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Brown-York quasilocal energy, gravitational charge, and black hole horizons
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We study a recently proposed horizon defining identity for certain black hole spacetimes. It relates the
difference of the Brown-York quasilocal energy and the Komar charge at the horizon to the total energy of the
spacetime. The Brown-York quasilocal energy is evaluated for some specific choices of spacetime foliations.
With a certain condition imposed on the matter distribution, we prove this identity for spherically symmetric
static black hole solutions of general relativity. For these cases, we show that the identity can be derived from
a Gauss-Codacci condition that any three-dimensional timelike boundary embedded around the hole must
obey. We also demonstrate the validity of the identity in other cases by explicitly applying it to several static,
non-static, asymptotically flat, and asymptotically non-flat black hole solutions. These include the asymptoti-
cally Friedmann-Robertson-WalkéfRW) solutions as well as the case of a black hole with a global monopole
charge [S0556-282(99)05616-7

PACS numbgs): 04.20.Cv, 04.20.Fy, 04.70.Dy, 97.60.Lf

The concept of a black hole horizon, ever since its birthwhere o is the determinant of the 2-metric d& K is the
with Lemaitre’s demonstration of the non-singularity of the trace of the extrinsic curvature &, andK, is a reference
Schwarzschild horizon, has played a monumental role in théerm that is used to normalize the energy with respect to a
understanding of the causal structure of several spacetimegference spacetime, not necessarily flbere, we employ
It has been associated with many general relativistic theogeometrized units, witle=1=c.)
rems and laws of import, e.g., the singularity theordis To compute the QLE for asymptotically flat solutions, we
the black hole area theorefl], and the laws of black hole il choose the reference spacetime to be Minkowski. In that
mechanics. It plays an important role in Hawking’s semmlas—wse,K0 is the trace of the extrinsic curvature of a two-

S||cal ;:alliulgt;or}ton tnht(re mp?:r?l“?ln of I?hblacrlj ![E@ﬁnﬂz'sn dimensional surface embedded in flat spacetime, such that it
aiso related to 1ts entropyr. Finaily, afthougn the NONzon i e metric toB. For asymptotically non-flat solutions, the

may not have any special significance in the frame of a freel . . - :
falling observer, to an asymptotic inertial observer it behavei%“’\’k'n.g Horowitz prescr|pt|or[£_3,9] will be employed to
determine the reference spacetime.

very much like a physical membrarsee, e.g., Ref5]). MU . .
'IYhe behavior gf%‘amilies of null geodegsics in a given For describing interactions other than gravity, one uses

spacetime determines if a horizon exists in it. Moreover, it isSéParate measures for the méssenergy of a particle and
known that the properties of such a family are affected by thd!S charge(which determines its strength of coupling to the
matter stress-tensor through the Raychaudhuri equfipn field). By contrast, in GR there is a single measure for both.
This prompts one to ask if there exists a direct characterizaln addition, the gravitational field of a particle itself contrib-
tion of the black hole horizon in terms of the quasilocal utes to its gravitational charge since it contains energy. It is
energy or gravitational “charge” of bounded regions embed-this aspect of the gravitational field that has been the main
ded in such spacetimes. To seek such a characterization witeuse of ambiguity in attempts at distinguishing charge from
be the main aim of this paper. energy in GR. However, one possibility for defining gravita-
It is well known that there are inherent difficulties in de- tional charge would be to suitably adopt the Gauss law in
fining energy in general relativityGR), essentially owing to  Newtonian gravity to the case of GRO]. For asymptoti-
its non-localizability. So far, considerable effort has been putally flat, static spacetimes, this generalization is readily
in to formulate a satisfactory definition. For quasilocal en-implemented: Let® be a timelike Killing vector field nor-
ergy, we shall here adopt the definition given by Brown andmalized in such a way that its norm approaches unity at
York [7] (BY), which can be summarized as follows: The infinity. Then, for an isolated system, the total mbbsvithin
system under consideration is a spatial three-surfice a two-surfaceB is the total force that must be exerted by an
bounded by a two-surfac® in a spacetime region that can observer at infinity on a test matter with unit surface mass
be decomposed as a product of a spatial three-surface andiansity spread o, such that each point oB follows an
real line-interval representing time. The time evolution of theorbit of a Killing vector such a$®. Then,
two-surface boundar is the timelike three-surface bound-

ary 3B. When3 is taken to intersectB orthogonally, the M :i é g.ds, o)
BY quasilocal energyQLE) is defined as ¢ 47 Jp¥
E= i j; d2xJo(K—Ko) (1) whereg=—NV(InN), N=/—t%,, and the integral is taken
87 Js o over the closed 2-surfad® The norm ofg evaluated at the

horizon gives the surface gravity of the hole. This is how

gravitational charge is intimately related to surface gravity
*Electronic address: sbhose@iucaa.ernet.in (and, therefore, the temperatui@f a black hole. Note that,
Electronic address: nkd@iucaa.ernet.in for a suitable choice of foliation of the spacetime region of

0556-2821/99/6(®)/06401Q7)/$15.00 60 064010-1 ©1999 The American Physical Society



SUKANTA BOSE AND NARESH DADHICH PHYSICAL REVIEW D60 064010

interest with spacelike hypersurfaces, one can choose a time We now prove that Eq4) can be derived from a local
coordinate such thatl plays the role of lapse function. This relation between the covariant derivative of the trace of the
is the choice that we will exercise below. extrinsic curvature of the timelike three-boundat and
The above expression can be equivalently written as  certain scalars associated with the Ricci tensor. We first
show that this relation is essentially a consequence of a
1 % e Gauss-Codacci embeddability condition 8B, which is au-
Mc=—5= P €apcdV t", 3 ; iofi i
87 Jg tomatically satisfied because of the assumption that
the boundary®B is embeddable in the spacetime. Below,

wheree,pq is the volume element on the spacetime. It is inWe explicitly state the assumptions under which the proof
fact the Komar masfl1]. Equation(3) defines a conserved holds. Later we will consider various other examples of
(both in space and tim@ravitational charge when the space- black hole spacetimes, not necessarily static or asymptoti-
time is vacuum and admits a timelike Killing vector. When cally flat, for which the identity(4) is valid. N
either of these conditions is relaxell,, depends upon the  The first relation we require is the decomposition of the
location of B. In such a case it describes tiggiasilocal four-dimensional4D) Ricci scalar into spatial and timelike
charge associated with the spatial volume bounde@by  components

It is clear from the above definition of gravitational
charge that it is the lapse function that determines it. On the
other hand QLE is not at all sensitive to it and is insteaq,vhere

determined entirely by the spatial metric. Hence, the meagqma| with unit norm(We shall follow the conventions of
sures of quasilocal charge and energy will, in general, b&ef [15]) The Gauss-Codacci relation for the projection of
different. In what follows, by the energy and charge of aye Riemann tensor ontdB gives for the first term on the
spacetime region, we shall mean the gravitational q“aS”OCEtht-hand sidgRHS) above

energy and chargéreferences to the electric or magnetic

charge of that region will be made explicitly VMVY“BRWV;FR—@ZﬁL 0,,0", (6)
Dadhich[12,13 has recently proposed a novel energetics

characterization of the horizon of a black hole in asymptoti-whereR is the 3D Ricci scalar associated witB and® is

cally flat, spherically symmetric statiSSS spacetimes. He its extrinsic curvature. On using the Ricci identity,

proposed that its location is at that curvature-radiysat RW,,Bn3=2V[MVa]nV, the second term on the RHS of Eq.

which the following identity holds: (5) gives

R=y*"y*BR st 20*N"R,,,, (5)

Yuv IS the 3-metric on®B and n, is its spacelike

Ey—E.=M,,, (4) n“n*R,,=02-0,,04+V (On“+b*),  (7)

whereE,, is the QLE at the horizorE., is the total energy of Whereb*=n"V,n*. Using Eqs(7) and(6) in the decompo-
the spacetime, an,, is the value of the gravitational Sition formula(s), we obtain

charge,M., at the horizon. The physical interpretation of b >

this identity is as follows. The gravitational charge essen- Vu(On“+bH)+R=R=N"N"R,,, . ®)

tially defines the strength of the leading Newtonian potentialpis is the essential relation we will require below.
In the Newtonian sense, therefore, it measures the strength OPWe now formulate a condition on the matter distribution

the gravitational pull exerted by a body. On the other handthat is required for the identity, E¢4) to hold in asymptoti-

as shown by Eq(1), the field energyE..—E,,, is obtained .5y flat 5SS spacetimes. L&t be a smooth hypersurface
completely from the spatial part of the metric. Its signifi- yansyerse to the timelike Killing vector field, such that it
cance can be seen by noting that it Is rela_ted tp th_e SPaligfasses through the bifurcation surfaégeof the horizon. Let
conformal fa_ctor(see, €.9., Refl14]) th"?‘t arises n h|gher. ‘H. be a smooth, one parameter family of surface’ ithat
post—.NeWtonlan orders in 'the expansion .Of .the Spacet'mgpproacHH ase—0. We restrict our attention to the space-
metric around a non-rotating matter distribution. It, there'ti{ne region exterior to théouted horizon and foliate it with
fore, measures the amount of curvature of space due to thg one-parameter family of spacelike hypersurfasas,such

distribution in the sense that the spatial components of thﬁwat for any value of, the leafS, bears the properties &f
Riemann curvature tens@up to post-Newtonian ordgare Let U2 be a unit timeI’ike normaltt(E. Then t= N wheré

determined by it. Also, in the specific case of the Schwarz;

. . . . N is the lapse function. We shall assume that the following
C.h'ld spacetime, ngh|c[81] has argued that the gravita- condition on the Ricci tensor holds in the spacetimes of in-
tional field energy is related to the curvature of space. Th

above identity implies that the horizon is a surface where th‘(i.ereSt

magnitude of the gravitational field energy equals the gravi- UEUPR. = R—n*n"R 9)
tational charge. e rr

The BY quasilocal energyl) does not depend on the which is obeyed by the Kerr-Newman family of spacetimes.
choice of coordinates on the quasilocal two-surf&elt,  |f we assume that the Einstein field equations hold, then this
however, depends on the choice of the foliation Bnitself. condition translates to
Hence, as we show below, the above idenfityholds only
for specific foliations of such spacetimes. T,,(u*u”+n#n”)=0, (10
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wheren* is the unit normal t@ such that they both lie ikx.

This condition constrains the type of matter allowed to exist

in the spacetime outside the horizon. The need for such
condition can be understood by the fact that the ideritlly

is not expected to hold for additions of arbitrary matter field

distributions outside the horizon since it can akgr. With
this assumption, Eq8) becomes

V,(On*+b*) =uru'R,,,—R. (11)

Thus, the vector field @ n*+b#] fails to be divergenceless

PHYSICAL REVIEW D60 064010

J d*x\/—gV ,(@n*+Db*)
H

€

a

f d?x\JoN©®
(92’}-‘ P

= f dzx\/;N K— f dzx\/;N nMa“, (15
ﬁEHE ’727'[5

where we used the identity

in the presence of a non-vanishing RHS, which acts as its

source.

O=0i+(05+0%)=—na"+K, (16)

We consider spacetimes that are asymptotically flat. This
imposes a condition on the fall-off behavior of the metric which holds here since the spacelike norméiis orthogonal

components at spatial infinity. Note that the metric of any
SSS spacetime can be written as
ds?=—N2dt>+ X" 2dr2+r?(d#?+sirfede?), (12

whereN and\ are dependent ononly. This line element is
particularly suited to the choice of foliation above, in the
sense that,, is just at=const hypersurface. Also note that if
the two-boundaryB is taken to be a sphere of constant
curvature-radius, on any3,;, then evolving the points on it
along the orbits of the Killing field® will generate a three-
boundary®B that is orthogonal t& ; wherever they meet. By

asymptotic flathess, we shall mean thahas the following
fall-off behavior:

A—=1+Nr 14+ 0(r?), (13
asr—o. Here,\; is anr-independent constant.

Let X,,_denote the region on 2-type hypersurface that
is bounded from the “interior” byH, and from the “exte-
rior” by a two-sphere at infinity. We multiply both sides of

Eq. (11) by the lapseN and integrate over the volume of
EHE' After a simple rearrangement of terms, we get

J d3X\/—gVM(®n“+b“)+J2 d®xvV—gR
EHG HG

d®xhR , ukt,

g,

14

whereh is the determinant of the three-metric EJ%E- The

to u“ at the intersection off, with 3B [7]. Above, a*
=u"V, u* is the acceleration of the timelike hypersurface
normalu®. The result(15) is a difference of two terms. The
first term is 87 times the unreferenced quasilocal nfass
[16,7] evaluated at infinity minus the unreferenced quasilocal
mass evaluated ne&t. The second term, when divided by
44, is the difference between the Komar mass at infinity and
the Komar mass dki, .

The second term on the LHS of E¢l4) can be inter-
preted as follows. SincéB is the time evolution of a two-
sphere embedded D, its line element is given by Eq12)
with r=rq, whererg is a constant. Thus, we har= 2/r§
on 3B. Hence

f d3x\/—_gR=87er droN(ro)/N(rg).  (17)
2716 T,

Assuming the integrability of the integrand in the RHS above
ensures thalN(r)dr/\(r) is an exact differential o, say,
equal todf(r). Then the above result is equal to

877] drdf(r)/dr=87-rf(r)|$“H . (19
I‘HE €

On 3, supposeN(r)/A(r) approaches unity when—o and
whenr—r,,. Thenf(r)—r in these two neighborhooddn
fact, for spherically symmetric electrovac spacetimes, the
Einstein field equations ensure that &n we haveN(r)

=\ (r) on solutions, for alf. Hence, the above assumptions
are met therd. In such a caseR=dKy/dr, where K,
—2Ir is the trace of the extrinsic curvature of a two-sphere
when embedded isometricallyith respect toB embedded

term on the RHS is the simplest to interpret. When dividedin X in the black hole spacetimé aflat spatial slice. Then,
by 4, it is just the Komar mass and, therefore, contributescombining the above results, E.7) can be reexpressed as

(EW—MHE), whereMHe is the gravitational charge &t..
Here, we have implicitly used the fact tHat=(M.)... This

is justified since at spatial infinity both these quantities can

be identified with the on-shell Hamiltoniafwith the lapse
tending to unity.

The first term on the left-hand sid&HS) of Eq. (14)
yields

f d*/~gR=8mr|; f d?x\oK,y. (19
EHE € ﬁEHE

1see Eq(26) below for a discussion of this concept.
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If the spacetime is asymptotically flat, then 4#/&8mes the on a single leaf}, of the foliation. We now show that the
RHS above is the appropriate term to be added to the unreproof can be strengthened such that the identity is applicable
erenced Brown-York quasilocal energy to obtain ther- even in situations where contributions from the neighbor-

malized physical QLE. hood of H, namely,E,, and M,,, are evaluated on a leaf
Using the above results in E¢L4), we obtain different from the one on whick., is computed. To see that
this generalization holds, let us construct the boundBy
= 2o (NK—Kg)=E..— My, . (20 such thatt® always lies on it. Define
8w a2y €
— 1 2 \/— )
In the limit of the interior two-surfacel{., approaching ar- t= ﬁde xVoKut,. (24)

bitrarily close toH, the above equation implies
Then the law of conservation for the matter stress tensor

1 . .
lim —|  d%Jo(NK=Kg)=E.—M,, (21) implies[7]
8’77' ‘72715

e—0
whereM, is the Komar mass at. The LHS above is the ~ Q2N °B)~ Q2N °B)=— LBd3xJ—_yT””thv,
difference of contributions from a two-sphererat> and (25)
from a two-sphere arbitrarily close #4. As one approaches
H alongZ, the lapseN vanishes. For SSS spacetim@®),  which is zero when the source terfit”n,t, vanishes. In
evenK= —2\/r vanishes on such a surface. Thus, the consuch a case,
tribution from this surface is purely due to the reference term

Ko and is defined by the following limiting procedure: 1
—Qt:—f d2x+\/oNK, (26)
8 B
. . o — (NK=Kp)
Ex=Ilim EHEEhmJ d x\/EB—
€0 =0/ e ™ which is conserved under diffeomorphisms along the orbits

K of t2 on 3B: it is termed as the quasilocal mass of the sys-

S ”mJ dZX\/;_O, (22)  tem. Moreover, wherB is a sphere of constant curvature-

e—0J He 8m radius in SSS spacetimes, then the above equation implies
which is just the QLE at that surface. Let us analyze the —Q;=NE, (27)
contribution from the boundary term at spatial infinity. Note
that by an earlier assumption we haMé\—1 asr—>.  for N is independent of the coordinates Bn Finally, since
Thus,NK= —2\?/r asr—. However\ obeys the fall-off  the norm oft? is fixed along its integral curves, the quasilo-
condition(13). Consequently, the contribution to the LHS of ¢g] energ)E is constant orB. This completes the generali-

Eq. (21) from infinity is zation of our proof. We can, therefore, state our result in the
1 form of the following theorem:
lim _J' d2x NK—Kg)=2\,=2E. . 23 _ For asymptotlcally flat, spherically symmetric static _solu-
e 8B \/;( o) ! @3 tions of GR, if the matter stress tensor obeys @) and if,

on a constant Killing-time hypersurface, the raf¢r)/\(r)
Hence, the LHS of Eq(21) is equal to E,—E;,. With is integrable and approaches unity?tand ati®, then the
these simplifications Eq21) itself reduces to the required identity, Eq. (4), is obeyed, and is implied by the Gauss-
identity, Eq.(4). Codacci condition Eq(11).

Note that we have nowhere assumed the spacetime to be aWe now specifically compute the quasilocal quantities
solution of general relativitjexcept in interpreting the con- that appear in Eq(4) for the Reissner-Nordstno (RN)
dition on the Ricci tensor, Eq9), in terms of the constraints spacetimes and show that the identity is obeyed. The corre-
posed on the matter stress terjsbtowever, the association sponding metric and the electromagnetic field can be given
of K with the quasilocal energy has a nice justificatj@B] as(see, e.g.[17])
provided the quasilocal two-surfageis taken to be embed-

ded in such a solution. TheiE is just the on-shell Hamil- dr? sirfe
tonian with the lapse set equal to 1. d52=[C(,Zr—CrZ(,](A—r+ A, ]
The spatial volume of integration in E¢L4) could have
been limited to a different or smaller region Bf In such Ay[C,dt—Z,de]?~ A[Cydt—Z,de]?
cases, interpreting the surface terms on the LHS of(E4). + [CyZ,—C,Z,] '
as QLE is not always possible. In that sense the horizon and
the spatial infinity are very special locations for evaluating (283
these terms. 20
In the above proof it is assumed that the quantifigs, _ % _ -
M,,, andE.., which appear in the identiti4), are evaluated F="12 dr/\dt=2Psinod6/\dg, (280
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where Q and P are the electric and magnetic monopole M + @2/t + M a2/4r2
charges, respectively, of the hole. Alseandr are the cur- M= YRR (35
vature coordinates. 1+M/r+al4r

The electromagnetic stress tensor is _ o _
Hence, the relatiori4) once again gives théuten horizon

87Tap=(E*+B){0f 0+ 0 o)+ 0 wf? to be atr = a/2, showing that it is valid for isotropic coordi-
(1) (1) nates as well.
@i oy}, (29 It is interesting to note that the two cas€¥=0=P and

Q?+P2=M?, characterize conservation of charge and en-
ergy, respectively. The former is a special case of RN space-
times; it corresponds to the Schwarzschild black hdle (
0 Ar —0=P time. In thi th itational ch
0= \/=—=———{C,dt—Z,de], =0=P) space ime. In this case, the gravitational charge
C obeysM =M. It is a conserved quantity: the value Mdf. is
independent of the leak, or even the location of a two-

whereE=Q/r? andB=P/r? and the tetrad of forms are

By
N
ol
N

ES

r— “r

(1y_ ngr—Cngd 20 surfaceB (lying outside the horizonon which it is evalu-
w A, r (303 ated. The latter case describes an extremal RN black hole
spacetime. It follows from the above expressions for QLE
C,Z,—C,Z, and gravitational charge that the ident{#) holds even for
@)= ——xsingdo, such spacetimes. For an extremal hole it follows from Eq.
0 (34) thatE=M everywhere, implying that it is a conserved
\/T quantity in the above sense. It also means that there is no
(3)— “force” to drive the collapse of dispersed matter distribu-
® c,Z-C.Z, [C,dt—Z,de]. (30b) tions 18],
) The difference between gravitational charge and QLE can
For RN spzacetlzmeﬁi(, 1,C=0, Z,=r% Z,=0, A,=r be appreciated by considering the particular case of the RN
—2Mr+Q°+P%, andA )= sireo, whereM is the mass of the spacetimes. Note that the gravitational charge is determined
spacetime. o by the “gravitational charge density” defined as
The Ricci tensor is given by
Rap=87Tap, (31 =To—Ti=(14m)R , 0, (36)
which is just Einstein’s equation faR=0. It is clear from Whereu,u*=—1 andi is a space index. This should be
Eq. (29) that dlstlngmshed from the matter-energy density, whlchT&
=p. In the case of the RN black hole=(Q?+ P?)/2r4,
TR, = —THT'R,, (32  Wwhile p;=(Q*+P?)/r. In the Newtonian approximation,

the QLE,E(r), is the sum of matter energy density plus the

which is the conditior(9). Moreover, the metri¢28a, when  (gravitational and electromagnetigotential energy required
applied to RN spacetimes, has the same form as(Eg.  to build a ball of fluid by bringing its constituents together
Hence the proof presented for SSS spacetimes remains valithm a boundary of radius Furthermore, the contribution to
in this case. E(ro) from the regionr>r, is equal to Q%+ P?)/2r,

The characterizing relationd) should hold good in all which is due to the electromagnetic field, plasM?/2r,
coordinate systems for which the spacelike hypersurfaceghich is due to gravity. Hence the energy enclosed by the
corresponding to constant coordinate-time folitand spa-  region isM — ((Q?+ P?)/2r,— M?/2r,). This is whatE is, as
tial infinity in a manner identical to the curvature coordi- given by Eq.(34) (with r =r there, in the first approxima-
nates. Let us in particular verify it for an electrically chargedtion.
hole in isotropic coordinates. The metric in these coordinates It would be interesting to explore if the identity) is
is valid for the Kerr-Newman spacetimes, at least for certain

) choices of spacetime foliations and quasilocal two-

1— a?/4r? 5 e 2 boundaries. Unfortunately, in this case the exact expressions
ds*=— o2 | T AFMIr+atlart) for QLE are not available, except when the two-boundary is
1+ —+-— taken to be at spatial infinity. However, Martinfx9] has
rooar evaluated QLE for constant stationary time Kerr slices
X[dr2+r2(d6?+sirfade?)], (33  bounded by different types of two-boundaries in tlew

rotation approximation. The status of our identity in this ap-
where a?=M?2-Q?%—P2. For the metric(33), the energy Proximate case is being studi¢2o].

and charge expressions are In reality a black hole always sits in a cosmological back-
ground. It is therefore desirable to consider a black hole
E=M+a?/2r (34 spacetime that is non-statiexpanding and asymptotically
Friedmann-Robertson-WalkertFRW-) type. Just as we
and proved the identity(4) generically for asymptotically flat
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SSS spacetimes earlier, one can similarly prove it to hold foe=1, k=0, we recover the gravitational chargg4) (with
certain asymptotically non-flat spacetimes as \W&ll. Here, P=0) in the isotropic coordinates.
we will briefly demonstrate its validity for some of these  Yet another case of applicability of the identii), is an
spacetimes. Consider the solution describing an asymptot8SS black hole spacetime with a global monopole charge in
cally FRW, electrically and magnetically charged black holeit [23,24,27. The metric for the spacetime dual to the
[21,22: Schwarzschild black hole incorporating global monopole
, charge is given by
ds’=— F—Zdt2+ S(t)2G?H [ dr?+r?(d6?+siPod¢?)] 2M) 1
G dt2+(1—877772— T) dr?

2M
d32= —(1—8777]2— T

(37)
where +r2(de?+sirfode?), (42)
F=1—Ha?/(4r?s?), (383 where 7 represents the global monopole charge. Settjng
=0 yields the Schwarzschild solution. The event horizon is
H=1+kr%/4, a?=M?—Q%—P?, (38  atr=2M/(1-8w7?). The physical effects of global mono-
pole charge have been studied in R¢4,25. The space-
G=1+HYM/(rS)+Ha?/(4r?s?), (389  time is not vacuum and is asymptotically non-flaé]. But it

is a solution of the electrogravity-dual vacuum equafidn.
wherek=*=1,0, is the space curvature parameter 8 is  The QLE, on a foliation comprising df= constant hypersur-
the scale factor. Above, we have chosen to write the metri¢aces, in the above spacetime is
in isotropic coordinates, which in this case also happens to
be comoving.
The QLE in these asymptotically FRW spacetimes is ob- E=r
tained by using Eq(1), with the corresponding FRW space-

time (where M=0=Q=P) chosen as the reference. It is \here the Hawking-Horowitz prescriptid8] mentioned be-
evaluated for the foliation comprising of constant hyper-  fore was used to compute the reference contribution(af
surfaces. This gives for the QLE — 8w 7% 2 above. The reference spacetime in this case turns
, out to be non-flat; rather it is the dual-flat solution in the
E(r)=-SrG'/H, (39) same sense as the metfid2) is dual-vacuum. HereE,,
=M(1-8w7?) Y2 E,=2E.. The gravitational charge is
M¢(r—=)=E.. Again it is straightforward to show that
Eq. (4) will define the location of the horizon.
E=MH 32+ o2/(2rSH), (40) In our discussions above of black hole solutions that are
asymptotically FRW or that have a global monopole charge,
whereH and « are defined above. Hefe(x)=MH %2 as  we have demonstrated that our identit) is applicable to
rS—o. When we switch off the expansion, i.e., s8t non-static as well as asymptotically non-flat cases. The de-
=const, we get the energy for an electrically and magnetitails of the derivation of this identity for such spacetimes
cally charged black hole in the Einstein universe. Bor from a requirement of the type8), will be given elsewhere
=1, k=0, we recover the energ$4) in the isotropic coor-  [20].
dinates. Thus, the above expression has the expected staticNote that the identity4) has the following implication on
limit. the non-attainment of extremality. The particular expression
Obtaining the gravitational charge for such non-staticfor the gravitational charge of a black hold,, = («/4m)A,
spacetimes is more subtle. Here we adopt a suitable gengielates it to the surface gravity (and, therefore, the tem-
alization of Eq.(2). In that equation, we identify the lapse Perature of the hole. Here\is area of the horizon. The third
function asN= \/__gtt, Wheret iS now the Comoving t|me law of blaCK hOle dynamiCS states that it is ImDOS.SIkl)le to
coordinate in the metri€37). Such a choice is motivated by reduce gravitational charge of a hole to zero by a finite se-
the fact that ak—0 and S—1, the above cosmological duence of physical procesdds]. In view of the relatior(4),
metric (37) approaches the SSS met(@3). Consequently, We could as well say that the magnitude of the field energy,
the comoving time gets identified with the Killing time of the |E=—Ez| cannot be reduced to zero in a finite sequence of

resulting static solution. Then, the gravitational charge inPhysical interactions. Since the surface gravity of the RN
such a spacetime is given by hole is zero in the extremal limitVi?=Q?+ P2, the field

energy is also zero in this case, which implies that an ex-

M.=a?/2rSH+(MH %+ a?/2rSH)F/G.  (41)  tremal hole can never be formed from the collapse of dis-

persed matter solutions. Similarly, a non-extremal hole can

Note thatM () =E..=MH %2 and Eq.(4) again defines never turn extremal, say, due to infalling charged matter.

the horizon atrS=aHY%2. Thus the black hole character- Recent quantum field theoretic and topological consider-
ization (4) holds good for an electrically charged black hole ations seem to suggest that the converse may also be true,

sitting in an FRW expanding universe. Note that f8r i.e., extremal RN holes may also be prevented from turning

. 43

1/2
(1—877772)1/2—(1—877772—7)

in the isotropic gauge. Using the expression @given in
Eq. (383, we get
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into non-extremal one¢see Refs[8,28]). In that case the Finally, it is always welcome to gain some insight into the
extremal and non-extremal holes would be analogous to padifficult and ambiguous concept of energy in GR. Most of
ticles of zero and non-zero mass, respectively, where thehe definitions refer to a quasilocal energy, which generally
gravitational charge acts as a nice analogue of i3 includes contribution of the matter energy density, while
We observe that theorizontbased quantity;,— M) is  gravitational charge is essentially defined through the Komar
the analogue of the internal energy of the whole spacetimgtegral or its generalizations. The latter is related to the
(up to the addition of an exact fojrn the thermodynamical  formulation of the Gauss law for stationary spacetirfe.
laws of static black holes. This is because itself has the  Here we have extended the application of these constructs to
interpretation of beujg the thermodynamical internal energy,qn_static and asymptotically non-flat spacetimes as well.
of the whole spacetimgr]. Although we demonstrated that our identi8) is applicable

h Ilt was ﬁ”O.W” irhoar; t.hi. formt;laﬂotn .Of the I?.‘;\.'S of tb[[?]Ck to these cases, after suitably adapting the Komar inté¢gyal
o'e mechanics ariations ot certain quantiies at tn€ ¢, ;0 examples, we did not derive it from an “em-

harizon and at |nf|_n|ty are related. Here, we have Shown.t.haﬁeddability” condition of the type(8). Moreover, even
a non-variational identity relating some of these quantities

also exists in general relativity. In the past, lyer and WaldWhere we proved the identity, our con;ideration was limited
have also explored similar possibiliti¢29]. These authors essentially to eterpal black hole spacetimes, where t_he appar-
generalized the definition of the BY quasilocal mass to s&€nt and event horizons overlapped. To be astrophysically rel-
more general class of diffeomorphism invariant LagrangiarfVant, however, one must deal with the case of isolated ho-
theories of gravity. One of the results of their work is that as'iZzons[30]. Generalization of the proof for the applicability
one approaches close 16 along a smooth hypersurfads of an identity of the typd4), to other black hole spacetimes,
which is transverse to the Killing timé, the Noether charge and to the case of isolated horizons, is presently under con-
associated witht® approaches twice the boundary terms inSideration[20].

the gravitational actioriwhich in turn depend on the choice
of boundary conditions imposed on the dynamical fields
Our identity is similar in spirit to(but different in content
from) this relation. We are currently studying the possibility
of an identity similar to Eq(4) existing in similar Lagrang-
ian theories of gravity.
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