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Green-Schwarz string action on Ad$x S® with Ramond-Ramond charge
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We derive the classicat-symmetric type 1IB string action on AdSS® by employing the SU(1]2)?
algebra. We then gauge fix thesymmetry in the background adapted Killing spinor gauge and present the
action in a very simple form{.S0556-282(199)01216-3

PACS numbegs): 04.65+e, 11.25.Mj

I. INTRODUCTION tion of the Wess-Zumino term, which requires some trial and
error.

There has been great interest recently in string theory on This is done in Sec. I, where we start with the algebra of
AdS;xS° [1,2,3 due to its possible relation t&/=4,d=4 SU(1,12)? [which we derive very explicitly in 6D covariant
Yang-Mills theory. Whereas the larggN limit is conjec-  form from the SU1,12) algebra in the Appendixand con-
tured to be dual to type IIB supergravity on this manifold, for Struct the Wess-Zumin@NZ) term from first principles fol-
which there is by now mounting evidence, stringy effects ardoWing [4]. We find, in fact a continuous family of WZ terms
supposed to correspond tayN correctiong1] in the Yang- interpolating between the pure NS background and the RR
Mills theory. It is of great interest, therefore to construct background.. L : .
string theory in this background. Although there has been The resuilting GS action is then given in terms of super-

I ; e : vielbeins which we also solve for in Sec. Ill. In Sec. IV we
significant progress in this directiga,5,6,7,8, the action ) . f o
(so fap has proven too difficult to quantize. In this note, we gauge fixx symmetry in the “background adapted Killing

will try to analyze a simpler case, that of string theory on>Pinorgauge [19,6,7 which simplifies the action consider-

ably.

Ad83><8_3. ) ) ) Finally we present our conclusions and some open ques-
One interesting aspect of this background is that the comgyn o
pactification ofD=6 supergravity on Scan be achieved in
two fundamentally different ways: the charged three-form
field strength can either be of Neveu-SchwdigS) or
Ramond-Ramon@RR) type. In[9] the NS field was charged
and a significant understanding of a string propagating in this The target space of string theory on A¢S® with 16
background was achieved. In this paper we focus on a stringupersymmetry generators is the supercoset manifold
in the nontrivial RR background and construct the string acSU(1,12%SO(1,2xSQ(3) whose  bosonic  part s
tion in the Green-SchwargGS) formulation[10]. The hope  SO2,2XS0O4)/SO(1,2XSA(3). The generators of this su-
is that eventually this case can be better understood, maytergroup are the momenta and Lorentz transformations on
by relating it to results of9]. Various other aspects of this AdS; and S
background have been studied[i,12,13,14,1F

We shall follow the approach d¢#] which requires a de- Pa,Jap, and Py, Jarpr, (2.7)
scription of the background as a supercoset manifold. The , .
AdS,xS?® background is the near-horizon geometry of theVN€rea=0.1,2, anda’=34.5, plus 2 complex chiral 6D
D1-D5 brane system and is a solution of chika:2(2,0) Spinors
supergravity in six dimensior[46] preserving all 16 super- 1
symmetries. By essentially straightforward extension of the Qlaa’®( 0), (2.2
arguments given iff17] it can be shown that the solution
does not get any’ corrections which is a necessity to for-
mulate string theory in this background. [Ib8] it was noted
that the isometry group of D1-D5 system is SU(2)%, and
hence the background can be viewed as the supercoset space
SU(1,12)2S0(1,2XSQ(3). The construction of the action

, : . o_: 3 '_ al-2 -
following [4] is then straightforward except for the construc-Wherey =io~, y ,¥* =0~ In the following we
will freely use y? short fory?®1 (and the same for primed

indices. With these definitions it is clear th&), defined as

*Email address: rahmfeld@leland.stanford.edu above is indeed chiral. The conjugate Superché@j’é“ is
"Email address: arvindra@alumni.stanford.org defined by

Il. FROM THE ALGEBRA SU (1,12)2 TO THE STRING
ACTION ON AdS ;xS°

with 1=1,2,a=1,2,a’=1,2. Our conventions are

r=y2@loo,, =18y ®0,, 2.3

12_ ;12
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Q'=(Q""".
Crucial for the construction of the action are tl@nti-
Hermitian supervielbeind.2, L2, L' andL' and the super-
connectionL2” and L2'®". Being ac model with a super-

(2.9
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i
dLf=—ZL'y?0L' - LPOL,

a' _ E_I a’ 1_ b’ b'a’
dL +2L7 OL"—L° 0L ,

coset as the target space, the action is only allowed to
contain the supervielbeins, and will be of the general struc-

ture

S=S«int Swz: (2.5

The kinetic term is next to trivial to write down, the more

[ 1 /
dL'= - 5 €L 0y L'+ 5 €L Oy L

1 ab | 1 a'b’ I
_ZL D’yabl_ _ZL D?’a’b’l— y

subtle issue is to construct the Wess-Zumino term, needed

for « invariance, which is an integral over a closed 3-form.

To find this form we need the superalgebra, derive from
there the Maurer-Cartan equations and identify a unique

closed three-form built from the supervielbeins.

It should be apparent by now that an important ingredient

is the SU(1,12)? algebra

{Ql ’6‘1}: 25|J(| Paya_ Pa’ ,ya') + GIJ(Jabyab_Jarbr ‘ya’b,),

i 1
[Pa'Q|]:_|§€|J7’aQJ, [Pa'yQI]:EélJ'ya’QJy
1 1
[Jabin]:_E’Yalei [Ja’b’le]:_E'ya’b’Ql’
_ i — — 1_—
[Pa'Q|]:§QJEJ|’Yaa [Pa’rQl]:_EQJEJI'Va’v

_ 1 — 1_—
[Jab, Q1= §Q|?’ab, [Jarp Q1= §Q|7’a'b/ ,

[Mag,Mcpl=78cMapt 7apMec— 7acMBep— 780MAC

[MAVBV ,MCID!]: 5B’C’MA’D’+ 5A'D’MB’C’_ 5A’C’MB’D’

_5B’D’MAC' (26)
where we defined
Pa:MOav Jab:Mabv Par:Mora/ y Ja’b’:Ma’b’
(2.7)

and wheren=(— + + —). Note that the bosonic generators

I 1 :
dL'= 5 ey, 02— Ee”LJ«ya,Dl_a

1_I ab 1_I a'b’
——L ’yabDL - ZL ’ya/erL (29)

4

plus the nonrelevant ones fdl2” anddL?"®". The Wess-
Zumino term can be constructed in terms of the vielbeins
without actually solving these equations. In the background
at hand this is only slightly more subtle than in the AgS®
background, since the' do not obey any Majorana condi-
tions. We find that the unique form satisfying the require-
ments is

Ha=AsY(L'y,0L°0L%+iL  y,, OL0L2 ) +c.c.

=AsY(L'T,00°0L2+L'T,, 000 ) +c.c.,
(2.10

wheres”= ¢4 . In proving thatdH;=0 one has to apply the
identities(A25), and has to use

YL yLILK LK~ LTy, LKA LK) =0, (2.1D)

It remains to find the coefficient in front of the Wess-Zumino
term. For this we consider the flat-space limit, where the
vielbeins read, in our notatidisee Eq(3.7) with M=0 and

S: 11]!

L'=dé',

are taken to be anti-Hermitian. The defining equations of the

background can be obtained in the standard way by defining

the group derivative

1 ! 1 Th!
D=d+L3P,+ ELabJabJr L& Py +5L7 ®'J

a’b’

+%(5‘L|+UQ|) (2.8

and requiringD?=0. This leads to the Maurer-Cartan equa-

tions

L'=dé',

[ _
La:dxa_ Z(0I ’yad9| _dal )’a’}’ael),
(2.12

’ ’ 1 - ’ 7 r
L2 =dx? +Z(0|‘ya de'—de'y? ¢").

Therefore,
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WZz=As’LIT,0L°0L% + c.c. dard and was outlined for example [d] where for the
AdS;XS° case the vielbeins were constructed up to quartic
=A(doT ,d6*—d 6T ,0d6?) Odx®+c.c4- - order. In[5] it was observed that the equations can in fact be
o B integrated and the supergeometry can be found in closed
=Ad([ (0T ,do*—de'T 6% form.
_ _ R To do so we have to play the usual trick and introduce
—(6°T ,0d 6%~ d6°T ,06%) ]0dX?++ ) g6 — 3,67 6.=s6 to solve for a generalized vielbein from which one

(2.13 obtains eventually the standard vielbeinlasL,_;. In the
process we also find followin®4] a convenient form of the

and hence Wess-Zumino as a two-dimensional worldsheet integral, in-
tegrated once more over the parameter
f BWZ:AJ Qe (61T 40,6 — 61T o 61) o+ Let us denote the general structure of the algebra by
M M
e A
(214 {Q1.Qs}=13Ba,
By comparison with standard literatusee for example
[20]) one finds [Ba.Qi1=fAQy,
i —
— - J
A_4' (2.19 [BAle]:f/_“QJa
Therefore, the 6D superstring action is given by [Ba.Bgl=fSsBc, (3.1
l ! ’ —
S=-— Ej 2d20'(LaLa+ LaL?) where the distinction betwednand | serves only the pur-
M

pose to keep track o and Q. With D being the standard

i e T Jet A T I & covariant(bosonig derivative
7], [(L'y,00°00L2+iL"y, OL°0L% ) +c.c]

1 o D=d+ j-—lwab\]ab-l- %wa’b’Ja,b,+eaPa+ e?' P, (3.2

==3 JMzdza'(LaLa-i- LaL?)

] we find from

+jzJMss'J[(UFaDLJDLa-FUFa,DLJDLa/)+C.C.], - - .
g (S2(0QTQID(ER(0QTQN =) Ag, + 5(LQ+QLy (33

(2.1
which is the main result of this section. the differential equations
This WZ term, however, should not really be unique,

since there exists also the string in the same geometry, but AL I a 7 1A 7
charged under the NB field, and there must be a different dsks=— 7 O F5Lst 7 Lsf 507
WZ term for it. The answer suggested by the work{ ®1]
answer is that the general WZ term should be given by - - —

B B dLi=d6' +LBf 0",

H~s"[(L"y,0L0L3+iL"y,, OL°0L2 ) +c.c]
+LA0LPOLCH ., (2.17 dsly=d6'— 0fhpL 2. (3.4

whereH_, . is one of the five components of the self-dual These equations can easily be integrated since
superfield[22]. This is to be understood from the point of

view of compactifying theD=10,N=2 type IIB theory on

K3 (and truncating the matter fieldsOf the five self-dual ﬁg
field strengths that arisg23], three find their origin in the
self-dual five-form field strength, one from the RR three—Wi,[h
form (plus its dual and one H,,) from the NS three-form

and its dual inD =10.

| T Ls 3
=<MZ>{L§) , (35

S
*
LS

| KALeB ol KakLexB
Al a S SV

1
— — = — (3.6
4 *1 xKpLeB_ c*1 Kk Lg*B

—fBKﬁ* 0 fLJ fBKﬁ* 0* fLJ

<=1
I

2
Ill. THE SUPERGEOMETRY (M)

It remains to actually solve the Maurer-Cartan equations
and obtain the supervielbeins. The general method is stari-he solution to Eq(3.4) is then given by
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with

Here, we used the initial conditions

L smhsM 1, where ©®' are constant spinors which also satisfies
s J This gauge is motivated by the observation tBed as
defined in Eq(3.8) is essentially simply the Killing equation
LA= eA_ (9 f ’_guf*,A) on Angi<§ augmented by a fermionic differential operator
) dddyg+dddy. Hence, choosing the fermionic coordinates
= in Eq. (3.3 to be space-time dependent Killing spinors, i.e.,

><(sini’?(sMIZ))'( D6 )K 37
(M2 | AD&*] " ' g'ee’ (x)= e'J;;;; (X) 9288, (4.3
where eJBB,’ is a known space-time dependent matrix and
1 1 ., Jd=const, leads to
DlJ: 5” d+ Z(l)ab'yab+ Z(Da b Ya'b’ |
D 6'=ej(x)d 9. (4.9
+€'32l(eaya_iea’ Yar)- (3.9 The Killing spinors on Ad$xS® in horospherical coordi-

nates can, for example, be found[RbE], and it can be easily
verified, as first noted if19], that usingx symmetry to
project on half of them precisely via E¢4.1) leads to the
La(9=0)=€® L2'(6=0)=e fact thaté, andD 6., obey the same projection, i.e.,
P_0.=P_-D6,=0, (4.5
L2(p=0)=w?® L2°'(4=0)=w?"?. (3.9 _ _
since Eq.(4.3) reduces for this component'to

The real vielbeins are then obtained by settazgl.

the Wess-Zumino term as a world-sheet integral of an ex:
pression which is itself integrated ovef24]. The important
point is that

| 1/4 qJ
Another virtue of above procedure is that one can obtain 05 (X) =0y 0 (4.6

Since this gauge is based on the isometry of the background,

it is called the killing spinor gauge and was proposefilig)

as a procedure to gauge-fixsymmetry of extended objects

O Hae=d0 e, 3.1 in their own background. Ifi7] it was shown that it could
s773s 2s (310 also be used to simplify dramatically the GS string action on

WhereHS is obtained fron'ﬂ—l by rep'acing allL by LS’ and AdSSXSS Since the al’guments giVen there for adm|SS|b|I|ty
where of the gauge are exactly the same needed here we refer the

reader to that publication.
What we will show now is that with this gauge we have

QZS=|§S'J( 0'y,OLI0L3+i 6"y, OLIOLY Y +cc. (3.11) o
2 T
This can be verified with the differential equatiof®s9 and M+( Dﬂ) 0 42
(3.4). Hence . o .
which clearly simplifies Eq(3.7) and therefore the action
1 dramatically. The important fact to use is that terms of the
Swz f 3sls=1 j f Qo (3.12  form

the action. We will follow here the ideas §6,7] and fix «

¢.1'D6,, with [T°LT]=0 (4.9
IV. SIMPLIFICATION OF THE ACTION

) ~ . vanish. This implies that
We now turn to the very important aspect of simplifying

f GK_LfmleK—f aK—LfﬂeK

symmetry in the background adapted way. The procedure Otk Otk
consists of two steps: T
_L (i2)
Choosing the gauge f(lz)KaK f D9K 4.9
| 3o L ot A with i=0,1, i.e., in the sum over the bosonic genera®rs
0 =P 0=5(6"—ie TTH)6"=0 (4.9 only the two moment®; and the two Lorentz generatals,

and redefining the remaining fermioms to be space-time
dependent as lincidentally, the survivingd.. (x) spinor is nothing but the Kill-

V4ol ing spinor of the full D1-D5 geometry, in the near horizon region.
(X) Oy Uy 4.2 This might have some so-far-not-understood implications.
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can contribute. Then, with a little algebra and using the ex- fl_iafy, Lf*EDG*F—O 4.10
plicit form of the structure constants we find that in fact the BK 7+ Ly TV T '
contributions fromP; and J;, arise with opposite sign and
cancel. The same happens for the other term, i.e., Putting all this together we see indeed that
|
o~ T I KL B gl gl K kLB gk
(Mz)l Dﬁi_ _ f350+f+fu{)0+ f_BK0+_0+_f|_J Doy ) 4.1
TN DoY) | —prlgrKgrLerBp gl gt ekl (B pg) | '
+ BkZ+ Y+ TP V+ BkZ+ Y+ILgm Y+

Now, recall that one explicit form of the Ag&S® metric in  cedure is not, however, obvious. An approach to the problem
the “2+4"-split is may be to construct the currents corresponding to the space-
time Virasoro algebra and comparing these to those obtained
(4.12 from the RNS formalism.
Furthermore, from knowing the NS background, several
things about the RR background can be deduced, e.g., the
wheret and p denote coordinate transversg?(y®,y*,y®)  spectrum of chiral primaries. It is of great interest to see if
and parallel ¥°,x*) to the brane. With this form of the met- these can be computed directly from the string action.
ric, Eq. (4.2), and Note addedAfter completion of this work we became
9=t 4.13 aware of the paper by Pesand®Y] which has some overlap
' with the present publication.

we find the simple supervielbeins. The supergeometry reads

(LY, =s\[y[d®',

1
ds’=y*(dxPdx,) + — (dy'dy"),
y
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APPENDIX
L= idyt. (4.14 We start with the SUL,1j2) algebra in the form of26]:
vl [D,P]=P, [D.K]=—K, [K,P]=2D,
Finally, inserting this into Eq(2.16) we obtain [NinnsNpal = 8npNingT SmaNnp— SngNmp— SmpNng
1 . i — —
s=——J d? 'l( Z(a-xp—— ITPG,9— 3, 9T P ) - 1
5 | d?o|ag!|y?| axP— 5 (TP, 09—, 9TP9) [D.Q]=5Qi. [D.SI=-3S,
x| 9% —i—(51“ 99— 9T, 9) |+ ! a-yta-y‘) 1 1
”r 2 P e )72 o [NmnrQi]:_Z'yanir [Nmnasi]:_Z'ymnSi:
1 o= — (A1)
— = €eloy (99, 0—9,9T'9)|. 4.1
7€ IVl ) ) )} (4.19 {Qia . Qjprt=—2€;CuipP,

{Sia’ ,S]ﬁr}: _ZEijCarﬁrK,

. . ) {Qia’iSjﬁ’}:_ZeijCa’ﬁ’D
We presented the action of the the string in an £&dS® .
background. We explicitly constructed the Wess-Zumino +e€ii (Y™ arpNmn-
term as a closed three-form from first principles by employ- C v oo L
ing the supercoset structure of the background geometry. Heée, We_hla\zleéj Tr%’zfd"isgl’z aretS((B) ?ﬁmor indices i
was then shown that the action can be simplified significantl n Tlr;j_ S ’1' 5 2(78 1‘52 xsgecs)me r')t/hlsb € sm_Jpercobse
to contain fermionic terms only up to quadratic order. ofmantto UL 12 SO1,2XSA3) wi OSZOFIIC SL; :
roup S@2,2)XS04)/SQ(1,2xSO(3)~SAO(1,2xSA3)/

course, it is still non-linear and a quantization procedure id : : ;
not apparent off-hand. SO(1,2XSO3). The strategy is to combine two copies of

Since the pure NS background can be solved explicitly irRbove algebravariablesX andX) and combine the spinors
the RNS formalisn{9], at least in that case one should be Q,Q,S,S into suitable S@,2XS0O(4) spinors and the
able to quantize the GS action as well. The quantization probosonic operators as generators of this group. We will then

V. CONCLUSIONS AND OPEN QUESTIONS
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convert the bosonic and fermionic generators to covariant 6D 5 0 iod s (1 0 o2
objects which results in Eq2.6). =(i03 0 ) r =(0 _1), C=I"T~,

We start with the bosonic S@,2) subalgebra: (A7)
\;vgich can be rewritten wittP . =3(P+K), P_=3(P—K) _92iK  2iD 0 0

2iD —2ip O 0
ABr —

[D,P.]=P_, [D,P_]=P,, [P,,P_]=D. (A3) Mpgl™C=2{ o 2B 2i5 | (A8
These generators should be combined with their counterparts 0 0 2ib -2k

D, P andK satisfying the same algebra into one (3Q)

matrix M .. One finds that with which reveals that one part of the algebra is given by

Mi=i(D-D), My=P_+P_, Mig=—i(P.-P,), {qi,q,-}=—'§ei,»MABFABCC’+---, (A9)
Mgs=i(D+D), Mg=P_—P_, M02=—i(P++I~3(JA)4) with

M »g satisfies indeed the proper &®) algebra: _SS' ,

[Mab,Mcal= 7acMab= 7adMcb— 7ocMdat 7baMcas  (A5) Qiar= _Q:, : (A10)
with the signaturg —++ —) for indices(0123. Sy

We now turn to unifying the spinoi®,Q,S,S. Itis useful
to keep the index structure of thematrices and spinors in To complete the algebra we turn to the @Dpart, where

mind: spinors are taken to be symplectic Majorana. Our conven-
8 A, tions are
yai Qav Q ) (AG) i 0 a
10— - ra_ o
where Q is the S@2,2) conjugate spinor ofQ, i.e., Q I (i 0 ) r (a’a 0)’
=Q'T°T3. with the following set of definitiongand the
) . . 1 0
convention that we take S@,2) spinors to be Majorarja Cc'=r'o12 FIS:(O 1) (A11)
o [0 1 1o [0 ot
I'’= y o= 1,2 y .
-1 0 o 0 and we find

Y _2M,-0'i,+M-,- U'i,j’ 0
’ 'A'B r— o'’ iy’ - , S !
MA/B/F C ( o ZM(I),i;(TI +Mirjro-lj )C l (Alz)
|
which implies that theN;.;. in Eq. (A1) are given by where the vector components denote dfg elements in the

natural order. The pair,a(l’,a") is an S@2,2[S0O(4)] in-
(A13) dex, whereag is still the symplectic index. Counting the

degrees of freedom reveals that half of the 32 components of

g (“real” by Majorana—symplectic-Majorana conditipn
With these preliminaries the 322)XSO(4) spinors are de- have to be projected out. The underlying reason is that
fined as spinors  transform  under $22)xXS0Q4)~SO(1,2),
XS0O(1,2),XS0O(3);XSO3), only under S@1,2);xXSO(3);

1 ,
Ni/jIZE(Mirjr_Ei’j'k'MO’k’)'

Strar or SQ1,2,%XS03), since the algebra is the product
"o SU(1,12)2. Clearly, the projectorP has to ensure thalt
= Qo =" which results in
— Qa4
qilal’a’: _él’a' ’ (Al4) 1
~ — ’ 5 15
-0,y P 2(1®1 +I°I7°). (A15)
’él!a!
"a’ [ With these conventions the algebra reads
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i AE whereo; acts on therindex of QT. With P, ,P,/ ,Jap.Jary
10,0j} =~ 5 € P(Mppl ""Ca C’ as defined in Eq(2.7) we can write down the algebra

{Q1,Qst=—161,(Jap¥**=Jarp ¥*®")

—CaM,, 5 I"AB'C),
+2i€;(IPav2— Par'ya ), (A22)

1
[MABaqi]:_EFAquv i
[Pa,Qi]= flﬂ’aQJ: [Par,Q]= ElJ?’a Qs
1

[M,r r;q']:__r,r rq' (A].G) 1 1

pE 2 [Map.Qi]=~ EyabQ. o Mo Q1= 570 Q
plus the conventional S@,2) and SQ4) pieces. 1

In order to achieve more closeness to 6D quantities itis [P, ,Q,1==Qje57a, [Par,.O1=— = Q€3 7ar »
useful to define 2

A T ’ 1 1
i=¢iq;Co®C’, Al7 2 ~ A -
=€) (ALD [Mab, Q1= 5Q7a0, [Ma Q1= 5Q7arwr
whi.ch are thed'c.onjugathe spinors since by the symplectic- (A23)
Majorana condition We* ave , [Mag.Mcpl=78cMap* 7a0MBc— 7acMBD
(0)* =€;Be®B'q;, (A18)

— ngpoMac,

and to consider as fundamental supercha i, and
p Itggsq' 1 [MArBr,MCrDr]:é\BrchArDr'f' 5A’D’MB’C’

g=4q;-,. It is also convenient for later purposes to change

the basis to —Sarc'Mpripr— 8grpMac-
F°—>( : 0_ ) F’°—>( 10 . (A19) In verifying the Jacobi identities, heavy use was made of the
0 i 0 -1 following identities:
The components of in this basis which survive the projec- (020 §=2828%— 515}, (A24)
tion are b s s s
(Y*) 2A(Ya) g= — 438,05+ 25),55. (A25)
Q1=01r +02z, Q2=012— 0y, (A20)

So far, the 6D covariance of the algebra is not quite obvious.
where the indices denotel . Although this is a source for However, if we define the 6D gamma matrices as in Eq.
confusion, let us denote these generatorQpy wherel is  (2.3), the chiral 6D superchargéd as in Eq.(2.2) andQ as
not to be confused with the $22) index. It is of crucial in Eq. (2.4) we find from Eq.(A23) _precisely Eq(2.6). To

importance for symmetry considerations to know that see this it is noteworthy thad andQ are related by
Qi=(Q)1=0qu + €382 =+€Qlo5,  (A21) Q,=—i€;Q;. (A26)
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