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We consider the evolution of a scalar field propagating in Schwarzschild—de Sitter spacetime. The field is
non-minimally coupled to curvature through a coupling consgafthe spacetime has two distinct time scales,
te=re/c andt.=r./c, wherer, is the radius of the black-hole horizon, the radius of the cosmological
horizon, andc the speed of light. When.>r, the field’s time evolution can be separated into three epochs.
At timest<t_, the field behaves as if it were in pure Schwarzschild spacetime; the structure of spacetime far
from the black hole has no influence on the evolution. In this early epoch, the field’s initial outburst is followed
by quasi-normal oscillations, and then by an inverse power-law decay. At tigigs the power-law behavior
gives way to a faster, exponential decay. In this intermediate epoch, the conditions atzradiandr=r,
both play an important role. Finally, at timést., the field behaves as if it were in pure de Sitter spacetime;
the structure of spacetime near the black hole no longer influences the evolution in a significant way. In this
late epoch, the field's behavior depends on the value of the curvature-coupling c@hdfastis less than a
critical value¢.= 3/16, the field decays exponentially, with a decay constant that increases with incr&asing
If £&>¢., the field oscillates with a frequency that increases with increasinige amplitude of the field still
decays exponentially, but the decay constant is independeit @e establish these properties using a
combination of numerical and analytical method30556-282(99)06416-4

PACS numbes): 04.30.Nk, 04.40-b, 04.70.Bw

I. INTRODUCTION AND SUMMARY and introduced much of the mathematical framework
adopted in subsequent work. Gundlach, Price, and P@lin
The dynamics of radiative fields in black-hole spacetimegprovided the most complete picture to date; in addition to
has been investigated since the early 1970s in an effort tdescribing how the radiation behaves at a fixed distance from
understand how asymmetric gravitational collapse proceedshe black hole, they also described the behavior at the event
in the absence of rotation, to form a perfectly spherical blackorizon and at future null infinity. Furthermore, they numeri-
hole. The first work of this type was carried out by de lacally simulated the collapse of a self-gravitating scalar field,
Cruz, Chase, and Israfl], who focused on electromagnetic and showed that the power-law tails are a generic feature of
and linear gravitational perturbations of a spherical collapseradiative decay, whether a black hole forms or not. These
They showed numerically that after an outburst of radiatiommumerical results were reproduced by Burko and (@i
at the onset of collapse, the radiation decays to zero in a timadditional analytical insights can be found in Refg-9|,
of the order of the light-crossing time of the resulting eventand various generalizations of the basic scenario have been
horizon. Subsequently, Pri¢2] gave an analytical descrip- considered iff10,11].
tion of the radiative decay, and showed that scalar, electro- The works reviewed above were entirely concerned with
magnetic, and gravitational radiation all go to zero as argravitational collapse to a non-rotating black hole. It is only
inverse power of time, the power index depending on theecently that the analysis was extended to the case of rotating
multipole order of the perturbation. This late-time decay ofblack holes. The first authors to consider radiative decay in
the radiation is often referred to as its “power-law tail.” Kerr spacetime were Krivan, Laguna, and Papadopdul®k
The early investigations were extended and improved bysee alsd13]), who showed numerically that the radiation
other authors. Biak [3] generalized Price’s analysis and cal- falls off according to an inverse power law. This inverse
culated the radiative decay of an electrically neutral scalapower-law behavior was confirmed analytically by Hdd],
field interacting with a charged black hole. He also found aras well as Barak and OFiL5]
inverse power-law decay of the radiation. Leayét pro- At this point, we have a clear physical picture of how a
vided a detailed analytical picture of the radiative evolutionradiative field behaves during gravitational collapse to a
black hole; the picture is essentially the same for scalar, elec-
tromagnetic, and gravitational radiation, and it is valid for
*Present address: 20 Pritchard Close, Kingsdown, Swindoniotating and non-rotating black holes. There are three stages
United Kingdom SN2 6TZ. to the field’s dynamical evolution. At the onset of collapse
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(t=0), an outburst of radiation is emitted; most of this ra-(1.1) are presented in Sec. Il, which also describes the nu-
diation propagategwith distortiong directly to infinity. Af-  merical methods employed to integrate Et.).

ter this initial outburst, the field oscillates with frequencies The analysis presented in this paper establishes the fol-
and damping times characteristic of the central black holelowing physical picture. The SdS spacetime comes with two
This behavior is associated with the field’s quasi-normaldistinct time scalest./c andr./c; for the purpose of this
modes of oscillation, which decay over a time comparable taliscussion we assume thak<r. so that the time scales are
100r./c, wherer, is the event-horizon radius and the cleanly separated. The picture elaborated previously for
speed of light. Finally, these oscillations give way to theblack holes in asymptotically-flat spacetimes—an initial out-
inverse power-law behavior described above. If the radiativdurst followed by quasi-normal oscillations followed by
field @ is observed at a fixed radiusand the field is static power-law tails—continues to hold at timesr/c. In fact,
prior to collapse, the~t~(?'*2) ast—o, wherel is the  over this time scale, the field propagates as if it were in
multipole order. asymptotically-flat Schwarzschild spacetime. Conditions at

Analytical [4,7—9 and numerica[5] studies of radiative radii r=r, have no influence on the field’s evolution. At
dynamics in black-hole spacetimes have revealed that thater times, however, whenbecomes comparable 1@ /c,
inverse power-law behavior is not sensitive to the presencthe asymptotic de Sitter structure starts to play a role, and the
of an event horizon. In fact, power-law tails are a weak-inverse power-law behavior gives way to a faster, exponen-
curvature phenomenon, and it is the asymptotic structure dial decay. At timeg¢>r./c the conditions at radii=r. no
the spacetime at radii>r, which dictates how the field longer have any influence, and the scalar field goesbas
behaves at times>r./c. This observation begs the ques- ~e P« where
tion: how is the field’s evolution affected if the conditions at
infinity are altered? For example, what happens when the I~y
black hole is immersed in an expanding universg]? _|+ 2 V94 +O( )

This question was first addressed by Brady, Chambers,

Krivan, and LagungBCKL) in Ref.[17]. They considered Equation(1.2) reduces top=I when =0, in agreement
the dynamical evolutioriboth linear and nonlineaof a sca- with the BCKL results. In this expression notice that the
lar field in Reissner-Norsdir—de Sitter spacetime, which Square root becomes imaginary whén .= 5. At é=¢,
represents a spherical, charged black hole immersed in dBerefore, the scalar field undergoes a transition at which the
Sitter space—an exponentially expanding universe with g@ure exponential decay observed for &; becomes oscilla-
cosmological horizon at a fixed radius. BCKL found that  tory. This surprising property of wave propagation in SdS
the scalar field decays not as an inverse power of time, pbwpacetime was first revealed in our numerical simulations
exponentially at time$>r./c. Their numerical results were (presented in Sec. )il and then established analyticallgs
compatible with the formulab~e~'*¢!, where the decay Presentedin Sec. IV

constantk,=c/r is the surface gravity of the cosmological ~ Our final sectior(Sec. V) is devoted to a discussion of the
horizon.(The surface gravity is precisely defined in Seg. II. late-time decay of electromagnetic and gravitational radia-
Forl=0, BCKL found that the field does not decay, but thattion in SdS spacetime. i designates either one of these
it settles down to a constant, nonzero value. Therefore, theadiative fields, we argue thdt~e™P*<' at late times, where
usual power-law scenario does not necessarily survive whe is now given by

the conditions at infinity are altered.

Our purpose in this_paper is to extend th_e initial_ wc_Jrk of p=I+1+0
BCKL; we provide additional details, generalize their discus-
sion, and offer new analytical insights.

We study the dynamics of a scalar fiel® in
Schwarzschild—de SittefSdS spacetime, which describes

1.2

re)
E . (1.3

Thus, both electromagnetic and gravitational radiation be-
have, at late times, as a conformally invaria&it(z) scalar

an electrically neutral black hol@f event-horizon radius,) field.

immersed in an exponentially expanding universeth

cosmological-horizon radius,). The scalar field satisfies the Il. EQUATIONS AND NUMERICAL METHODS

wave equation The metric of the Schwarzschild—de Sit&dS space-

time is given by

(L= ER)@=0, (1.9 A= — fd2+f1dr2+r2(de?+sirfodg?),  (2.1)

where is the curved spacetime d’Alembertian opera®r, Where
the spacetime’s Ricci scalar, agda tunable, nonnegative
coupling constant. This equation is more general than the T i 2.2
one considered by BCKL, who limited themselves to mini- r a2’ '

mal coupling, i.e.£=0. We shall see that adding this dimen-

sion to the parameter space greatly enhances the number with M denoting the black-hole masa? is given in terms of
possible late-time behaviors for the scalar field. Additionalthe cosmological constant by a?=3/A. We use geom-
details regarding the SdS spacetime and the wave equati@trized units such thaG=c=1. The spacetime possesses
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two horizons: the black-hole horizon isatr and the cos-
mological horizon is at =r., wherer .>r.. The functionf
has zeros at, r., andro=—(r+r.). In terms of these
guantities,f can be expressed as

f=%(r—re)(rc—r)(r—ro). (2.3
aTr

It is useful to regard, andr. as the two fundamental pa-

rameters of the SdS spacetime, and to expkésnda?® as

functions of these variables. The appropriate relations are

a?=r2+r o trg2 (2.9
and
2Ma=rro(retry).

(2.9

We also introduce the surface gravity associated with the
horizonr=r,, as defined by the relationi=%|df/dr|r:ri.

Explicitly, we have

(I‘C—I'e)(l’e—l'o)

Ko= , 2.6
¢ 2a’r, (&9
(rc_re)(rc_ro)
Ke=——————— 2.
c 2a7r, (2.7)
re—ro)(re—ro)
o= e To) 3( =2 2.9
2a%(—ro)
These quantities allow us to write
1 1 1
(2.9

T 2K —Trog) +2Kc(rc—r) +2K0(r—r0) :

and to express the transformation betweeand the “tor-
toise coordinate’r* = !dr as

1 r 1 r
r* =—In(——1) — —In( 1-—

2Ke 2K, c

+ 1| ' 1
Z—Kona .
(2.10

In terms oft and r* we define the null coordinates=t
—r* (retarded timgandv=t+r* (advanced timeso that
the (future) black-hole horizon is located at=<«, and the
(future) cosmological horizon is at =,

We consider a massless scalar fididin the SdS space-
time, obeying the wave equation

(0—-¢éR)P=0, (2.11

where ngaﬁvavﬁ is the d’Alembertian operatorR

=12/a® the Ricci scalar, ang a curvature-coupling constant
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then each wave functiony, satisfies the equation

P P
-
gt or*?

)¢|(t,r)=V|(r)¢|(t.f), (2.13

where the potential function is given by

0+1)

2M  2(6&-1)
r? T

rs a?

Vi(r)=f

1. (2.149

Using the null coordinates andv, Eq.(2.13 can be recast
as
(92
—4

l/f|(U,V):V|(r)lr//|(u,V), (213

Juov

in which r is determined by inverting the relatior (r)
=3%(v—u). Our numerical methods are based on this form
for the reduced wave equation.

In order to find a unique solution to E.15), initial data
must be specified on the two null surfaces 0 (say and
v =0 (say). Because the late-time behavior of the wave func-
tion is largely independent of the choice of initial data, we
set ¢,(u,v=0)=0 and use a Gaussian profile, centered on
v and having widtho, onu=0:

(V_Vc)2

¢|(u=0,v)=ex;{ - T .

o

(2.19

We numerically integrate Eq(2.15 using the finite-
differencing scheme suggested by Gundlach, Price, and Pul-
lin [5], in which the coordinates andv increase by discrete
units A. In the discrete space, the differential equation be-
comes

AZ
P (N)= ¢ (W) + i (E) = 4(S) — §V|(Rc)['//|(W)+ H(E)]
+0(A%Y), (2.17
where we have defined the poirts (u+A,v+A), W:(u
+A,v), E:(u,v+A), andS:(u,v). The potential is evalu-
ated at the central radiuR, corresponding to the off-grid
point (U+3A,v+3A); thus,r* (Ry) =3(v—u).
The computationally expensive part of the calculation re-
sides in the inversion of the relatiofi (r), which is required
to evaluate the potential functiod(r). For values ofr*
such that Z.r*<—1, we numerically solve the equation
r * r r
— =1+ exp{K—eln(l—— —ﬁln(l——”
r Ko ro

e K¢ c

that we take to be nonnegative. If we decompose the scaldy iterations. When 2,r* >1, we use

field according to

<I>=§ M) Yim(0,¢), (2.12

=|

Ke r
+—In<1— —”
Ko o
(2.19
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FIG. 1. Absolute value of the wave functiofj(t,r) as a func- FIG. 2. Absolute value of the wave functiaf(t,r) as a func-

tion of time t, evaluated ar* =10 in Schwarzschild spacetime tion of timet, evaluated at*=10 in SdS spacetimer{=1 and

(r.=1) and SdS spacetime =1 andr,=2000). The casel=0 r_c=100). The casek=0,1,_2 are considered, and the wave fung-

andl=1 are considered, and the wave functions are plotted on §0ns are plotted on a semi-log scale. In such a plot, a straight line

log-log scale. In such a plot, a straight line indicates poWer_|a\,\,|ndlcates expone_ntlal behavior. Notice that the final change of sign

behavior, and a change of sign in the wave function is representefl the wave function occurs &t-50 for| =0, t~190 forl =1, and

by a deep trough. We see that the early portiospfs oscillatory t~220 forl =2. Notice also that the numerical integration becomes
: J ; 14

and that for SdS spacetime, changes sign at~260. noisy when|yy| drops below 10**.

=3, and the wave function is evaluatedrat=10.

The plots show that the physical picture given in Sec. | is

curate. At early times, the Schwarzschild and SdS wave

functions display identical behavior, and deviations become

apparent only whemh becomes comparable tQ. Forl=0,

the Schwarzschild behaviar,~t~2 gives way to the wave

Lunction changing sign at~260, and settling down to a
onstant valugequal to—1.1x10 °) at late times. Fol

=1, the Schwarzschild behaviat;~t % is replaced by a

faster decay, which eventually becomes exponential. Exami-
ation of the field’s behavior at the black-hole and cosmo-
ogical horizons, where), is a function ofu andv, respec-

tively, reveals precisely the same physical picture.

instead. For all other values af, we invert the relation
r*(r) using the Newton-Raphson method, as implemented ir&c
the Numerical Recipesoutinertsafe  [18].

Once the integration is completed, the valugfuax,V)
are extracted, where,,,, is the maximum value ofi on the
numerical grid. Ifu,,, is sufficiently large, then these values
give a good approximation for the wave function at the even
horizon. Similarly, for vy Sufficiently large, the values
#1(U,vimay give a good approximation for the wave function
on the cosmological horizon. Finally, the values/gfon the
line u=v—2k are extracted, and expressed as a function o
t=3(u+v)=v—k; here, k is a constant representing the
value ofr* at which the field is evaluated.

B. Behavior at late times

. NUMERICAL RESULTS We now consider the behavior of the scalar field at times

A. Behavior at early and intermediate times t>r.. To ease access to these late times, we consider a SAS
f Lin thi o blish th ) spacetime with parameters=1 andr.= 100, although this
Our first goal in this section is to establish that at times,, |onger offers a clean separation of the time scales. We

t<r., the scalar field behaves as if it were in Schwarzschildoegin by integrating Eq(2.19 with ¢=0, for the cases
spacetime, and that at timés-r., a transition occurs in. _ 1 2 "onece again we set=10, 0=3 ,and we evaluate

which the inverse power-law decay gives way to an €XPOthe wave function at* =10
nential decay. The late timeés-r . are considered in the next '

SUbS.eCt'O”‘ . . . y(t,r) at late times. The plots reveal that for 0, the wave
Figure 1 displays the behavior of the wave functiong n ion eventually settles down to the constant vatué4
#i(t,r) at a fixed radius, for early and mtt_ermedlatg _tl_mes. x 1073, Forl #0, the field decays to zero, and our numerical

The plots show how the pure Schwarzschild behatiratial results are compatible with the formula

outburst, quasi-normal oscillations, and power-law dg¢dsy
distorted by the de Sitter structure of spacetime at large radii. P (t)~e'xet (3.2

We consider a SdS spacetime with parametges1l andr,

=2000, so that the time scales are well separated. We intdirst discovered by BCKL. The numerically-determined val-
grate Eq(2.15 for =0 andl =1, settingé&=0. We compare ues for the decay constants agree wlit to within 1%.

the field’s evolution in SdS spacetime to what it would be inMultipoles corresponding tb=3 could not be examined be-
pure Schwarzschild spacetim@also with r,=1). In both  cause the field decays too rapidly and the numerical integra-
cases the initial data is given by E@.16), with v,=10, ¢  tion quickly becomes noisy. The late-time behavior of the

Figure 2 displays the behavior of the wave function
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FIG. 3. Absolute value of the wave functiafy(t,r) as a func- FIG. 4. Absolute value of the wave functiai(t,r) as a func-

tion of time t, evaluated at* =10 in SdS spacetimer{=1 and tjon of timet, evaluated at* =0.5 in pure de Sitter spacetinjeith
r.=100). Several 1va|ues of are considered, in the interval be- parameter .=1). Several values of are considered, in the interval
tweeng=0 and{= 3. The wave functions are plotted on a semi-log petweens=0 andé= 3. The wave functions are plotted on a semi-

scale. The noteworthy features are thegeFor {<&., the wave  |og scale. These plots show the same features as in the preceding
function decays exponentially, with a decay constant that increasegyure.

with increasingé; (i) for ¢>¢., the wave function still decays

exponentially, but with a decay constant that no longer varies with  According to the physical picture presented in Sec. |, the
& (iii) for £>¢c, the wave function oscillates, with a frequency fie|d's evolution should proceed as if the field were in pure
that increases witl. de Sitter spacetime whe®r . In particular, Eqs(3.2) and

. ] . (3.3 should describe the late-time behavior of the wave
wave function at the black-hole and cosmological horizons igynction in de Sitter spacetime. To test this hypothesis, we

also described by Ed3.1), provided that is replaced by performed a numerical integration of E¢¢.15 in pure de
on the event horizon, and hyon the cosmological horizon. - sijtter spacetim§19] with a cosmological horizon at,=1,

A rich spectrum of late-time behaviors is revealed whenyng initial data of the form(2.16 with v.=1 ando=0.1.
¢, the curvature-coupling constant, is allowed to be nonzerore resyits fot =0 are displayed in Fig. 4. All the late-time
This dimension of the parameter space was not explored bjatyres seen in SdS spacetime are reproduced, and we have
BCKL. Figure 3 displays the late-time behavior @) for  yerified that the field's evolution is well described by Egs.
several values of, using the same parameters as before. Fo[3 ) and (3.3), with r,=0 andx.=1/r.=1, to well within
¢ smaller than a critical valug;, the field decays monotoni- 1o
cally with a decay constant that increases with increaging
When é> &, however, the wave function oscillates with a
decaying amplitude. A§ is increased away from the critical
value &, the frequency of the oscillations increases, but the The observation that the late-time behavior of the scalar
decay constant stays the same. Similar behavior was olfield is dictated by the de Sitter structure of spacetime at
served forl =1 andl =2, and our numerical results are com- large radii is the key to the derivation of Eq48.2) and(3.3).

IV. ANALYTICAL RESULTS

patible with the formula Motivated by this observation, we integrate the wave equa-
tion (2.13 in pure de Sitter spacetime, and show that the
Py~e [Tt (3.2) late-time behavior of the wave function is indeed given by

Eq. (3.2, with g(¢) =32 —1./9—48¢. Apart from an approxi-
where the functiorg(£) increases withé for é<¢., and is  mation of late timest¢>r.), our calculations arexact That
complex foré>&.. From our numerical results, we are able such a treatment is afforded relies on removing the black
to determine that 0.18£,=0.19. The analytical calculations hole from the spacetime. While this removal produces a
presented in Sec. IV show that the functig(¢) is in fact large effect at early times, the preceding results indicate that
given by the influence of the central mass is negligible at late times.

(We will have to qualify this statement belowlhe consid-

3 1 Mo erably more difficult job of analytically integrating E¢3.2)
9(§)=5—5V9-48+0 ) (33 in full SAS spacetime will be undertaken elsewhi2@].
so thaté,= & =0.1875. This relation explains the observed A. Equations

features, and our numerical results agree with £82) and We consider a scalar fiellt in de Sitter spacetime, whose
(3.3 to within 1%. Equation(3.2), with t replaced by either metric is of the form(2.1) with

v or u, describes also the behavior of the wave function on
the black-hole or cosmological horizons, respectively. f=1-r2, 4.9

064003-5
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where we have set,=a=1 without loss of generality; thus, d d

the surface gravity of the cosmological horizorkis=1. The W= if"®9—— yP— yP—— y"e9, 4.9
scalar field obeys the wave equati¢hl1l), and the reduced dr* dr*
wave function (t,r) defined by Eq.(2.12 satisfies Eq.

(2.13 with the potential We use the notation.=min(r,r’), r—=max(,r’), and for

simplicity, we do not explicitly indicate the dependence of

I(1+1) 9 Y andW on w.
V(r)=f +2(6£-1)]. (4.2) Equation(4.7) correctly represents the retarded Green’s
r2 function if *P(r) describes waves which are purely outgo-

o ) ) ing at the cosmological horizon; we choose the normaliza-
We suppress thelabel to simplify the notation. In de Sitter tjgn

spacetime, the relation betweerandr*= [~ 1dr is given

by Pr~eert ro1. 4.9
ok LT Also, we must choose fap™qr) a solution which enforces
e = . (4.3 PSS . thi
1—r the boundary conditiog/"*%0)=0; this ensures that the sca-

lar field ® is everywhere nonsingular. The calculation of
We wish to integrate Eq2.13) starting with a suitable set of G(:r r’) therefore reduces to solving the homogeneous

initial conditions att=0. It follows from a simple applica-  form of Eq. (4.6) for the two functionsy®Yr) and y“*(r).
tion of Green’s identity that at timets>0, the wave function

can be expressed as C. Solutions to the homogeneous equation

1 . ] dr’ The mathematical problem of finding the solutions
w(t,r)z—f [Or)g(tir,r")+¢(0r)g(t;r,r')]—. #®qr) and ¢"’(r) has been addressed in the literature
0 f [22,23. We shall briefly sketch the method of solution.
(4.4 The change of variable=r? and the factorizatiory

. i
Here, (0r’) and ¢(0,r') are the initial dataan overdot =z%(1—2)#X, with a=3(1+1) andg= ii“" transforms

indicates time differentiatiofi21]), andg(t;r,r’) is the re- .
tarded Green’s function for the reduced wave equatior;[he homogeneous form of Eq4.6) to a hypergeometric

(2.13: we also use the notatiof =1—r'2. The Green’s equation for X. The fundamental solutions areX

- . 3. =1 i =1
function is zero fort<0, and it satisfies Eq2.13 with a ;F(a_‘fi’b)i ’ell:dz'z)‘ wherea. =z(I+9. *iw), b.=3(l
term f5(t) 8(r —r'") added to the right-hand side. 9-=lw),

31
B. Fourier transform of the Green’s function g9-(8)= 555 9-—-48¢. (4.10

Since the late-time behavior af(t,r) is entirely deter- ] o ] .
mined by the late-time behavior oft;r,r’), the derivation ~BOth choices of sign in front ofw produce a functionj(r)
of Egs. (3.2 and (3.3 begins with a calculation of the thatgoes to zer¢asr ") whenr—0. Choosing the minus
Green’s function. We first consider its Fourier transformSign and the normalization arbitrarily, we set

g(w;r,r’), defined by . 3
. S =r'""Y1-r?)""PFla_ b_ ;I+§;r2>.
g(t;r,r')= gf 9(w;r,re “dw. (4.5 (4.1
. . o . . It is not difficult to show that
For eachw, this function ofr andr’ satisfies the differential
equation PUP(ry=2"r Y 1—r2)"TePE@_ b_:l-iw;1-r?)

(4.12

ﬁ(w;r,r’)zfﬁ(r—r’), (4.6) also satisfies the homogeneous form of Eg6), and has the
asymptotic behavior indicated in E@4.9. On the other
hand, the solution

d2
02 +w?=V(r)

whereV(r) is given by Eq.4.2). It is clear that the solution

can be expressed in the factorized form YA ry=2"ter!* (1 —r2)ieRPE(g, b, ltie;1-r?)
L (4.13
gla;r,r’) =™ ro)¢g™r=), (4.7 satisfies ingoing-wave boundary conditions at the cosmologi-

cal horizon:¢®"\(r)~e " whenr—1.
where™9r) and ¢""(r) are two linearly independent solu-  These three solutions are not linearly independent. Using
tions to the homogeneous form of Eg.6), with W denoting  Eq. (15.3.6 of Abramowitz and Steguif24], it is easy to
their conserved Wronskian: show that
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. 27T+ HI'(iw) )
AU e PN CR AL oon |

2T (1+ HI'(—iw) y
Faorpy V0. (414

0.0001 |-

1e-06
This relation, together with the fact that the Wronskian be-
tween ¢9°"r) and 4“*(r) is equal to 2w, imply that

1e-08

wave function {absolute value)

W pltie T+ HI(1—iw) el
(4.1

1 1 Tz(+g:—io)[;(I+g9-—iw)] ey

D. Pole structure FIG. 5. Absolute value of the wave functiah(t,r) as a func-

If for the moment we ignore the factorll{1—iw), Eq. tion of timet, evaluated at* = 0.5 in pure de Sitter spacetinfeith
(4.15 shows that W [or equivalentlyﬁ(w;r,r’)] is analytic parameterr.=1). Several small values of are considered, to-

in the complexw plane, except for isolated poles in the gether with the special cage=0. The plots make it quite clear that
lower half plane, at ' the late-time behavior associated witi 1 is qualitatively different

from the behavior associated wih=0. As explained in the text,
iw=i wﬁEI +g.+2n, (4.16 tlt}i/quualitative change of behavior is caused by pole cancellation in

where g (¢) is defined in Eq.(4.10 and n=0,1,2....
There are two poles for each value of the integefFor ¢
<¢.=+5, 9. are real functions of, and the poles are lo-
cated along the negative imaginary axis of the complex

fore expect the Green’s function—and the scalar field—to
display aqualitative change of behavior at late times, as the
limit £=0 is taken. Figure 5 shows that such is indeed the
case. It is interesting to note that such qualitative changes of

plane. Asé—¢., the single poles belonging to the same behavior donot occur in full SdS s .
¢ pacetime. We return to
merge, becoming a double pole whén &.. Foré>&., the this point in Sec. IV G.

functions g become complex, and the poles move away

from the negative imaginary axis. The presence of poles @(w;r,r’) makes it very easy to
The pole nearest to the real axis gives the dominant Con(;alculate the late-time behavior of the Green’s function.
tribution to the Green’s function at late times. FoF ¢ Such a calculation is much more difficult when there are no
) o

; ; itw=|+2—1./9_48¢E. _ poles, and therefore, this will not be attempted forlthe.special
this pole s located alw =1+ 5~ 59~ 48. For£=¢, the casest=0 (except forl=0) andé=4%. In the generic situa-

double pole is located ato=I1+3. For &> &, , there are two Lo )
ne;restp oIels o= 4+ 3+ (i/2)f/48§——§9 & W tion (all other cases the contribution to the Green’s function
P z- ' coming from the pole nearest to the real axis is given by

For values of¢ such thaty9—48¢ is an odd integer, the

numbersw, are also integers. This occurs whér 0, for (iJo—48¢ h(rYh(r’

which the poles are atw=I1+2n andiw=1+3+2n. It also g(w;r,r’)~ (32 %) _(r) r ),
occurs whené=% (the value of¢ which makes the wave T+ $Hr(1-1-g_) (o= wo)
equation conformally invariahtfor which the poles are at (4.17)

io=1+1+2n and io=1+2+2n. These are exceptional
cases, because most of these poles are canceled out by #
previously ignored factor T/(1—iw). This I'-function also h(r)=r'*1(1—r2)~(+9-)2 (4.18
has integer poles, atb=1+n’, wheren’'=0,1,2 .... ltis

easy to check that the zeros off' {1 —iw) cancel out the gn(g

poles listed previously, so that W/ [or equivalently,

g(w;r,r')]is analytic at these frequencies. The only excep-
tion occurs fol =0 whené=0. In this case, the single pole
atiw=0 survives. This is why the scalar field settles down
to a nonzero constant at late times. This calculation involves substituting the asymptotic relation
The pole cancellation which occurs at integer values ofl (€) ~1/e in place of the relevanf-function, and evaluat-
iw has interesting consequences. For example, consider tieg every other factor comprisirg(w;r,r’) at the frequency
casel =1, and values of which are small but nonzero. For wg; Egs.(4.7), (4.11), (4.12, and(4.15 are used along the
these values, the pole nearest to the real axis iswatl  way[25]. Whené=I1=0, Egs.(4.17—(4.19 reduce to
+4&+0(&?), and this pole exists as long gs-0. In the &
—0 limit, however, the would-be pole aiv=1 is canceled ~ re’

by the compensating zero inll{1—iw). We should there- glwsr.r )NE' (4.20

gere

3 1
iw0=|+§—§\/9—48§. (4.19
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E. Green’s function at late times F. The special cas&=1=0

The Green’s functiong(t;r,r’) can be obtained from When é=1=0, the wave function settles down to a final

g(w;r,r’) by inverting the Fourier transform; this gives rise value #(=,r) which can readily be calculated using Egs.
to Eq.(4.5). The contour of integration is along the real axis (4-4) and(4.23. Re-introducing the scale factog, we ob-

of the complexw plane. However, because we are interestedain
in the behavior of the Green’s function at late times, we can
safely close the contour in the lower half plane without
changing the result of the integral. The residue theorem then
guarantees thag(t,r,r’) can be expressed as a sum over

residu'esl each pole contribut'ing a term 'proportiongl to1'his equation implies that the value of the scalar fi®lcat
e.Xp(_'“’f?t) to the Green's function. The dominant _contrlbu- late times does not vary with a necessary consequence of
tion comes from the pole nearest to the real axis, and wg, . cosmological no-hair theorerfi@6—28,. It also implies

obtain that ¢(,r) scales as 1§=A/3, a property that was dis-

(o0 r>—LJr°'<0r')r'd—r, (4.25
wie, _rcz 0 ¥(0, £ '

1 o Aar cussed in BCKL.
gltir,r')~— [(zV9—48) h(r)h(r’)e (+9-)t, Equation(4.25 relatesy(,r) to the initial data specified
i+ Hra-1—-go) on the spacelike surfade=0. We can extract more informa-

(4.21)  tion from this equation, and also test it against our numerical
results, if we instead expregg«,r) in terms of initial data
whereg_(&)=2—-1./9—-48¢. Near the cosmological hori- specified on the null surface=0. (We again assume zero
zon, 1_r2:4e—2r*, and Eq.(4.21) becomes data onv=0.) To effect this translation, we assume that the
initial data has support solely in thze “weak-field” region of
1 = de Sitter spacetime, in which /r.)“<1, so thatf=1 and
g(tir—1r")~—2-0+9.) I'(zv9-48) r*=r. In this region, and in a neighborhood of the surface
’ ' rd+3Hra-1-go) t=0, we can approximate(t,r) by the flat-spacetime solu-
e tion y(t,r)=H(v), whereH is an arbitrary function ofv
Xh(r')e 9%, (422 —t+r. For this solution(0r)=H'(r) (with a prime indi-
cating differentiation with respect to the argumerind the
whereu=t—r*. For §=1=0, both expressions reduce to integral in Eq.(4.25 becomesfrdH. After integration by
parts, assuming thai (v) has compact support, we obtain
g(tsr,r’)~—rr'. (423  —[H(r)dr, and

Equations(4.21)—(4.23 are valid at timegs>1, oru>1. P

We have found that in the generic situation, the late-time (oo, r)=— —f H(v)dv. (4.26
behavior of the Green’s function is given by P<' or reJo
e~ PxeY where

Recall thatH(v) is the initial wave profile on the surface

3 1 o . . )
=1+ - Em' (4.24 0. For the specific choic€.16), we obtain
_ ) 270
Notice that we have re-introduced the scale parameter (e, r)=— 2 r. (4.27)
C

=1/r.. For the special casé&=1=0, the decay constaptis
zero, and the Green’s function settles down to the time-
independent expression given by E4.23). We have tested this prediction against our numerical results.
Equation(4.24) gives the correct late-time behavior of the The accuracy of Eq4.27) depends strongly on the value of
Green’s function foré<¢. and €>¢.. For é=§&., the v, the central position of the Gaussian wave packet.. If
Green’s function is obtained by integrating around a double=1, we find that forv.<0.2, our expression is accurate to
pole atiw=1+ 3. This requires integration by parts, and the within 1% over a wide selection of values forand o. For
end result is that for fixed<r., the Green’s function be- v.>0.2, the accuracy gets increasingly worse \asin-
haves as £.t)exfd —(I+3)«.t]; with u replacingt, this is also  creases; for example, the error grows to 15% &t 0.8. In
the correct behavior on the cosmological horizon. view of the fact that Eq(4.27) was derived under the as-
By virtue of Eq.(4.4), we conclude that in pure de Sitter sumption that the initial data has support only in the region
spacetime, the late-time behavior of the wave functiorr <r. of de Sitter spacetime, this is the expected result.
P(t,r) is alsoe Pxct or e Pl except for the exceptional The rate at which the fields settles down to its final
cases—£=0 and ¢=:—discussed previously. For the spe- constant value was also explored by BCKL. Their numerical
cial caseé=1=0, the wave function settles down to a con- results indicated thaty— ys(,r)~e 9% where q=2. In-
stant value. This conclusion is in full accord with the numeri-spection of Eqs(4.10 and (4.16) reveals that the leading
cal results presented in Figs. 4 and 5. contribution toyg— ¢(o0,r) comes from then=1 pole in the

064003-8



RADIATIVE FALLOFF IN SCHWARZSCHILD-DE ... PHYSICAL REVIEW D60 064003

Green'’s function, which produces=2+g_=2. Thus, our the SdS spacetime. In this section we indicate how our re-
analytical results are in full agreement with the BCKL nu- sults can be generalized to cover these physically important

merical results. cases; a more complete discussion will be found in R2£f].
It is well known that electromagnetic and gravitational
G. Analytical results for SdS spacetime perturbations of the SAS spacetime can be analyzed in terms

of a master potentiab which is related to the components of
the perturbing field$28]. After a decomposition in spherical
harmonics, the wave functiow(t,r) is found to obey an
equation of the form of E¢(2.13, but with the generalized
potential

Finding the Green’s function for a scalar field in SdS
spacetime is considerably more difficult than what was ac;
complished in this section, and this calculation will be the
subject of a separate publicatip20]. The conclusion is that
for SAS spacetime, the late-time behavior of the wave func-
tion is still exponentialyy~e~ P, with the decay constampt

2
given by the same expression as before, apart from correc- _ Ia+1) _2(5 —)M
4 V(r)=f , (5.0
tions of the order of . /r: r2 r3
p=1 + c_Z /—9 485+ 0 ) (4.29 wheres=1 (s=2) for electromagneti¢gravitationa) per-
turbations. In both cases the multipole indes restricted by

|=s.
The considerations of the preceding sections indicate that
the late-time behavior of, is insensitive to the presence of
"M-dependent terms in Eq5.1). Removing these terms, we
btain the potential of Eq(4.2) with ¢é=3. On these
rounds, we expect that the late-time behavioﬂ)oifs expo-
ential, ® ~e~ P« with p given by Eq.(1.2) with é=¢

This is the result that was quoted in E¢3.2) and(3.3).

In practice, the correction term of order/r is too small
to be revealed numerically. Nevertheless, its presence is i
portant, because it prevermgrom ever becoming an integer.
This means that the cancellation of poles at integer values
iw, discussed in Sec. IV D, is a phenomenon that occurs onl
for pure de Sitter spacetime; pole cancellation do&soccur
in full SdS spacetime. Consequently, the case) and¢
=1 are not exceptional in SdS spacetime, and such qualita- p=1+1+0
tive changes of behavior as depicted in Fig. 5 do not occur.

We have numerically tested the validity of E¢.27) for
SdS spacetime. As expected, the accuracy of this formula ishis result is borne out in our numerical simulations.
worse than for pure de Sitter spacetime: Witt=1, r

re)
E . (5.2
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