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Techniques are developed here for evaluating th@des of rotating neutron stars through second order in
the angular velocity of the star. Second-order corrections to the frequencies and eigenfunctions for these modes
are evaluated for neutron star models. The second-order eigenfunctions for these modes are determined here by
solving an unusual inhomogeneous hyperbolic boundary-value problem. The numerical techniques developed
to solve this unusual problem are somewhat non-standard and may well be of interest beyond the particular
application here. The bulk-viscosity coupling to thenodes, which appears first at second order, is evaluated.
The bulk-viscosity time scales are found here to be longer than previous estimates for normal neutron stars, but
shorter than previous estimates for strange stars. These new time scales do not substantially affect the current
picture of the gravitational radiation driven instability of thenodes either for neutron stars or for strange
stars.[S0556-282(199)01518-Q

PACS numbe(s): 04.40.Dg, 04.30.Db, 97.10.Sj, 97.60.Jd

[. INTRODUCTION star spins dowitand cools downto an angular velocityand
temperaturg low enough that the instability is again sup-
Recently the-modes have been found to play an interest-pressed by internal fluid dissipation. All of the excess angu-
ing and important role in the evolution of hot young rapidly lar momentum of the neutron star is radiated away via gravi-
rotating neutron stars. Anderssfd] and Friedman and Mor- tational radiation. Owert al. [5] estimate the detectability
sink [2] were the first to show that gravitational radiation of the gravitational waves emitted during this spindown, and
tends to drive the-modes unstable in all rotating stars. Lind- find that neutron stars spinning down in this manner may be
blom, Owen, and Morsink3] then showed that the coupling detectable by the second-generatitenhanced) LIGO in-
of gravitational radiation to the-modes is sufficiently strong terferometers out to the Virgo cluster. Bildst¢] and
to overcome internal fluid dissipation effects and so driveAndersson, Kokkotas, and Stergioulgd have raised the
these modes unstable in hot young neutron stars. This resylbssibility that ther-mode instability may also operate in
has been verified by Andersson, Kokkotas, and SciMitz  older colder neutron stars spun up by accretion in low-mass
This result seemed somewhat surprising at first because theray binaries. The gravitational waves emitted by some of
dominant coupling of gravitational radiation to thenodes these system&.g. Sco X-1 may also be detectable by en-
is through the current multipoles rather than the more famil-hanced LIGQ 8]. Thus, ther-modes of rapidly rotating neu-
iar and usually dominant mass multipoles. But it is now gentron stars have become a topic of considerable interest in
erally accepted that gravitational radiation does drive un+elativistic astrophysics.
stable any hot young neutron star with angular velocity The purpose of this paper is to explore further the prop-
greater than about 5% of the maximithe angular velocity erties of ther-modes of rotating neutron stars. The initial
where mass shedding occur3his instability therefore pro- analyses of the-mode instability[1-3] were based on a
vides a natural explanation for the lack of observed very fastmall angular-velocity expansion for these modes developed
pulsars associated with young supernova remnants. originally by Papaloizou and Pring[@]. This expansion in
The r-mode instability is also interesting as a possiblepowers of the angular velocity kept only the lowest-order
source of gravitational radiation. In the first few minutes af-terms in the expressions for the various quantities associated
ter the formation of a hot young rapidly rotating neutron starwith the mode: the frequency, velocity perturbation, etc. This
in a supernova, gravitational radiation will increase the am{owest-order expansion is sufficient to explore many of the
plitude of ther-mode (with spherical harmonic indexn interesting physical properties of these modes, including the
=2) to levels where non-linear hydrodynamic effects be-gravitational radiation instability. However, some important
come important in determining its subsequent evolutionphysical quantities vanish at lowest order and hence a
While the non-linear evolution of these modes is not wellsecond-order analysis is needdd)]. For example the cou-
understood as yet, Oweet al. [5] have developed a simple pling of ther-modes to bulk viscosity vanishes in the lowest-
non-linear evolution model to describe it approximately.order expansion. Estimates of this important bulk-viscosity
This model predicts that within about one year the neutrorcoupling to ther-modes have been given by Lindblom,
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Owen, and MorsinK 3], Andersson, Kokkotas, and Schutz the maximum. In very hot young neutron stars there is the
[4,11], and Kokkotas and Stergioulfs2]. But (as discussed possibility that bulk viscosity could re-heat the neutron star
in more detail in Sec. VI belownone of these is based on (due in part to non-linear effects in the bulk viscosiaynd so

the fully self-consistent second-order calculation needed tsuppress the instability to some extghé]. This could result
evaluate this coupling properly. Since bulk viscosity is ex-in a significant increase in the time scale required to spin
pected to be the dominant internal fluid dissipation mechadown young neutron stars, and could therefore decrease sig
nism in hot young neutron stars, it is important to extend thelificantly the detectability of the gravitational radiation emit-

analysis so that this important physical effect can be evalut€d- Our new calculation of the bulk viscosity time scale
ated accurately. indicates that reheating will not be a major factor in the

The dominant internal fluid dissipation mechanism in €volution of young neutron stars. Our calculations also show
neutron stars colder than about®1R is thought to be a that the bulk-viscorsity Coup_ling in strange stars is somewhat
superfluid effect called mutual frictiofil3] caused by the Stronger than the initial estimates by Madgé]. We find
scattering of electrons off the magnetic fields in the cores ofat bulk viscosity completely suppresses th@ode insta-
vortices. Levin[14] has shown that the importance of the Pility in strange stars hotter thafi=5x 10" K, in good
r-mode instability in low-mass x-ray binaries depends cry-dualitative agreement with Madsen. o
cially on the details of the mutual friction damping of these N Sec. Il we review the structure of equilibrium stellar
modes. Unfortunately the mutual friction dissipation alsoModels through second order in the angular velocity of the
vanishes at lowest order in a small angular velocity expanStar- In Sec. Il we review the two-potential formalism for
sion of the superfluid-modes. Thus in order to evaluate this describing the modes of rotating stars, and derive the small
effect properly, it is also necessary to determine the structur@ngular velocity expansion of these equations through sec-
of the r-modes of superfluid neutron stars through secon@nd order. In Sec. IV we focus our attention on the “classi-
order in the angular velocity. This provides another motiva-Cal” r-modes, the modes found previously to be subject to

tion then for developing the tools needed to evaluate théh? gravitationgl radiation driven instability. We optain ana-
second-order rotational effects in thenodes. lytical expressions for the second-order corrections to the

In this paper we develop a new formalism for exp|oringfrequencies of these modes,_ ar_1d present numerical results for
the higher-order rotational effects in thenodes. Our analy- polytropes and for more rgallstm neutron star models. _In Sec.
sis is based on the two-potential formali§ir] in which all V we develop t_he nume_rlcal techniques needed to find the
physical properties of a mode of a rotating star are expressexfcond-order eigenfunctions for thenodes; we use those
in terms of two scalar potentials: a hydrodynamic potentiaf€chniques to find those eigenfunctions, and we present the
8U and the gravitational potential®. We define a small results graph|cally. In Sec. VI we use our new second-order
angular velocity expansion for themodes in terms of these €XPressions for the-modes to compute the effects of bulk
potentials, and derive the equations explicitly for the secondViSCOSity on the evolution of these modes. In the Appendix
order terms. This expansion provides a straightforward an# discuss Fhe convergence of the numerical relaxe_mon tech-
relatively simple way to determine the second-order effectshique used in Sec. V to solve the unusual hyperbolic bound-
such as the bulk viscosity coupling, which are of interest to?"Y Value problem for the second-order eigenfunctions.
us here. The equations that determine the second-order terms
in ther-modes form an inhomogeneous hyperbolic boundary
value problem that is not amenable to solution by standard
numerical techniques. Therefore we have developed new nu- Our analysis of the-modes of rotating stars is based on
merical techniques which could well have applications beexpanding the equations as power series in the angular ve-
yond the present problem. In particular these techniques willocity () of the star. The first step therefore in obtaining these
also be needed to solve the analogous superfluid pulsatiasyuations is to find the structures of equilibrium stellar mod-
equations that determine the effects of mutual friction orels in a similar power series expansion. This section de-
these modes. scribes how to solve the equilibrium structure equations for

The time scales derived here for the bulk viscosity dampuniformly rotating barotropic stars in such a slow rotation
ing of ther-modes differ considerably from earlier estimates.expansion. The solutions will be obtained here up to and
We find the bulk-viscosity coupling to these modes to beincluding the terms of ordef?.
weaker for normal neutron stars than any previous estimates. Let h(p) denote the thermodynamic enthalpy of the baro-
Consequently the gravitational radiation-driven instability istropic fluid:
somewhat more effective at driving unstable th@modes in
hot young neutron stars than earlier estimates suggested. Al-
though quantitatively different from earlier estimates, our pdp’
new values for the bulk-viscosity damping time do not sub- (p)= fo ' 27
stantially alter the expected spindown scenario in hot young
neutron stars. We re-evaluate the critical angular velocity
curve (above which the-mode instability sets inand find  wherep is the pressure anglis the density of the fluid. This
no qualitative change from earlier estimates. Our new valu@efinition can always be inverted to determipéh). The
for the minimum critical angular velocity is somewhat lower barotropic equation of statep=p(p), then determines
than earlier estimates: about 5% compared to about 8% qf(h)=p[p(h)]. The equations which determine the family

II. SLOWLY ROTATING STELLAR MODELS
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of stationary, axisymmetric uniformly rotating barotropic
stellar models are Euler’s equation, which for this case has VeV, &, +47G dh) @,
the simple form

dp
0=V [h—3r¥(1-p? Q- ], (2.2 ——4776( ) {Cot57Gpor 1 P,(w)1},
and the gravitational potential equation, (2.11)
Vav,d=—47Gp. (2.3  Where Po(u)=3%(3u?—1). We note that the right side of

Eqg. (2.11) splits into a function depending only anplus a
In these expressionsand u = cosé are the standard spheri- function ofr multiplied by P,(x). Since the operator on the

cal coordinates, an® is the gravitational potential. left side of Eq.(2.11) acting onP,(u) gives a function of
We seek solutions to Eq&2.2) and(2.3) as power series Multiplied by P5(), it follows that the second-order gravi-
in the angular velocitf). To that end, we define tational potentiakb, must have a similar splitting:
2 Do(r, 1) =Do(1) + Do) Po( ). (2.12
_ 4
h(r,u)=ho(r)+hy(r,u) 7Gry FOWOY, 29 s the partial differential equatid@.11) for ®, reduces to
a pair of ordinary differential equations for the potentidls,
2 and®,,:
— 4
P(r,M)—Po(r)+P2(r,ﬂ)WGE)+O(Q )5 1d | ddy dp
(25 rzar\" ar ) T47Cgn) P
’ — —2m6| 22| (Cpr 2r2mcn; 2.1
D1, ) = Do(r) +D(r, 1) —=+0(QY), = ~47C|gn) (Cat3rmGeo. (213
TSPo
(2.6
1d 2d<D22 6 dp
— . . . Py el 4 2Pt 4nG q’zz
wherep, is the average density of the non-rotating star in the redr dr dh
family. Using these expressions then, the first two terms in q
; . — p
the solution to Eq(2.2) are given by _ %erzporz(%) _ (2.14
0
Cozho(r)_q)o(r), (27)

Appropriate boundary conditions are needed to select the
unique physically relevant solutions to Eg&.13 and
(2.14). In order to ensure that the gravitational potential is
non-singular at the center of the stas 0, we must require

whereC, andC, are constants. The non-rotating model can hat ®,, and @ ,, satisfy the following boundary conditions
be determined in the usual way by solving the gravitational here-:

potential equation,

2ar & !

Co=hy(r,p) = 3mGpor2(1— u?)— @y(r,u), (2.9

dr =—47Gpy, (2.9

The potential®,, must also fall to zero as—«. We can
together with Eq(2.7). The integration constan€o, can be  ensure this by requiring thak,, match smoothly at the sur-
shown to beCy=—GMy/R, by evaluating Eq(2.7) at the  face of the star to a potential that in the exterior of the star is
surface of the star. The constami, and R, are the mass  proportional toP,(u)/r2. It is sufficient therefore to require

and radius of the non-rotating star. that @, satisfy the condition
The second-order contributions to the stellar structure are
determined by solving the gravitational potential, E2.3), dd,, 3D ,4(Ro)
together with Eq(2.8). The second-order density perturba- ( ar ) =T TR, (2.19
tion p, is related toh, by r=Rg

d An additional condition is also needed to fix,q. It is cus-
po(l, )= (_p) ho(r, ). (2.10  tomary to consider families of rotating stars which have the
dh same total mass. In this case the monopole part of the exte-
rior gravitational potential is the same for all members of the
Thus using Eq.(2.8), the equation for the second-order family. To ensure this, we must require that the poteribig]
gravitational potential can be written in the form and its derivative vanish on the surface of the star:
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dd =—.3799%R,. Our numerical results agree with the analyti-

0=P,o(Ro) = (T) (217 cal to floating-point precision.
r=Rq

It might appear that Eq92.15 and (2.17) now over con- Hl. THE PULSATION EQUATIONS
strain the potentiadb,,. This would be the case, except that The modes of any uniformly rotating barotropic stellar
the constan€C, that appears on the right side of £g.13 is  model can be described completely in terms of two scalar
still undetermined. The boundary conditions, E¢g.15—  potentialsSU and 6® [15]. The potentialédd is the New-
(2.17), are just sufficient, however, to fix uniquely the poten-tonian gravitational potential, whil6U determines the hy-
tials ®,, and ®,, together with the integration consta@p drodynamic perturbation of the star:
as solutions to Eq$2.13 and(2.14). We also note that these

iti )
boundary conditions ensure that SU= 7P 5D, 3.0

1 (Rp
— 2
0= ﬁlJ'O Fpa(r,p)drdp. (2.18 where p is the Eulerian pressure perturbation, gnt the
unperturbed density of the equilibrium stellar model. We as-
In summary, then, the thermodynamic functidmis, )  SUME here that the time dependence icn‘ the mo@é”_isand
and p(r, ) in slowly rotating barotropic stars are given by that its azimuthal angular dependence i8¢, wherew is the
Egs.(2.4) and (2.5), wherep,(r,x) andh,(r,u) are given frequency of the mode andh is an integer. The velocity

by perturbationsv? is determined in this case by
Sv3=iQV, sU. (3.2

dp
p (r,M)=(—) ha(r,w)
? dh 0 ? The tenstab depends on the frequency of the mode and

q the angular velocity of the equilibrium star:
p —
:(%> {Cot®yo(r) +37Gpor? 1
0 ab_
Q (0+mQ)%2—4072

+[Doofr) — 37Gpor’IPo(w)}. (219 ,

X | (w+mQ)s2°— 22Z°—2iVayP|.

These expressions fdr(r,u) and p(r,u) depend only on
the structures of the non-rotating star through the functions
ho(r), po(r), and dp/dh),, the potentialsd,, and ®,,

from Egs.(2.13 and(2.14, and the constart,. In Eqg. (3.3 the unit vectorz® points along the rotation axis

It is also instructive to work out an expression for the ¢ \he equilibrium star,6® is the Euclidean metric tensor
surfacer =R(u,(}) of the rotating star. This surface occurs (the identity matrix in Cartesian coordinateandv? is the

where the thermodynamic potentiIR(s,{2),u]=0. Solv-yejacity of the equilibrium stellar model.

ing this equation, we find In general, the potentialdU and 6 are solutions of the
following system of equationfsl5]:

w+m{)
(3.3

QZ
R(1,Q)=Ro+Ry(pn) —=+0(Q%,  (2.20 dp
7Gpo Va(pQV50U) =~ (w+mQ) - (8U+50), (3.4
whereR,(u) is given by
dp
a - lat
Ra( ) =Raot RooPo( 1) ViV 47TGdh(5U+5(D), @5

_ 3 (C,+ 1.GoR2 subject to the appropriate boundary conditions at the surface
47GpoRy © ° Poo of the star for6U and at infinity for6®. In order to discuss
these boundary conditions in more detail we Ietlenote a
+[ D R) — 2 mGpoR2IP,(1)}. (2.21)  function that vanishes on the surface of the star, and which
has been normalized so that its gradiemi=V .2, is the
We have developed a computer code that solves theseutward directed unit normal vector therein,=1. The
equations numerically for stars with an arbitrary equation ofooundary condition on the functiofU at the surface of the
state. We have tested this code against analytical expressiostr,2 =0, is to require that the Lagrangian perturbation in
which can be obtained for a polytropic neutron star equatiorihe enthalpyh vanish thereAh=0. This condition can be
of state,p=Kp?, with K chosen so that a IMi, model has  written in terms of the variables used here by noting that
a radius ofRy=12.533 km. We find that the constants that
determine the slowly rotating model for this polytropic case
have the valueL,=.0980Z,, R,,=.1519&,, and R,,

a

Ah=6h+ )

)Vah, (3.6
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wherex is related to the frequency of the mode by this casex [as defined in Eq(3.7)] is finite in the small
angular velocity limit, and so we may expand
kQ=w+m. (3.7
02 A
Thus using Eqgs(3.1) and (3.2 the boundary condition can K= Kot KZWG;O +0(Q%). (3.13

be written in terms ofSU and 6® as

b Using these expansions, together with those for the structure
0=[xQ(U+ D) +Q™V,hV,6U]s 0. (3.8 of the equilibrium star from Egs(2.4) and (2.5), it is
straightforward to write down order by order the equations

The perturbed gravitational potentia> must vanish at in-  for the mode. The lowest order terms in the expansions of
finity, lim ,_,..,6®=0. In additiond® and its first derivative Egs.(3.9) and(3.5) are the following,

must be continuous at the surface of the star. The problem of
finding the modes of uniformly rotating barotropic stars is 2 2Mko
reduced therefore to finding the solutions to E¢g4) and Velpo( k™= 42°2°) V1, 0Uo] + = @*Vapo 6Up=0,
(3.5) subject to the boundary condition in E@.8). (3.14
The equation for the hydrodynamic potentidl, Eq.
(3.4), has a complicated dependence on the frequency of the
mode and the angular velocity of the star throu@f as
given in Eq.(3.3. In the analysis that follows it will be
necessary to have those dependences displayed more expl&imilarly, the lowest order term in the expansion of the
itly. To that end, we re-write Eq(3.4) and the boundary boundary condition is
condition, Eq.(3.9), in the following equivalent forms:

d
Vavaéq>o=—4we(£> (8Ug+ 6Dy).  (3.15
0

mKo

2
(k36%°—47%2°)V ;hoV,6U o+ w?V hg 5uo}

a 2 sab a-b 2mk a w r=R

V[ p(k“6*°—47222°) V60U ]+ g V.p 6U 0
=0. (3.16
p
= —KZ(K2—4)QZE(5U+5¢), 3.9 Continuing on to second order, the equations for the po-
tentials are
25ab—4athV SU 2cab__ p5a5b 2mK0 a
(k °2’)Vahvy, Valpo( k5% 42°2°) Vp0U, 1+ —— @V apg U,

2mk 2sab_ ga,b a
4 - mavah 5U+K2(K2_4)QZ(5U+5¢) +Va[p2(K05a 4z°7 )Vb5U0+2K0K2poV 5U0]

510

m
—0. (3.10 + @ (kaVapot KoV ap2) Uo

Here we use the notatiots for the cylindrical radial coor-
dinate,w =r 1 — x?, andw? to denote the unit vector in the
w direction.

=— k5(KkE—4) 7Gpo

dp)
ah| (Vo* 500, (3.17)

Our purpose now will be to derive solutions to E¢3.5) a dp
and (3.9 as power series in the angular velocity of the star. ViVa0®0,=—4nG dh (8Uz+ 5P2)
To that end we define the expansions of the potentéls 0
and 5 as d?p
—47G W) hy(8Ug+ 6Pg). (3.18
[ QZ 0
5UZRC2)QZ dUo+ 5U2’7TG_ +0(Q%Y|, (311 The second-order boundary condition is somewhat more
- Po complicated; it must include two types of terms. The first
- ) type comes from the second-order terms in the expansion of
5P =R202| 5B+ 5P Q_ +O(0% | Eq. (3.8 in powers of the angular velocity. The second type
0 0 27TGp0 comes from the fact that the boundary condition is to be

(3.12  imposed on the actual surface of the rotating star, not the

surfacer =R,. This second type of term is the correction to
The normalizations 06U andd® have been chosen to make the lowest-order boundary condition, E®.16), needed to
the 6U; and 6®; dimensionless under the assumption thatimpose it on the actual boundary of the dftar second order
the lowest order terms scale €. Here we have limited our in the angular velocity Hence the terms of the second type
consideration to the generalizednodes[18]: modes which  are proportional tdR,, the second-order change in the radius
are dominated by rotational effects and whose frequenciesf the star from Eq(2.21). The resulting boundary condition
vanish linearly therefore in the angular velocity of the star. Inis
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2 sab_ 4ab 2MKo 4 2sab_ 4 ab 2meo 4
(Koaa —4z°2 )Vahovb5U2+ ) Vah05U2+(K05a —4z°%2 )Vah2Vb5U0+ () Vah25U0

w w

mK2

2 _
+2kok,V2hoV 40U o+ w3V hodU o+ k3(k5—4) G po(8U o+ D)

2 cab__ a-b meo a
(Kotsa 47°z )Vahovb5U0+ —’E)' 5U0m‘ Vaho

+R,reV,

] =0. (3.19
r=R

0

In summary, then, Eqg3.17) and (3.18 together with the We next consider the second-order contributions to the
boundary condition, Eq(3.19, determine the second-order r-modes. First, let us analyze the second-order equation for
terms in the structure of any generalizechode. the potential U, Eq. (3.17). This equation contains two
types of terms: those proportional &J, and those that are
IV. CLASSICAL r-MODES not. We will consider those terms not proportionalsld, as
) ) ) _source terms, and we evaluate them now. It is convenient to
There exists a large class of modes in rotating barotropigeak these source terms into three groups. The first group is
stellar m_odels whose properties are determined primarily b}SroportionaI top,. These terms can be simplified by recall-
the rotation of the stdrl8,19. We refer to these as general- ing thatdU,, satisfies Eq(3.14) for any spherically symmet-

ized r-modes. In this section we restrict our attention hOW'ric density distribution. Then, using the fact from Eg.19
ever to those modes which contribute primarily to the graVi'thatpz(r M):on(f)+P22(f)|$z(M) we find

tational radiation driven instability. These “classical”
r-modes(which were studied first by Papaloizou and Pringle om
. . Ko
[9]) are generated by hydrodynamic potentials of the form Va[pz(K(Z)aab_4ZaZb)Vb5U0]+ w2V p,6U,
(see e.g. Lindblom and Ipsgt8]) w

r m+1 . 12m(m+2) P22
m ime - _ i
—RO) PR 1(w)e™. (4.1 it s e 45

5U0=a

It is straightforward to verify that thi$U, is a solution to
Eq. (3.14 if the eigenvaluec, has the value The second group of terms is proportionaktp These terms
have the following simplified form:
2

Tmrl

Ko (42)

V&(2kor2p0VadUg) + %Wavapofwo
This 6U, and kg also satisfy the boundary condition, Eqg. w
(3.16), without further restriction at the boundafand at 1 dpg
every point within the star as wellThe gravitational poten- =2(m+2)ky— —— 6U,. (4.6
tial 6®, must have the same angular dependencélas rodr

Thus, 5@, must(through a slight abuse of notatiohave the

form Thus, combining together these terms with those on the right
_ side of Eq.(3.17), we obtain the following expression for the
6Do=adDo(r)Pp, (n)e™me. (4.3 equation that determinesU, for the classicat-modes:
The gravitational potential, E43.15), reduces to an ordinary 520 .
' i i : 4 Amw eV
differential equation then fo6®,(r): V.1 po 47|V, 65U, + aPo 5U,
2 (m+1)? (m+1)w
d“6d, 2 déd, dp (m+1)(m+2)
—+— +HATG| | —————| 5P,
dr rodr dh/, r _12m(m+2) P22 5 oimso 1 dp05U
dp| [ r|™ TTmrn)? 2 OYom2mE 2y gl
=—47G| —| | = 4.4
i (dh>o Ro) “-9 — m(m+2)/dp
+1677Gpow ah (6Uqg+ 6Dy). 4.7
OncedUqy and6d are known, it is straightforward to evalu- 0
ate the perturbations in other thermodynamic quantities to
this order. For examplépy= podhg= po(SUq+ 6P;). And A similar reduction can also be made on the second-order
it is straightforward to evaluate then the velocity perturbationboundary condition, Eq.2.19. We collect similar terms to-
to this order using Eq(3.2). gether to obtain the following simplifications:

064006-6



SECOND-ORDER ROTATIONAL EFFECTS ON THE . . .

mKO

2 cab__ a-b 2
(K05a 47°%2 )Vah2Vb5U0+

w3V ,h, U,
12m(m+2) hy,
T 2 “9
2 sab a-b 2Mxo a
RZI‘CVC (Koga —4z7%2 )Vahovb5U0+ = 5UO’G)' Vaho
=0. 4.9

The latter follows from the fact that the expression in Eq.
(3.16 is zero everywhere iU, is given by Eq.(4.1). Com-

bining these simplified expressions together gives the follow- 4

ing form for the boundary condition that constraifid ,:

|

452b
(m+1)2

42225 |9 1oV, oU, 4 T Vallo
—4z°Z27 | VoV 2+(m+—1)m 2

Lamm+2) hy o Ldh

Tmen? gz ot AmE 2 qmol

16m(m+2) ® 3
_WWGPO(5UO+5 0) =0. (4.10

r=Ry

We note that the operator on the left side of E4.7)
which acts ondU, is identical to the operator that acts on
8U, from the lowest-order equatidB.14). We also note that
the right side of Eq(4.7) is a function ofr multiplied by the
angular functionP[, ,(u)€e'™¢. These facts allow us to de-
rive a simple formula for the second-order eigenvatyen
terms of known quantities. Multiply the left side of Ed..7)
by sU§ and integrate over the interior of the star. This inte-
gral vanishes because this operator is symmetric 0§
also satisfies Eq3.14). This implies that the integral afU}
multiplied by the right side of Eq4.7) also vanishes. This
integral gives the following expression for the eigenvaiye
once the angular integrals are performed:

Ro( 1 |2™2 dpg
szo R—O> rWdr
6m (Ro [ r\2™2  8xGpem
:(m+—1)2f0 pZZ(R_o) (m+1)*
Ro [ T mElr )\ ml dp
<Jelw) 1w ”@0(”}(%)0"“
(4.11

We have evaluated Edq4.11) numerically to determine
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TABLE |. The second-order eigenvalues of the classical
r-modes for stars with polytropic equations of stpte K p**/n,

n m=2 m=3 m=4 m=5 m=6
0.0 57407 .59766 .54720 49074 44044
0.5 41718 43861 40415 .36406 .32782
1.0 .29883 .32054 .29946 .27250 24729
1.5 .21183 .23426 .22369 .20693 .19019
2.0 14777 .17084 .16846 15961 14942
2.5 .10091 12426 .12808 12532 .12016
3.0 .06716 .09024 .09859 .10039 .09905
35 .04334 .06556 .07699 .08210 .08357
4.0 .02692 .04773 .06102 .06839 .07186
.01589 .03487 .04896 .05768 .06252

corresponds to the lowest-order approximation ofrtineode
frequencyw/Q = ky— 2, which is the same for any equation
of state. The solid curves are based on the second-order for-

mula w/Q = ko— 2+ k0% wGpy. It is interesting to see in
Fig. 1 that the higher-order terms make only snialp to
about 12% at the highest angular velocitiesrrections to

the frequencies of these modes for stars with realistic equa-
tions of state. We also note that the general tendency of the
frequency of these modes to be smaller than that predicted
by the lowest-order expression is consistent with the results
found by Lindblom and Ipsefl18] for the Maclaurin sphe-
roids. An analytical expression for, can be obtained from
Eq. (4.1 for the uniform density case by performing the
indicated integrals analytically. The resulting expression is
equivalent to Eq(6.10 of Lindblom and Ipsef18].

V. NUMERICAL SOLUTIONS FOR éU,

In this section we discuss the numerical solution of the
equations that determine the second-order corrections to the

1.4

|w/Q)

0.3 0.4 0.5 0.6 0.7

QNGp,

0.1 0.2

K, for a variety of equations of state. Table | presents the F|G. 1. Angular velocity dependence of the frequencies of the

values ofk, for the classicat-modes with 2<m=6 of stars

classicalm=2 r-modes for 1.4N}, stellar models based on seven

with polytropic equations of state. We also present in Fig. Irealistic neutron star equations of state. The dashed curve is based

a graph of the frequency/Q)=«x—2 of them=2 classical
r-modes computed for 1.4Mstellar models based on seven
realistic equations of stat20]. The dashed line in Fig. 1

on the lowest-order expression far/(Q)= ky—2, while the solid
curves are based on the second-order expreseiid= ky— 2

+ k,0% 7Gpy.
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eigenfunctionssU, and 6®, of the classicat-modes. Once Summation is implied for pairs of repeated indi¢esy.i on

8U, is known, the solution of Eq3.18 to determined®,, is the left side of Eq.(5.5]. The algebraic equatior5.5
straightforward. Thus our discussion will concentrate on theée@nnot be solved by the most straightforward direct numeri-

more difficult problem of solving Eq4.7) for 8U.,. It will cal techniques because the operddras a nontrivial kernel
be convenient to introduce the notation (mentioned above Consequently the matri®!; has no in-
verse.
4520 Thus we are lead to introduce the evolution equation
D(8U,) =V po| ——— —4222°|V,6U, (5.4). We use the “implicit” form of the discrete represen-
(m+1)2 tation of Eq.(5.4):
Amw 3V pg o o1 1
miDw 2Y2 (5.7 OJiu'nHE(DJi—Hlli)u'ml:FJ—Hu'n. (5.6)

for the differential operator that appears on the left side ofn Eq. (5.6), I/; is theN dimensional identity matrix, andix

Eq. (4.7). Thus Eq.(4.7) can be written in the form is the relaxation time step. Givar, we solve Eq.(5.6) for
Uy, by direct solution of the linear algebraic equation. We
D(6U,)=F, (5.2 use the band-diagonal linear equation solvevsis from
EISPACK to compute O~ 1)';(F/—ul/AN). We find that this
where can be computed stably and accurately for almost any value
of the relaxation timesteA\.
12m(m+2) pa» 1 dp, Unfortunately solving Eq(5.6) iteratively does not yield
F:(m—Jrl)z— r—25Uo—2(m+ 2)k27 ~4r %Yo the desired solution to E@5.5) in the limit of largen. In-

stead the solution grows exponentially, becoming in the limit

of large n closer and closer to a non-trivial solution to the
) (6Up+ 6Dy). (5.3 homogeneous equatiodl . Fortunately, this malady is eas-
0

ily corrected. Letu’ denote the discrete representation of

The problem of solving Eq5.2) numerically is a somewhat oUo; thusD’;u'~0 sincedUs is in the kemnel oD. Also we
non-standard problem that is made difficult by two facts.let u; denote the discrete representation of the co-vector as-
First, the operatoD has a non-trivial kernelD(8U,)=0.  sociated withu'. In particular choose; so thatu'u; is the
Many of the straightforward numerical techniques fail in thisdiscrete representation of the integral |8lUy|2. Then the
case. Second, the operafris hyperbolic. There appears to matrix
be little previous work on solving hyperbolic boundary value _
problems of this type. S Ul

We solve Eq(5.2) here using a variation of the standard Phi=1)— ?(_U (5.7)
relaxation method commonly used to solve elliptic partial K
differential equation$21]. To that end we introduce a ficti- s the discrete representation of the operator that projects
tious time parametex and convert Eq(5.2) into an evolu-  fynctions into the subspace orthogonaldd,. We use this
tion equation projection in conjunction with E¢(5.6) to define a modified

relaxation scheme to determing, ; iteratively:

— m(m+2)

dp
+ 16WGp0m

dh

d,0U,=D(8U,)—F. (5.9
k
The idea is to impose as initial data for £§.4) a guess for Ups1= P'j(ol)’k< Fk— ﬁ) (5.8
8U,, and then to evolve these ddgs a function of\) until
a stationary ¢, 6U,=0) state is reached. If successful, the By applying the projectiorP'; after each relaxation step we
late time solution (lim_,..6U,) to Eq.(5.4) will also be a  ensure that the exponentially growing kernel is removed
solution to Eq.(5.2). from the solution. We find that the iteration scheme defined
We implement the relaxation method to solve Ej2) by in Eq. (5.8) does converge quickly and stably to a solution of

using a discrete representation of the functions and differengq. (5.5). In the Appendix we discuss the reason this numeri-
tial operators. Leti,, denote the discrete representation of thecal relaxation method works even in the case of the unusual
function 6U, evaluated at the fictitious time,. The indexi  hyperbolic boundary-value problem considered here. We
(and laterj andk as wel) takes on values from 1 td where  show that convergence is guaranteed for sufficiently large
N is the dimension of the particular discretization used. Simivalues of the relaxation time stefx, and that it also con-
larly the discrete representation of the differential operBtor verges for either sign of\.
of Eq. (5.2 is denotedD’;, and the representation of the  In order to implement this inversion scheme we need ex-
right side of Eq.(5.2) is denotedr!. Thus the discrete rep- plicit discrete representations of these operators. We find it-

resentation of Eq(5.2) is simply convenient to work in spherical coordinateand u = cosé.
S In terms of these coordinates then, the differential opeiator
Dliu'=F!. (5.5 has the form

064006-8
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4 96U, 1—u?9°8U, 296U, 2u 98U m?sU
D(5U2)= Po { 2 M 2+ 2 M 2 2

(m+1)?| or? A oz o r? o rA(1-ud)
4 zazéuh 2u(1—u?) 825U2+ (1—u?)? (925u2+ 1— u? 96U, 3u(l—pu?) 96U,
Pol Tz r o r? o> rooor r? i
4 dp\| dhg 5 5,00U> (1= u?) 96U, 8U,
T mr1)? %)OW [1=-(m+1)"pf——=(m+1) . e TMMED == 69

A similar spherical representation is also needed for the boundary conditio3.Efj,

dhy 98U, 1 dh, 1 dhy 96U,
_ 2,27 Y - - v _ 2 _ - Y
I[l (M+1)2u2T 2 — 2 m(m+ 1)~ 20U, — (m+1)%u(1 - ar o
o)l 1ims 12, - 3o 3 N2 o, Amm+2) Gpo( U+ 60 =0 1
+(m+2)| 2(m+ 1)k 5~ mr2 Uo— mrnZ 7 po(8Ug+ o) R— - (5.10
r=R,

The operators in Eq95.9) and (5.10 are transformed present several different representations of it graphically.
into the discrete matrix representation of the oper&@4r  Figure 2 depicts the function8U,(r, u,) with u, located at
using the techniques discussed in Ipser and Linddli@f}.  the grid points used in our integration: the rootsRaf( )

In particular we use a grid of points;(, u) where ther; are =0 in this case. We present in Fig. 3 another representation
equally spaced in the radial direction and ghgare the zeros of this U, in which we graph the function8U,(r,u) for

of one of the odd-order Legendre polynomig22]. We use  r,=(k/5)R,. This graph gives a clearer picture of the angu-
standard three-point difference formulas for the derivativesdar structure ofSU,. Finally we give in Fig. 4 another rep-
in the radial direction and the higher-order multi-point for- resentation of the functiodU, in which we decompose the
mulas for the angular derivatives described in Ipser anchngular structure 06U, into spherical harmonics by defin-
Lindblom [15]. Using this discretization of the operatbr, ing the functionsf(r):

we find that the iteration scheme described in €&g8) con-

verges rapidly. We begin the iteration by settimg=0 and _ m

find that after about five steps withh = — 10°R3/p,, (where 5U2(r’“)_k§1 fe(r) Py ak-1(m) - (5.11

pc is the central densijythe changes iy, from one iteration
to the next become negligible.

Since the eigenfunctiodU, is somewhat complicated we

We find numerically that thé,(r) are negligibly small ex-
cept for the smallest few values kfIn Fig. 4 we graph the
first threef(r).

To measure the degree to whiél), satisfies the original

0.4
differential equation, we define
0.3
02 f ID(8U,)—F|?r?drdu
€= . (5.12
5U, 01 f |F|?r2drdu
0.0
We find that the value o€ achieved by a given solution is
-0.1 approximatelye~ (4.3N,)* whereN, is the number of ra-
dial grid points used in the discretizatip®3]. It is instruc-
02 tive to comparee to the quantity
-03
0.0

J |D(6Ug)|%r?drdu
= (5.13

€=
2,2

FIG. 2. FunctionsSU,(r,u,) for a range of values of the angu- f [F|*r*drdp

lar coordinateu, . The numbers along the right vertical axis are the

values ofk. These range sequentially fromy =0 at the equator of Which measures the degree to whiéll, is in the kernel of

the star, tou,0~0.992 near the rotation axis. The equation of stateD. Since analyticallyD (6Uy) =0, the deviation ofey from

is the polytrope discussed in the text. zero is a measure of the accuracy of our discrete representa-
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0.4 ;
0.3 4
0.2 E
0.1
85U,
0.0
04 | 0.6
0.4

o2 0.2
03 . . . .

0 0.2 0.4 0.6 0.8 1

i

FIG. 3. FunctionsSU,(r,w) for a range of values af, /R,.

tion of D. We find thate, is approximatelye,~(7.7N,)* in

PHYSICAL REVIEW D60 064006

Each of the terms on the right side of E&.1) is propor-
tional to Q% at lowest order. And thus the second-order
quantitieséU,, «, etc. that we have evaluated in the preced-
ing sections are needed to evaluate.

Bulk viscosity causes the energy associated with a pertur-
bation to be dissipated according to the formula

|

where( is the bulk viscosity coefficient, aridl is the energy

of the perturbation as measured in the co-rotating frame of
the fluid. The energ§ can be expressed as an integral of the
fluid perturbations:

dE

T (6.2

= —J (8o 80*d3X,

B

our numerical solutions. This scaling is what is expected

from the truncation errors involved in the three-point differ-
ence formulas used to constru}z}. Sincee<¢q in our nu-
merical solutions, we see that, is a good solution to Eq.
(5.2.

VI. BULK VISCOSITY TIME SCALES

One of our primary interests in evaluating these modes
through second order in the angular velocity is our desire to
obtain the lowest-order expression for the bulk viscosity
damping of these modes. Bulk viscosity is driven by the

expansiondo =V 6v?, of the fluid perturbation which can

Bulk viscosity causes the energy in a mode to de@ay
grow) exponentially with time. We can evaluate the imagi-
nary part of the frequency of a mode that results from bulk-
viscosity effects by combining Eqg$6.2) and (6.3). The re-
sult, which defines the bulk-viscosity damping timeg,, is
given by

ar:
E

(6.9

N

be expressed in terms of the scalar perturbation quantitid§ order to evaluate 15 we need to have explicit expres-

oU and 6® as

So=—ik)—

i d
- d_’;[Qabvahvbéu +kQ(8U+8D)]. (6.1

0.03

0.02

0.01
f(r
u )o.o

ka3

0

-0.01

-0.02 |-

-0.03 . .
0.0 0.2 0.4

0.6 0.8

/R,

0

FIG. 4. Functionsf,(r) that determine the spherical harmonic
decomposition oBSU, as defined in Eq(5.11).

sions for the various terms that appear in the integrands of

Egs. (6.2 and (6.3. The energyE, for example, can be
expressed as the integral
Ro
J' Po(r)<
0

2

~ a~ T 3 | 42 r
E= %(mﬁ‘ 1)°(2m+1)IRQ2

2m+2
ﬁg) dr

+0(0%), (6.5
by performing the angular integrals indicated in Ef.3
[24].

In the dissipation integral, E(q6.2), an explicit expres-
sion for the bulk viscosity, is needed. In standard neutron-
star matter the dominant form of bulk viscosity is due to the
emission of neutrinos via the modified URCA procg25].

An approximate expression for this form of the bulk-
viscosity coefficient i§26]

276
al

gZGOX 10~ KZQZ,

(6.6

where all quantities are expressed in cgs units. For the case
of the classicai-modes the expansiosu that appears in Eq.
(6.2 can be expressed explicitly in terms of the potentials
oUg, 6®4, and dU,:
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i (dp R§Q3 m+1 For comparison, we have also re-evaluated the approxi-
So= _(ﬁ> = om(m+2) mate timescaleg described above and fing=7.04x 10° s.
Po 0mGpo This approximation was based on the assumption that the

dhy 96U, average value of the Lagrangian change in the density
[which appears on the right side of E§.1)] would be simi-

lar in magnitude to the average value of the Eulerian change
in the densitydp [which appears on the right side of Eq.

W5u2+[1—(m+1)2ﬂz]

(m(m+1) dhg
X —_ JE—
dr or

2#(1_,“2) dhg 96U,

—(m+1) ; a o —3m(m+ 2)h22r_20 (6.8)]. Our results here show thép is on average a factor of
® 5.3 larger tham\ p for the m=2 r-mode. We also note that
(m+2)(m+1) dhy the value of the approximate time scaig found here is
K2 or dr ¢~o about 10 times the value reported by Lindblom, Owen, and
(m+2) Morsink[3]. This discrepancy is due to an error in E4) of
— m(m+ that paper: the right side of that equation should be multi-
_ 5
4mGpo (m+1)2 (8Uo+8%o) [ +0O(0%).  (68.7) plied by an additional overall factor of (2 1)/[I(l

_ _ +1)y2I+3]. Consequently the numerical bulk viscosity
It will be of some interest to evaluate the accuracy ofgamping time estimateg given there must be multiplied by
some previously published approximations for the bulk-12(| 4+ 1)2(2|+3)/(21+1)?, or about 10.08 for thd =2

mation 6o~ &s for the expansion of the mode, where The most interesting application of these dissipative
s timescales is to evaluate the stability of rotating neutron stars
Ss=—ikQ) op to the gravitational radiation driven instability in thenodes
P [3]. The imaginary part of the frequency of thenodes, 1#,
2i 1 (dp - . includes contri~butions frorp gravitational radiatiogg in ad-
=TT P_o(ﬁ> 0( 6Uo+ 6®o)Rp17+O(Q2°). dition to shearrs and bulk7g viscosity effects. The general

expression forr(€),T), a function of the temperature and
(6.8 angular velocity) of the star, is given by

We note thatds is just the last term in the expression given 1 1/ 02\% 1/1 K\2

in Eqg. (6.7) for do. It is the only term in Eq.(6.7) that - |+ (_)

depends only on the lowest-order perturbation quantities: the ™(Q.T) 7gr\@wGp] T\ T

others depend on higher-order corrections throdgh, «» 6

or h,,. We define the approximate bulk-viscosity time scale 1 T 0? 6

75 in analogy with Eq(6.4) by replacingdo with §s in Eq. “;_B 10° K] \#Gp)’ (6.10
(6.2.

The bulk-viscosity contribution to the imaginary part of
the frequency, Mg, is proportional toQ?. This follows
from Egs.(6.2 and(6.4) becauseE scales ag)? from Eq.
(6.5), £ asQ)~? from Eq.(6.6), anddo asQ? from Eq.(6.7).
(We note that a previous calculation of this bulk-viscosity
time scale by Andersson, Kokkotas, and ScHdtzreported
that 1#5 was proportional toQ*’") The bulk-viscosity
damping time, 14z, also scales with temperature aS.

The bulk viscosity time scaley=2.01x10' s has been
evaluated in this paper, while the gravitational radiation time

scale, 7gg=—3.26 s, and the shear viscosity timescale
=2.52x1(¢ s, were obtained by Lindblom, Owen and Mor-
sink [3] for the polytropic stellar model discussed in Sec. II.
It is interesting to determine from this expression the critical
angular velocity(Q).:

Thus it is convenient to definez: the bulk viscosity time 1
2: . = —:O. 6.1
scale evaluated @?= 7Gp, andT=10° K, 0. T) (6.1
1 1 1 \% @2
_:~_<_ — | +0(0%Y. (6.9  For stars at a given temperature, those wWith- Q). are un-
8 715\ 10° K 7Gpo stable to the gravitational radiation driven instability in the

_ r-modes, while those rotating more slowly are stable. Figure
We have evaluateds numerically for them=2 r-mode(the 5 depicts{). for a range of temperatures relevant for hot
one most unstable to gravitational radiatiof a 1.4M, stel-  young neutron stars. For stars cooler than abodtK,0su-
lar model with the polytropic equation of state discussed irperfluid effects change the dissipation processes completely

Sec. II, and findrg=2.01x 10'* s. This value is longer by and the analysis presented here is no longer relevant. The

— . dashed curve in Fig. 5 represents the critical angular veloci-
the factor 3.7¢/ wGpy/ Q)% than that found by Andersson, . . \ >R ;
Kokkotas and Schut]. This discrepancy may be due to the t!es (iomputed using .the approximate bulk viscosity damping
fact that their calculation was based on the second-order foflme 75=7.05xX 109~S instead of the exact value. We see that
malism of Saio which was reported to contain errors byeven thoughrg=~2975, the qualitative shape of tH@. curve

Smeyers and Martend.1]. is not affected. The minimum of th@.(T) curve depicted in
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APPENDIX: NUMERICAL RELAXATION

0'0108 169 10'10 10" The operatoD defined in Eq.(5.1) is symmetric, in the
Temperature (K) sense that
*
FIG. 5. Critical angular velocities for themode instability as a f g*D(f)d 3x= f f*D(g)d 3| , (A1)
function of temperature. The dashed curve gives the critical angular

velocities based on the approximate bulk viscosity damping time

B for arbitrary functionsf and g in any stellar model where

_ po=0 on the surface. Thus the discrete representation of the
Fig. 5 occurs at mii},=0.0301/ 7Gp, which is 4.51% of operatorD;; will be a Hermitian matrix, and consequently

the approximate maximum angular VelOCﬁiii/WGE)- D' wi!l have a complete set pf eigenyectors. ld;tdeno_te
Stars composed of strange quark matter are subject to tR€ eigenvector corresponding to eigenvaldg: D'je),

different form of bulk viscosity caused by weak interactions=d.€,, . Since these eigenvectors form a complete set, we

that transformd quarks tos quarks. The bulk viscosity coef- can express any vector as a linear combination of them. Thus

ficient that results from this process is given approximatelywe takeF'=% F@€! , u,=3 uge!,, etc. The numerical re-

by [27] laxation scheme indicated in E¢6.8) can be re-expressed

therefore in the eigenvector basis as

32><103—pT2 _m ! 6.1
{=3. <202\ 100 MeV) (6.12 ANF—up

Un+1="And.—1 (A2)

where all quantitiesexceptmg, the mass of the quark are

given in cgs units. We have used this form of the bulk Vis-The role of the projection operatét; is merely to remove
cosity to estimate the damping time of thenodes in strange  from Eq. (A2) the component corresponding to the zero ei-
stars. We find that in strange stars this damping time scalegenvalue. The recurrence relation, E42), can be solved
as analytically:

2 n

0?2 m 4
S
(100 MeV) - 613 Uﬁ+1=XaA7\F“go(—xa)k, (A3)

'n'G;o

1 1 T

10° K

7B B

Using the polytropic stellar model described in Sec. Il, weyhere
have computed the bulk-viscosity damping time of the

r-mode to berg=0.886 s for strange stars. This value is

smaller(by about a factor of J/than that found by Madsen B 1
[17], who used a very rough estimate of the bulk-viscosity X“_A)\da—l'
damping time[12] for the r-modes. We also note that our

expression forrg does not scale with angular velocity in the

same way as Madsen’s. Nevertheless, our calculations coifhis series converges as long |ag|<1. Since the projec-
firm Madsen’s prediction that bulk viscosity completely sup-tion operator has eliminated the one equation whtre0,
presses the-mode instability in hot strange stars. Using our it is easy to choosé\ so that|x,|<1 for all «, e.g., by
expression forrg we estimate that the-mode instability is  taking A\ sufficiently large. Thus, the sequenag,; con-
suppressed in all strange stars witke5x 108 K. verges to

(A4)
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X,ANFY  F@ carried out above reveals that the criterion for convergence
Tk 4 (A5)  of the explicit scheme is that\d,+ 1|<1. Clearly this can
“ “ only hold for operator® where the eigenvalues all have the

Thus the implicit relaxation scheme converges to the desire§aMe sigras is the case whel is elliptic) and only when
solution to Eq.(5.2). AN\ has the correct sign. Our limited experience with hyper-

In contrast to the implicit relaxation method defined in bolic operatorsD is that their eigenvalues have both signs.
Eq. (5.8), the analogous explicit relaxation method does notConsequently it is not surprising that our attempts at explicit
converge at all for this problem. An analysis similar to thatnumerical relaxation fail in this case.

limug=

n—o
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