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We compute the properties of a class of charged black holes in anti—-de Sitter space-time, in diverse
dimensions. These black holes are solutions of consistent Einstein-Maxwell truncations of gauged supergravi-
ties, which are shown to arise from the inclusion of rotation in the transverse space. We uncover rich thermo-
dynamic phase structures for these systems, which display classic critical phenomena, including structures
isomorphic to the van der Waals—Maxwell liquid-gas system. In that case, the phases are controlled by the
universal “cusp” and “swallowtail” shapes familiar from catastrophe theory. All of the thermodynamics is
consistent with field theory interpretations via holography, where the dual field theories can sometimes be
found on the world volumes of coincident rotating brarf&)556-282199)02316-4

PACS numbd(s): 04.65+e, 11.10.Wx

I. INTRODUCTION Maxwell AdS (EMAdS) charged black holes, and find be-
havior consistent with field theory interpretations. We do this

There is evidence that there is a corresponddieed]  for arbitrary dimensions{greater_ than 3—see Sec. VIl for
between gravitational physics in anti—de Sitter space-tim&€omments orb=3) and determine the thermal phase struc-

and particular types of conformal field theory in one dimen_*(;;c’;r:zeA((:josrrerg?)g?tiiré%Ig(rell)?i::g;)er;etisr{g-r:fecgﬁ?ses gfé'étﬁsy
sion fewer. This duality is a form of “holographyf4] and a orrespond to the theories found on the world vc;lumes of

Fhart of the co'ré.espondte;]nc% opedrates :)y '?.e_rg'fyg?g thSe fIEEI(illz-, D3-, and M5-branes, respectively. The D3-brane case is
eory as residing on the boundary of anti—de ithentS) D=4, N=4 supersymmetricSU(N) Yang-Mills theory,
space-time. _ _ _ while the others are exotic superconformal field theditds

To be more precise, A¢$; X M ™ is the space-time of e remark on the field theory interpretation of our new re-
interest, and there is some+{ m+ 1)-dimensional theory of sults in the light of holography.
gravity compactified on it. The manifold™ can be an This paper is also of relevance beyond mere consider-
m-sphere, S™. The corresponding field theory is an ations of holography. Some of the black hole solutions and
n-dimensional conformal field theory residing on a spacetheir propertiegthermodynamic or otherwiere presented
with the topology of the boundary of A¢$;. The isome- here fO( the first timé.In particular, fche .Lagrang|an action
tries of the manifoldM ™ appear as global symmetries of the calculations and subsequent determination of the phase struc-
field theory:R symmetries if the theory is supersymmetric. turé are presented in their entirety here. o

This particular form of duality between gravity and field  In Sec. Il, we present an ansatz for obtaining the Einstein-
theory is certainly intriguing. The largil limit [whereN is ~ Maxwell truncation of gauged AdS supergravity with appro-
the rank of theSU(N) gauge group for the four dimensional Priate compactifications ob=11 supergravity or’ and
Yang-Mills field theory, with appropriate generalizations for D =10 type IIB supergravity oi$°. In the planar or infinite-
other dimensiorisof the field theory—at strong 't Hooft Volume limit, the charged black holes in Einstein—Maxwell—
coupling—corresponds to classical supergravity. As poime@ntl—de Sitter correspond to the near ho_rlzon limits of rotat-
out in Ref.[5], following the observations in Reff3], the old ~ iNg M2- and D3-branes. In Sec. I, we display the solutions
program of semi-classical quantum gravity finds a new leas@nd note some of their properties. The computation of the
on life in this setting, as computations such as those peraction of the solutions using a Euclidean section is per-
formed with gravitational instanton@t least in AdS space- formed in Sec. IV, and their thermodynamic properties are
time) should have natural field theory interpretations. uncovered in Sec. V.

In this paper, we study the thermal properties of Einstein- AS the Einstein—Maxwell-anti—de Sitter truncation is
naturally associated with rotating bran@s least in the case
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of EMAdS, and EMAdS; see Sec. )it is very natural to AdS space-time. This is because the extremal black hole is
suppose that there is an associated dual field theory arisirpt supersymmetrit.
on the world volume of some branes. These would be the This subtlety does not arise in the standard Gibbons-
familiar conformal field theories—th®=4, N'=4 Yang- Hawking calculus of the thermodynamics of black holes—
Mills theory (for coincident D3-brangsand the conformal which we use here—because the calculations are not sensi-
field theory on the world volume of coincident M2-branes. tive to the ability of the black holes to emit charged particles.
The case of EMAdS(i.e., without additional scalarss not That the extremal black hole can decay by emitting
related to a rotating-brane truncation of the AdS* charged Kaluza-Klein particles here follows from the fact
gauged supergravitfpecause” is even dimensionaand so that the charge descends from rotation in higher dimensions.
we cannot declare that the dual field theory is the theory orf here are well-known classical processes for reducing the
the world volume of a rotating M5-brane. However, we re-rotation of objects like black holes by scatterifitl], and
gard AdS holography as a phenomenon which exists indetherefore in the context of quantum field theory, one has the
pendently of string- and M-theory contex3,5]. Hence, in  analogous processes of emission in superradiant njd@s
other dimensions beyord=4 and 5, we expect that there is The same superradiant emission was considered in the con-
a dual theory. In particular, for EMAGShe dual field theory ~text of charged black holes in Refd.3,14). Thus one should
is probably a close cousin of the M5-brane theory. expect the extremal black hole in the EMAdS truncation to
The dual field theories have their supersymmeéiiyhey ~ decay via such superradiant emission. Of course, the usual
had any to start withbroken due to coupling to a global thermal Hawking radiation may also tend to discharge non-
backgroundU(1) current(as well as turning on a non-zero extremal black holeg14-16. In the fixed potential en-
temperaturg The conformal field theoryCFT) is in a ther- ~ Sémble, as the charge of the black hole is allowed to fluctuate
mal ensemble for which a certald(1) charge density has while it is in contact \_Nlth the thermal reservoir, superradiant
also been “turned on.” In the ensemble, the expectatior?"d Hawking emission processes can occur to reduce the

; ~ charge of the black hole, allowing it to decay back to AdS
value of this charge breaks the glot#(m+1) R symme éplus charg®. However, in the fixed charge thermodynamic

. T ensembldgwith varying potentia), the extremal black hole is

carrle(zjq by the black holes is in the sati¢1) of the corre- expected to be the long-lived state at zero temperature.

spondingSQ(m+1) gauge group. , . Translating the formula for the entropy to the field theory
We find very interesting phase structures at intermediatg find, for example, that the four dimensional Yang-Mills

temperaturegin finite field theory volumg as a result of theory[in the presence of the global backgrouddl) cur-
studying two complementary thermodynamic ensembles: W —

study thermodynamic ensembles with fixed backgrouncfent] has a zero-temperature entropy which goes 2 )
potential—in which case the background is AdS with a con-for large black holes, wher@ measures the total charge in

stant fixed potential—and we also study a fixed localized"'S of the minimal charge of Kaluza-Klein excitatiof.,

: : M), and is proportional to the volume/;, of the field
charge ensemble, for which the background is an extrem eory. Notice that the result for the four dimensional field
black hole with that charge.

. theory is consistent with confinementlat 0, as the result is
?ndependent ofN. Confinement also follows from the fact

dominated by highly non-extreme black holes, and we there,[-hat atT=0, the Euclidean section of the solution has no

fore recover the “unconfined” behavior characteristic of the bolt, and therefore temporal Wilson lines will always be ho-

associated field theori¢8,8]. The finite horizon size of the motopic to zero, and therefore have zero expectation value.

black holes controls the behavior of the expectation value ofjeanwhile, spatial Wilson lines cannot interact with the ho-

spatial Wilson lines accordingly, yielding the area law be-rizon to produce an area law dependence, because at extre-

havior, as follows from Ref.8]. mality the horizon recedes infinitely far away down a
At intermediate temperatures, in the fixed charge enBertotti-Robinson throat.

semble, the presence of charge allows a new branch of black The phase structure which we obtain in each thermody-

hole solutions to modify the qualitative phase structure in the

low charge regime, resulting in a very interesting phase

structure about which we will have more to say later in this There do exist supersymmetric solutions here, but they all have

section. . naked singularitie§9,10]. Furthermore, due to a lack of horizons,
Intriguingly, as there is an extremal—but noN- yejr Euclidean section does not permit a definite temperature to be
supersymmetric—black hole with non-zero entropy even aljefined. These solutions are nevertheless interesting. The fact that
zero temperature, we must conclude something interestingiey do not play a role in the phase structure which we examine
about the field theory in the presence of the global backhere does not mean that they may not have a role in other AdS
ground U(1) current: There must still be &t=0 a large  physics and thus ultimately be relevant to the dual field theory.
number of state@with the given chargeavailable to the field  3Note that the same thought experiments which do not allow the
theory in order to generate this entropy. For the case whereenrose process to produce a naked singulptitywill work here
we hold the potentiafi.e., not the chargg fixed, we do not also, preventing us from connecting to the set of solutions repre-
expect that this is the ground state, because the extremsénting naked singularities mentioned above, which do not have the
black hole can decay into Kaluza-Klein particles, leavingstandard thermal treatment.
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@ Extromal of the_extra branches of solutions which appear when there is
black holes negative cosmological constant. We discuss this further in

{unstable) Secs. V and IV. Further fascination may be found in the fact

that the explicit shape of the free energy surféae a func-

tion of Q andT) is that of the classic “swallowtail” catas-

trophe, familiar from the study of bifurcatiof&9]. The con-

trol surface of the “cusp” catastrophe also appears, which

(of course follows from the well known fact that it is the

lje shape of the van der Waals equation of state, viewed as a

surface inP,V,T space.

That these shapes appear in this context suggests that
there is some exciting universality to be explored here: Ca-
tastrophe theory is largely a classification of the possible
distinct types of bifurcation shapes that can occur in a wide
T variety of complex systems. This classificatiomhich, for

the common “elementary” cases is of A-D-E typés
equivalent to théperhaps more familiarclassfication of sin-
Q gularities[20]. It is of considerable interest to discover just
Extremal what circumstances might give rise to the other members of
black holes critical the classification. Recalling that this all translates via holog-
e /po'"t raphy into properties of a dual field theory, we would learn a
o great deal about universal phase structures which can occur
crit there also.

Non-extremal black holes

AdS

Non-extremal Non-extremal IIl. EINSTEIN-MAXWELL-ADS FROM SPINNING BRANES
black holes black holes
(1) (3) Physics near the horizon of supergravity branes can be

described in terms of spontaneous compactification of super-
gravity. In the case of non-dilatonic branes—which will be
the focus of the paper—when the compactification takes
Ads— T place on around msphere the low energy degrees of free-
dom are described by an effective theory of Einstein gravity
FIG. 1. A summary of the phase structure of the fixed potentialwith a negative cosmological constant coupled S@(m
(top) and fixed chargébottom thermodynamic ensembles. The  +1) gauge fields. The Schwarzschild—anti—de Sitter black
=0 line gives extremal black holes, although only in the fixed hole solutions of this theory have been used in the context of
charge case do they not decay into AdS. T@e 0 line is the  the AdS-CFT correspondence to infer thermal properties of
Hawking-Page system of uncharged black hol€her labeling is  the dual field theorie§3,8].

explained in Secs. V and VI. A natural extension of this program is to study AdS black
holes which are charged under a subgroup of the gauge sym-
namic ensemble is summarized in Fig. 1. metry of the gauged supergravity. Solutions of Einstein—

The astute reader will recognize the figure on the right adMlaxwell-anti—de Sitter in some dimensions are known, but
the classic phase diagram of the liquid-gas system. To trans$a the context of string and M-theories, it is also interesting
late, ourQ is like the temperatur& of the fluid while 1T is  to determine how to make a truncation of the type IIB super-
like the pressur®. The non-extreme black holes of typds  gravity, or of 11 dimensional supergravity, which gives the
(“small”) and (3) (“large”) (see Secs. IV and V for an EMAdS effective action. In other words, we must make cer-
explanation are like the liquid phase and the gaseous phasdgin higher-dimensional choices which will result in the re-
respectively. The critical liné“vapor pressure curvel’rep-  moval of the generic coupling of the? term to scalars re-
resents the place at which a first order phase transition besulting from the Kaluza-Klein reduction.
tween the liquid and gas occurs. As is well known, there is a Amusingly, one simple way to introdudgauge charge
critical temperature at which the vapor pressure curve termion the black holes is by simply spinning—or twisting—the
nates, representing the fact that above a critical temperaturgansverséangulaj sphere that becomes the compact space.
one can convert a liquid to a gas continuously. This transDecoupling of the scalars is accomplished by choosing the
lates here into a critical charge above which the two types oépins in a maximally symmetric way. To be concrete, take
black hole can be continuously converted into one anotheten dimensional 1I1B supergravity, with the metric ansatz
with no discontinuity in their size.

That this systen(first modeled by van der Waal48], 3 2
with a crucial modification by Maxwellappears in this AdS ds?,=g° dx#dx’+12> de; + iA dxt
black hole thermodynamics is fascinating, and would not my i=1 J3 “
have been possiblat least in this waywithout the presence (h)

2, 2
dui +
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Wheregiy is a five-dimensional metrige,»=0, ... ,4, the
variablesu; are direction cosines o8° (and therefore are
not independent>? ,u?=1—we follow the notation of
[21]), and they; are rotation angles o8°. The ansatz for the
Ramond-RamondRR) 5-form field strength has “electric”
components

4 33
RING I

(5)— _ 2 x5
Fe | \/5 igl duidg; *>dA,

)

while the dual “magnetic” components are given E)?;?)
=*F®) . In Eq. (2), ¢® is the volume form on the reduced
five-dimensional space, and tlenotes Hodge duality on this
space.

The parametel measures the size of tf® and is given
by the flux of the 5-form field across tH&. Notice that a
componentd; in the time direction is interpreted as rotation

of the S° in its three independent rotation planes, in equal
amounts. Components in the spatial direction would instead

be “twists.” For the sake of brevity, and since in this paper
we will be mainly considering\, component$,we will refer
collectively to them as “rotations.”

With this ansatZ1), the effective action in the five non-
compact dimensions becomes

12
R+ |—2—I2F2

1
5 __ ~D
167TGJdXV g

3

e*BYN F (5F s ©)

613

This is precisely the Einstein—Maxwell-anti—de Sitter effec-

tive action we seek, with a Chern-Simons term. The latter id

indeed required by supersymmetryAfi= 2 five dimensional
gauged supergravit}9], whose bosonic sector is precisely

described by the action above. Note that the gauge couplin

is proportional to\/Gs/I.

The AdS; X S° gauged supergravity theory in five dimen-
sions has arSQ(6) gauge symmetry, associated with the
group of isometries o8°. This is theR-symmetry group of
the dual four dimensionaV=4 superconformal Yang-Mills
field theory living on the D3-branes from which this near-

PHYSICAL REVIEW D60 064018

equivalent to studying properties of the conformal field
theory in the presence of this background current.

A similar construction can be obtained by starting from
11 dimensional supergravity. The compactification in this
case is equivalent to focusing on the near horizon region of
M2-branes. In this case, take

4
ds; =gl dxedx’+ 412>, [duf+ pu?(de;+A,dx")?],
i=1

4
leading to the Adgtheory with a Maxwell term
1 6
=— VI p ~ _A12E2
I 167TG4de g R+|2 417F~|. (5)
The reduction ansatz for the 4-form field strength is
3 4
F<4>=|—s<4>+4|22 duZde; **dA, (6)
i=1

where ¢ is the volume form on the reduced four-
dimensional space, and**denotes Hodge duality on this
space.

Chern-Simons terms are absent in four dimensions. Ap-
propriate inclusion of fermions leads to four dimensional
=2 gauged supergravity. The more gendtg|1)* theory
with four independent gauge fieldse., four different rota-
tion parametenps 3 scalars andv=8 supersymmetry, as well
as its black hole solutions, has been recently studied in Ref.
[25].

We note here that there is no analogous construction for
the AdS x S* gauged supergravity theory. This is beca8%e
s even dimensional and therefore we cannot have a symmet-
ric split betweenJ (1) rotations, aSO(5) does not have an
even torus for its Cartan subalgebra. This means that we

nnot relate the physics of the black hole solutiombkich

e write latej of the EMAdS system to the physics of
rotating M5-branes of 11 dimensional supergravity. Never-
theless, as AdS holography is a phenomenon which is ex-
pected to exist independently of string or M-theory realiza-
tions, we expect that the physics does have a holographic
interpretation in terms of a field theory closely related to that
which resides on M5-brane world volumes.

horizon geometry arose. The above spinning compactifica-

tion corresponds to introducing rotation in the diagddél )
of the maximal Abelian subgroup (1)3. Correspondingly,

there must be a dual field theory to the EMAdS truncation, °A more general action can be constructed that contains three
which is simply the field theory on the world volume of the U(1) vector fields, each associated with the three different indepen-
rotating brane. From the field theory point of view, the rota-dent rotations ofS®, and two scalars that, roughly, measure the
tion corresponds to considering states or ensembles in whidi§lative sizes of the distortions of tr& caused by rotation. For
the dual globalU(1) current[a subgroup of theSO(6) 5|mp_I|C|ty, we will restrict our;elves to thg case w_here_ all three
R-symmetry group has a nonvanishing expectation value. rotations have the same magnitude, since it is only in this case that

Studying EMAdS gravity and its solutions will therefore be the scalars decouple and we find EMAdS gravity. This framework
provides the cleanest interpretation in terms of the dual CFT, since

the number of spin parameters or charges precisely matches the
number of field theory operators which are “excited.” See Refs.
[22—-24] for a discussion of more general actions and solutions re-
lated to this.

“n any event ford=5, one cannot define magnetiwecto)
charges on the black holes.
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Ill. CHARGED BLACK HOLES IN ANTI —de SITTER 2(n—2)
SPACE-TIME c= R (13

The black hole solutions of the above supergravity theo-
ries in D=4,5 were originally studied in the past in Refs. ahd® is a constantto be fixed below If r, is the largest
[9,10—more recent investigations appear in R¢22,25. real positive root ofV(r), then in order for this RNAdS
As we have seen in the previous section, such theories can eetric to describe a charged black hole with a non-singular
regarded as compactifications of the type IIB abe=11  horizon atr=r ., the latter must satisfy
supergravities, where the gauge symmetry groups of the
gauged supergravities are broken by a specific choice of ro- (L) 2n-2 |2 2045 22 (14)
tation planes in the transverse compact spheres. Given these n-2/ °* - '
considerations, it is natural to study the Reissner—_
Nordstran—anti—de Sitte(RNAdS) black holes within the ~Finally, we choose
context of the AdS-CFT correspondence.

Even if the bosonic Einstein—Maxwell-anti—de Sitter o
theories admit supersymmetric extensions only in certain di-
mensions, it is easy and convenient to perform the analysis
of their black hole solutions for arbitrary dimension. For which then fixesA(r ) =0. The physical significance of the
space-time dimension+ 1, the action can be written &s quantity ®, which plays an important role later, is that it is
the electrostatic potential difference between the horizon and
1 infinity.
B mednHX\/__g . (D If the inequality in Eq.(14) is saturated, the horizon is

degenerate and we get an extremal black hole. This inequal-

with A=—n(n—1)/22 the cosmological constant associ- ity inposes a bound on the black hole mass parameter of the
ated with the characteristic length schl@hen the metric on  form m=mg(q,1). In the cases where the theory admits a

RNAdS may be written in static coordinates as supersymmetric embedding one could naively expect to ap-
proach a supersymmetric state as we saturate this mass

bound. However, the bound that results from the supersym-
metry algebra is insted®,10: m=2q, with them=2q so-
lution being a Bogomol'nyi-Prasad-Sommerfiel(BPS
wheredQﬁ,l is the metric on the round unin¢1)-sphere, state’ Now, it is easy to see that the mass of the extremal

q

ri-

(15

2

ol kR

n(n—1)

— _E2
| = R-F2+—;

2

dr )
dsz=—V(r)dt2+W+r2dQn_1, (8)

and the functiorVvV(r) takes the form black hole,m, is, for finite |, always strictly larger than @
and therefore the extremal solution is non-supersymmetric.
q? r2 On the other hand, for the supersymmetric solution one has
V(r)y=1- +——+—. 9
=2 2n-4 2 2 2
q r
Here, m is related to the Arnowitt-Deser-Misn€fADM) V(r)—(l pn-2 iz (16
mass of the holeM (appropriately generalized to geometries
asymptotic to Ad§26]), as which is strictly positive everywhere and therefore one finds
a naked curvature singularity at=0. In fact, all the solu-
_ (”_1)wn—1m (10) tions violating the bound14) are nakedly singular.
167G ' In the context of the AdS-CFT correspondence it is inter-

_ ) esting to consider the limit where the boundary of AdSis
where w,,_; is the volume of the unitr{—1)-sphere. The R" instead ofRxS" ! as was the case above. This can be

parametenq yields the charge regarded as an “infinite volume limit,” with particular rel-
evance to the discussion of the dual field theory. It should be
w _ - . . . - . .
Q=2(n— 1)(n—2)( n 1) a, (12) note(_j that the existence of black hole solutlons in this I|m|t.|s
871G possible only due to the presence of a negative cosmological
) ) S constant. In fact, black holdand other boltsin AdS spaces
of the (pure electri¢ gauge potential, which is with varied topologiegeven other than spherical and toroi-
dal) have been extensively studied in recent yga@d, in-
_(_*_4 cluding in M-theory[28]. Here we will only focus on the
A= +& | dt, (12 ) : ; . ) .
Cyn-2 planar(toroidal) solutions, which we will obtain by scaling

the “finite volume” solutions above, as done [i8]. To this
where

In D=4, where the black hole can have magnetic charge
5We rescale the gauge field, so as to absorb the prefactors in there is a magneti¢or dyonig BPS solution as wel[9] with m
the action. =0, gn=*I/2.
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effect, introduce a dimensionless paramatéwhich we will With all of this in mind we now turn to the action calcu-
shortly take to infinity and set lations.
A —1f
r—\Yr, to T, A. Fixed potential
m—Am, g—AM-Ding, (17) With our conventions the full Euclidean action is given by

analytically continuing Eq(7), where, as usual when the

space is asymptotically AdS, the Gibbons-Hawking bound-

ary term gives a vanishing contribution. The boundary terms

from the gauge field will vanish if we keep the potentgl

2 20l fixed at infinity. Any possible Chern-Simons term will not

2 dx?, (18)  contribute when we restrict ourselves to purely electric solu-
tions. Imposing the equations of motion we can eliminate the
factors ofR in order to obtain the on-shell action

while at the same time blowing up tH&"~* as12dQ2_;
-\~ 2= 1dx? . One finds, after taking —,

dr
ds2=—U(r)dt2+

with

2F?2

1 2n
_+_

. By
_ 167G
U=z~ =5+ e (19)

(21)

r
We obtain, for the actionsubtracting the AdS back-

For the supersymmetric solution, the scaling is as above exground while remembering to match the geometries of the

cept for the scaling om. To preserve supersymmetry, one background and black hole in the asymptotic region

must fixm=2q and som—mx (""" yielding

212
__%n1 2,n-2 q°l
rr o I_167TG|2B(I R
U(r)zﬁ+m. (20) +
2n-2 2d2) _ (N
Notice that, compared with E419), the parametem is zero " 16m G|2B[I + (1=cf@f)—ra] (22

in this limit.
The resulting solution can be seen to be supersymmetriglere, 8 denotes the period of the Euclidean section of the
as well(i.e., the Killing spinors remain finite in the limit  black hole space-time. Using the usual formula for the pe-

—oo, after appropriate rescalingand nakedly singular. In  riod, B=4=/V'(r ), a little algebra yields the explicit form
this “infinite volume” limit, the solutions asymptote to AdS

space with the horospheric slicing. 47| 2r2n—3
These planar solutions can be constructed with the appro- B= 5 2. 2)2r2n=4 o022 (23
priate decoupling limif1] of spinning D3- or M2-branes, as nry 4 (n—-2) —(n—2)q
ment|on§-d previously. We refer the reader to Reg] for This may be rewritten in terms of the potential as
the details.
4a7l%r
IV. ACTION CALCULATION (24)

(n=2)12(1—c?®?)+nr?
The study of the Euclidean sectiot¢i7) of the solu-
tion, identifying the period3, of the imaginary time with Note that the temperature is zero when the black hole is
inverse temperature, will define for us the grand canonicagxtremal. This is because the horizon is degenerate there, and
thermodynamic ensembléor fixed electric potentialor the B diverges, together with the fact that one can smoothly
canonical ensembléor fixed electric charge We interpret  approach the extremal limit from non-zero temperature.
this in terms of immersing the system into a thermal bath offrom the form of the equation fg8, it is apparent that there
quanta at temperatufle= 1/8. For pure AdS, the background are qualitatively two distinct types of behavior, determined
consists of both charged and uncharged quanta free to flu®y whether® is less than or greater than the critical value
tuate in the presence of fixed potential Later, we consider 1/c. In particular, ford=1/c, B diverges T vanishe at
the fixed Q ensemble. In that case we localize all of ther? =12(n—2)(c?®2-1)/n, while for ®<1/c, B goes
charge at a specific region and keep it fixed. For such amoothly towards zero as. —0. It is instructive to plot the
background, as AdS with a localized charged a solution  temperature as a function of horizon radiisize of black
of the EMAdS equations, we use the extremal black holehole) for these two regimeésee Fig. 2
solution as the background, and retain only neutral quanta in As can be seen from the figure, the regime of large po-
the thermal reservair, in order to keep the charged fixed. Thitential (i.e., ®=1/c) has a unique black hole radius associ-
makes sense, even though the extreme limit has zero temated with each temperature. We will see later that this branch
perature, since the Euclidean section has no bolt and so calominates the thermodynamics for all temperatures. Mean-
be assigned an arbitrary periodic[9]. Hence, the metrics while, the small potential regime has two branches of al-
and gauge fields can be matched in the asymptotic region.lowed black hole solutions, a branch with larger radii and
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FIG. 2. The inverse temperature vs horizon radii,, at fixed potential fod=1/c, ®<1/c, andd =0 respectively(The valuesn
=4,G=1,1=10 and®=1,0.7,0 have been used heréhe divergence in the first graghere, shown with a vertical line at=4.08) is
at zero temperature, where the black hole is extremal. This divergence goes away ide, in general, and the curve is similar to that of
the uncharged situation with zero potential, shown last.

one with smaller. This is qualitatively similar to the familiar B. Fixed charge

case of the uncharged Schwarzschild black holes analyzed in

Ref.[30] (or the structure of the Taub bolts discovered in the If we wish to consider a situation where instead of the
thermodynamic studies of Reft5,31]), which is thed=0  potential at infinity, we fix the charge of the black hole, then
limit of the situation here. Correspondingly, the smallerthe action(22) is not appropriate. Upon variation of the
branch of holes is unstable, having negative specific heagauge field in the latter action, a boundary term results that
They do not play any role in the physit$Generally, the Vvanishes only if we keep\(<)=® fixed. That is, the on-
sign of the specific heat for a black hole of radiuscan be  shell action of the previous subsectior i, ® ]. If, instead,
inferred from the local slope of the(r | ) curve. See also the We want to keep the charge fixed, then we must add a bound-
discussion in Sec. V). ary term tol [32],

R, n wv
8This may be contrasted with the situation in Rie¥]. 477G d X\/HF WAy, (25
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wheren,, is a radial unit vector pointing outwardNotice ~ Schwarzschild, while for large charge, we have a situation
that this boundary term is determined by the terms comingnalogous to that seen for the large fixed potential.
from the variation of the off-shell actiof7), and not Eq.
(21), which is on gravity shell. This distinction is only rel- V. THERMODYNAMICS AND PHASE STRUCTURE
evant forn>3.] Then we get a thermodynamic function
T[B,Q], in terms of the variables we wish to control.

To compute the action for the fixed charge ensemble, us- This is the grand canonical ensemble, at fixed temperature
ing as background the extremal black hole, we evaluate Egnd fixed potential. The grand canoni¢@libbs potential is
(21) for a black hole of massi>m, (and radiusr,), and W=I1/B=E—-TS—®Q. Using the expression in Eq22),
then subtract the contribution from the extremal backgroundwe may compute the state variables of the system as follows:
Remembering to match the geometries of the background
and black hole in the asymptotic region, a straightforward E=(ﬂ> _ ?(i) z(”_l)‘*’n—l =M
calculation yields the final result ® P 8 167G '

A. Fixed potential

B

1o 0B, o (N-3)eP 200D L, s=g 2 _|:Lﬂ_l:ﬂ
6nGI2 T 2 nooF B, 4G 4G’
2(n-1)? g?? 1(al )
- = 2 (26) =—Z|=—| =\2(n=2)(n-1)| 2

: o . (29)
The inverse temperaturg, is given by Eq(23). It is useful

to plot the temperature as a function of horizon radigige  Together, they indeed satisfy the first lavdE=TdS

of black holg for future use. There are two basic scales in+®dQ.

this expression fof, set byq andl, and so we expect that ~ In order to study the phase structure and stability, we
there will be two distinct regimes which may display distinct must observe the free ener§y=1/8 as a function of the
phase structureq=q.; and q<q.;. For comparison, we temperature. It is shown in Fig. 4.

also show the case of=0 (see Fig. 3. The interpretation of this is as follows. At any non-zero
The critical chargeg; is the value ofq at which the temperature, for large potentiab(1/c) the charged black
turning points of3(r ) appear or disappear. With=q.;,  hole is thermodynamically preferred, as its free endrgia-

the periodicity3=B(r . ,q,!) will have a point of inflection ~ tive to the background of AdS with a fixed potentias
with respect ta , derivatives. Hence we can simultaneously strictly negative for all temperatures.

satisfy This behavior differs sharply from the small potential
(d<1/c) situation, which is qualitatively the same as the
B B uncharged case: In that situation, in finite volume, the free
mzoz o7 (27 energy is positive for some range<d <T,, and it is only
* above T, that the thermodynamics is dominated by
With 1, =1 andq=0;. A litle algebra then yields Schwarzschild bla_lck holeghe larger, stable bran):he}fter.
their free energy is negativéSee the center graphs in Fig.
) (n_2)2 5 4) . ) ) ]
rcm=m| and S(_) for high enough temperature in all cases _the physics is
dominated by non-extremal black holes. In this céaser
1 (n—2)2|n-2 converting gravitational to field theory quantit®sthe free
qgmz ( ) |2n—4 energy and entropy behave at ultra-high temperature as
(n—1)(2n—3)\n(n—1)
(28) F~V,_T"NP(
Therefore we have fon=3, q.y=1/6, and forn=4, g S~V,_, T INP(M, (30)

=12/3/15.

In this case, the figures show that for small chafige.,  whereV,_; is the (1—1)-dimensional spatial volume upon
belowq.), there can behreebranches of black hole solu- which the field theory resides. This is the “unconfined” be-
tions, to which we will refer later. The middle branch is havior appropriate to the duai-dimensional field theory.
unstablé while the branch with the smallest radii is new, and The functionp(n) is 2 whenn=4, 3/2 whenn=3, and 3
will play an interesting role in the thermodynamics. For zerowhenn=6. The resulting power dfl shows how the number
charge, we return to the familiar two branch situation of

Owe do this using the standard formulas derived from the brane
%Its slope is positive and hence its specific heat is negative: acgeometry[1,3,8: For n=3, G~|~7 and |~N'% for n=4, G
cording to Eq.(29), dSer2d,r . ~17% andl~NY* and forn=6, G~1~* and| ~N3,
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FIG. 3. The inverse temperature vs horizon radii,forqei;, <0, andgq=_0, respectivelyq.; is the value ofj at which the turning
points of B(r ) appear or disappeafThe valuesn=4, | =5 andq=25,5,0 have been used heréhe divergenceshere, shown by the
vertical lines atr ,=0.98 and 4.05) are at zero temperature, where the black hole is extremal. The final graph, for the uncharged case, may
be thought of as a limit of the previous graphs where the divergence disappears, showing that small Schwarzschild black holes have high
temperature.

of unconfined degrees of freedom of the theory goes Njth So this suggests that even at zero temperature the system
by analogy with the case af=4 whereN? counts the de- prefers to be in a state with non-zero entragiven by the
pendence on the number of degrees of freedonNdor an  area of the black hoje Notice that thisT=0 situation dis-
SU(N) gauge theory. plays the “confined” behavior characteristic of the ordinary
At low temperatures, and feb>1/c, we have something conformally invariant zero-temperature phase, despite the
very new. Notice that as we go =0, the free energy presence of the black hole. This follows from the fact that the
curve approaches a maximum value which is less than zerétemporal Wilson lines will still have zero expectation value,
This implies that even at zero temperature the thermodyas the fundamental strings which define them cannot wind
namic ensemble is dominated by a black hole. From the tenthe horizon which has infinite period at zero temperature.
perature curve?) it is clear that it is the extremal black hole, Similarly, spatial Wilson lines will not display the area law
with radiusr , =r,. For®=1/c, at T=0 we recover AdS behavior, because the fundamental string world sheets
space. cannot be obstructed by the horizon, because at extremality,
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FIG. 4. At the top left is a graph of the free energy vs temperature for fixed potential ensemble fodla(Gbe valuesn=4, G
=1, 1=10, ®=1 have been used herdhe top right graph depicts a family of free energy curves for different valueb.dflote the
crossover from the cusp(<1/c) to the single branchd®>1/c) behavior. At the bottom is the free energy curve for the unchafged
®=0) ensemble, showing the physics familiar from the Schwarzschild case: visible are the two branches consisting diiastatids
and large(stable black holes. The entire unstable branch has positive free energy while the stable branch’s free endrgpighe®n this
scalg negative for allT>T,.

it is infinitely far away down a throat. persymmetry algebra. We expect that calculations which in-
Having pointed out this intriguing possible zero tempera-clude the effects of charge emission will shift the free energy
ture behavior, we expect that for the casefigéd potential back to zero, representing the true, equilibrium situation. Al-
considered here, this is not the complete story. We mudiernatively if we consider the actiov) on its own merit
allow for the possibility that the extremal black hole might outside of string- or M-theory compactifications, it may be
decay due to processes involving Kaluza-Klein particlesegarded as part of a theory without fundamental charged
charged under thE(1). (See the discussion near the end of particles.
Sec. I) This possibility cannot be discounted because the The resulting thermodynamic phase structure for the fixed
extremal black hole is not supersymmetric, as pointed oupotential ensemble is summarized in the left diagram of Fig.
before, and therefore not guaranteed to be stable by the sii-
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B. Fixed charge from small to larger . black holes, as the temperature in-

We have seen that we may considef &0 background ~Créases. As the entropy is proportional r(b_l, there is a
containing an extremal black hole of char@e Let us now Jump in the entropy, or a release of “latent heat.
keep this charge fixed and allow the potential at infinity to AS We approach the critical valu@, of the charge
vary. representing the crossover into the large charge regime, the
This is the canonical ensemble, and the correspondingink in the free energy—and therefore the transition—

thermodynamic potential, the free energy, Tig8=F=E vanishes, as branches 1 and 3 mefged branch 2 disap-
—TS. The energy, entropy and electric potential are comPears: The d'fﬁi{e”?f, In horizon radii between the two
puted as branchesp , =r¥; —ry’, may pe thogght of as an order pa-
rameter for the transition, as it vanishes aboyg, where
( (?T) - A, the transition goes away.
B —l=— As noted before in the case of fixed potential ensemble,
Q branches 2 and 3 are the exact analogues of the small and

large Schwarzschild black holes of Hawking and PEgf#

E—<3T) =M-M S=
=\ 75 Q_ o =

1{ 41 1( q q or the small and large Taub bolts discovered in the thermo-
d-d . =— 0] Tel 2 | (31 dynamic studies of Refd5,31]. In those papers, above a
B1oQ g C\r% le certain temperatur@,, there were two allowed solutions at a

given temperature, the smalldranch 2 being unstable and

In this caseE measures the energy above the ground statethe larger(branch 3 being stable, which persists to dominate
which is the extremal black hole. Together, they satisfy thehe thermodynamics above some critical temperaflire
first law, which in this case should be written @8=TdS  The existence of a stable branch 1 and its merger with branch
+(P—-D,)dQ. 2 to disappear at, are new features when we add a small

The free energy as a function of temperature is showrixed charge to the story. Conversely, if we start from a situ-
below for the cases of small and large charge, respectivelgtion where charge is present on the black hole but the cos-
(compare to the third graph in Fig4) for the uncharged mological constant vanishes, then we find branches 1 and 2,
case. and it is only when the negative cosmological constant is

That there are three branches for the small charge casarned on that branch 3 appears.
follows from the second graph in Fig. 3, which is magnified For large charge, there is only a single branch allowed
and labeled in Fig. 5, on the right. From there, it is clear thaisee Fig. 5; the cusps collide and disappead the associ-
for low temperature there can only be one solufftioranch  ated thermodynamic story is correspondingly simpler. The
1”) for the black hole radius. At some temperatufe free energy shows that the non-extreme charged black holes
=1/B4, the origin of two new branche§'branches 2 and dominate fromT=0.
3") of solutions appearsI(;=0.089, 8,=11.15 for the cho- In all caseglarge or smallQ), the ultra-high temperature
sen parameters in the pJotAbove this temperaturébelow  phases are dominated by a black hole and the free energy and
B1), there are therefore three distinct branches of solutiomntropy have the characteristic “unconfined” field theory
until at temperaturd,=1/8, (T,=0.105, 8,=9.55 in the  behavior shown in Eqg30).
plot) two of the branche¢l and 2 coalesce and disappear, = One might examine the approach to the critical point
leaving again only a single bran€B), which persists for all more closely. In particular, consider the behavior of the spe-

higher temperatures. cific heat
Returning to the free energy plot, the meaning is now
clear. Starting to the extreme left of the plddw tempera- M dM/ar .,
ture) we see that there is a single branch of free energy, Cq:ﬁ_ aTlor, (32

corresponding to the branch 1 solutions. B, branches 2
and 3 appear on the graph and separate from each other\With q=qc, as the temperature approaches the critical
higher temperatures. AI,, branches 1 and 2 coalesce andvalue, one finds a singularity witd:hoc(T—TC)‘m. This be-
disappear, while branch 3 persists for all higher temperahavior may be contrasted with th@ € T.) ~*? singularity
tures, continuing to the left. found in Ref.[24]. The essential difference is of course that
So from zero temperature the negative free energy ohear the critical point we have a point of inflection with
branch 1 means that those non-extreme black holes dominateT . (r, —r;)°, while Ref. [24] considers a minimum
the thermodynamic ensemble. At temperatufe (T.  with T—Teoc(r . —rgi).
=0.092 in the plotthe free energy of branch 3 is actually  The evolution of the free energy of the system as a func-
more negative than that of branch 1, and so that branch dfon of charge is particularly interesting as one goes from
non-extremal black holes takes over the physics and contireero charge to large charge. The single cusp of the uncharged
ues to do so for all higher temperatures. (Schwarzschild system is joined by a second cusp which
The situation afT; is a genuine finite temperature phasecomes in from infinity, forming(with the original ong a
transition, of first order(Notice from the first graph in Fig. 5 section of the well known “swallowtail” shape, familiar as a
that the free energy is continuous, but its first derivative ishifurcation set or “catastrophe” in singularity or catastrophe
discontinuous. This results from the jumgalong the dotted theory. The significance of this is discussed in the next sec-
line in the final graph in Fig. Bfrom branch 1 to branch 2, tion. As we cross over into the large charge regime at some
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FIG. 5. The first two graphs show the free energy vs temperature for the fixed charge ensemble. The situagjertg,foand g
=(Q.it, respectively, are plottedThe valuesn=4, G=1, | =5 andq=1,25 have been used her&he first graph is the union of three
branches. Branch 1 emanates from the origin, and merges with branch 2 at a cusp. Branch 3 forms a cusp with the other end of branch 2,
and continues towards the bottom right. The last graph shows how the branches arise from the inverse temperature cu(28s (Sdw.
text for discussion of critical temperatug .)

critical value ofq, the cusps merge and the free energy beered in the previous sections. Although we plotted only the
comes a simple monotonic function. For completeness, weases for than=4 case, representing Ag$and hence four
include a series of plots showing this evolutigWe do not  dimensional field theofy the same universal structures ap-
put them on the same axes, as we did for the fixed potentiglear in the cases=3 and 6 as well, giving the same pleas-
case, for the sake of clarify. ing phase structure for the fixed charge ensemble.

The resulting thermodynamic phase structure for the fixed The phase structure that we uncovered for the fixed
charge ensemble is summarized in the diagram on the rightyarge ensemble should remind the reader of the classic van
in Fig. 1. der Waals—Maxwell behavior, modeling the liquid-gas sys-
tem. Indeed, they are isomorphic. Tigr ) curve (the
middle graph of Fig. Bshould recall the graph of the(V)

We cannot refrain from further general comments uporvan der Waals equation of state, whétethe pressureis
the meaning and structure of the curves that we have uncoveplaced here by andV (volume by r .

VI. CATASTROPHIC HOLOGRAPHY?
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The instability of branch 2 is then simply the familiar guage of catastrophe theory is largely a classification of the
instability of the corresponding section of the van der Waalgpossible distinct types of bifurcation shapes that can occur.
curve. The jump from branch 1 to branch 3 which we de-This classification(which, for the common “elementary”
duced from the form of the free energy is the precise anacases is of A-D-E typeis equivalent to theperhaps more
logue of the Maxwell constructiott.In the isomorphism be- familiar) classfication of singularitief20]. A natural ques-
tween our parameters and those of the van der Waalstion is whether or not the inclusion of more control param-
Maxwell system, our chargeQ is equivalent to their eters willalways resultin a free energy curve of a shizpel
temperatureT. corresponding phase structunghich falls into the classifi-

The instability of branch 2 in both languages makes intui-cation. It would certainly be amusing to find yet another case

tive sense: as one increases the pressure, the volume shog((]jthe A-D-E classification appearing in string and M-theory

decrease and therefore the positively sloped branch is not ysics.
stable. A similar statement holds for the black holes after
making the translation to the current situation: For black VIl. CONCLUDING REMARKS

holes in equilibrium with the heat bath, an increase in the The study of the thermodynamics of black holes in
temperature results in an increase in the black hole radiug; icin_Maxwell—anti—de Sitter space-time is highly rel-

and hence mass, for stable black holes. Notice that th!s alsé\/ant to the thermodynamics of certain superconformal field
follows from the first law, recalling that the entropy is a theories with a background global current switched on. This
positive power of the radius. So the positive slope branch ofq|0ws from the logic of the AdS-CFT correspondence, and
the B(r ;) curve is generally unstable. the fact that the EMAdS system can arise as the near-horizon
~In the language of catastrophe the¢ipl—the study of  physics of rotating M2- and D3-branes, and it should there-
jumps in some “state variables” as a result of smoothfore pe regarded as the effective theory of the strongly
changes in “control variables”—the physical solutions of coypled field theory residing on the rotating brane world
the B(r ;. ,q) curve, viewed as a two dimensional surface inyg|ymel2
(B,9,r.) space, is the “control surface” of the “cusp ca- ~ The phase structures of the charged black hole systems
tastrophe.” The cusp shape is the union of points in thestydied here, and summarized in Fig. 1, are markedly differ-
(B.r+) plane(the control variablgswhere the state variable ent from those of the uncharged systems studied before in
(the allowed value of ;) jumps from branch 1 to branch 3, this contex{3,5,8,30. The addition of charge revealed a rich
as branch 2 is unstable. After applying the minimum freephase structure, with precise analogues to classic thermody-
energy condition to determine the allowed brancli#® npamic systems. The physics is consistent with a dual field
“Maxwell criterion” ), the cusp catastrophe appears in thetheory interpretation.
(9,8) plane[or equivalently the Q,T) plang collapsed to In all cases, the infinite volume limit can be found by
the critical line (see Fig. 1 (or “vapor pressure curve)’ taking the limits given in Eq(17). This scaling may be ap-
along which the two types of black hole can coexist andplied to the expressions for the actidi&gs.(22) and (26)]
across which there is a phase transition. The end of the lingynd the periodEgs.(23) and(24)]. In all cases, the result is
at the critical valueq;, where branch 2 disappears, is the that there is only one branch of black hole solutidiie the
point where the distinction between branches 1 and 3 goegrge charge and potential situations had in finite volyme
away. The order parameter, , for this critical pointis the  and the free energy is negative definite, showing that the
radius difference of the branchgs=r®—r"). Beyond the  thermodynamics is dominated by black holes for all tempera-
critical charge there is no phase transitign.&0) in going  tures. Of course, this is what we should expect, from the field
from branch 1 black holes to branch 3 by increasing thetheory point of view.
temperature. This is of course the familiar statement that As we commented before, the gauge field in the AdS
above a critical temperature, there is no phase transition igpace naturally couples to a CFT currdpt, following the
going from a gas to a liquid by increase of pressure. prescription of Ref[3]. From the asymptotic variation of the
Intriguing is the fact that the two dimensional free energygauge field12) or its corresponding field strength, one then
surfaceF (3,Q) forms the shape of the swallowtail catastro- has an expectation valug;)~q. Thus one might think of
phe(see Fig. 6. (Note that fom=3, 4 and 6 the shape is the the CFT state as containing a plasma(gibbally) charged
same). This naturally follows from the ability of thg8(r ;) quanta. The precise nature of the CFT state depends on the
curve to produce three branches, and the resulting shape fensemble which we were studying. For the case of the fixed
the free energy curve is the union of three branches. potential, the dual statement is that a chemical potential con-
Here, the swallowtail does not have the usual interpretajugate to the global charge has been introduced leading to the
tion as a bifurcation surfaodike the cusp does aboybut it  expectation value. The fixed charge calculations correspond
is natural to wonder whether its appearance tells us that thete an ensemble of CFT states with a fixed global charge.
is some universality at work here. This is because the lan-

Lstrictly speaking, in performing a near-horizon limit explicitly
Although one can formulate an adequate “equal area law” foron a brane solution, one gets the infinite volume limit black hole
this system, here we have used the lowest free energy conditiosolutions of EMAdS, but the interpretation of the finite volume
from which it follows in the case of the liquid-gas system. solutions clearly follows.
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FIG. 6. The free energy vs temperature for the fixed charge ensemble, in a series of snapshots for varying charge, stdrteay from
zero chargdtop left) and finishing with large charg@ottom). The valued =5, G=1, andn=4 are used here. This complete evolution
describes the two dimensional“swallowtail” catastrophe shape.

Thus the difference between the two calculations is analoto numerical factors, we have, as usiil, g2,,~g and
gous to that between the canoni¢éiked T) and microca-  (1/15)*~gN (whereg is the type IIB string couplingas well
nonical (fixed E) ensembles. asGs~g?¥/15. It remains to fix how the black hole charge
~ Inthe context of D3-branes with=4, theSQ(6) gauge  spould be characterized in the CFT. The most natural ap-
fields couple to thér-symmetry currents in the SUper-Yang- proach is to measure the physical chafi® in terms of the
Mills theory. This aspect of the duality has been used 1Q,,qamental charge of the Kaluza-Klein excitations in the
great advantage to produce nontrivial consistency tests bx . L . —
comparing correlators protected by supersymmgdgj. Of d_S space, i.e., witlQ=Q/l. In the field theory thenp
course in the present case, with the truncation to EMAdS=Q/V3 (whereV; is the spatial volume of the field thegry
theory, we are focussed on a particular diagdnél) gen-  essentially counts the number of fundamentally charged
erator of theSO(6) symmetry. guanta per unit volume in a given state. Given this frame-
In this context, we can translate the results of the superwork, we can consider the field theory content of our results.
gravity calculations to quantitative statements about thd-or example, one might wonder what the critical chai2f®
strong coupling behavior of the super-Yang-Mills theory. Upappearing in the fixed charge phase diagram corresponds to:
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FIG. 6. (Continued)

S wherez=3m/1? andy?=279%/1*. A simple case to consider
Quit~ 5 ~N* (33 s that of a large black hole witm=12, for which z°
> =y*/4. Further in this limit, one has that~r2 and so

In general, translating the entropy, mass or free energy to
a field theory expression produces a complicated function of

both the temperatur@ and the chargeﬁ One relatively . L — .

. . . e Notice that implicitly here we are considering a regime
simple case is the high temperature limit, where the charge — i
essentially plays no rolfsee Eq.(30)]. Another interesting WhereQ>N. The lack of dependence of the entropy Mifs
case to consider is that of the extremal black holes for whict Signal of confined behavior at zero temperature, despite the
T=0. By demanding thav(r,)=0 and @V/dr)(r,)=0  Presence of the black hole. It would certainly be interesting if
have a consistent solution, one finds that the mass and char§#S entropy result could be recovered by considering parti-

S~ G~ — ~V3p~Q. (35)

parameters are related by the following expression: tioning of the charg& among the charged excitations of the
CFT.
We have left aside the case of compactification of six
VZ2—y?=(1+2)—J1+z, (34  dimensional supergravity 08 to get AdS. By setting the
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S® in rotation in its two independent rotation planes, in atheory are further encourageméfur those who need)ithat
symmetric fashion, we get an electric potential in AdS the quantum mechanics of black holes is not unlike that of
Doing so, notice that if we start from the solution describingother situations.
a rotating six dimensional black strifguch as the one ob-
tained from the D1-D5 bound state¢hen in the throat limit
the rotation of theS® can be undone by a diffeomorphism
[34]. In other words, the effective gauge field in three dimen- A.C. is supported by Pembroke College, Cambridge. R.E.
sions is pure gauge. Nevertheless, as shown in RB&i, is supported by EPSRC through grant GR/L3815&) and
there do exist charged black hole solutions in EMAdS theoryoy grant UPV 063.310-EB187/98Spain). Support for
in three dimensions. These have an electric potential thaf.V.J.’s research, and other support of this project, was pro-
diverges logarithmically at infinity, which prevents one from vided by an NSF Career grant PHY97331(&). R.C.M.’s
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