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Brown-York quasilocal energy, gravitational charge, and black hole horizons

Sukanta Bose* and Naresh Dadhich†
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~Received 28 September 1998; published 16 August 1999!

We study a recently proposed horizon defining identity for certain black hole spacetimes. It relates the
difference of the Brown-York quasilocal energy and the Komar charge at the horizon to the total energy of the
spacetime. The Brown-York quasilocal energy is evaluated for some specific choices of spacetime foliations.
With a certain condition imposed on the matter distribution, we prove this identity for spherically symmetric
static black hole solutions of general relativity. For these cases, we show that the identity can be derived from
a Gauss-Codacci condition that any three-dimensional timelike boundary embedded around the hole must
obey. We also demonstrate the validity of the identity in other cases by explicitly applying it to several static,
non-static, asymptotically flat, and asymptotically non-flat black hole solutions. These include the asymptoti-
cally Friedmann-Robertson-Walker~FRW! solutions as well as the case of a black hole with a global monopole
charge.@S0556-2821~99!05616-7#

PACS number~s!: 04.20.Cv, 04.20.Fy, 04.70.Dy, 97.60.Lf
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The concept of a black hole horizon, ever since its bi
with Lemaitre’s demonstration of the non-singularity of t
Schwarzschild horizon, has played a monumental role in
understanding of the causal structure of several spaceti
It has been associated with many general relativistic th
rems and laws of import, e.g., the singularity theorems@1#,
the black hole area theorem@2#, and the laws of black hole
mechanics. It plays an important role in Hawking’s semicl
sical calculation on the evaporation of a black hole@3# and is
also related to its entropy@4#. Finally, although the horizon
may not have any special significance in the frame of a fre
falling observer, to an asymptotic inertial observer it beha
very much like a physical membrane~see, e.g., Ref.@5#!.

The behavior of families of null geodesics in a give
spacetime determines if a horizon exists in it. Moreover, i
known that the properties of such a family are affected by
matter stress-tensor through the Raychaudhuri equation@6#.
This prompts one to ask if there exists a direct character
tion of the black hole horizon in terms of the quasiloc
energy or gravitational ‘‘charge’’ of bounded regions embe
ded in such spacetimes. To seek such a characterization
be the main aim of this paper.

It is well known that there are inherent difficulties in d
fining energy in general relativity~GR!, essentially owing to
its non-localizability. So far, considerable effort has been
in to formulate a satisfactory definition. For quasilocal e
ergy, we shall here adopt the definition given by Brown a
York @7# ~BY!, which can be summarized as follows: Th
system under consideration is a spatial three-surfaceS
bounded by a two-surfaceB in a spacetime region that ca
be decomposed as a product of a spatial three-surface a
real line-interval representing time. The time evolution of t
two-surface boundaryB is the timelike three-surface bound
ary 3B. When S is taken to intersect3B orthogonally, the
BY quasilocal energy~QLE! is defined as

E5
1

8p R
B
d2xAs~K2K0!, ~1!
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wheres is the determinant of the 2-metric onB, K is the
trace of the extrinsic curvature ofB, andK0 is a reference
term that is used to normalize the energy with respect t
reference spacetime, not necessarily flat.~Here, we employ
geometrized units, withG515c.!

To compute the QLE for asymptotically flat solutions, w
will choose the reference spacetime to be Minkowski. In t
case,K0 is the trace of the extrinsic curvature of a tw
dimensional surface embedded in flat spacetime, such th
is isometric toB. For asymptotically non-flat solutions, th
Hawking-Horowitz prescription@8,9# will be employed to
determine the reference spacetime.

For describing interactions other than gravity, one u
separate measures for the mass~or energy! of a particle and
its charge~which determines its strength of coupling to th
field!. By contrast, in GR there is a single measure for bo
In addition, the gravitational field of a particle itself contrib
utes to its gravitational charge since it contains energy. I
this aspect of the gravitational field that has been the m
cause of ambiguity in attempts at distinguishing charge fr
energy in GR. However, one possibility for defining gravit
tional charge would be to suitably adopt the Gauss law
Newtonian gravity to the case of GR@10#. For asymptoti-
cally flat, static spacetimes, this generalization is read
implemented: Letta be a timelike Killing vector field nor-
malized in such a way that its norm approaches unity
infinity. Then, for an isolated system, the total massM within
a two-surfaceB is the total force that must be exerted by
observer at infinity on a test matter with unit surface ma
density spread onB, such that each point onB follows an
orbit of a Killing vector such asta. Then,

Mc5
1

4p R
B
g.ds, ~2!

whereg52N¹(ln N), N5A2tata, and the integral is taken
over the closed 2-surfaceB. The norm ofg evaluated at the
horizon gives the surface gravity of the hole. This is ho
gravitational charge is intimately related to surface grav
~and, therefore, the temperature! of a black hole. Note that
for a suitable choice of foliation of the spacetime region
©1999 The American Physical Society10-1



tim
s

in
d
e-
n

al
th
a
ea
b
a
c

tic

ic
ti

l
of
en
ia
th
nd

fi-
at

im
re
th
th

rz
-
h
th
v

e

l
the

rst
f a

hat
w,
oof
of

toti-

he

f
of

y,
q.

n

e

e-

ing
in-

s.
this

SUKANTA BOSE AND NARESH DADHICH PHYSICAL REVIEW D60 064010
interest with spacelike hypersurfaces, one can choose a
coordinate such thatN plays the role of lapse function. Thi
is the choice that we will exercise below.

The above expression can be equivalently written as

Mc52
1

8p R
B
eabcd¹

ctd, ~3!

whereeabcd is the volume element on the spacetime. It is
fact the Komar mass@11#. Equation~3! defines a conserve
~both in space and time! gravitational charge when the spac
time is vacuum and admits a timelike Killing vector. Whe
either of these conditions is relaxed,Mc depends upon the
location of B. In such a case it describes thequasilocal
charge associated with the spatial volume bounded byB.

It is clear from the above definition of gravitation
charge that it is the lapse function that determines it. On
other hand QLE is not at all sensitive to it and is inste
determined entirely by the spatial metric. Hence, the m
sures of quasilocal charge and energy will, in general,
different. In what follows, by the energy and charge of
spacetime region, we shall mean the gravitational quasilo
energy and charge~references to the electric or magne
charge of that region will be made explicitly!.

Dadhich@12,13# has recently proposed a novel energet
characterization of the horizon of a black hole in asympto
cally flat, spherically symmetric static~SSS! spacetimes. He
proposed that its location is at that curvature-radius,r, at
which the following identity holds:

EH2E`5MH , ~4!

whereEH is the QLE at the horizon,E` is the total energy of
the spacetime, andMH is the value of the gravitationa
charge,Mc , at the horizon. The physical interpretation
this identity is as follows. The gravitational charge ess
tially defines the strength of the leading Newtonian potent
In the Newtonian sense, therefore, it measures the streng
the gravitational pull exerted by a body. On the other ha
as shown by Eq.~1!, the field energy,E`2EH , is obtained
completely from the spatial part of the metric. Its signi
cance can be seen by noting that it is related to the sp
conformal factor~see, e.g., Ref.@14#! that arises in higher
post-Newtonian orders in the expansion of the spacet
metric around a non-rotating matter distribution. It, the
fore, measures the amount of curvature of space due to
distribution in the sense that the spatial components of
Riemann curvature tensor~up to post-Newtonian order! are
determined by it. Also, in the specific case of the Schwa
child spacetime, Dadhich@31# has argued that the gravita
tional field energy is related to the curvature of space. T
above identity implies that the horizon is a surface where
magnitude of the gravitational field energy equals the gra
tational charge.

The BY quasilocal energy~1! does not depend on th
choice of coordinates on the quasilocal two-surfaceB. It,
however, depends on the choice of the foliation andB itself.
Hence, as we show below, the above identity~4! holds only
for specific foliations of such spacetimes.
06401
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We now prove that Eq.~4! can be derived from a loca
relation between the covariant derivative of the trace of
extrinsic curvature of the timelike three-boundary3B and
certain scalars associated with the Ricci tensor. We fi
show that this relation is essentially a consequence o
Gauss-Codacci embeddability condition on3B, which is au-
tomatically satisfied because of the assumption t
the boundary3B is embeddable in the spacetime. Belo
we explicitly state the assumptions under which the pr
holds. Later we will consider various other examples
black hole spacetimes, not necessarily static or asymp
cally flat, for which the identity~4! is valid.

The first relation we require is the decomposition of t
four-dimensional~4D! Ricci scalar into spatial and timelike
components

R5gmngabRmanb12nmnnRmn , ~5!

where gmn is the 3-metric on3B and nm is its spacelike
normal with unit norm.~We shall follow the conventions o
Ref. @15#.! The Gauss-Codacci relation for the projection
the Riemann tensor onto3B gives for the first term on the
right-hand side~RHS! above

gmngabRmanb5R2Q21QmnQmn, ~6!

whereR is the 3D Ricci scalar associated with3B andQ is
its extrinsic curvature. On using the Ricci identit
Rmanbnb52¹ [m¹a]nn , the second term on the RHS of E
~5! gives

nmnnRmn5Q22QmnQmn1¹m~Qnm1bm!, ~7!

wherebm[nn¹nnm. Using Eqs.~7! and~6! in the decompo-
sition formula~5!, we obtain

¹m~Qnm1bm!1R5R2nmnnRmn . ~8!

This is the essential relation we will require below.
We now formulate a condition on the matter distributio

that is required for the identity, Eq.~4! to hold in asymptoti-
cally flat SSS spacetimes. LetS be a smooth hypersurfac
transverse to the timelike Killing vector fieldta, such that it
passes through the bifurcation surfaceH of the horizon. Let
He be a smooth, one parameter family of surfaces inS that
approachH ase˜0. We restrict our attention to the spac
time region exterior to the~outer! horizon and foliate it with
a one-parameter family of spacelike hypersurfaces,S t , such
that for any value oft, the leafS t bears the properties ofS.
Let ua be a unit timelike normal toS. Then,ta5Nua, where
N is the lapse function. We shall assume that the follow
condition on the Ricci tensor holds in the spacetimes of
terest

umunRmn5R2nmnnRmn , ~9!

which is obeyed by the Kerr-Newman family of spacetime
If we assume that the Einstein field equations hold, then
condition translates to

Tmn~umun1nmnn!50, ~10!
0-2
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BROWN-YORK QUASILOCAL ENERGY, GRAVITATIONAL . . . PHYSICAL REVIEW D60 064010
wherenm is the unit normal toB such that they both lie inS.
This condition constrains the type of matter allowed to ex
in the spacetime outside the horizon. The need for suc
condition can be understood by the fact that the identity~4!
is not expected to hold for additions of arbitrary matter fie
distributions outside the horizon since it can alterE` . With
this assumption, Eq.~8! becomes

¹m~Qnm1bm!5umunRmn2R. ~11!

Thus, the vector field@Qnm1bm# fails to be divergenceles
in the presence of a non-vanishing RHS, which acts as
source.

We consider spacetimes that are asymptotically flat. T
imposes a condition on the fall-off behavior of the met
components at spatial infinityi 0. Note that the metric of any
SSS spacetime can be written as

ds252N2dt21l22dr21r 2~du21sin2udw2!, ~12!

whereN andl are dependent onr only. This line element is
particularly suited to the choice of foliation above, in th
sense thatS t is just at5const hypersurface. Also note that
the two-boundaryB is taken to be a sphere of consta
curvature-radiusr, on anyS t , then evolving the points on i
along the orbits of the Killing fieldta will generate a three-
boundary3B that is orthogonal toS t wherever they meet. By
asymptotic flatness, we shall mean thatl has the following
fall-off behavior:

l˜11l1r 211O~r 22!, ~13!

as r˜`. Here,l1 is an r-independent constant.
Let SHe

denote the region on aS-type hypersurface tha

is bounded from the ‘‘interior’’ byHe and from the ‘‘exte-
rior’’ by a two-sphere at infinity. We multiply both sides o
Eq. ~11! by the lapseN and integrate over the volume o
SHe

. After a simple rearrangement of terms, we get

E
SH e

d3xA2g¹m~Qnm1bm!1E
SH e

d3xA2gR

5E
SH e

d3xAhR mnumtn, ~14!

whereh is the determinant of the three-metric onSHe
. The

term on the RHS is the simplest to interpret. When divid
by 4p, it is just the Komar mass and, therefore, contribu
(E`2MHe

), whereMHe
is the gravitational charge atHe .

Here, we have implicitly used the fact thatE`5(Mc)` . This
is justified since at spatial infinity both these quantities c
be identified with the on-shell Hamiltonian~with the lapse
tending to unity!.

The first term on the left-hand side~LHS! of Eq. ~14!
yields
06401
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E
SH e

d3xA2g¹m~Qnm1bm!

5E
]SH e

d2xAsNQ

5E
]SH e

d2xAsNK2E
]SH e

d2xAsNnmam, ~15!

where we used the identity

Q5Q t
t1~Qu

u1Qw
w!52nmam1K, ~16!

which holds here since the spacelike normalnm is orthogonal
to um at the intersection ofS with 3B @7#. Above, am

[un¹num is the acceleration of the timelike hypersurfa
normalum. The result~15! is a difference of two terms. The
first term is 8p times the unreferenced quasilocal mas1

@16,7# evaluated at infinity minus the unreferenced quasilo
mass evaluated nearH. The second term, when divided b
4p, is the difference between the Komar mass at infinity a
the Komar mass atHe .

The second term on the LHS of Eq.~14! can be inter-
preted as follows. Since3B is the time evolution of a two-
sphere embedded inS, its line element is given by Eq.~12!
with r 5r 0, wherer 0 is a constant. Thus, we haveR52/r 0

2

on 3B. Hence

E
SH e

d3xA2gR58pE
rH e

`

dr0N~r 0!/l~r 0!. ~17!

Assuming the integrability of the integrand in the RHS abo
ensures thatN(r )dr/l(r ) is an exact differential onS, say,
equal tod f(r ). Then the above result is equal to

8pE
rH e

`

drd f~r !/dr58p f ~r !urH e

` . ~18!

On S, supposeN(r )/l(r ) approaches unity whenr˜` and
whenr˜rH . Then f (r )˜r in these two neighborhoods.@In
fact, for spherically symmetric electrovac spacetimes,
Einstein field equations ensure that onS, we haveN(r )
5l(r ) on solutions, for allr. Hence, the above assumption
are met there.# In such a case,R5dK0/dr, where K0
522/r is the trace of the extrinsic curvature of a two-sphe
when embedded isometrically~with respect toB embedded
in S in the black hole spacetime! in a flat spatial slice. Then,
combining the above results, Eq.~17! can be reexpressed a

E
SH e

d3xA2gR58pr urH e

` 52E
]SH e

d2xAsK0 . ~19!

1See Eq.~26! below for a discussion of this concept.
0-3
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SUKANTA BOSE AND NARESH DADHICH PHYSICAL REVIEW D60 064010
If the spacetime is asymptotically flat, then 1/8p times the
RHS above is the appropriate term to be added to the un
erenced Brown-York quasilocal energy to obtain the~nor-
malized! physical QLE.

Using the above results in Eq.~14!, we obtain

1

8pE]SH e

d2xAs~NK2K0!5E`2MHe
. ~20!

In the limit of the interior two-surface,He , approaching ar-
bitrarily close toH, the above equation implies

lim
e˜0

1

8pE]SHe

d2xAs~NK2K0!5E`2MH , ~21!

whereMH is the Komar mass atH. The LHS above is the
difference of contributions from a two-sphere atr˜` and
from a two-sphere arbitrarily close toH. As one approache
H alongS, the lapseN vanishes. For SSS spacetimes~12!,
evenK522l/r vanishes on such a surface. Thus, the c
tribution from this surface is purely due to the reference te
K0 and is defined by the following limiting procedure:

EH5 lim
e˜0

EHe
[ lim

e˜0
E
H e

d2xAs
~NK2K0!

8p

52 lim
e˜0

E
H e

d2xAs
K0

8p
, ~22!

which is just the QLE at that surface. Let us analyze
contribution from the boundary term at spatial infinity. No
that by an earlier assumption we haveN/l˜1 as r˜`.
Thus,NK522l2/r asr˜`. However,l obeys the fall-off
condition~13!. Consequently, the contribution to the LHS
Eq. ~21! from infinity is

lim
r˜`

1

8pEB
d2xAs~NK2K0!52l152E` . ~23!

Hence, the LHS of Eq.~21! is equal to 2E`2EH . With
these simplifications Eq.~21! itself reduces to the require
identity, Eq.~4!.

Note that we have nowhere assumed the spacetime to
solution of general relativity@except in interpreting the con
dition on the Ricci tensor, Eq.~9!, in terms of the constraints
posed on the matter stress tensor#. However, the associatio
of K with the quasilocal energy has a nice justification@7,8#
provided the quasilocal two-surfaceB is taken to be embed
ded in such a solution. Then,E is just the on-shell Hamil-
tonian with the lapse set equal to 1.

The spatial volume of integration in Eq.~14! could have
been limited to a different or smaller region ofS. In such
cases, interpreting the surface terms on the LHS of Eq.~14!
as QLE is not always possible. In that sense the horizon
the spatial infinity are very special locations for evaluati
these terms.

In the above proof it is assumed that the quantitiesEH ,
MH , andE` , which appear in the identity~4!, are evaluated
06401
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on a single leaf,S t , of the foliation. We now show that the
proof can be strengthened such that the identity is applica
even in situations where contributions from the neighb
hood ofH, namely,EH and MH , are evaluated on a lea
different from the one on whichE` is computed. To see tha
this generalization holds, let us construct the boundary3B
such thatta always lies on it. Define

Qt[
1

8pEB
d2xAsKumtm. ~24!

Then the law of conservation for the matter stress ten
implies @7#

Qt~S t9ù
3B!2Qt~S t8ù

3B!52E
3B

d3xA2gTmnnmtn ,

~25!

which is zero when the source termTmnnmtn vanishes. In
such a case,

2Qt5
1

8pEB
d2xAsNK, ~26!

which is conserved under diffeomorphisms along the orb
of ta on 3B: it is termed as the quasilocal mass of the s
tem. Moreover, whenB is a sphere of constant curvatur
radius in SSS spacetimes, then the above equation impl

2Qt5NE, ~27!

for N is independent of the coordinates onB. Finally, since
the norm ofta is fixed along its integral curves, the quasil
cal energyE is constant on3B. This completes the general
zation of our proof. We can, therefore, state our result in
form of the following theorem:

For asymptotically flat, spherically symmetric static sol
tions of GR, if the matter stress tensor obeys Eq.~10! and if,
on a constant Killing-time hypersurface, the ratioN(r )/l(r )
is integrable and approaches unity atH and ati 0, then the
identity, Eq. ~4!, is obeyed, and is implied by the Gaus
Codacci condition Eq.~11!.

We now specifically compute the quasilocal quantit
that appear in Eq.~4! for the Reissner-Nordstro¨m ~RN!
spacetimes and show that the identity is obeyed. The co
sponding metric and the electromagnetic field can be gi
as ~see, e.g.,@17#!

ds25@CuZr2CrZu#H dr2

D r
1

sin2u

Du
J

1
Du@Crdt2Zrdw#22D r@Cudt2Zudw#2

@CuZr2CrZu#
,

~28a!

F5
2Q

r 2 dr`dt22P sinudu`dw, ~28b!
0-4
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BROWN-YORK QUASILOCAL ENERGY, GRAVITATIONAL . . . PHYSICAL REVIEW D60 064010
where Q and P are the electric and magnetic monopo
charges, respectively, of the hole. Also,t and r are the cur-
vature coordinates.

The electromagnetic stress tensor is

8pTab5~E21B2!$va
(0)vb

(0)1va
(3)vb

(3)1va
(2)vb

(2)

2va
(1)vb

(1)%, ~29!

whereE5Q/r 2 andB5P/r 2 and the tetrad of forms are

v (0)5A D r

CuZr2CrZu
@Cudt2Zudw#,

v (1)5ACuZr2CrZu

D r
dr, ~30a!

v (2)5ACuZr2CrZu

Du
sinudu,

v (3)5A Du

CuZr2CrZu
@Crdt2Zrdw#. ~30b!

For RN spacetimesCu51, Cr50, Zr5r 2, Zu50, D r5r 2

22Mr 1Q21P2, andDu5sin2u, whereM is the mass of the
spacetime.

The Ricci tensor is given by

Rab58pTab , ~31!

which is just Einstein’s equation forR50. It is clear from
Eq. ~29! that

t̂m t̂ nRmn52 r̂ m r̂ nRmn , ~32!

which is the condition~9!. Moreover, the metric~28a!, when
applied to RN spacetimes, has the same form as Eq.~12!.
Hence the proof presented for SSS spacetimes remains
in this case.

The characterizing relation~4! should hold good in all
coordinate systems for which the spacelike hypersurfa
corresponding to constant coordinate-time foliateH and spa-
tial infinity in a manner identical to the curvature coord
nates. Let us in particular verify it for an electrically charg
hole in isotropic coordinates. The metric in these coordina
is

ds252F 12a2/4r 2

11
M

r
1

a2

4r 2
G 2

dt21~11M /r 1a2/4r 2!2

3@dr21r 2~du21sin2udw2!#, ~33!

where a25M22Q22P2. For the metric~33!, the energy
and charge expressions are

E5M1a2/2r ~34!

and
06401
lid
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Mc5
M1a2/r 1Ma2/4r 2

11M /r 1a2/4r 2
. ~35!

Hence, the relation~4! once again gives the~outer! horizon
to be atr 5a/2, showing that it is valid for isotropic coordi
nates as well.

It is interesting to note that the two cases,Q505P and
Q21P25M2, characterize conservation of charge and e
ergy, respectively. The former is a special case of RN spa
times; it corresponds to the Schwarzschild black holeQ
505P) spacetime. In this case, the gravitational cha
obeysMc5M . It is a conserved quantity: the value ofMc is
independent of the leafS, or even the location of a two
surfaceB ~lying outside the horizon! on which it is evalu-
ated. The latter case describes an extremal RN black
spacetime. It follows from the above expressions for Q
and gravitational charge that the identity~4! holds even for
such spacetimes. For an extremal hole it follows from E
~34! that E5M everywhere, implying that it is a conserve
quantity in the above sense. It also means that there is
‘‘force’’ to drive the collapse of dispersed matter distrib
tions @18#.

The difference between gravitational charge and QLE
be appreciated by considering the particular case of the
spacetimes. Note that the gravitational charge is determ
by the ‘‘gravitational charge density’’ defined as

rc5T0
02Ti

i5~1/4p!R mnumun, ~36!

where umum521 and i is a space index. This should b
distinguished from the matter-energy density, which isT0

0

5r. In the case of the RN black holer5(Q21P2)/2r 4,
while rc5(Q21P2)/r 4. In the Newtonian approximation
the QLE,E(r ), is the sum of matter energy density plus t
~gravitational and electromagnetic! potential energy required
to build a ball of fluid by bringing its constituents togeth
from a boundary of radiusr. Furthermore, the contribution to
E(r 0) from the region r .r 0 is equal to (Q21P2)/2r 0,
which is due to the electromagnetic field, plus2M2/2r 0,
which is due to gravity. Hence the energy enclosed by
region isM2„(Q21P2)/2r 02M2/2r 0…. This is whatE is, as
given by Eq.~34! ~with r 5r 0 there!, in the first approxima-
tion.

It would be interesting to explore if the identity~4! is
valid for the Kerr-Newman spacetimes, at least for cert
choices of spacetime foliations and quasilocal tw
boundaries. Unfortunately, in this case the exact express
for QLE are not available, except when the two-boundary
taken to be at spatial infinity. However, Martinez@19# has
evaluated QLE for constant stationary time Kerr slic
bounded by different types of two-boundaries in theslow
rotation approximation. The status of our identity in this a
proximate case is being studied@20#.

In reality a black hole always sits in a cosmological bac
ground. It is therefore desirable to consider a black h
spacetime that is non-static~expanding! and asymptotically
Friedmann-Robertson-Walker-~FRW-! type. Just as we
proved the identity~4! generically for asymptotically flat
0-5
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SUKANTA BOSE AND NARESH DADHICH PHYSICAL REVIEW D60 064010
SSS spacetimes earlier, one can similarly prove it to hold
certain asymptotically non-flat spacetimes as well@20#. Here,
we will briefly demonstrate its validity for some of thes
spacetimes. Consider the solution describing an asymp
cally FRW, electrically and magnetically charged black ho
@21,22#:

ds252
F2

G2
dt21S~ t !2G2H22@dr21r 2~du21sin2udw2!#

~37!

where

F512Ha2/~4r 2S2!, ~38a!

H511kr2/4, a25M22Q22P2, ~38b!

G511H1/2M /~rS!1Ha2/~4r 2S2!, ~38c!

wherek561,0, is the space curvature parameter andS(t) is
the scale factor. Above, we have chosen to write the me
in isotropic coordinates, which in this case also happen
be comoving.

The QLE in these asymptotically FRW spacetimes is
tained by using Eq.~1!, with the corresponding FRW space
time ~where M505Q5P) chosen as the reference. It
evaluated for the foliation comprising oft5constant hyper-
surfaces. This gives for the QLE

E~r !52Sr2G8/H, ~39!

in the isotropic gauge. Using the expression forG given in
Eq. ~38a!, we get

E5MH23/21a2/~2rSH!, ~40!

whereH anda are defined above. HereE(`)5MH23/2 as
rS˜`. When we switch off the expansion, i.e., setS
5const, we get the energy for an electrically and magn
cally charged black hole in the Einstein universe. ForS
51, k50, we recover the energy~34! in the isotropic coor-
dinates. Thus, the above expression has the expected
limit.

Obtaining the gravitational charge for such non-sta
spacetimes is more subtle. Here we adopt a suitable ge
alization of Eq.~2!. In that equation, we identify the laps
function asN5A2gtt, where t is now the comoving time
coordinate in the metric~37!. Such a choice is motivated b
the fact that ask˜0 and S˜1, the above cosmologica
metric ~37! approaches the SSS metric~33!. Consequently,
the comoving time gets identified with the Killing time of th
resulting static solution. Then, the gravitational charge
such a spacetime is given by

Mc5a2/2rSH1~MH23/21a2/2rSH!F/G. ~41!

Note thatMc(`)5E`5MH23/2 and Eq.~4! again defines
the horizon atrS5aH1/2/2. Thus the black hole characte
ization ~4! holds good for an electrically charged black ho
sitting in an FRW expanding universe. Note that forS
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51, k50, we recover the gravitational charge~34! ~with
P50) in the isotropic coordinates.

Yet another case of applicability of the identity~4!, is an
SSS black hole spacetime with a global monopole charg
it @23,24,27#. The metric for the spacetime dual to th
Schwarzschild black hole incorporating global monopo
charge is given by

ds252S 128ph22
2M

r Ddt21S 128ph22
2M

r D 21

dr2

1r 2~du21sin2udw2!, ~42!

whereh represents the global monopole charge. Settingh
50 yields the Schwarzschild solution. The event horizon
at r 52M /(128ph2). The physical effects of global mono
pole charge have been studied in Refs.@24,25#. The space-
time is not vacuum and is asymptotically non-flat@26#. But it
is a solution of the electrogravity-dual vacuum equation@27#.
The QLE, on a foliation comprising oft5constant hypersur-
faces, in the above spacetime is

E5r F ~128ph2!1/22S 128ph22
2M

r D 1/2G , ~43!

where the Hawking-Horowitz prescription@8# mentioned be-
fore was used to compute the reference contribution ofr (1
28ph2)1/2 above. The reference spacetime in this case tu
out to be non-flat; rather it is the dual-flat solution in th
same sense as the metric~42! is dual-vacuum. Here,E`

5M (128ph2)21/2, EH52E` . The gravitational charge is
Mc(r˜`)5E` . Again it is straightforward to show tha
Eq. ~4! will define the location of the horizon.

In our discussions above of black hole solutions that
asymptotically FRW or that have a global monopole char
we have demonstrated that our identity~4! is applicable to
non-static as well as asymptotically non-flat cases. The
tails of the derivation of this identity for such spacetim
from a requirement of the type~8!, will be given elsewhere
@20#.

Note that the identity~4! has the following implication on
the non-attainment of extremality. The particular express
for the gravitational charge of a black hole,MH5(k/4p)A,
relates it to the surface gravityk ~and, therefore, the tem
perature! of the hole. HereA is area of the horizon. The third
law of black hole dynamics states that it is impossible
reduce gravitational charge of a hole to zero by a finite
quence of physical processes@18#. In view of the relation~4!,
we could as well say that the magnitude of the field ener
uE`2EHu cannot be reduced to zero in a finite sequence
physical interactions. Since the surface gravity of the R
hole is zero in the extremal limit,M25Q21P2, the field
energy is also zero in this case, which implies that an
tremal hole can never be formed from the collapse of d
persed matter solutions. Similarly, a non-extremal hole
never turn extremal, say, due to infalling charged mat
Recent quantum field theoretic and topological consid
ations seem to suggest that the converse may also be
i.e., extremal RN holes may also be prevented from turn
0-6
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into non-extremal ones~see Refs.@8,28#!. In that case the
extremal and non-extremal holes would be analogous to
ticles of zero and non-zero mass, respectively, where
gravitational charge acts as a nice analogue of mass@13#.

We observe that thehorizon-based quantity (EH2MH) is
the analogue of the internal energy of the whole spacet
~up to the addition of an exact form! in the thermodynamica
laws of static black holes. This is becauseE` itself has the
interpretation of being the thermodynamical internal ene
of the whole spacetime@7#.

It was known from the formulation of the laws of blac
hole mechanics thatvariations of certain quantities at the
horizon and at infinity are related. Here, we have shown
a non-variational identity relating some of these quantit
also exists in general relativity. In the past, Iyer and W
have also explored similar possibilities@29#. These authors
generalized the definition of the BY quasilocal mass to
more general class of diffeomorphism invariant Lagrang
theories of gravity. One of the results of their work is that
one approaches close toH along a smooth hypersurfaceS,
which is transverse to the Killing timeta, the Noether charge
associated withta approaches twice the boundary terms
the gravitational action~which in turn depend on the choic
of boundary conditions imposed on the dynamical field!.
Our identity is similar in spirit to~but different in content
from! this relation. We are currently studying the possibil
of an identity similar to Eq.~4! existing in similar Lagrang-
ian theories of gravity.
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Finally, it is always welcome to gain some insight into th
difficult and ambiguous concept of energy in GR. Most
the definitions refer to a quasilocal energy, which genera
includes contribution of the matter energy density, wh
gravitational charge is essentially defined through the Kom
integral or its generalizations. The latter is related to
formulation of the Gauss law for stationary spacetimes@10#.
Here we have extended the application of these construc
non-static and asymptotically non-flat spacetimes as w
Although we demonstrated that our identity~4! is applicable
to these cases, after suitably adapting the Komar integra~3!
for such examples, we did not derive it from an ‘‘em
beddability’’ condition of the type~8!. Moreover, even
where we proved the identity, our consideration was limit
essentially to eternal black hole spacetimes, where the ap
ent and event horizons overlapped. To be astrophysically
evant, however, one must deal with the case of isolated
rizons @30#. Generalization of the proof for the applicabilit
of an identity of the type~4!, to other black hole spacetime
and to the case of isolated horizons, is presently under c
sideration@20#.
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cial support and the University of Barcelona~Department of
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