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Radiative falloff in Schwarzschild–de Sitter spacetime
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We consider the evolution of a scalar field propagating in Schwarzschild–de Sitter spacetime. The field is
non-minimally coupled to curvature through a coupling constantj. The spacetime has two distinct time scales,
te5r e /c and tc5r c /c, wherer e is the radius of the black-hole horizon,r c the radius of the cosmological
horizon, andc the speed of light. Whenr c@r e , the field’s time evolution can be separated into three epochs.
At times t!tc , the field behaves as if it were in pure Schwarzschild spacetime; the structure of spacetime far
from the black hole has no influence on the evolution. In this early epoch, the field’s initial outburst is followed
by quasi-normal oscillations, and then by an inverse power-law decay. At timest&tc , the power-law behavior
gives way to a faster, exponential decay. In this intermediate epoch, the conditions at radiir *r e and r &r c

both play an important role. Finally, at timest@tc , the field behaves as if it were in pure de Sitter spacetime;
the structure of spacetime near the black hole no longer influences the evolution in a significant way. In this
late epoch, the field’s behavior depends on the value of the curvature-coupling constantj. If j is less than a
critical valuejc53/16, the field decays exponentially, with a decay constant that increases with increasingj.
If j.jc , the field oscillates with a frequency that increases with increasingj; the amplitude of the field still
decays exponentially, but the decay constant is independent ofj. We establish these properties using a
combination of numerical and analytical methods.@S0556-2821~99!06416-4#

PACS number~s!: 04.30.Nk, 04.40.2b, 04.70.Bw
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I. INTRODUCTION AND SUMMARY

The dynamics of radiative fields in black-hole spacetim
has been investigated since the early 1970s in an effor
understand how asymmetric gravitational collapse proce
in the absence of rotation, to form a perfectly spherical bla
hole. The first work of this type was carried out by de
Cruz, Chase, and Israel@1#, who focused on electromagnet
and linear gravitational perturbations of a spherical collap
They showed numerically that after an outburst of radiat
at the onset of collapse, the radiation decays to zero in a
of the order of the light-crossing time of the resulting eve
horizon. Subsequently, Price@2# gave an analytical descrip
tion of the radiative decay, and showed that scalar, elec
magnetic, and gravitational radiation all go to zero as
inverse power of time, the power index depending on
multipole order of the perturbation. This late-time decay
the radiation is often referred to as its ‘‘power-law tail.’’

The early investigations were extended and improved
other authors. Bicˇák @3# generalized Price’s analysis and ca
culated the radiative decay of an electrically neutral sca
field interacting with a charged black hole. He also found
inverse power-law decay of the radiation. Leaver@4# pro-
vided a detailed analytical picture of the radiative evoluti

*Present address: 20 Pritchard Close, Kingsdown, Swind
United Kingdom SN2 6TZ.
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and introduced much of the mathematical framewo
adopted in subsequent work. Gundlach, Price, and Pullin@5#
provided the most complete picture to date; in addition
describing how the radiation behaves at a fixed distance f
the black hole, they also described the behavior at the e
horizon and at future null infinity. Furthermore, they nume
cally simulated the collapse of a self-gravitating scalar fie
and showed that the power-law tails are a generic featur
radiative decay, whether a black hole forms or not. Th
numerical results were reproduced by Burko and Ori@6#.
Additional analytical insights can be found in Refs.@7–9#,
and various generalizations of the basic scenario have b
considered in@10,11#.

The works reviewed above were entirely concerned w
gravitational collapse to a non-rotating black hole. It is on
recently that the analysis was extended to the case of rota
black holes. The first authors to consider radiative decay
Kerr spacetime were Krivan, Laguna, and Papadopoulos@12#
~see also@13#!, who showed numerically that the radiatio
falls off according to an inverse power law. This inver
power-law behavior was confirmed analytically by Hod@14#,
as well as Barak and Ori@15#

At this point, we have a clear physical picture of how
radiative field behaves during gravitational collapse to
black hole; the picture is essentially the same for scalar, e
tromagnetic, and gravitational radiation, and it is valid f
rotating and non-rotating black holes. There are three sta
to the field’s dynamical evolution. At the onset of collap

n,
©1999 The American Physical Society03-1
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BRADY, CHAMBERS, LAARAKKERS, AND POISSON PHYSICAL REVIEW D60 064003
(t50), an outburst of radiation is emitted; most of this r
diation propagates~with distortions! directly to infinity. Af-
ter this initial outburst, the field oscillates with frequenci
and damping times characteristic of the central black h
This behavior is associated with the field’s quasi-norm
modes of oscillation, which decay over a time comparable
100r e /c, where r e is the event-horizon radius andc the
speed of light. Finally, these oscillations give way to t
inverse power-law behavior described above. If the radia
field F is observed at a fixed radiusr and the field is static
prior to collapse, thenF;t2(2l 12) as t˜`, wherel is the
multipole order.

Analytical @4,7–9# and numerical@5# studies of radiative
dynamics in black-hole spacetimes have revealed that
inverse power-law behavior is not sensitive to the prese
of an event horizon. In fact, power-law tails are a wea
curvature phenomenon, and it is the asymptotic structur
the spacetime at radiir @r e which dictates how the field
behaves at timest@r e /c. This observation begs the que
tion: how is the field’s evolution affected if the conditions
infinity are altered? For example, what happens when
black hole is immersed in an expanding universe@16#?

This question was first addressed by Brady, Chamb
Krivan, and Laguna~BCKL! in Ref. @17#. They considered
the dynamical evolution~both linear and nonlinear! of a sca-
lar field in Reissner-Norsdtro¨m–de Sitter spacetime, whic
represents a spherical, charged black hole immersed in
Sitter space—an exponentially expanding universe wit
cosmological horizon at a fixed radiusr c . BCKL found that
the scalar field decays not as an inverse power of time,
exponentially at timest@r c /c. Their numerical results were
compatible with the formulaF;e2 lkct, where the decay
constantkc.c/r c is the surface gravity of the cosmologic
horizon.~The surface gravity is precisely defined in Sec. I!
For l 50, BCKL found that the field does not decay, but th
it settles down to a constant, nonzero value. Therefore,
usual power-law scenario does not necessarily survive w
the conditions at infinity are altered.

Our purpose in this paper is to extend the initial work
BCKL; we provide additional details, generalize their discu
sion, and offer new analytical insights.

We study the dynamics of a scalar fieldF in
Schwarzschild–de Sitter~SdS! spacetime, which describe
an electrically neutral black hole~of event-horizon radiusr e)
immersed in an exponentially expanding universe~with
cosmological-horizon radiusr c). The scalar field satisfies th
wave equation

~h2jR!F50, ~1.1!

whereh is the curved spacetime d’Alembertian operatorR
the spacetime’s Ricci scalar, andj a tunable, nonnegative
coupling constant. This equation is more general than
one considered by BCKL, who limited themselves to mi
mal coupling, i.e.,j50. We shall see that adding this dime
sion to the parameter space greatly enhances the numb
possible late-time behaviors for the scalar field. Addition
details regarding the SdS spacetime and the wave equ
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~1.1! are presented in Sec. II, which also describes the
merical methods employed to integrate Eq.~1.1!.

The analysis presented in this paper establishes the
lowing physical picture. The SdS spacetime comes with t
distinct time scales,r e /c and r c /c; for the purpose of this
discussion we assume thatr e!r c so that the time scales ar
cleanly separated. The picture elaborated previously
black holes in asymptotically-flat spacetimes—an initial o
burst followed by quasi-normal oscillations followed b
power-law tails—continues to hold at timest!r c /c. In fact,
over this time scale, the field propagates as if it were
asymptotically-flat Schwarzschild spacetime. Conditions
radii r .r c have no influence on the field’s evolution. A
later times, however, whent becomes comparable tor c /c,
the asymptotic de Sitter structure starts to play a role, and
inverse power-law behavior gives way to a faster, expon
tial decay. At timest@r c /c the conditions at radiir *r e no
longer have any influence, and the scalar field goes aF
;e2pkct, where

p5 l 1
3

2
2

1

2
A9248j1OS r e

r c
D . ~1.2!

Equation ~1.2! reduces top5 l when j50, in agreement
with the BCKL results. In this expression, notice that t
square root becomes imaginary whenj.jc5 3

16 . At j5jc ,
therefore, the scalar field undergoes a transition at which
pure exponential decay observed forj,jc becomes oscilla-
tory. This surprising property of wave propagation in S
spacetime was first revealed in our numerical simulatio
~presented in Sec. III!, and then established analytically~as
presented in Sec. IV!.

Our final section~Sec. V! is devoted to a discussion of th
late-time decay of electromagnetic and gravitational rad
tion in SdS spacetime. IfF designates either one of thes
radiative fields, we argue thatF;e2pkct at late times, where
p is now given by

p5 l 111OS r e

r c
D . ~1.3!

Thus, both electromagnetic and gravitational radiation
have, at late times, as a conformally invariant (j5 1

6 ) scalar
field.

II. EQUATIONS AND NUMERICAL METHODS

The metric of the Schwarzschild–de Sitter~SdS! space-
time is given by

ds252 f dt21 f 21dr21r 2~du21sin2udf2!, ~2.1!

where

f 512
2M

r
2

r 2

a2
, ~2.2!

with M denoting the black-hole mass;a2 is given in terms of
the cosmological constantL by a253/L. We use geom-
etrized units such thatG5c51. The spacetime possess
3-2
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RADIATIVE FALLOFF IN SCHWARZSCHILD–DE . . . PHYSICAL REVIEW D60 064003
two horizons: the black-hole horizon is atr 5r e and the cos-
mological horizon is atr 5r c , wherer c.r e . The functionf
has zeros atr e , r c , and r 052(r e1r c). In terms of these
quantities,f can be expressed as

f 5
1

a2r
~r 2r e!~r c2r !~r 2r 0!. ~2.3!

It is useful to regardr e and r c as the two fundamental pa
rameters of the SdS spacetime, and to expressM anda2 as
functions of these variables. The appropriate relations ar

a25r e
21r er c1r c

2 ~2.4!

and

2Ma25r er c~r e1r c!. ~2.5!

We also introduce the surface gravityk i associated with the
horizon r 5r i , as defined by the relationk i5

1
2 ud f /drur 5r i

.
Explicitly, we have

ke5
~r c2r e!~r e2r 0!

2a2r e

, ~2.6!

kc5
~r c2r e!~r c2r 0!

2a2r c

, ~2.7!

k05
~r e2r 0!~r c2r 0!

2a2~2r 0!
. ~2.8!

These quantities allow us to write

1

f
5

1

2ke~r 2r e!
1

1

2kc~r c2r !
1

1

2k0~r 2r 0!
, ~2.9!

and to express the transformation betweenr and the ‘‘tor-
toise coordinate’’r * [* f 21dr as

r * 5
1

2ke
lnS r

r e
21D2

1

2kc
lnS 12

r

r c
D1

1

2k0
lnS r

r 0
21D .

~2.10!

In terms of t and r * we define the null coordinatesu5t
2r * ~retarded time! and v5t1r * ~advanced time! so that
the ~future! black-hole horizon is located atu5`, and the
~future! cosmological horizon is atv5`.

We consider a massless scalar fieldF in the SdS space
time, obeying the wave equation

~h2jR!F50, ~2.11!

where h5gab¹a¹b is the d’Alembertian operator,R
512/a2 the Ricci scalar, andj a curvature-coupling constan
that we take to be nonnegative. If we decompose the sc
field according to

F5(
lm

1

r
c l~ t,r !Ylm~u,f!, ~2.12!
06400
lar

then each wave functionc l satisfies the equation

S 2
]2

]t2
1

]2

]r * 2D c l~ t,r !5Vl~r !c l~ t,r !, ~2.13!

where the potential function is given by

Vl~r !5 f F l ~ l 11!

r 2
1

2M

r 3
1

2~6j21!

a2 G . ~2.14!

Using the null coordinatesu andv, Eq. ~2.13! can be recast
as

24
]2

]u]v
c l~u,v !5Vl~r !c l~u,v !, ~2.15!

in which r is determined by inverting the relationr * (r )
5 1

2 (v2u). Our numerical methods are based on this fo
for the reduced wave equation.

In order to find a unique solution to Eq.~2.15!, initial data
must be specified on the two null surfacesu50 ~say! and
v50 ~say!. Because the late-time behavior of the wave fun
tion is largely independent of the choice of initial data, w
set c l(u,v50)50 and use a Gaussian profile, centered
vc and having widths, on u50:

c l~u50,v !5expF2
~v2vc!

2

2s2 G . ~2.16!

We numerically integrate Eq.~2.15! using the finite-
differencing scheme suggested by Gundlach, Price, and
lin @5#, in which the coordinatesu andv increase by discrete
units D. In the discrete space, the differential equation b
comes

c l~N!5c l~W!1c l~E!2c~S!2
D2

8
Vl~Rc!@c l~W!1c l~E!#

1O~D4!, ~2.17!

where we have defined the pointsN:(u1D,v1D), W:(u
1D,v), E:(u,v1D), and S:(u,v). The potential is evalu-
ated at the central radiusRc corresponding to the off-grid
point (u1 1

2 D,v1 1
2 D); thus,r * (Rc)5 1

2 (v2u).
The computationally expensive part of the calculation

sides in the inversion of the relationr * (r ), which is required
to evaluate the potential functionVl(r ). For values ofr *
such that 2ker * ,21, we numerically solve the equation

r

r e
511e2ker* expFke

kc
lnS 12

r

r c
D2

ke

k0
lnS 12

r

r 0
D G

~2.18!

by iterations. When 2kcr * .1, we use

r

r c
512e22kcr* expFkc

ke
lnS r

r e
21D1

kc

k0
lnS 12

r

r 0
D G
~2.19!
3-3
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BRADY, CHAMBERS, LAARAKKERS, AND POISSON PHYSICAL REVIEW D60 064003
instead. For all other values ofr * , we invert the relation
r * (r ) using the Newton-Raphson method, as implemente
the Numerical Recipesroutine rtsafe @18#.

Once the integration is completed, the valuesc l(umax,v)
are extracted, whereumax is the maximum value ofu on the
numerical grid. Ifumax is sufficiently large, then these value
give a good approximation for the wave function at the ev
horizon. Similarly, for vmax sufficiently large, the values
c l(u,vmax) give a good approximation for the wave functio
on the cosmological horizon. Finally, the values ofc l on the
line u5v22k are extracted, and expressed as a function
t5 1

2 (u1v)5v2k; here, k is a constant representing th
value of r * at which the field is evaluated.

III. NUMERICAL RESULTS

A. Behavior at early and intermediate times

Our first goal in this section is to establish that at tim
t!r c , the scalar field behaves as if it were in Schwarzsch
spacetime, and that at timest;r c , a transition occurs in
which the inverse power-law decay gives way to an ex
nential decay. The late timest@r c are considered in the nex
subsection.

Figure 1 displays the behavior of the wave functi
c l(t,r ) at a fixed radiusr, for early and intermediate times
The plots show how the pure Schwarzschild behavior~initial
outburst, quasi-normal oscillations, and power-law decay! is
distorted by the de Sitter structure of spacetime at large ra
We consider a SdS spacetime with parametersr e51 andr c
52000, so that the time scales are well separated. We
grate Eq.~2.15! for l 50 andl 51, settingj50. We compare
the field’s evolution in SdS spacetime to what it would be
pure Schwarzschild spacetime~also with r e51). In both
cases the initial data is given by Eq.~2.16!, with vc510, s

FIG. 1. Absolute value of the wave functionc l(t,r ) as a func-
tion of time t, evaluated atr * 510 in Schwarzschild spacetim
(r e51) and SdS spacetime (r e51 andr c52000). The casesl 50
and l 51 are considered, and the wave functions are plotted o
log-log scale. In such a plot, a straight line indicates power-
behavior, and a change of sign in the wave function is represe
by a deep trough. We see that the early portion ofc1 is oscillatory,
and that for SdS spacetime,c0 changes sign att;260.
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53, and the wave function is evaluated atr * 510.
The plots show that the physical picture given in Sec.

accurate. At early times, the Schwarzschild and SdS w
functions display identical behavior, and deviations beco
apparent only whent becomes comparable tor c . For l 50,
the Schwarzschild behaviorc0;t23 gives way to the wave
function changing sign att;260, and settling down to a
constant value~equal to21.131025) at late times. Forl
51, the Schwarzschild behaviorc1;t25 is replaced by a
faster decay, which eventually becomes exponential. Exa
nation of the field’s behavior at the black-hole and cosm
logical horizons, wherec l is a function ofu andv, respec-
tively, reveals precisely the same physical picture.

B. Behavior at late times

We now consider the behavior of the scalar field at tim
t@r c . To ease access to these late times, we consider a
spacetime with parametersr e51 andr c5100, although this
no longer offers a clean separation of the time scales.
begin by integrating Eq.~2.15! with j50, for the casesl
50,1,2. Once again we setvc510, s53, and we evaluate
the wave function atr * 510.

Figure 2 displays the behavior of the wave functi
c l(t,r ) at late times. The plots reveal that forl 50, the wave
function eventually settles down to the constant value24.4
31023. For lÞ0, the field decays to zero, and our numeric
results are compatible with the formula

c l~ t !;e2 lkct ~3.1!

first discovered by BCKL. The numerically-determined va
ues for the decay constants agree withlkc to within 1%.
Multipoles corresponding tol>3 could not be examined be
cause the field decays too rapidly and the numerical inte
tion quickly becomes noisy. The late-time behavior of t

a

ed

FIG. 2. Absolute value of the wave functionc l(t,r ) as a func-
tion of time t, evaluated atr * 510 in SdS spacetime (r e51 and
r c5100). The casesl 50,1,2 are considered, and the wave fun
tions are plotted on a semi-log scale. In such a plot, a straight
indicates exponential behavior. Notice that the final change of s
of the wave function occurs att;50 for l 50, t;190 for l 51, and
t;220 for l 52. Notice also that the numerical integration becom
noisy whenuc l u drops below 10214.
3-4
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RADIATIVE FALLOFF IN SCHWARZSCHILD–DE . . . PHYSICAL REVIEW D60 064003
wave function at the black-hole and cosmological horizon
also described by Eq.~3.1!, provided thatt is replaced byv
on the event horizon, and byu on the cosmological horizon

A rich spectrum of late-time behaviors is revealed wh
j, the curvature-coupling constant, is allowed to be nonze
This dimension of the parameter space was not explored
BCKL. Figure 3 displays the late-time behavior ofc0 for
several values ofj, using the same parameters as before.
j smaller than a critical valuejc , the field decays monotoni
cally with a decay constant that increases with increasinj.
When j.jc , however, the wave function oscillates with
decaying amplitude. Asj is increased away from the critica
valuejc , the frequency of the oscillations increases, but
decay constant stays the same. Similar behavior was
served forl 51 andl 52, and our numerical results are com
patible with the formula

c;e2[ l 1g(j)]kct, ~3.2!

where the functiong(j) increases withj for j,jc , and is
complex forj.jc . From our numerical results, we are ab
to determine that 0.18&jc&0.19. The analytical calculation
presented in Sec. IV show that the functiong(j) is in fact
given by

g~j!5
3

2
2

1

2
A9248j1OS r e

r c
D , ~3.3!

so thatjc5 3
16 50.1875. This relation explains the observ

features, and our numerical results agree with Eqs.~3.2! and
~3.3! to within 1%. Equation~3.2!, with t replaced by either
v or u, describes also the behavior of the wave function
the black-hole or cosmological horizons, respectively.

FIG. 3. Absolute value of the wave functionc0(t,r ) as a func-
tion of time t, evaluated atr * 510 in SdS spacetime (r e51 and
r c5100). Several values ofj are considered, in the interval be
tweenj50 andj5

1
2 . The wave functions are plotted on a semi-lo

scale. The noteworthy features are these:~i! For j,jc , the wave
function decays exponentially, with a decay constant that incre
with increasingj; ~ii ! for j.jc , the wave function still decays
exponentially, but with a decay constant that no longer varies w
j; ~iii ! for j.jc , the wave function oscillates, with a frequenc
that increases withj.
06400
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According to the physical picture presented in Sec. I,
field’s evolution should proceed as if the field were in pu
de Sitter spacetime whent@r c . In particular, Eqs.~3.2! and
~3.3! should describe the late-time behavior of the wa
function in de Sitter spacetime. To test this hypothesis,
performed a numerical integration of Eq.~2.15! in pure de
Sitter spacetime@19# with a cosmological horizon atr c51,
and initial data of the form~2.16! with vc51 ands50.1.
The results forl 50 are displayed in Fig. 4. All the late-tim
features seen in SdS spacetime are reproduced, and we
verified that the field’s evolution is well described by Eq
~3.2! and ~3.3!, with r e50 andkc51/r c51, to well within
1%.

IV. ANALYTICAL RESULTS

The observation that the late-time behavior of the sca
field is dictated by the de Sitter structure of spacetime
large radii is the key to the derivation of Eqs.~3.2! and~3.3!.
Motivated by this observation, we integrate the wave eq
tion ~2.13! in pure de Sitter spacetime, and show that t
late-time behavior of the wave function is indeed given
Eq. ~3.2!, with g(j)5 3

2 2 1
2 A9248j. Apart from an approxi-

mation of late times (t@r c), our calculations areexact. That
such a treatment is afforded relies on removing the bl
hole from the spacetime. While this removal produces
large effect at early times, the preceding results indicate
the influence of the central mass is negligible at late tim
~We will have to qualify this statement below.! The consid-
erably more difficult job of analytically integrating Eq.~3.2!
in full SdS spacetime will be undertaken elsewhere@20#.

A. Equations

We consider a scalar fieldF in de Sitter spacetime, whos
metric is of the form~2.1! with

f 512r 2, ~4.1!

es

h

FIG. 4. Absolute value of the wave functionc0(t,r ) as a func-
tion of time t, evaluated atr * 50.5 in pure de Sitter spacetime~with
parameterr c51). Several values ofj are considered, in the interva
betweenj50 andj5

1
2 . The wave functions are plotted on a sem

log scale. These plots show the same features as in the prece
figure.
3-5
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BRADY, CHAMBERS, LAARAKKERS, AND POISSON PHYSICAL REVIEW D60 064003
where we have setr c5a51 without loss of generality; thus
the surface gravity of the cosmological horizon iskc51. The
scalar field obeys the wave equation~2.11!, and the reduced
wave functionc(t,r ) defined by Eq.~2.12! satisfies Eq.
~2.13! with the potential

V~r !5 f F l ~ l 11!

r 2
12~6j21!G . ~4.2!

We suppress thel-label to simplify the notation. In de Sitte
spacetime, the relation betweenr and r * [* f 21dr is given
by

e2r* 5
11r

12r
. ~4.3!

We wish to integrate Eq.~2.13! starting with a suitable set o
initial conditions att50. It follows from a simple applica-
tion of Green’s identity that at timest.0, the wave function
can be expressed as

c~ t,r !52E
0

1

@c~0,r 8!ġ~ t;r ,r 8!1ċ~0,r 8!g~ t;r ,r 8!#
dr8

f 8
.

~4.4!

Here, c(0,r 8) and ċ(0,r 8) are the initial data~an overdot
indicates time differentiation@21#!, andg(t;r ,r 8) is the re-
tarded Green’s function for the reduced wave equat
~2.13!; we also use the notationf 8[12r 82. The Green’s
function is zero fort,0, and it satisfies Eq.~2.13! with a
term f d(t)d(r 2r 8) added to the right-hand side.

B. Fourier transform of the Green’s function

Since the late-time behavior ofc(t,r ) is entirely deter-
mined by the late-time behavior ofg(t;r ,r 8), the derivation
of Eqs. ~3.2! and ~3.3! begins with a calculation of the
Green’s function. We first consider its Fourier transfo
g̃(v;r ,r 8), defined by

g~ t;r ,r 8!5
1

2pE g̃~v;r ,r 8!e2 ivtdv. ~4.5!

For eachv, this function ofr andr 8 satisfies the differentia
equation

F d2

dr* 2
1v22V~r !G g̃~v;r ,r 8!5 f d~r 2r 8!, ~4.6!

whereV(r ) is given by Eq.~4.2!. It is clear that the solution
can be expressed in the factorized form

g̃~v;r ,r 8!5
1

W
c reg~r ,!cup~r .!, ~4.7!

wherec reg(r ) andcup(r ) are two linearly independent solu
tions to the homogeneous form of Eq.~4.6!, with W denoting
their conserved Wronskian:
06400
n

W5c reg
d

dr*
cup2cup

d

dr*
c reg. ~4.8!

We use the notationr ,5min(r ,r 8), r .5max(r ,r 8), and for
simplicity, we do not explicitly indicate the dependence
c reg, cup, andW on v.

Equation~4.7! correctly represents the retarded Gree
function if cup(r ) describes waves which are purely outg
ing at the cosmological horizon; we choose the normali
tion

cup;eivr* , r˜1. ~4.9!

Also, we must choose forc reg(r ) a solution which enforces
the boundary conditionc reg(0)50; this ensures that the sca
lar field F is everywhere nonsingular. The calculation
g̃(v;r ,r 8) therefore reduces to solving the homogeneo
form of Eq. ~4.6! for the two functionsc reg(r ) andcup(r ).

C. Solutions to the homogeneous equation

The mathematical problem of finding the solutio
c reg(r ) and cup(r ) has been addressed in the literatu
@22,23#. We shall briefly sketch the method of solution.

The change of variablez5r 2 and the factorizationc

5za(12z)bX, with a5 1
2 ( l 11) andb56

i

2
v, transforms

the homogeneous form of Eq.~4.6! to a hypergeometric
equation for X. The fundamental solutions areX
5F(a6 ,b6 ; l 1 3

2 ;z), where a65 1
2 ( l 1g16 iv), b65 1

2 ( l
1g26 iv), and

g6~j!5
3

2
6

1

2
A9248j. ~4.10!

Both choices of sign in front ofiv produce a functionc(r )
that goes to zero~as r l 11) when r˜0. Choosing the minus
sign and the normalization arbitrarily, we set

c reg~r !5r l 11~12r 2!2 iv/2FS a2 ,b2 ; l 1
3

2
;r 2D .

~4.11!

It is not difficult to show that

cup~r !52ivr l 11~12r 2!2 iv/2F~a2 ,b2 ;12 iv;12r 2!
~4.12!

also satisfies the homogeneous form of Eq.~4.6!, and has the
asymptotic behavior indicated in Eq.~4.9!. On the other
hand, the solution

cdown~r !522 ivr l 11~12r 2! iv/2F~a1 ,b1 ;11 iv;12r 2!
~4.13!

satisfies ingoing-wave boundary conditions at the cosmolo
cal horizon:cdown(r );e2 ivr* when r˜1.

These three solutions are not linearly independent. Us
Eq. ~15.3.6! of Abramowitz and Stegun@24#, it is easy to
show that
3-6
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c reg~r !5
22 ivG~ l 1 3

2 !G~ iv!

G~a1!G~b1!
cup~r !

1
2ivG~ l 1 3

2 !G~2 iv!

G~a2!G~b2!
cdown~r !. ~4.14!

This relation, together with the fact that the Wronskian b
tweencdown(r ) andcup(r ) is equal to 2iv, imply that

1

W
52

1

211 iv

G@ 1
2 ~ l 1g12 iv!#G@ 1

2 ~ l 1g22 iv!#

G~ l 1 3
2 !G~12 iv!

.

~4.15!

D. Pole structure

If for the moment we ignore the factor 1/G(12 iv), Eq.
~4.15! shows that 1/W @or equivalentlyg̃(v;r ,r 8)# is analytic
in the complexv plane, except for isolated poles in th
lower half plane, at

iv5 ivn
6[ l 1g612n, ~4.16!

where g6(j) is defined in Eq.~4.10! and n50,1,2, . . . .
There are two poles for each value of the integern. For j
,jc[

3
16 , g6 are real functions ofj, and the poles are lo

cated along the negative imaginary axis of the complexv
plane. Asj˜jc , the single poles belonging to the samen
merge, becoming a double pole whenj5jc . For j.jc , the
functions g6 become complex, and the poles move aw
from the negative imaginary axis.

The pole nearest to the real axis gives the dominant c
tribution to the Green’s function at late times. Forj,jc ,
this pole is located ativ5 l 1 3

2 2 1
2 A9248j. For j5jc , the

double pole is located ativ5 l 1 3
2 . For j.jc , there are two

nearest poles ativ5 l 1 3
2 6( i /2)A48j29.

For values ofj such thatA9248j is an odd integer, the
numbersvn

6 are also integers. This occurs whenj50, for
which the poles are ativ5 l 12n andiv5 l 1312n. It also
occurs whenj5 1

6 ~the value ofj which makes the wave
equation conformally invariant!, for which the poles are a
iv5 l 1112n and iv5 l 1212n. These are exceptiona
cases, because most of these poles are canceled out b
previously ignored factor 1/G(12 iv). This G-function also
has integer poles, ativ511n8, wheren850,1,2, . . . . It is
easy to check that the zeros of 1/G(12 iv) cancel out the
poles listed previously, so that 1/W @or equivalently,
g̃(v;r ,r 8)# is analytic at these frequencies. The only exce
tion occurs forl 50 whenj50. In this case, the single pol
at iv50 survives. This is why the scalar field settles dow
to a nonzero constant at late times.

The pole cancellation which occurs at integer values
iv has interesting consequences. For example, conside
casel 51, and values ofj which are small but nonzero. Fo
these values, the pole nearest to the real axis is ativ51
14j1O(j2), and this pole exists as long asjÞ0. In thej
˜0 limit, however, the would-be pole ativ51 is canceled
by the compensating zero in 1/G(12 iv). We should there-
06400
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fore expect the Green’s function—and the scalar field—
display aqualitativechange of behavior at late times, as t
limit j50 is taken. Figure 5 shows that such is indeed
case. It is interesting to note that such qualitative change
behavior donot occur in full SdS spacetime. We return t
this point in Sec. IV G.

The presence of poles ing̃(v;r ,r 8) makes it very easy to
calculate the late-time behavior of the Green’s functio
Such a calculation is much more difficult when there are
poles, and therefore, this will not be attempted for the spe
casesj50 ~except forl 50) andj5 1

6 . In the generic situa-
tion ~all other cases!, the contribution to the Green’s functio
coming from the pole nearest to the real axis is given by

g̃~v;r ,r 8!;
G~ 1

2 A9248j!

G~ l 1 3
2 !G~12 l 2g2!

h~r !h~r 8!

i ~v2v0!
,

~4.17!

where

h~r !5r l 11~12r 2!2( l 1g2)/2 ~4.18!

and

iv05 l 1
3

2
2

1

2
A9248j. ~4.19!

This calculation involves substituting the asymptotic relati
G(e);1/e in place of the relevantG-function, and evaluat-
ing every other factor comprisingg̃(v;r ,r 8) at the frequency
v0; Eqs. ~4.7!, ~4.11!, ~4.12!, and ~4.15! are used along the
way @25#. Whenj5 l 50, Eqs.~4.17!–~4.19! reduce to

g̃~v;r ,r 8!;
rr 8

iv
. ~4.20!

FIG. 5. Absolute value of the wave functionc1(t,r ) as a func-
tion of time t, evaluated atr * 50.5 in pure de Sitter spacetime~with
parameterr c51). Several small values ofj are considered, to-
gether with the special casej50. The plots make it quite clear tha
the late-time behavior associated withj!1 is qualitatively different
from the behavior associated withj50. As explained in the text,
this qualitative change of behavior is caused by pole cancellatio
1/W.
3-7
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E. Green’s function at late times

The Green’s functiong(t;r ,r 8) can be obtained from
g̃(v;r ,r 8) by inverting the Fourier transform; this gives ris
to Eq. ~4.5!. The contour of integration is along the real ax
of the complexv plane. However, because we are interes
in the behavior of the Green’s function at late times, we c
safely close the contour in the lower half plane witho
changing the result of the integral. The residue theorem t
guarantees thatg(t,r ,r 8) can be expressed as a sum ov
residues, each pole contributing a term proportional
exp(2ivn

6t) to the Green’s function. The dominant contrib
tion comes from the pole nearest to the real axis, and
obtain

g~ t;r ,r 8!;2
G~ 1

2 A9248j!

G~ l 1 3
2 !G~12 l 2g2!

h~r !h~r 8!e2( l 1g2)t,

~4.21!

where g2(j)5 3
2 2 1

2 A9248j. Near the cosmological hori
zon, 12r 2.4e22r* , and Eq.~4.21! becomes

g~ t;r˜1,r 8!;222( l 1g2)
G~ 1

2 A9248j!

G~ l 1 3
2 !G~12 l 2g2!

3h~r 8!e2( l 1g2)u, ~4.22!

whereu5t2r * . For j5 l 50, both expressions reduce to

g~ t;r ,r 8!;2rr 8. ~4.23!

Equations~4.21!–~4.23! are valid at timest@1, or u@1.
We have found that in the generic situation, the late-ti

behavior of the Green’s function is given bye2pkct or
e2pkcu, where

p5 l 1
3

2
2

1

2
A9216j. ~4.24!

Notice that we have re-introduced the scale parameterkc
51/r c . For the special casej5 l 50, the decay constantp is
zero, and the Green’s function settles down to the tim
independent expression given by Eq.~4.23!.

Equation~4.24! gives the correct late-time behavior of th
Green’s function forj,jc and j.jc . For j5jc , the
Green’s function is obtained by integrating around a dou
pole ativ5 l 1 3

2 . This requires integration by parts, and t
end result is that for fixedr ,r c , the Green’s function be
haves as (kct)exp@2(l13

2)kct#; with u replacingt, this is also
the correct behavior on the cosmological horizon.

By virtue of Eq.~4.4!, we conclude that in pure de Sitte
spacetime, the late-time behavior of the wave funct
c(t,r ) is alsoe2pkct or e2pkcu, except for the exceptiona
cases—j50 andj5 1

6 —discussed previously. For the sp
cial casej5 l 50, the wave function settles down to a co
stant value. This conclusion is in full accord with the nume
cal results presented in Figs. 4 and 5.
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F. The special casej5 l 50

Whenj5 l 50, the wave function settles down to a fin
value c(`,r ) which can readily be calculated using Eq
~4.4! and ~4.23!. Re-introducing the scale factorr c , we ob-
tain

c~`,r !5
r

r c
2E0

r c
ċ~0,r 8!r 8

dr8

f 8
. ~4.25!

This equation implies that the value of the scalar fieldF at
late times does not vary withr, a necessary consequence
the cosmological no-hair theorems@26–28#. It also implies
that c(`,r ) scales as 1/r c

25L/3, a property that was dis
cussed in BCKL.

Equation~4.25! relatesc(`,r ) to the initial data specified
on the spacelike surfacet50. We can extract more informa
tion from this equation, and also test it against our numer
results, if we instead expressc(`,r ) in terms of initial data
specified on the null surfaceu50. ~We again assume zer
data onv50.! To effect this translation, we assume that t
initial data has support solely in the ‘‘weak-field’’ region o
de Sitter spacetime, in which (r /r c)

2!1, so thatf .1 and
r * .r . In this region, and in a neighborhood of the surfa
t50, we can approximatec(t,r ) by the flat-spacetime solu
tion c(t,r ).H(v), whereH is an arbitrary function ofv
5t1r . For this solution,ċ(0,r ).H8(r ) ~with a prime indi-
cating differentiation with respect to the argument!, and the
integral in Eq.~4.25! becomes*rdH. After integration by
parts, assuming thatH(v) has compact support, we obtain
2*H(r )dr, and

c~`,r !.2
r

r c
2E0

`

H~v !dv. ~4.26!

Recall thatH(v) is the initial wave profile on the surfaceu
50. For the specific choice~2.16!, we obtain

c~`,r !.2
A2ps

r c
2

r . ~4.27!

We have tested this prediction against our numerical resu
The accuracy of Eq.~4.27! depends strongly on the value o
vc , the central position of the Gaussian wave packet. Ifr c
51, we find that forvc,0.2, our expression is accurate
within 1% over a wide selection of values forr ands. For
vc.0.2, the accuracy gets increasingly worse asvc in-
creases; for example, the error grows to 15% atvc50.8. In
view of the fact that Eq.~4.27! was derived under the as
sumption that the initial data has support only in the reg
r !r c of de Sitter spacetime, this is the expected result.

The rate at which the fieldc settles down to its final
constant value was also explored by BCKL. Their numeri
results indicated thatc2c(`,r );e2qkct where q.2. In-
spection of Eqs.~4.10! and ~4.16! reveals that the leading
contribution toc2c(`,r ) comes from then51 pole in the
3-8
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Green’s function, which producesq521g252. Thus, our
analytical results are in full agreement with the BCKL n
merical results.

G. Analytical results for SdS spacetime

Finding the Green’s function for a scalar field in Sd
spacetime is considerably more difficult than what was
complished in this section, and this calculation will be t
subject of a separate publication@20#. The conclusion is tha
for SdS spacetime, the late-time behavior of the wave fu
tion is still exponential,c;e2pkct, with the decay constantp
given by the same expression as before, apart from cor
tions of the order ofr e /r c :

p5 l 1
3

2
2

1

2
A9248j1OS r e

r c
D . ~4.28!

This is the result that was quoted in Eqs.~3.2! and ~3.3!.
In practice, the correction term of orderr e /r c is too small

to be revealed numerically. Nevertheless, its presence is
portant, because it preventsp from ever becoming an intege
This means that the cancellation of poles at integer value
iv, discussed in Sec. IV D, is a phenomenon that occurs o
for pure de Sitter spacetime; pole cancellation doesnot occur
in full SdS spacetime. Consequently, the casesj50 andj
5 1

6 are not exceptional in SdS spacetime, and such qua
tive changes of behavior as depicted in Fig. 5 do not occ

We have numerically tested the validity of Eq.~4.27! for
SdS spacetime. As expected, the accuracy of this formu
worse than for pure de Sitter spacetime: Withr e51, r c
5500, s510, and evaluating the wave function atr *
5100, we find that the error is less than 5% if 100,vc
,200, but that it climbs to approximately 15% whenvc
;50 or vc;400.

V. ELECTROMAGNETIC
AND GRAVITATIONAL RADIATION

The scalar-wave equation~1.1! serves as a model for th
propagation of electromagnetic and gravitational waves
ys
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the SdS spacetime. In this section we indicate how our
sults can be generalized to cover these physically impor
cases; a more complete discussion will be found in Ref.@20#.

It is well known that electromagnetic and gravitation
perturbations of the SdS spacetime can be analyzed in te
of a master potentialF which is related to the components o
the perturbing fields@28#. After a decomposition in spherica
harmonics, the wave functionc l(t,r ) is found to obey an
equation of the form of Eq.~2.13!, but with the generalized
potential

Vl~r !5 f F l ~ l 11!

r 2
2

2~s221!M

r 3 G , ~5.1!

wheres51 (s52) for electromagnetic~gravitational! per-
turbations. In both cases the multipole indexl is restricted by
l>s.

The considerations of the preceding sections indicate
the late-time behavior ofc l is insensitive to the presence o
M-dependent terms in Eq.~5.1!. Removing these terms, w
obtain the potential of Eq.~4.2! with j5 1

6 . On these
grounds, we expect that the late-time behavior ofF is expo-
nential,F;e2pkct, with p given by Eq.~1.2! with j5 1

6 :

p5 l 111OS r e

r c
D . ~5.2!

This result is borne out in our numerical simulations.
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@3# J. Bičák, Gen. Relativ. Gravit.3, 331 ~1972!.
@4# E. W. Leaver, Phys. Rev. D34, 384 ~1986!.
@5# C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D49, 883

~1994!; 49, 890 ~1994!.
@6# L. M. Burko and A. Ori, Phys. Rev. D56, 7820~1997!.
@7# E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Ph

Rev. Lett.74, 2414~1995!; Phys. Rev. D52, 2118~1995!.
@8# N. Andersson, Phys. Rev. D55, 468 ~1997!.
@9# L. Barack, Phys. Rev. D59, 044016 ~1999!; 59, 044017

~1999!.
@10# S. Hod and T. Piran, Phys. Rev. D58, 024017~1998!; 58,
.

024018~1998!; 58, 024019~1998!.
@11# S. Hod and T. Piran, Phys. Rev. D58, 044018~1998!.
@12# W. Krivan, P. Laguna, and P. Papadopoulos, Phys. Rev. D54,

4728 ~1996!.
@13# W. Krivan, P. Laguna, P. Papadopoulos, and N. Anderss

Phys. Rev. D56, 3395~1997!.
@14# S. Hod, Phys. Rev. D58, 104022 ~1998!; and ~to be pub-

lished!, gr-qc/9902072; ‘‘Mode-coupling in realistic rotatin
gravitational collapse,’’ gr-qc/9902073.

@15# L. Barack and A. Ori, Phys. Rev. Lett.82, 4388~1999!.
@16# W. G. Laarakkers and E. Poisson~in preparation!.
@17# P. R. Brady, C. M. Chambers, W. Krivan, and P. Lagun

Phys. Rev. D55, 7538~1997!. Referred to as ‘‘BCKL’’ in the
text.
3-9



et
,

th

t b

he

l

th
his
n.

BRADY, CHAMBERS, LAARAKKERS, AND POISSON PHYSICAL REVIEW D60 064003
@18# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V
terling, Numerical Recipes in C~Cambridge University Press
Cambridge, England, 1986!, Chap. 9.

@19# These integrations are much easier to do, owing to the fact
for de Sitter spacetime, the relationr * 5r c arctanh(r /r c) can
be explicitly inverted. On the other hand, special care mus
taken with the regular centerr 50: The boundary condition
c l(t,r 50)50 must be imposed, ensuring the regularity of t
scalar fieldF at r 50.

@20# E. Poisson~in preparation!.
@21# More precisely, the overdot ong denotes differentiation with

respect tot, while the overdot onc denotes differentiation
with respect tot8, which is set to zero in Eq.~4.4!. The fact
thatg depends ont2t8 explains why the two terms within the
06400
-

at

e

square brackets are added instead of subtracted.
@22# D. Polarski, Class. Quantum Grav.6, 717 ~1989!; 6, 893

~1989!.
@23# D. Lohiya and N. Panchapakesan, J. Phys. A11, 1963~1978!.
@24# M. Abramowitz and I. A. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1970!, Chap. 15.
@25# It should be noted that ifj.jc , the two poles ativ5 l 1 3

2

6( i /2)A48j29 are equally near to the real axis, so that bo
contributions should be taken into account. We leave t
subtlety aside, as it does not affect the following discussio

@26# G. W. Gibbons and S. W. Hawking, Phys. Rev. D15, 2738
~1977!.

@27# S. W. Hawking and I. G. Moss, Phys. Lett.110B, 35 ~1982!.
@28# F. Mellor and I. Moss, Phys. Rev. D41, 403 ~1990!.
3-10


