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Green-Schwarz string action on AdS33S3 with Ramond-Ramond charge
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We derive the classicalk-symmetric type IIB string action on AdS33S3 by employing the SU(1,1u2)2

algebra. We then gauge fix thek symmetry in the background adapted Killing spinor gauge and present the
action in a very simple form.@S0556-2821~99!01216-3#

PACS number~s!: 04.65.1e, 11.25.Mj
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I. INTRODUCTION

There has been great interest recently in string theory
AdS53S5 @1,2,3# due to its possible relation toN54,d54
Yang-Mills theory. Whereas the largeg2N limit is conjec-
tured to be dual to type IIB supergravity on this manifold, f
which there is by now mounting evidence, stringy effects
supposed to correspond to 1/g2N corrections@1# in the Yang-
Mills theory. It is of great interest, therefore to constru
string theory in this background. Although there has be
significant progress in this direction@4,5,6,7,8#, the action
~so far! has proven too difficult to quantize. In this note, w
will try to analyze a simpler case, that of string theory
AdS33S3.

One interesting aspect of this background is that the c
pactification ofD56 supergravity on S3 can be achieved in
two fundamentally different ways: the charged three-fo
field strength can either be of Neveu-Schwarz~NS! or
Ramond-Ramond~RR! type. In@9# the NS field was charged
and a significant understanding of a string propagating in
background was achieved. In this paper we focus on a st
in the nontrivial RR background and construct the string
tion in the Green-Schwarz~GS! formulation @10#. The hope
is that eventually this case can be better understood, ma
by relating it to results of@9#. Various other aspects of thi
background have been studied in@11,12,13,14,15#.

We shall follow the approach of@4# which requires a de-
scription of the background as a supercoset manifold.
AdS33S3 background is the near-horizon geometry of t
D1–D5 brane system and is a solution of chiralN52(2,0)
supergravity in six dimensions@16# preserving all 16 super
symmetries. By essentially straightforward extension of
arguments given in@17# it can be shown that the solutio
does not get anya8 corrections which is a necessity to fo
mulate string theory in this background. In@18# it was noted
that the isometry group of D1–D5 system is SU(1,1u2)2, and
hence the background can be viewed as the supercoset
SU~1,1u2!2/SO~1,2!3SO~3!. The construction of the action
following @4# is then straightforward except for the constru
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tion of the Wess-Zumino term, which requires some trial a
error.

This is done in Sec. II, where we start with the algebra
SU(1,1u2)2 @which we derive very explicitly in 6D covarian
form from the SU~1,1u2! algebra in the Appendix# and con-
struct the Wess-Zumino~WZ! term from first principles fol-
lowing @4#. We find, in fact a continuous family of WZ term
interpolating between the pure NS background and the
background.

The resulting GS action is then given in terms of sup
vielbeins which we also solve for in Sec. III. In Sec. IV w
gauge fixk symmetry in the ‘‘background adapted Killin
spinor gauge’’@19,6,7# which simplifies the action consider
ably.

Finally we present our conclusions and some open qu
tions.

II. FROM THE ALGEBRA SU „1,1z2…2 TO THE STRING
ACTION ON AdS 33S3

The target space of string theory on AdS33S3 with 16
supersymmetry generators is the supercoset mani
SU~1,1u2!2/SO~1,2!3SO~3! whose bosonic part is
SO~2,2!3SO~4!/SO~1,2!3SO~3!. The generators of this su
pergroup are the momenta and Lorentz transformations
AdS3 and S3

Pa ,Jab , and Pa8 ,Ja8b8 , ~2.1!

where a50,1,2, anda853,4,5, plus 2 complex chiral 6D
spinors

QIaa8^ S 1
0D , ~2.2!

with I 51,2,a51,2,a851,2. Our conventions are

Ga5ga
^ 1^ s1 , Ga851^ ga8^ s2 , ~2.3!

whereg05 is3, g1,25s1,2, ga85sa822. In the following we
will freely usega short forga

^ 1 ~and the same for primed
indices!. With these definitions it is clear thatQI defined as
above is indeed chiral. The conjugate superchargeQ̄Iaa8 is
defined by
©1999 The American Physical Society14-1
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Q̄I5~QI !†g0. ~2.4!

Crucial for the construction of the action are the~anti-
Hermitian! supervielbeinsLa, La8, LI and L̄ I and the super-
connectionLab and La8b8. Being as model with a super-
coset as the target space, the action is only allowed
contain the supervielbeins, and will be of the general str
ture

S5Skin1SWZ . ~2.5!

The kinetic term is next to trivial to write down, the mor
subtle issue is to construct the Wess-Zumino term, nee
for k invariance, which is an integral over a closed 3-for
To find this form we need the superalgebra, derive fr
there the Maurer-Cartan equations and identify a uni
closed three-form built from the supervielbeins.

It should be apparent by now that an important ingredi
is the SU(1,1u2)2 algebra

$QI ,Q̄J%52d IJ~ iPaga2Pa8g
a8!1e IJ~Jabg

ab2Ja8b8g
a8b8!,

@Pa ,QI #52
i

2
e IJgaQJ , @Pa8 ,QI #5

1

2
e IJga8QJ ,

@Jab ,QI #52
1

2
gabQI , @Ja8b8 ,QI #52

1

2
ga8b8QI ,

@Pa ,Q̄I #5
i

2
Q̄JeJIga , @Pa8 ,Q̄I #52

1

2
Q̄JeJIga8 ,

@Jab ,Q̄I #5
1

2
Q̄Igab , @Ja8b8 ,Q̄I #5

1

2
Q̄Iga8b8 ,

@MAB ,MCD#5hBCMAD1hADMBC2hACMBD2hBDMAC ,

@MA8B8 ,MC8D8#5dB8C8MA8D81dA8D8MB8C82dA8C8MB8D8

2dB8D8MAC , ~2.6!

where we defined

Pa5M0a , Jab5Mab , Pa85M08a8 , Ja8b85Ma8b8
~2.7!

and whereh5(2112). Note that the bosonic generato
are taken to be anti-Hermitian. The defining equations of
background can be obtained in the standard way by defin
the group derivative

D5d1LaPa1
1

2
LabJab1La8Pa81

1

2
La8b8Ja8b8

1
1

2
~Q̄ILI1L̄ IQI ! ~2.8!

and requiringD250. This leads to the Maurer-Cartan equ
tions
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dLa52
i

2
L̄ Iga∧LI2Lb∧Lba,

dLa851
1

2
L̄ Iga8∧LI2Lb8∧Lb8a8,

dLI52
i

2
e IJLa∧gaLJ1

1

2
e IJLa8∧ga8L

J

2
1

4
Lab∧gabL

I2
1

4
La8b8∧ga8b8L

I ,

dL̄I5
i

2
e IJL̄Jga∧La2

1

2
e IJL̄Jga8∧La8

2
1

4
L̄ Igab∧Lab2

1

4
L̄ Iga8b8∧La8b8 ~2.9!

plus the nonrelevant ones fordLab and dLa8b8. The Wess-
Zumino term can be constructed in terms of the vielbe
without actually solving these equations. In the backgrou
at hand this is only slightly more subtle than in the AdS53S5

background, since theLI do not obey any Majorana cond
tions. We find that the unique form satisfying the requir
ments is

H35AsIJ~ L̄ Iga∧LJ∧La1 i L̄ Iga8∧LJ∧La8!1c.c.

5AsIJ~ L̄ IGa∧LJ∧La1L̄ IGa8∧LJ∧La8!1c.c.,
~2.10!

wheresIJ5s3
IJ . In proving thatdH350 one has to apply the

identities~A25!, and has to use

sIJ~ L̄ IgaLJL̄KgaLK2L̄ Iga8L
JL̄Kga8LK!50. ~2.11!

It remains to find the coefficient in front of the Wess-Zumin
term. For this we consider the flat-space limit, where
vielbeins read, in our notation@See Eq.~3.7! withM50 and
s51,],

LI5du I ,

L̄ I5dū I ,

La5dxa2
i

4
~ ū Igadu I2dū Igagau I !,

La85dxa81
1

4
~ ū Iga8du I2dū Iga8u I !. ~2.12!

Therefore,
4-2
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WZ5AsIJL̄ IGa∧LJ∧La1c.c.

5A~dū1Gadu12dū2Ga∧du2!∧dxa1c.c.1¯

5Ad„@~ ū1Gadu12dū1Gau1!

2~ ū2Ga∧du22dū2Ga∧u2!#∧dxa1¯…]bu12]aû2

~2.13!

and hence

E
M3

WZ5AE
M2

d2se i j ~ ū1Ga] iu
12] i ū

1Gau1!] j x
a1¯ .

~2.14!

By comparison with standard literature~see for example
@20#! one finds

A5
i

4
. ~2.15!

Therefore, the 6D superstring action is given by

S52
1

2 EM2
d2s~LaLa1La8La8!

1
i

4 EM3
sIJ@~ L̄ Iga∧LJ∧La1 i L̄ Iga8∧LJ∧La8!1c.c.#

52
1

2 EM2
d2s~LaLa1La8La8!

1
i

4 EM3
sIJ@~ L̄ IGa∧LJ∧La1L̄ IGa8∧LJ∧La8!1c.c.#,

~2.16!

which is the main result of this section.
This WZ term, however, should not really be uniqu

since there exists also the string in the same geometry,
charged under the NSB field, and there must be a differen
WZ term for it. The answer suggested by the work of@21#
answer is that the general WZ term should be given by

H;sIJ@~ L̄ Iga∧LJ∧La1 i L̄ Iga8∧LJ∧La8!1c.c.#

1La∧Lb∧LcHabc
1 , ~2.17!

whereHabc
1 is one of the five components of the self-du

superfield@22#. This is to be understood from the point o
view of compactifying theD510,N52 type IIB theory on
K3 ~and truncating the matter fields!. Of the five self-dual
field strengths that arise@23#, three find their origin in the
self-dual five-form field strength, one from the RR thre
form ~plus its dual! and one (Habc

1 ) from the NS three-form
and its dual inD510.

III. THE SUPERGEOMETRY

It remains to actually solve the Maurer-Cartan equatio
and obtain the supervielbeins. The general method is s
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dard and was outlined for example in@4# where for the
AdS53S5 case the vielbeins were constructed up to qua
order. In@5# it was observed that the equations can in fact
integrated and the supergeometry can be found in clo
form.

To do so we have to play the usual trick and introdu
us5su to solve for a generalized vielbeinLs from which one
obtains eventually the standard vielbein asL5Ls51 . In the
process we also find following@24# a convenient form of the
Wess-Zumino as a two-dimensional worldsheet integral,
tegrated once more over the parameters.

Let us denote the general structure of the algebra by

$QI ,Q̄J̄%5 f
IJ̄

A
BA ,

@BA ,QI #5 f AI
J QJ ,

@BA ,Q̄Ī #5 f
A Ī

J̄
Q̄J̄ ,

@BA ,BB#5 f AB
C BC , ~3.1!

where the distinction betweenI and Ī serves only the pur-
pose to keep track ofQ and Q̄. With D being the standard
covariant~bosonic! derivative

D5d1
1

4
vabJab1

1

4
va8b8Ja8b81eaPa1ea8Pa8 ~3.2!

we find from

e2~s/2!~ ūQ1Q̄u!De~s/2!~ ūQ1Q̄u!5Ls
ABA1

1

2
~ L̄sQ1Q̄Ls! ~3.3!

the differential equations

]sLs
A52

1

4
ū I f

IJ̄

A
Ls

J̄1
1

4
L̄s

I f
IJ̄

A
u J̄,

]sLs
Ī 5du Ī 1Ls

Bf
BJ̄

Ī
u J̄,

]sL̄s
I 5dū I2 ūJf JB

I Ls
B . ~3.4!

These equations can easily be integrated since

]s
2S Ls

Ls*
D Ī

5~M2!
J̄

Ī S Ls

Ls*
D J̄

, ~3.5!

with

~M2!
J̄

Ī
5

1

4 S f
BK̄

Ī
u K̄ūL f

LJ̄

B

2 f
BK̄
* Ī

u* K̄ūL f
LJ̄

B

2 f
BK̄

Ī
u K̄ū* L f

LJ̄
* B

f
BK̄
* Ī

u* K̄ū* L f
LJ̄
* B D . ~3.6!

The solution to Eq.~3.4! is then given by
4-3
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S L
L* D

s

Ī

5S sinhsM
M D

J̄

Ī S Du
Du* D J̄

,

LA5eA2
1

2
~ ū I f

IJ̄

A
,2 ū* I f

IJ̄
* A

!

3S sinh2~sM/2!

~M!2 D
K̄

Ī S Du
Du* D K̄

, ~3.7!

with

DIJ5d IJS d1
1

4
vabgab1

1

4
va8b8ga8b8D

1e IJ
i

2
~eaga2 iea8ga8!. ~3.8!

Here, we used the initial conditions

La~u50!5ea, La8~u50!5ea8,

Lab~u50!5vab, La8b8~u50!5va8b8. ~3.9!

The real vielbeins are then obtained by settings51.
Another virtue of above procedure is that one can obt

the Wess-Zumino term as a world-sheet integral of an
pression which is itself integrated overs @24#. The important
point is that

]sH3s5dV2s , ~3.10!

whereHs is obtained fromH by replacing allL by Ls , and
where

V2s5
i

2
sIJ~ ū Iga∧Ls

J∧Ls
a1 i ū Iga8∧Ls

J∧Ls
a8!1c.c. ~3.11!

This can be verified with the differential equations~2.9! and
~3.4!. Hence

SWZ5E
M3
H3sus515E

M2
E

s50

1

V2s . ~3.12!

IV. SIMPLIFICATION OF THE ACTION

We now turn to the very important aspect of simplifyin
the action. We will follow here the ideas of@6,7# and fix k
symmetry in the background adapted way. The proced
consists of two steps:

Choosing the gauge

u2
I [P2

IJuJ[
1

2
~d IJ2 i e IJG0G1!uJ50 ~4.1!

and redefining the remaining fermionsu1 to be space-time
dependent as

u1
I ~x!5gtt

1/4q1
I , ~4.2!
06401
n
-
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where q1
I are constant spinors which also satisfi

P2
IJq1

J 50.
This gauge is motivated by the observation thatDu as

defined in Eq.~3.8! is essentially simply the Killing equation
on AdS33S3 augmented by a fermionic differential operat
dq]q1d̄q]q̄ . Hence, choosing the fermionic coordinatesu
in Eq. ~3.3! to be space-time dependent Killing spinors, i.

u Iaa8~x!5eJbb8
Iaa8 ~x!qJbb8, ~4.3!

where eJbb8
Iaa8 is a known space-time dependent matrix a

q5const, leads to

Du I5eJI
I ~x!dqJI . ~4.4!

The Killing spinors on AdS33S3 in horospherical coordi-
nates can, for example, be found in@25#, and it can be easily
verified, as first noted in@19#, that usingk symmetry to
project on half of them precisely via Eq.~4.1! leads to the
fact thatu1 andDu1 obey the same projection, i.e.,

P2u15P2Du150, ~4.5!

since Eq.~4.3! reduces for this component to1

u1
I ~x!5gtt

1/4q1
J . ~4.6!

Since this gauge is based on the isometry of the backgro
it is called the killing spinor gauge and was proposed in@19#
as a procedure to gauge-fixk symmetry of extended object
in their own background. In@7# it was shown that it could
also be used to simplify dramatically the GS string action
AdS53S5. Since the arguments given there for admissibil
of the gauge are exactly the same needed here we refe
reader to that publication.

What we will show now is that with this gauge we hav

M1
2 S Du1

Du1*
D50, ~4.7!

which clearly simplifies Eq.~3.7! and therefore the action
dramatically. The important fact to use is that terms of t
form

ū1
I ĜDu1

I , with @G01,Ĝ#50 ~4.8!

vanish. This implies that

f
BK̄

Ī
u1

K̄ ū1
L f

LK̄

B
du1

K̄ 5 f
iK̄

Ī
u1

K̄ ū1
L f

LK̄

i
Du1

K̄

1 f
~ i2!K̄

Ī
u1

K̄ ū1
L f

LK̄

~ i2!
Du1

K̄ , ~4.9!

with i 50,1, i.e., in the sum over the bosonic generatorsB
only the two momentaPi and the two Lorentz generatorsJi2

1Incidentally, the survivingu1(x) spinor is nothing but the Kill-
ing spinor of the full D1-D5 geometry, in the near horizon regio
This might have some so-far-not-understood implications.
4-4
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can contribute. Then, with a little algebra and using the
plicit form of the structure constants we find that in fact t
contributions fromPi and Ji2 arise with opposite sign an
cancel. The same happens for the other term, i.e.,
-
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i
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BK̄

Ī
u1

K̄ ū1*
L f

LJ̄
* B

Du1*
J̄50. ~4.10!

Putting all this together we see indeed that
~M1
2 !

J̄

Ī S Du1
J̄

Du1*
J̄D 5S f

BK̄

Ī
u1

K̄ ū1
L f

LJ̄

B
Du1

J̄ 2 f
BK̄

Ī
u1

K̄ ū1*
L f

LJ̄
* B

Du1*
J̄

2 f
BK̄
* Ī

u1*
K̄ū1*

L f
LJ̄
* B

Du1*
J̄1 f

BK̄
* Ī

u1*
K̄ū1

L f
LJ̄

B
Du1

J̄ D 50. ~4.11!
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Now, recall that one explicit form of the AdS33S3 metric in
the ‘‘214’’-split is

ds25y2~dxpdxp!1
1

y2
~dytdyt!, ~4.12!

where t and p denote coordinate transverse (y2,y3,y4,y5)
and parallel (x0,x1) to the brane. With this form of the met
ric, Eq. ~4.2!, and

q[q1, ~4.13!

we find the simple supervielbeins. The supergeometry re

~Ls
I !15sAuyudq I ,

~Ls
I !250,

Ls
p5uyuS dxm̂2

is2

2
~q̄gpdq2dq̄gpq! D ,

Ls
t 5

1

uyu
dyt. ~4.14!

Finally, inserting this into Eq.~2.16! we obtain

S52
1

2 E d2sFAggi j Xy2S ] ix
p2

i

2
~q̄Gp] iq2] iq̄Gpq! D

3S ] j xp2
i

2
~q̄Gp] jq2] j q̄Gpq! D1

1

y2 ] i y
t] j y

tC
2

1

2
e i j ] i y

t~q̄G t] jq2] j q̄G tq!G . ~4.15!

V. CONCLUSIONS AND OPEN QUESTIONS

We presented the action of the the string in an AdS33S3

background. We explicitly constructed the Wess-Zum
term as a closed three-form from first principles by emplo
ing the supercoset structure of the background geometr
was then shown that the action can be simplified significa
to contain fermionic terms only up to quadratic order.
course, it is still non-linear and a quantization procedure
not apparent off-hand.

Since the pure NS background can be solved explicitly
the RNS formalism@9#, at least in that case one should
able to quantize the GS action as well. The quantization p
ds

o
-
It

ly
f
is

n

o-

cedure is not, however, obvious. An approach to the prob
may be to construct the currents corresponding to the sp
time Virasoro algebra and comparing these to those obta
from the RNS formalism.

Furthermore, from knowing the NS background, seve
things about the RR background can be deduced, e.g.,
spectrum of chiral primaries. It is of great interest to see
these can be computed directly from the string action.

Note added.After completion of this work we becam
aware of the paper by Pesando@27# which has some overlap
with the present publication.
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APPENDIX

We start with the SU~1,1u2! algebra in the form of@26#:

@D,P#5P, @D,K#52K, @K,P#52D,

@Nmn ,Npq#5dnpNmq1dmqNnp2dnqNmp2dmpNnq ,

@D,Qi #5
1

2
Qi , @D,Si #52

1

2
Si ,

@Nmn ,Qi #52
1

4
gmnQi , @Nmn ,Si #52

1

4
gmnSi ,

~A1!

$Qia8 ,Qj b8%522e i j Ca8b8P,

$Sia8 ,Sj b8%522e i j Ca8b8K,

$Qia8 ,Sj b8%522e i j Ca8b8D

1e i j ~gmn!a8b8Nmn .

Here, we havei , j 51,2,a8,b851,2 are SO~3! spinor indices
and m,n51,2,3. The AdS33S3 geometry is the supercose
manifold SU~1,1u2!2/SO~1,2!3SO~3! with bosonic sub-
group SO~2,2!3SO~4!/SO~1,2!3SO~3!;SO~1,2!23SO~3!2/
SO~1,2!3SO~3!. The strategy is to combine two copies
above algebra~variablesX and X̃) and combine the spinor
Q,Q̃,S,S̃ into suitable SO~2,2!3SO~4! spinors and the
bosonic operators as generators of this group. We will th
4-5
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convert the bosonic and fermionic generators to covariant
objects which results in Eq.~2.6!.

We start with the bosonic SO~1,2! subalgebra:

@D,P#5P, @K,P#52D, @D,K#52K, ~A2!

which can be rewritten withP15 1
2 (P1K), P25 1

2 (P2K)
as

@D,P1#5P2 , @D,P2#5P1 , @P1 ,P2#5D. ~A3!

These generators should be combined with their counterp
D̃, P̃ and K̃ satisfying the same algebra into one SO~2,2!
matrix MAB . One finds that with

M125 i ~D2D̃ !, M235P21 P̃2 , M1352 i ~P12 P̃1!,

M035 i ~D1D̃ !, M015P22 P̃2 , M0252 i ~P11 P̃1!,
~A4!

MAB satisfies indeed the proper SO~2,2! algebra:

@Mab ,Mcd#5hacMdb2hadMcb2hbcMda1hbdMca , ~A5!

with the signature~2112! for indices~0123!.
We now turn to unifying the spinorsQ,Q̃,S,S̃. It is useful

to keep the index structure of theg matrices and spinors in
mind:

ga
b , Qa , Q̂a, ~A6!

where Q̃ is the SO~2,2! conjugate spinor ofQ, i.e., Q̂
[Q†G0G3. With the following set of definitions@and the
convention that we take SO~2,2! spinors to be Majorana#:

G05S 0
21

1
0D , G1,25S 0

s1,2
s1,2

0 D ,
06401
D

rts

G35S 0
is3

is3

0 D , G55S 1
0

0
21D , C5G0G2,

~A7!

we find

MABGABC52S 22iK
2iD

0
0

2iD
22iP

0
0

0
0

22i P̃

2iD̃

0
0

2iD̃

22iK̃

D , ~A8!

which reveals that one part of the algebra is given by

$qi ,qj%52
i

2
e i j MABGABCC81¯ , ~A9!

with

qia85S Sa8
2Qa8

2Q̃a8

S̃a8

D
i

. ~A10!

To complete the algebra we turn to the SO~4! part, where
spinors are taken to be symplectic Majorana. Our conv
tions are

G805S 0
i

2 i
0 D , G8a5S 0

sa
sa

0 D ,

C85G80G82, G855S 1
0

0
21D ~A11!

and we find
MA8B8
8 G8A8B8C85S 22M08 i 8

8 s i 81Mi 8 j 8
8 s i 8 j 8

0

0

2M08 i 8
8 s i 81Mi 8 j 8

8 s i 8 j 8DC8, ~A12!
e
s of

hat

ct
which implies that theNi 8 j 8 in Eq. ~A1! are given by

Ni 8 j 85
1

2
~Mi 8 j 8

8 2e i 8 j 8k8M08k8
8 !. ~A13!

With these preliminaries the SO~2,2!3SO~4! spinors are de-
fined as

qiI aI 8a85S S18a8
S28a8

2Q18a8
2Q28a8

2Q̃18a8

2Q̃28a8

S̃18a8

S̃28a8

D
i

, ~A14!
where the vector components denote theqIa elements in the
natural order. The pairI ,a(I 8,a8) is an SO~2,2!@SO~4!# in-
dex, whereasi is still the symplectic index. Counting th
degrees of freedom reveals that half of the 32 component
q ~‘‘real’’ by Majorana–symplectic-Majorana condition!
have to be projected out. The underlying reason is t
spinors transform under SO~2,2!3SO~4!;SO~1,2!1
3SO~1,2!23SO~3!13SO~3!2 only under SO~1,2!13SO~3!1
or SO~1,2!23SO~3!2, since the algebra is the produ
SU(1,1u2)2. Clearly, the projectorP has to ensure thatI
5I 8 which results in

P5
1

2
~1^ 181G5

^ G85!. ~A15!

With these conventions the algebra reads
4-6
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$qi ,qj%52
i

2
e i jP~MABGABC^ C8

2C^ MA8B8
8 G8A8B8C8!,

@MAB ,qi #52
1

2
GABqi ,

@MA8B8
8 ,qi #52

1

2
GA8B8

8 qi ~A16!

plus the conventional SO~2,2! and SO~4! pieces.
In order to achieve more closeness to 6D quantities i

useful to define

q̂i[e i j qj
TC^ C8, ~A17!

which are the conjugate spinors since by the symplec
Majorana condition we have

~qi !* 5e i j B^ B8qj , ~A18!

and to consider as fundamental superchargesq[qi 51 and
q̂[q̂i 51 . It is also convenient for later purposes to chan
the basis to

G0
˜S i

0
0

2 i D , G80
˜S 1

0
0

21D . ~A19!

The components ofq in this basis which survive the projec
tion are

Q1[q1181q228 , Q2[q1282q218 , ~A20!

where the indices denoteI ,I 8. Although this is a source fo
confusion, let us denote these generators byQI , whereI is
not to be confused with the SO~2,2! index. It is of crucial
importance for symmetry considerations to know that

Q̂I5~Q̂! I5q̂1I 81e I 8J8q̂2J851e IJQJ
†s3 , ~A21!
tt

rg

’’

n

h.

06401
is

-

e

wheres3 acts on thea index ofQ†. With Pa ,Pa8 ,Jab ,Ja8b8
as defined in Eq.~2.7! we can write down the algebra

$QI ,Q̂J%52 id IJ~Jabg
ab2Ja8b8g

a8b8!

12i e IJ~ iPaga2Pa8g
a8!, ~A22!

@Pa ,QI #52
i

2
e IJgaQJ , @Pa8 ,QI #5

1

2
e IJga8QJ ,

@Mab ,QI #52
1

2
gabQI , @Ma8b8 ,QI #52

1

2
ga8b8QI ,

@Pa ,Q̂I #5
i

2
Q̂JeJIga , @Pa8 ,Q̂I #52

1

2
Q̂JeJIga8 ,

@Mab ,Q̂I #5
1

2
Q̂Igab , @Ma8b8 ,Q̂I #5

1

2
Q̂Iga8b8 ,

~A23!

@MAB ,MCD#5hBCMAD1hADMBC2hACMBD

2hBDMAC ,

@MA8B8 ,MC8D8#5dB8C8MA8D81dA8D8MB8C8

2dA8C8MB8D82dB8D8MAC .

In verifying the Jacobi identities, heavy use was made of
following identities:

~sa!a
g~sa!b

d 52da
d db

g2da
gdb

d , ~A24!

~gab!a
g~gab!b

d 524da
d db

g12da
gdb

d . ~A25!

So far, the 6D covariance of the algebra is not quite obvio
However, if we define the 6D gamma matrices as in E
~2.3!, the chiral 6D superchargesQ as in Eq.~2.2! andQ̄ as
in Eq. ~2.4! we find from Eq.~A23! precisely Eq.~2.6!. To
see this it is noteworthy thatQ̂ andQ̄ are related by

Q̂I52 i e IJQ̄J . ~A26!
ys.
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