VII. CONCLUDING REMARKS

The study of the thermodynamics of black holes
Einstein–Maxwell–anti–de Sitter space-time is highly r
evant to the thermodynamics of certain superconformal fi
theories with a background global current switched on. T
follows from the logic of the AdS-CFT correspondence, a
the fact that the EMAdS system can arise as the near-hor
physics of rotating M2- and D3-branes, and it should the
fore be regarded as the effective theory of the stron
coupled field theory residing on the rotating brane wo
volume.12

The phase structures of the charged black hole syst
studied here, and summarized in Fig. 1, are markedly dif
ent from those of the uncharged systems studied befor
this context@3,5,8,30#. The addition of charge revealed a ric
phase structure, with precise analogues to classic therm
namic systems. The physics is consistent with a dual fi
theory interpretation.

In all cases, the infinite volume limit can be found b
taking the limits given in Eq.~17!. This scaling may be ap
plied to the expressions for the actions@Eqs. ~22! and ~26!#
and the period@Eqs.~23! and~24!#. In all cases, the result is
that there is only one branch of black hole solutions~like the
large charge and potential situations had in finite volum!,
and the free energy is negative definite, showing that
thermodynamics is dominated by black holes for all tempe
tures. Of course, this is what we should expect, from the fi
theory point of view.

As we commented before, the gauge field in the A
space naturally couples to a CFT currentJm , following the
prescription of Ref.@3#. From the asymptotic variation of th
gauge field~12! or its corresponding field strength, one the
has an expectation valuêJt&;q. Thus one might think of
the CFT state as containing a plasma of~globally! charged
quanta. The precise nature of the CFT state depends on
ensemble which we were studying. For the case of the fi
potential, the dual statement is that a chemical potential c
jugate to the global charge has been introduced leading to
expectation value. The fixed charge calculations corresp
to an ensemble of CFT states with a fixed global char

r
on

12Strictly speaking, in performing a near-horizon limit explicitl
on a brane solution, one gets the infinite volume limit black h
solutions of EMAdS, but the interpretation of the finite volum
solutions clearly follows.
8-13
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FIG. 6. The free energy vs temperature for the fixed charge ensemble, in a series of snapshots for varying charge, starting fr~near!
zero charge~top left! and finishing with large charge~bottom!. The valuesl 55, G51, andn54 are used here. This complete evolutio
describes the two dimensional‘‘swallowtail’’ catastrophe shape.
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s to:
Thus the difference between the two calculations is an
gous to that between the canonical~fixed T) and microca-
nonical ~fixed E) ensembles.

In the context of D3-branes withn54, theSO(6) gauge
fields couple to theR-symmetry currents in the super-Yan
Mills theory. This aspect of the duality has been used
great advantage to produce nontrivial consistency tests
comparing correlators protected by supersymmetry@33#. Of
course in the present case, with the truncation to EMA
theory, we are focussed on a particular diagonalU(1) gen-
erator of theSO(6) symmetry.

In this context, we can translate the results of the sup
gravity calculations to quantitative statements about
strong coupling behavior of the super-Yang-Mills theory. U
06401
-

o
by

S

r-
e

to numerical factors, we have, as usual@1#, gY M
2 ;g and

( l / l s)
4;gN ~whereg is the type IIB string coupling! as well

asG5;g2l s
8/ l 5. It remains to fix how the black hole charg

should be characterized in the CFT. The most natural
proach is to measure the physical charge~11! in terms of the
fundamental charge of the Kaluza-Klein excitations in t

AdS space, i.e., withQ5Q̄/ l . In the field theory then,r̄

5Q̄/V3 ~whereV3 is the spatial volume of the field theory!
essentially counts the number of fundamentally charg
quanta per unit volume in a given state. Given this fram
work, we can consider the field theory content of our resu
For example, one might wonder what the critical charge~28!
appearing in the fixed charge phase diagram correspond
8-14
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FIG. 6. ~Continued.!
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six
Q̄crit;
l qcrit

G5
;N2. ~33!

In general, translating the entropy, mass or free energ
a field theory expression produces a complicated function
both the temperatureT and the chargeQ̄. One relatively
simple case is the high temperature limit, where the cha
essentially plays no role@see Eq.~30!#. Another interesting
case to consider is that of the extremal black holes for wh
T50. By demanding thatV(r 1)50 and (]V/]r )(r 1)50
have a consistent solution, one finds that the mass and ch
parameters are related by the following expression:

Az22y25~11z!2A11z, ~34!
06401
to
of

e

h

rge

wherez53m/ l 2 andy2527q2/ l 4. A simple case to conside
is that of a large black hole withm@ l 2, for which z3

.y4/4. Further in this limit, one has thatm;r 1
2 and so

S;
r 1

3

G5
;

l q

G5
;V3r̄;Q̄. ~35!

Notice that implicitly here we are considering a regim
whereQ̄@N. The lack of dependence of the entropy onN is
a signal of confined behavior at zero temperature, despite
presence of the black hole. It would certainly be interestin
this entropy result could be recovered by considering pa
tioning of the chargeQ̄ among the charged excitations of th
CFT.

We have left aside the case of compactification of
dimensional supergravity onS3 to get AdS3. By setting the
8-15
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S3 in rotation in its two independent rotation planes, in
symmetric fashion, we get an electric potential in AdS3.
Doing so, notice that if we start from the solution describi
a rotating six dimensional black string~such as the one ob
tained from the D1-D5 bound state!, then in the throat limit
the rotation of theS3 can be undone by a diffeomorphis
@34#. In other words, the effective gauge field in three dime
sions is pure gauge. Nevertheless, as shown in Ref.@35#,
there do exist charged black hole solutions in EMAdS the
in three dimensions. These have an electric potential
diverges logarithmically at infinity, which prevents one fro
defining the ensemble at fixed potential. Nevertheless, if
extremal black hole background is subtracted, then the fi
charge ensemble can be appropriately defined. For n
rotating black holes~in Ref. @35#, the full Kerr-Newman so-
lution is constructed! there is only one branch, just like w
have found for large fixed charge~see Fig. 3, left!, with
corresponding simple thermodynamic structure given by F
4 ~left!.

Finally, it is also worth remarking that the close similari
that we have observed with familiar structures from equil
rium thermodynamics and expectations from a dual fi
. B

rs

,
e

06401
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theory are further encouragement~for those who need it! that
the quantum mechanics of black holes is not unlike that
other situations.
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