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Black holes and five-brane thermodynamics
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The phase diagram for Dp-branes in M theory compactified on T4, T4/Z2 , T5, and T6 is constructed. As for
the lower-dimensional tori considered in our previous work@E. Martinec and V. Sahakian, Phys. Rev. D59,
124005~1999!#, the black brane phase at high entropy connects onto matrix theory at low entropy; we thus
recover all known instances of matrix theory as consequences of the Maldacena conjecture. The difficulties that
arise for T6 are reviewed. We also analyze the D1-D5 system on T5; we discuss its relation to matrix models
of M5-branes, and use spectral flow as a tool to investigate the dependence of the phase structure on angular
momentum.@S0556-2821~99!03316-0#
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I. SUMMARY OF RESULTS AND DISCUSSION

A. Introductory remarks

Black hole thermodynamics has played an important r
in elucidating the structure of M theory~see@1–3# for re-
views!. In the context of the Maldacena conjecture@4–6#,
black hole thermodynamics generates predictions for
thermodynamics of gauge theory in various strong-coup
regimes. This conjecture posits~in its extended form! that all
of M theory in spacetimes with particular asymptotic boun
ary conditions is equivalent~dual! to a theory without grav-
ity. Recently @7#, the present authors constructed a ph
diagram for maximally supersymmetric Yang-Mills~SYM!
theory on tori Tp, p51,2,3, by systematically exploiting
these ideas. It was seen that a number of different geom
cal phases~i.e. those with a valid low-energy supergravi
description as black objects! arise as the entropy and cou
pling are varied.1 The boundaries of the region of geomet
cal phases are correspondence curves@8#, where the curva-
ture of the geometry becomes string scale at the horizo
the object.

Generically, the thermodynamics at high entropy conta
a phase of black Dp-branes, while at low entropy one find
11-dimensional black holes in the light-cone~LC! frame.
The reason is quite simple@7#: The scaling limit specified by
Maldacena and the limit prescribed by Sen and Seiberg
compactifications of matrix theory [9,10] are one and t
same.2 One and the same gauge theory describes both
example, on Tp, black Dp-branes characterize the density
states in the regime of SYM entropiesS*N2, whereas ma-
trix theory @13,14# describes the regimeS,N.

The point is that the scales of various features of the
ometry, for instance proper size of the torus and the str

*Email address: ejm@theory.uchicago.edu
†Email address: isaak@theory.uchicago.edu
1The entropy is most useful in parametrizing the behavior of

theory since it is directly tied to the horizon area of the low-ene
supergravity solution. The energy can then be read from the e
tion of state of the relevant black hole.

2It was shown that these two limits are related in@11,12#. Dem-
onstrating their complete equivalence requires further specify
the dimensionless quantities to be held fixed, in particular the s
of the energy.
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coupling, depend on the radial position in the associated l
energy black supergravity solution. Since the horizon rad
decreases with decreasing entropy, and only the horizon
ometry is relevant to the thermodynamics, the entropy
rametrizes a path through the moduli space of the low-ene
supergravity. Along this path, it may be necessary to perfo
U-duality transformations to achieve a valid low-energy d
scription of the horizon geometry. This is why, at high e
tropy, the charge carried by the system is the Dp-brane num-
ber, while at low entropy, it is interpreted as momentum. T
two lie on an orbit of theU-duality groupEp(Z). Further-
more, phase transitions may occur in the geometrical reg
due to~de!localization of the horizon on cycles across whi
it is initially ~un!smeared@15#. Such transitions are involved
in the passage from black Dp-branes to matrix theory black
holes@16–19#.

Thermodynamics is one of many probes of matr
Maldacena duality. It is a particularly useful one in that
canonically associates an energy scale~that of a typical
Hawking quantum! with a particular place in the geometr
~the horizon!. The fact that the geometry appropriate to t
description of this scale undergoes a sequence of du
transformations as we go from IR~matrix theory regime! to
UV ~Maldacena regime! means that the interpretation o
probes as scattering states in discrete LC quantiza
~DLCQ! M theory is only valid up to some scale, beyon
which one should pass to a description in terms of scatte
off of black p-branes in a dual geometry. Using the relati
between the energy and the radial scale probed@20#, this
implies that matrix theory is only valid~in the sense of ac-
curately describing flat-space supergravity! up to some dis-
tance from the source.3

The precise relation between the Maldacena or ne
horizon limit of N Dp-branes on Tp and matrix theory on Tp

e
y
a-

g
le

3This conclusion was independently reached from a somew
different perspective in@21#. The analysis of supersymmetric qua
tum mechanics~SQM! in this latter work is equivalent to the larg
V limit of the phase diagrams here and in@7#. In Sec. II D of@7# it
was observed that the D0 geometry breaks down at the corres
dence point, where the temperature of the system isT
;N1/3R111/l pl

2 . Using the energy-distance relations of@20#, the re-
sult r max;N1/3l pl follows.
©1999 The American Physical Society02-1
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 60 064002
with N units of longitudinal momentum goes as follows@7#:
The Maldacena limit isa85 l str

2
˜0, with the gauge coupling

gY
25gstrl str

(p23)/2 and the coordinate size S i of the torus
cycles held fixed. This limit isolates the gauge theory d
namics on the Dp-brane while decoupling gravity~for p
,6). Natural energy scales in the gauge theory are meas
with respect to the torus size.4 On the other hand, the
Seiberg-Sen prescription for matrix theory on Tp @9,10# in-
volves type IIA string theory withN D0-branes or, equiva
lently, M theory withN units of momentum on a circle o
radiusR11; then one takes the limitl pl˜0, with R11/ l pl

2 and
the ~transverse! torus cycle sizesRi / l pl held fixed. The rela-
tion between the two sets of parameters is simply~cf.
@11,12,7#! the T duality on all cycles of Tp that maps
Dp-branes to D0-branes and vice versa:

l str
2 5

l pl
3

R11

S i5
l pl
3

R11Ri

gstr5S l pl

R11
D ~p23!/2

)
i 51

p
l pl

Ri

gY
25S l pl

2

R11
D p23

)
i 51

p
l pl

Ri
. ~1!

Thus, the two limits are clearly identical.
In this work, we extend our analysis of such compact

cations top54,5, where the relevant theories involve t
dynamics of five-branes@22,23,9,10#, and p56, where the
definition of matrix theory is problematic@9,10,24–26#. In
the process of generating the phase diagram, we will re
cover all the remaining prescriptions for generating ma
theory compactifications; we will also comment on the dif
culties encountered forp56 ~and a proposal by Kachru
et al. @27# for overcoming them!. For p55, we map out the
phase diagram of the six-dimensional ‘‘little string theorie
compactified on a five-torus T5.

In addition, we will analyze the phase diagram of t
D1-D5 system, which arises in diverse contexts:

It has played a central role in our understanding of bla
hole thermodynamics@28#.

It is a prime example of the Maldacena conjecture, due
the rich algebraic structure of (111)D superconformal
theories which are proposed duals to string theory
AdS33S33M4 @4,29–31#.

It describes the ‘‘little string’’ theory of five-brane
@23,32#, where the little strings carry both winding and m
mentum charges.

4For pÞ3, the Yang-Mills coupling is dimensionful, and shou
be referred to the torus scale as well. When we say that a dim
sionful quantity is held fixed in the decoupling limit, we mean t
energy in the system relative to that scale.
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It is related to the DLCQ description of five-brane dynam
ics @33–36#.

The analysis will clarify the relation of the D-brane d
scription of the system to one in terms of NS five-branes a
fundamental strings@31#, as low-energy descriptions of dif
ferent regions of the phase diagram~for earlier work, see
@37#!. Finally, we will explore the use of spectral flow in th
superconformal theory to determine the spectral density
the theory as a function of angular momentum on S3.

B. Phase diagrams for T4, T5, and T6

As in @7#, the phase diagrams for Dp-branes on tori,p
54,5,6, have a number of common features. The vert
axis of the diagrams will be entropy; for the horizontal ax
we take the sizeV of cycles on the torus Tp in 11-
dimensional Planck units, as measured in the LC M the
appearing in the lower right corner~the phase of boosted
11D black holes!. N is the charge carried by the system: t
brane number in the high entropy regimes and longitudi
momentum in the low-energy, LC M-theory phase. Throug
out the various phases, the corresponding gravitational c
plings vanish in the Maldacena limit~except forp56, where
the limit keeps the Planck scale of the high-entropy ph
held fixed!, implying the decoupling of gravity for the dua
dynamics. Solid lines in the diagrams denote thermodyna
transitions separating distinct phases, while dotted lines
resent symmetry transformations which change the appro
ate low-energy description. We do not expect sharp ph
transitions along these dotted curves since the scaling of
equations of state is unchanged across them.5

The structure of the phase diagram forV.1 is identical to
the cases encountered in@7# ~see, for example, Fig. 1!. At
high entropies and large M-theory Tp, we have a perturba
tive (p11)D SYM gas phase. Its Yang-Mills couplinggY
increases toward the left, cf. Eq.~1!. The effective dimen-
sionless coupling is of order 1 on the double lines bound
this phase, which are Horowitz-Polchinski corresponde
curves. As the entropy decreases at largeV, there is a D0-
brane phase arising on the right and middle of the diagra
Its description as a thermodynamic state within SYM theo
would be highly interesting. It has a Horowitz-Polchins
correspondence point atS;N2, where a zero specific hea
transition is to occur@38#, and localizes into a LC 11D black
hole phase for entropiesS,N. The lineS;N separates the
11D phases that are localized on the M-theory circle~whose
coordinate size isR11) from those that are delocalized, un
formly across the diagram@16–19#. The 11D black hole
phase at small entropy becomes smeared across the Tp when
the horizon size becomes smaller than the torus scaleV; we
denote generally such smeared phases by an overline~in this
case11d). This~de!localization transition of the horizon on
the compact space extends above theS;N transition, sepa-
rating the black Dp-brane phase from the black D0-bran

n-
5This does not in principle exclude the possibility of smooth

~i.e. higher order! transitions.
2-2
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BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002
phase.6 Susskind@39# has argued that, on the SYM side, o
should regard this localization transition as an analogue
the Gross-Witten largeN transition @40#. The localization
transition line runs into the correspondence curve separa
the SYM gas phase from the geometrical phases atS;N2.
Thus as we move to the left~decreasingV, i.e. increasing the
bare SYM coupling! at high entropyS.N2, the SYM gas
phase reaches a correspondence point; on the other si
the transition is the phase of black Dp-branes. A further
common feature of the diagrams is a ‘‘self-duality’’ point
V;1 and S;N(82p)/(72p), where a number ofU-duality
curves meet.

In contrast, the structure of the phase diagrams forV,1
depends very much on the specific case at hand. Comp
fications on Tp, p51,2,3, were analyzed in@7#; we now de-
scribe the specifics of this region forp54,5,6.

Figure 1 is the phase diagram of T4 compactification.
There are six different phases, several of which—the 1
and11d black hole, black D0- and Dp-branes, and SYM gas
phases—were discussed above. In a slight shift of emph
we have relabeled the black D4-brane phase as the b
M5-brane phase, since its description in terms of the la
object extends to the regionV,1 ~in fact, even for a patch o
V.1 the D4-brane becomes strongly coupled and mus
lifted to M theory!. The appropriate dual non-gravitation
description involves the six-dimensional~2,0! field theory on
T43S1, where the last factor is the M-theory circle; the sca
of Kaluza-Klein excitations given by the size of this circ
~times the number of branes! sets the transition point be
tween the~2,0! and SYM descriptions. This M5 phase co
sists of six patches that we cycle through via duality tra
formations required to maintain a valid low-energ
description. The energy per entropy increases toward the
and toward higher entropies; this is to be contrasted with
cases analyzed in@7# where the IR limit appears toward th
left of the diagrams. This behavior is a consequence of
reversal of the direction of renormalization group~RG! flow
betweenp,3 andp.3. As we continue to the left and/o
down on the figure at small volumeV,1, the T4 is small
while the M-theory circle remains large; eventually one
duces string theory along the cycles of the T4, and the M5-
brane dualizes into a string. Somewhat further in this dir
tion, we encounter a Horowitz-Polchinski corresponden
curve, and a transition to a phase consisting of a ma
string @41–43# with the effective string tension set by th
adjacent geometries. Using Maldacena’s conjecture, we
validate earlier suggestions to describe matrix strings us
the ~2,0! theory @22,23,9#. This matrix string phase has
correspondence curve also for low entropies, now with
spect to a phase of smeared LC M-theory black holes~or

6Initially, the D0-brane phase becomes smeared toD0; as the
entropy increases, the effective geometry of the latter patch
comes substringy at the horizon, and one shouldT dualize into the
black Dp-brane patch. Both theD0 and Dp patches have the sam
equation of state, since they are related by a symmetry transfo
tion of the theory; they are different patches of the same phase
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equivalently boosted type IIB holes!.
Figure 1 is trivially modified to give the phase diagram

the ~2,0! theory on T4/Z23S1. The additional structure doe
not affect the critical behavior of the diagram. The chan
appears in the chain of dualities we perform on the dot
lines of the diagram. The orbifold quotient metamorphos
into world-sheet parity, and the fundamental string patch~la-
beledF1) becomes that of the heterotic string. The emerg
matrix string phase at the correspondence point is then
of a heterotic theory. We thus confirm the suggestion@44,45#
to describe heterotic matrix strings via the~2,0! theory on
T4/Z23S1. One can also propose to extend the dual the
of an intermediate state obtained in the chain of dualit
between the M5 and theF1 patches into the matrix strin
regime; we then have heterotic matrix strings encoded in
O(N) theory of type-I D-strings, as suggested in@46–48#.
Similar statements can be made about matrix theory o
folds or orientifolds in other dimensions.

The thermodynamic phase diagram of five-branes~some-
times called the theory of ‘‘little strings’’@49,23,32#! on T5

is shown in Fig. 2. We have a total of seven distinct phas
We again shift the notation somewhat, relabeling the bla

e-

a-

FIG. 1. Phase diagram of the six-dimensional~2,0! theory on
T43S1. S is entropy,V5R/ l pl is the size of a cycle on the T4 of
light-cone M theory, andN is longitudinal momentum quantum
The dotted lines denote symmetry transformations: M, M lift
reduction;T, T duality; S, S duality. The solid lines are phase tran
sition curves. Double solid lines denote correspondence curves.
dashed line is the extension of the axisV51, and is merely in-
cluded to help guide the eye. The labels are defined as follows:
black D0 geometry; W11, black 11D wave geometry; 11DBH, 1
LC black hole; D0, black smeared D0 geometry;W11, black
smeared 11D wave geometry;11DBH, 11D smeared LC black
hole; D4, black D4 geometry; M5, black M5 geometry;F1, black
smeared fundamental string geometry;WB, black smeared type IIB
wave geometry;10DBH, type IIB boosted black hole. The phas
diagram can also be considered that of the~2,0! theory on T4/Z2

3S1 by reinterpreting theF1, WB, 10D phases, and the matri
string phase as those of a Heterotic theory.
2-3
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 60 064002
D5 phase as a black M5˜ phase, since the latter extends t
validity of the description to7 V,1. The equation of state o
this high-entropy regime is

S;EN1/2S l pl
2

R11
DV25/2, ~2!

characteristic of a string in its Hagedorn phase. The temp
ture determines the tension of the effective string. We hav
patch of black NS5-branes in the middle of the diagra
They appear near theV;1 line, at which point aT-duality
transformation exchanges five-branes in type IIA and
theories. The type IIB Neveu-Schwarz five-brane~NS5!
patch connects to a D5-brane patch viaS duality. The type
IIA NS5 patch lifts to a patch of M5-branes on T53S1 at
strong coupling on the left. The extra circle is the M circ
transverse to the wrapped M5-branes; the horizon under
a localization transition on this circle at lower entropy and

7The tilde is meant to distinguish this 11-dimensional pha
~where the M circle is transverse to the five-branes! from the 11-
dimensional LC phase on the lower right, whose M circle ha
different origin.

FIG. 2. Phase diagram of ‘‘little string’’ theory on T5. The la-
beling is as in Fig. 1. D0, black D0 geometry; W11, black 11
wave geometry; 11DBH, 11D LC black hole;D0, black smeared
D0 geometry;W11, black smeared 11D wave geometry;11DBH,
11D smeared LC black hole; D5, black D5 geometry; NS5B, bla
five branes in type IIB theory; NS5A, black five-branes in type I

theory; M5, black M5-brane geometry; M5˜, black smeared M5-

brane geometry; Mˆ W11, black smeared wave geometry in̂

theory; M̂W11, black smeared wave geometry in Mˆ theory;

11D̂BH, smeared boosted black holes in Mˆ theory.
06400
a-
a
.

es
r

smallerV to a phase whose equation of state is that of a
11)D gas. It is interesting that the Hagedorn transition
seen here as a localization-delocalization transition in
black geometry. Yet further in this direction, the system
calizes atN;S to a dual LC M̂theory on a T43S13S1; here
the horizon is smeared along the square T4, localized along
both S1 factors, and carrying momentum along the last S1.
This M̂ phase on the lower left isU dual to the LC M theory
on the lower right.

The D6 phase diagram has two important features~see
Fig. 3!. First of all, the Maldacena limit keeps fixed th
Planck scalel̃ pl;( l pl

2 /R11)V
22 of the high-entropy black

Taub-Newman-Unti-Tamburino ~Taub-NUT! geometry8

@50#. Thus, gravity does not decouple, and the limit does
lead to a non-gravitational dual system that would serve
the definition of M theory in such a spacetime. A sympto
of this lack of decoupling of gravity is the negative speci
heatS}E3/2 of the high-entropy equation of state. This pro
erty is related to the breakdown of the usual UV-IR cor

e

a

8In the Maldacena limit, the near horizon geometry is that of
asymptotically locally Euclidean~ALE! space withAN21 singular-
ity.

k

FIG. 3. Phase diagram of the D6 system.S is entropy, V
5R/ l pl is the size of a cycle on the T6 of the LC M theory, andN
is longitudinal momentum. The dotted lines are symmetry trans
mations: M, M lift or reduction;T, T duality; S, S duality. The
solid lines are phase transition curves. Double solid lines den

correspondence curves. The labels are defined as follows: M¯TN,

M̂TN, black Taub-NUT geometry; D6, D6˜, black D6 geometry;

D0, D0̃, black D0 geometry; W11, W11˜, black 11D wave geom-

etry; 11DBH, 11D̃BH, 11D LC black hole;D0, D0̃̄, black smeared

D0 geometry;W11, W11̃̄, black smeared 11D wave geometr

11DBH, 11D̃̄BH, 11D smeared LC black hole.
2-4
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BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002
spondence of Maldacena duality@51,20#. The energy-radius
relation of@20# determined by an analysis of the scalar wa
equation in the relevant supergravity background is in f
the relation between the horizon radius and the Hawk
temperature of the associated black geometry; thus, fop
56 decreasing energyof the Hawking quanta is correlate
to increasing radiusof the horizon, as a consequence of t
negative specific heat. This is to be contrasted with the s
ation for p,5, where the positive specific heat means
creasing horizon radius correlates to increasing tempera
andp55, where the Hawking temperature is independen
the horizon radius in the high-entropy regime. Now, the te
perature in any dual description must be the same as in
supergravity description. Forp,5, the dual is a field theory
high temperature means UV physics dominates the typ
interactions, leading to the UV-IR correspondence. Fop
55, the dual is a ‘‘little string’’ theory; the temperature
unrelated to the horizon radius~and thus the total energy! on
the gravity side, and unrelated to short-distance physic
the dual ‘‘little string’’ theory ~since high-energy collisions
of strings do not probe short distances!. Hence the UV-IR
correspondence already breaks down at this point. Fop
56, there is nothing to say—large radius~large total energy!
corresponds to low temperature of probes~Hawking quanta!,
and any dual description could not have high energy or te
perature related to short distance physics, since it is a th
that contains gravity~so high energy makes big black holes!.

A second key feature is the duality symmetry~cf. @52#!
V˜V21 of the diagram relating theV,1 structure to that
discussed above forV.1. Note that this duality symmetry
inverts the T6 volume as measured inPlanck units rather
than string units. The duality interchanges momentum mo
with five-brane wrapping modes, while leaving membra
wrapping modes fixed; in other words, the dual space is
seen by the M5-brane. It is possible that this symmetry
tends to any Calabi-Yau compactification of M theory, sin
the volume of the Calabi-Yau sits in a universal hyperm
tiplet whose moduli space appears to beSU(2,1)/U(2) @53#;
if the discrete identifications involve the appropriate elem
of SU(2,1;Z), there will be a dual Calabi-Yau compactifi
cation of roughly the inverse size seen by M-theory fiv
branes wrapping the original Calabi-Yau compactification

The thermodynamic perspective also sheds light on a
posal of Kachru, Lawrence, and Silverstein@27# for a defi-
nition of matrix theory compactifications on Calabi-Ya
spaces. Generically, string theory on a Calabi-Yau sp
does not have aT duality that inverts its volume instring
units. Rather, these authors suggest that the appropriate
ality to consider, analogous to theT-duality transformation
used by Sen-Seiberg for torus compactifications, is the m
ror symmetry transformation. This transformation rela
D0-branes in type IIA theory on a given Calabi-Yau space
D3-branes wrapping a special Lagrangian submanifold of
type IIB mirror @54#; locally, the Calabi-Yau space looks lik
a T3 fibered over an S3 base, and mirror symmetry isT
duality on the fiber. Thus, it is proposed that some sort
311 gauge dynamics might yield an appropriate underly
description. Consider the phase diagram that should arise
low entropy, one has the 11D black hole phase. As the
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tropy increases at fixed but not large Calabi-Yau coordin
size V, one finds the horizon smears over the Calabi-Y
space and eventually one reaches theD0 patch of smeared
black D0-branes. The proper size of the Calabi-Yau spac
the horizon in string units is decreasing along this pa
eventually one reaches the curve along which one sho
perform the duality transformation, in this case mirror sy
metry. Naively, in the mirror, as the entropy increases f
ther, the T3 wrapped by the D3-branes is increasing in siz
while the base S3 continues to shrink; the high-entropy pha
would seem to be described by D3-branes on the spe
Lagrangian cycle of the mirror Calabi-Yau space near a
nifold singularity. However, the duality transformation wi
not change the equation of state, since theD0 patch and
everything above it are related by symmetries of the theo
The only thing that could change this conclusion is a furth
phase transition, but there is no candidate. We conclude
the high-entropy phase is again one with negative spec
heat, and thus cannot be that of a field theory.9

C. D1-D5 system

As a further example of our methods, we have examin
the D1-D5 system on T43S1, which as we mentioned abov
can be considered as the ‘‘little string’’ theory ofQ5 five-
branes, withQ1 units of string winding along the S1. Figure
4 shows the thermodynamic phase diagram. In the M
dacena limit, this theory is a representation of the algebra
N5(4,4) superconformal transformations in (111)D
@4,55,56,29–31#. We have defined k[Q1Q5 and q
[Q1 /Q5 . We keepk fixed, butq may be viewed as a vari
able in the range 1,q,k, thus moving some of the dotte
curves of duality transformation, but not altering phase tr
sition curves. Forq;1, we can exchange the roles ofQ1 and
Q5 via duality transformations across the diagram; the str
ture is unchanged. The other limit,q5k, is the Q551
bound. The vertical axis on the diagram is again the entro
while the horizontal axis is the six-dimensional string co
pling g6[gs /Av of the D1-D5 patch, wherev5V4 /a82 is
the volume of the T4 in string units@equivalentlyg6

22 is the
volume of the T4 in appropriate string units of the NS5 five
brane~NS5FB! phase#. The phase diagram has a symme
g6˜1/g6 ~inversion of the torus in the NS5FB phase!; this is
the T-duality symmetry of the little string theory. From th
perspective of the D1-D5 patch, we can consider the en
phase diagram as that of the 111D conformal theory that
arises in the IR of this gauge theory, which is conjectured
be dual to the near-horizon geometry AdS33S33T4 of the
D1-D5 system. In this patch, the D-strings are wrapped o
cycle of sizeR5 . This parameter is absent from the scali
relations of all curves because of conformal symmet

9Note that one could also imagine performing the same dua
sequence to describe matrix theory on K3 in terms of two-brane
the torus fiber of a near-degenerate mirror K3. In this case
knows that this description is related to the five-brane descrip
given above by duality, and hence indeed has a (511)D equation
of state at high entropy, rather than a (211)D equation of state.
2-5
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 60 064002
Analogous to the singly charged brane systems we have
discussing, at high entropies there is a ‘‘(111)D gas’’ phase
at smallg6 ~largeV4), which passes across a corresponde
curve to the black brane phase as the coupling increa
Being determined by conformal symmetry and quantizat
of the central charge, the equation of state does not cha
across this ‘‘phase transition.’’ Starting in the ‘‘(111)D
gas’’ phase and decreasing the entropy,S;k corresponds to
the point where the thermal wavelength in the (111)D con-
formal theory becomes of the order of the size of the boxR5 .
This is again a Horowitz-Polchinski correspondence cu
from the side of lower entropies, analogous to the SYM th
ries at10 S;N2. There is a localization transition on theR5
cycle cutting obliquely across the diagram. The localiz
phase can be interpreted as that of M5-branes with a la

10There is similarly a hidden phases of zero specific heat betw
the gas phase and the lower, localized phase, as can be seen
discontinuity in temperatures that occurs betweenS.k andS,k.

FIG. 4. Thermodynamic phase diagram of ‘‘little strings
wound on the S1 of T43S1, with Q1 units of winding andQ5

five-branes.k[Q1Q5 and 1,q[Q1 /Q5,k. g6 is the six dimen-
sional string coupling of the D1-D5 phase. The labels are define
follows: D1D5, black D1-D5 geometry; NS5FB, black NS5 geo
etry with fundamental strings in type IIB theory; D0D4, blac
D0-D4 geometry;D0D4, black smeared D0-D4 geometry; M5W
black boosted M5-brane geometry;M5W, black smeared booste
M5-brane geometry; NS5WA, black boosted NS5 branes in t
IIA theory; F1WB, black boosted fundamental strings in type I
theory; F1WB, black smeared and boosted fundamental string
type IIB theory;L, localization transitions.
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boost, thus connecting with the proposal of@33# for a matrix
theory of this system. The lower boundary of this phase
curs at entropies of orderS;Ak, where a Bogomol’nyi-
Prasad-Sommerfield~BPS! matrix string phase emerges an
the diagram is truncated at finite entropy. We find agreem
with Vafa’s argument@57# that the BPS spectrum in the Ra
mond~R! sector of the D1-D5 system is that of fundamen
type IIB strings carrying winding and momentum~some-
times called Dabholkar-Harvey states@58#!. Similarly, chas-
ing through the sequence of dualities for the D1-D5 syst
on K33S1, one finds that the BPS spectrum consists
Dabholkar-Harvey states of the heterotic string.

The character of the phase diagram is different at the
treme limits q;1 ~i.e. Q1;Q5) and q;k ~i.e. Q5!Q1).
The location of the transition curves bounding the NS5W
patch ~type IIA NS five-branes with a wave as the low
energy description! depend on the ratiox5 ln q/ln k. For
roughly equal chargesq;1,x;0, this patch disappears, a
do the relatedM5W and M5W patches and the NS5FB pat
of fundamental strings and type IIB NS5-branes. T
D-brane description predominates the phase diagram, ex
at low energies where there is a large patch describing
damental strings with winding and momentum. The oppos
regime, say fixedQ5 and largeQ1 so thatx;1, is the regime
discussed by@31#; it is also relevant to the ‘‘DLCQ’’ descrip-
tion of the five-brane@33#. Indeed, the high-entropy regio
S.k is taken over by the NS5FB patch up to the corresp
dence curve, while in the low-entropy domainS,k, the
NS5WA patch expands to squeeze out theD0D4,M5W, and
F1WB patches, and the localized phase is covered by
M5W patch—longitudinal M-theory five-branes with a larg
boost, just what one needs for an infinite momentum fra
or DLCQ description. We discuss the DLCQ limit in deta
in Sec. II E below.11

For simplicity, we have restricted the set of parameters
have considered in the phase diagram to the entropy and
couplingg6 . It is straightforward to see what will happen a
other moduli of the near-horizon geometry are varied. C
sider for instance decreasing one of the T4 radii, keeping the
total volume fixed. At some point, the appropriate low e
ergy description will requireT duality on this circle, shifting
from D1-branes dissolved into D5-branes, to D2-branes, e
ing on D4-branes. One can then chase this duality around
diagram: The NS5FB phase becomes M2-branes ending
M5-branes; the NS5WA,D0D4, and D0D4 phases becom
D1-branes, ending on D3-branes; and theM5W and M5W
phases become those of fundamental strings ending on
branes. The near-extremal F1WB phase is unaffected.
can also imagine replacing the T4 by K3. Moving around the
K3 moduli space, when a two-cycle becomes small, a D
brane wrapping the vanishing cycle becomes light; o
should consider making a duality transformation that tu
Q1 or Q5 into the wrapping number on this cycle.

en
the11The relation between the Maldacena conjecture and matrix m
els of M5-branes has also been considered recently in@59#.
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BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002
Thus the D1-D5 system appears to have a remarka
varied life. On the one hand, it can describe low-energy
pergravity on a 6D space, namely AdS33S3; the common
coordinate of the branes is the angle coordinate on Ad3.
This space parametrizes physics of the Coulomb branc
the gauge theory. On the other hand, the same system
scribes the ‘‘decoupled’’ dynamics of the five-brane, anot
6D system12—except that the spatial coordinates are n
T43S1, with the T4 apparently related to the physics of th
Higgs branch of the gauge theory, and the S1 the dimension
common to the branes. In the Maldacena limit, the theor
a representation of the (111)D superconformal group; in
the DLCQ limit, it describes light-cone M5-branes.

The careful reader will have noted that we have refrain
from characterizing the nongravitational dual of the D1-D
geometry as a (111)D field theory.13 The standard candi
date for this dual is the (111)D conformal field theory
~CFT! on Symk(T4) ~or K3!. This CFT is supposed to pro
vide a description of nonperturbative string theory
AdS33S33T4 ~or K3!. Indeed, it captures the high-entrop
thermodynamics @28# as well as the BPS spectrum
@57,29,60#. However, the near horizon geometry appears
put the CFT at a singular point in its moduli space@61,62#;
also, there appears to be a mismatch in the level of theU(1)4

affine algebra of Noether charges acting on the T4 @63#. A
basic problem also arises in the phase diagram of Fig. 4
the high-entropy phase,S duality connects the D1-D5 patc
to the NS5-F1B patch as one moves to stronger coupling
is straightforward to check that, crossing the boundaryg6
;q21/2, the energy scale of a D1-brane wrapping the to
T4 becomes less than that of a fundamental string; the ap
priate effective description is theS-dual one. In fact there ha
to be an entire decuplet of strings transforming under
O(5,5;Z) U-duality group; the proper low-energy descri
tion favors one pair of these, electrically and magnetica
charged under one of the five six-dimensionalB-fields @the
subgroup ofU-duality fixing the description is14 O(5,4;Z)].
The problem is that the objects carrying these charges, w
are the lightest objects in the theory at intermediate coupl
are not apparent in the Symk(T4) symmetric orbifold any-
where on its moduli space. Similarly, in the D1-D5 syste
on K3 there should be a fullO(5,21) 26-plet of strings; in
this case, tensionless strings corresponding to wrapped
branes arise when a 2-cycle on the K3 degenerates, an

12Seven-dimensional, if we include the circle transverse to
M5-brane.

13The following remarks reflect ongoing discussions of the fi
author with D. Kutasov and F. Larsen. In particular, it was
Kutasov that raised the question of whether the dual object is a
theory.

14There are BPS charges corresponding to these objects wrap
T5, which are central charges in the 10D supersymmetry alge
Just as in the case of the transverse five-brane in matrix theory@64#,
these charges decouple from the supersymmetry algebra in the
dacena limit; nevertheless the objects remain as finite energy e
tations carrying conserved charges.
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essential in order to regularize the singularities in the eff
tive description. The (111)D CFT on~symmetric products
of! K3 is simply singular, and does not contain the obje
which are needed. These objects are carried, howeve
fluxes on the five-brane one starts with; the energy cos
these excitations simply becomes small at the relevant po
in moduli space, suggesting that the (511)D string-theoretic
character of the dynamics does not fully decouple in
Maldacena limit. Similarly, one might expect that lower d
mensional examples of the Maldacena conjecture~e.g. those
involving AdS2 or AdS3) are not fully captured by quantum
mechanics or more elaborate (111)D field theories. As
mentioned above, it is known that the background fields
the near-horizon limit of the D1-D5 system correspond in
symmetric orbifold CFT to turning off the CFT resolution o
theZ2 singularities of Symk(T4). It may be that branes wrap
ping these vanishing cycles are again the needed ingred
for a well-defined description at these points of mod
space.

D. Spectral flow and angular momentum

The (111)D N5(4,4) superconformal algebra has tw
canonical realizations, depending on whether one choo
antiperiodic~NS! or periodic~R! boundary conditions on the
fermionic generators. The spacetime geometry in the M
dacena limit of the D1-D5 system is AdS33S33M4 . 2
11D supergravity on asymptotically locally AdS3 space-
times carries a realization of this superconformal alge
@56,55#; being a subgroup of the~super!diffeomorphism
group, the symmetry extends to the full string theory@31#.
AdS3 itself is the vacuum state, and resides in the NS se
since the Killing spinors are antiperiodic; hence low-ener
supergravity about this vacuum is described by NS se
representation theory. The R sector is what one naively
covers as the near-horizon limit of D1-D5 bound states
M 43S1, since the supercharges are periodic on S1.

A similar situation occurs, for example, in D3-bran
gauge theory. The gauge theory on S3 describes supergravity
on AdS53S5 in ‘‘global coordinates’’@65#, where time trans-
lation is generated by the dilation operator in the conform
group. The gauge theory onR3 ~or T3) describes supergrav
ity on a slice of AdS53S5 in ‘‘Poincaré coordinates’’~with
periodic identifications forT3), where time translation is
generated by a conformal boost operator. The Poincare´ slice
is obtained as the limiting near-horizon geometry of bla
D3-branes in the full string theory. There is no map betwe
gauge theory on S3 and gauge theory on T3.

A major difference in the D1-D5 system is that, since t
one-dimensional sphere and torus are the same, the NS a
sectors can be related by a continuous twist of bound
conditions known asspectral flow. This operation shifts con-
formal dimensions (hL ,hR) andJ3 charges (j L , j R) by @66#

hL,R
(h) 5hL,R

(0) 22h j L,R
(0) 1h2k

j L,R
(h) 5 j L,R

(0) 2hk. ~3!

Here, Ja are the SU~2! chiral R-symmetry currents of the
N5(4,4) algebra,E5 1

2 (hL1hR) is the energy, andP
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FIG. 5. Allowed region for
states belonging to unitary repre
sentations of the~NS! supercon-
formal algebra. The dashed curv
represents the continuous spectr
flow hh5 j h

2/k of the point h5 j
50. Spectral flow slides the
boundary polygon along the pa
rabola; a half unit of flow gives
the Ramond sector~inset!.
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2(hL2hR) is the momentum alongx5 . We will restrict our

attention to theP50 sector. The mode expansions of t
supercurrents~which havej 56 1

2) are shifted by6h. Thus
spectral flow byh5n1 1

2, nPZ, relates NS sector states
R sector states. Moreover, spectral flow by integral amou
hPZ maps a given sector onto itself; the spectrum map
itself, but individual states are not preserved. This, combi
with the charge conjugation symmetryj˜2 j , means that
the full spectrum of states in the theory~for both NS and R
sectors! with j L5 j R5 j is determined by, e.g., NS secto
states with 0< j <k/2. This relation implies a relation be
tween standard conventions in the literature:h(Ram)5h(NS)
2k/4, and j (Ram)50 corresponds toj (NS)5k/2.

In fact, there is a simple operation on the full string theo
that reduces to spectral flow in the near-horizon limit of t
D1-D5 bound state: It is the orbifold described by Roh
@67#. TheSU(2)L3SU(2)R R symmetry of the near-horizon
supersymmetry of the D1-D5 system is inherited from
Lorentz group of the asymptotically flat spacetime in whi
it is embedded in the original string theory. Thus t
R-symmetry twist is nothing but the imposition of th
twisted boundary condition

F~x55R5!5exp@ i4ph~JL
31JR

3 !#F~x550!. ~4!

In the near-horizon region, the geometry is asymptotica
AdS33S33M4 , and the spectral flow operation can be u
derstood@68# in the effective Chern-Simons supergravi
theory that arises@69#. There, spectral flow is implemente
by coupling theU(1)3U(1) CartanR-symmetry currents to
a source; a shift in the energy arises due to the usual rela
between regularization~framing! of Wilson line sources and
conformal spin in Chern-Simons theory@70#.15 It is interest-
ing that, although this twist breaks supersymmetry in the
theory, anti–de Sitter supersymmetry is restored in the n

15Thus, very little of the quantum structure of gravity is bein
used here.
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horizon region;h5 1
2 maps the R sector of the wrapped bra

system to the NS sector, with the R ground state of maxim
charge mapping to the NS vacuum.

Unitarity implies that any allowed highest weight repr
sentation of the superconformal group must haveh>u j u @71#.
Spectral flow then implies that allowed states must lie ins
the shaded region of the (h, j ) plane in Fig. 5.16 In particular,
spectral flow forces a cutoff on the spectrum of BPS sup
gravity states~regardless of whether they are single-
multi-particle configurations! at j 5k; as is easily seen from
the figure, states on the lineh5 j beyond this point lie out-
side the allowed region~since they would have to flow from
states that violate the BPS bound!. This feature was termed
the ‘‘stringy exclusion principle’’ in@29#; we see that it de-
pends only on some rather mild assumptions about the q
tization of Chern-Simons supergravity~i.e. the global struc-
ture of the class of geometries under consideration!. All such
restrictions disappear in the classicalk˜` limit.

Spectral flow determines the density of states—at h
entropy and far from the boundary of the allowed region—
terms of the Cardy formula@73,74# for zero charge,

S52pAk~hL2 1
4k!2 j L

212pAk~hR2 1
4k!2 j R

2, ~5!

which is precisely the density of states for D1-D5 black ho
with angular momentum~remembering the shift in conven
tions!. The expression must be invariant under spectral flo
when the thermal wavelength is much smaller than the s
of the system, because the fermion boundary conditions
irrelevant. Near the boundary of the allowed region, the d
sity of states will differ from this expression.

A qualitative sketch of the phase diagram as a function
energy and angular momentum is given in Fig. 6. The lo

16These curves are slightly different from the unitarity boundar
of @71,72# since we are only asking that a state be the spectral fl
of some state in an allowed representation, rather than that it b
allowed superconformalhighestweight.
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FIG. 6. Qualitative phase diagrams for th
D1-D5 system as a function of energy and ang
lar momentum ~a! for coupling geff[g6

2k.1,
whereg6 is the six dimensional string coupling
~b! for coupling geff,1. SQM stands for supe
quantum mechanics@38#, a phase correspondin
to energy independent entropyS;k.
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at
tions of the phase boundaries are not precisely determine17

since we only accurately know the phase structure in
vicinity of the NS (j 50) and R (j 5k/2) sectors. The R
sector structure is that of Sec. II C, and outlined in the p
vious section; the NS phase structure was discussed in@75#:
There is a ‘‘supergravity gas’’ phase~i.e. the predominan
states are dressed Fock space states of low-energy supe
ity! about the AdS vacuum; at somewhat higher energy
entropy is dominated by a long string phase; then the st
undergoes a correspondence transition to a (511)D
Schwarzschild black hole~i.e. localized on AdS33S3 and
smeared onM4); and finally, at high energy the Banado

17Since we are now considering finitek, the boundaries betwee
phases are not sharp anyway; they are crossover transitions r
than singularities in derivatives of the free energy.
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Teitelboim-Zanelli~BTZ! black hole phase with equation o
state~5! takes over, as the (511)D black hole delocalizes on
S3. As a function of angular momentum, there are then ph
boundaries where the NS and R structures abut one ano
More details may be found in Sec. II F.

II. DETAILS FOR THE PHASE DIAGRAMS

The details of our results can be found in the comi
sections. The D4, the D4 on an orbifold, D5, D6 and D1-D
systems are analyzed in detail in Secs. II A, II B, II C, II D
and II E, respectively. The discussion about spectral flow
angular momentum can be found in Sec. II F.

A. „2,0… theory on T43S1

The M5 phase.Our starting point will be D4-branes
wrapped on the T4 which is T-dual to the matrix theory

her
2-9
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 60 064002
description. This phase consists of six geometrical patc
and is described by the equation of state

E;
R11

l pl
2

V8/5S6/5N23/5, ~6!

obtained from the geometry ofN D4-branes. The geometrie
are parametrized by the harmonic functions

H511
q3

r 3
, h512

r 0
3

r 3
, ~7!

with

r 0
5;

S2

N
l pl
5 V24, q3;

N

V4

l pl
5

R11
2

. ~8!

We next describe the six patches of this phase.
The black D4 brane geometry~D4! is given by the metric

and dilaton

ds10
2 5H21/2~2hdt21dy(4)

2 !1H1/2~h21dr21r 2dV4
2!,

ef5H21/4. ~9!

We are using the convention that the asymptotic values
the dilaton are absorbed into the gravitational coupling. T
parameters of this geometry are related to the moduli of
light cone M theory introduced above as follows:

gstr5S l pl

R11
D 1/2

V24, a85
l pl
3

R11
, y'

l pl
2 V21

R11
, ~10!

where in the last equation, we use the notation' to denote
the compactification scale for the foury coordinates, all as-
sumed equal in size. This geometry is subject to the follo
ing restrictions:

The Horowitz-Polchinski correspondence principle
quires

S.V12N22. ~11!

Otherwise, we connect to a phase described by pertu
tive (411)D SYM.

Requiring that they’s be bigger than the string sca
yields

S.V2N4/3. ~12!

Otherwise, weT dualize into the geometry ofN smeared
black D0-branes.

Requiring that small coupling at the horizon yield

S,V12N4/3. ~13!

Beyond this point, we describe the vacuum via the geo
etry of black M5-branes.

The T-duality transformation yielding the geometry o
smeared D0-branes beyond Eq.~12! leads us forV.1 onto a
phase structure identical to the ones encountered in the t
06400
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cases studied in@7#. We will therefore be brief in the descrip
tion of the right half of the phase diagram; a complete d
cussion can be found in the cited paper. We sketch quic
the scaling of the various transition curves encountered al
this chain in the M5 phase.

The smeared black D0 geometry(D0) localizes on the T4

for

S,V9/2N1/2, ~14!

into a phase of localized black D0-branes, and gets M lif
to smeared M-theory black waves(W11) at

S;N4/3V24/3. ~15!

At

V;1, ~16!

it is seen to be necessary to reduce this latter geometry a
one of the cycles of the T4 to the geometry of type IIA
waves, then toT dualize on the remaining T3 to a type IIB
theory, and finally toS dualize to the geometry of black typ
IIB waves, to be discussed below. TheW11 geometry fur-
thermore collapses at

S;N ~17!

into the phase described by the geometry of light cone
theory black holes smeared on the T4.

The black M5 geometry~M5! is obtained from the D4
geometry we started with by lifting it, at strong couplings,
an M̃ theory. It is described by the metric

ds11
2 5H21/3~dx11

2 1dy4
22hdt2!1H2/3~h21dr21r 2dV4

2!,
~18!

and the M̃theory is parametrized:

l̃ pl
3 5 l plS l pl

2

R11
D 2

V24, R̃115
l pl
2

R11
V24, y4'

l pl
2

R11
V21.

~19!

This geometry is subject to the following restrictions:
Requiring that the curvature at the horizon be greater t

the Planck scalel̃ pl yields

N.1; ~20!

i.e., there is no dual geometrical description forN;1. What-
ever the string theoretical description of a few M5-branes
to be, it will take over the phase description beyond t
point.

Requiring that the T4, as measured at the horizon, be bi
ger than the Planck scale yields the condition

S.V23N4/3. ~21!
2-10
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BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002
We must otherwise reduce to the geometry of D4˜ in some
type IIÃ theory residing on T33S1 ~where we have isolated
an arbitrary one of the four circles to be that of M reducti
to type IIA!.

Reducing to D4˜-branes wrapped on T33S1, we find that
the size of the T3 as measured at the horizon is smaller th
the string scale set byã8 for entropies satisfying the revers
of Eq. ~21!. We thenT dualize the D4˜-branes to D1˜-branes
wrapped on S1. We find than the type IIB string coupling
measured at the horizon is bigger than one for the revers
Eq. ~21!. We thenS dualize to the geometry oftype IIB black
fundamental strings smeared on the T3 (F1):

ds10
2 5H21~dx11

2 2hdt2!1dy3
21h21dr21r 2dV4

2

ef5H21/2. ~22!

The type IIB theory is parametrized by

g̃s5
l plV

R11
, ã85 l pl

2 V24, y3' l plV
22, R̃11'

l pl
2

R11
V24.

~23!

This geometry is the correct dual in this phase provided t

The curvature at the horizon is smaller than the str
scaleã8:

S.V23N1/2. ~24!

Beyond this point, the stringy description is that of
highly excited matrix string, as we will see shortly.

The T3 as measured at the horizon is smaller than
transverse size of the object~set by the angular part of th
metric!; this yields again Eq.~24!. As the box size become
bigger than the size of the object, the system localizes on
T3. Taking into account the changes to the geometry
thermodynamics as in@7#,

dz(p)
2 1 f 21dr21r 2dVd

2
˜ f 21dr21r 2dVd1p

2

r 0
3
˜r 0

6; l pl
6 SV215/2N23/4

q3
˜q6;

l pl
8

R11
2

NV210, ~25!

we find that the localized fundamental string has
Horowitz-Polchinski point again at Eq.~24!. Furthermore, as
needed for consistency with this statement, we find that
change in the equation of state for this localized phase d
not affect the analysis regarding the matrix string phase
will perform later. Other restrictions on the localized F1 g
ometry are all seen to be satisfied in the region of the par
eter space of interest.

The T3 as measured at the horizon must not be substrin
We find than the size of the torus as measured at the hor
is at the self-dual point.

The size ofx11 as measured at the horizon is greater th
the string scaleã8:
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S.V2N4/3. ~26!

We otherwiseT dualize onx11, along the string, and
obtain the geometry of smeared type IIB black waves.

Localization onx11 is of no concern, since the symmetr
structure of the metric does not allow the Gregor
LaFlamme localization~25! ~i.e. the brane is stretched alon
this cycle!.

The type IIB smeared black wave geometry(WB) is the T
dual onx11 of F1 @Eq. ~22!#,

ds10
2 5~H21!~dx112dt!21dx11

2 2dt21H21~12h!dt2

1dy3
21h21dr21r 2dV4

2

ef51, ~27!

and the type IIB theory is parametrized by

g̃s5V3, ã85 l pl
2 V24, R̃11'R11, y3' l plV

22. ~28!

The relevant restrictions are:

Localization onx11 occurs at

S;N. ~29!

The system collapses into a new phase described by
geometry of a boosted type IIB black hole smeared on T3.

The string coupling at the horizon becomes bigger tha
at

V;1. ~30!

We then are instructed to perform the chain of dualit
S,T(3) ,M , bringing us back to the geometry of light cone
theory black wavesW11.

We thus conclude the analysis of the M5 phase. The d
theory can be inferred from the M5 patch; it is the si
dimensional~2,0! theory wrapped on T43S1. Extending the
validity of this theory throughout the phase diagram, we co
clude that we can interpret it as the phase diagram of
~2,0! theory. We now move onto the other phases of the~2,0!
theory; we will be brief in the discussion of the right half o
the diagram, since it overlaps in content with the lower
mensional SYM cases@7#.

The smeared type IIB black hole(10DBH). This phase is
described by the equation of state

E;S R11

N

1

l pl
2 D V8/5S8/5. ~31!

and consists of the type IIB hole obtained from the type I
wave geometryWB at S;N, and the smeared 11D LC hol
obtained from the 11D wave geometryW11. Its correspon-
dence point can be found by minimizing the Gibbs energ
between the equation of state~31! and that of the matrix
string, which we perform below. The smeared hole geome
localizes on the T4 at
2-11
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 60 064002
S;V9, ~32!

where the localized 11D LC black hole emerges.
The black D0 phase~D0!. This phase consists of the ge

ometries oflocalized black D0 branes~D0! and its M lift
light cone M theory waves~W11!; the two patches meet at

S;N8/7. ~33!

The equation of state is

E;S R11

N

1

l pl
2 D S14/9N2/9, ~34!

obtained from the D0 geometry. The W11 patch collap
into a light cone M theory black hole phase at Eq.~17!. The
black D0-brane patch has its Horowitz-Polchinski corresp
dence point atS;N2. This is an interesting transition dis
cussed in greater detail in@7#; on theS-V phase diagram, the
(411)D perturbative SYM phase emerges beyond t
point.

The 11D black hole phase~11D BH!. The equation of
state is given by

E;
R11

l pl
2

N21S16/9. ~35!

More details about this phase can be found in@7,76,18#.
The matrix string phase.The F1 geometry encountere

above breaks down via the Horowitz-Polchinski principle
correspondence at Eq.~24!. The emerging phase is that of
matrix string. This can be verified as follows: using the stri
scale given in this geometry~23!, we can write down the
equation of state of the matrix string phase

E;
R11

l pl
2

N21S2V4. ~36!

Matching this energy with that of the M5 phase~6! ~or that
of the localized F1 geometry! yields Eq.~24!. Similarly, we
can match the equation of states~36! and that of the type IIB
hole ~31!, yielding the matrix string-boosted type IIB hol
transition curve at

S;V26. ~37!

Perturbative (411)D SYM phase.The scaling of the
equation of state is fixed by dimensional analysis and yie

E;S R11

N

1

l pl
2 D VN1/2S5/4. ~38!

This phase borders that of the D4-branes and D0-branes
The final phase diagram is that of the~2,0! on T43S1 or,

as we see from the LC black hole phase, that of LC M the
on T4.
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B. „2,0… theory on T4 /Z23S1

Inspired by the previous discussion of the phase struc
of the ~2,0! on T43S1, we further consider the phase stru
ture of this theory on T4/Z23S1. This corresponds to a cor
ner in the moduli space of K33S1; particularly, in addition
to considering a square T4, we will be ignoring phase dy-
namics associated with the 1634 moduli that blow up the
fixed points@77#. Our parameter space is again two dime
sional, entropyS, and the volume of the T4. There are only
two novelties that arise, both leaving the global structure
the phase diagram unchanged, modifying only the interp
tation of the various patches of geometry.

The first change arises from the effect of the orbifold
the duality transformations; we will obviously be driven in
the other branch of the web of dualities that converge onto
theory ~cf. @78#!. We proceed from the11D phase of the
previous discussion, upward and counterclockwise on
phase diagram. We have M theory on a light-cone cir
times T4/Z2 . We reduce onR11 to D0-branes in type IIA
residing on the T4/Z2 at Eq. ~15!. Under this orbifold, the
massless spectrum has positive parity eigenvalue. WeT du-
alize on T4 at Eq.~12!, getting to the patch of D4-branes i
type IIA wrapped on T4/Z2. We remind the reader of the
transformation

T(4)b (4)T(4)
215b (4) , ~39!

where we have used the properties of the reflection oper
on the spinors

b i5GG i , b i
25~21!FL, $b i ,b j%50, ~40!

with the T-duality operation reflecting the left movin
spinors only. Here, (21)FL is the left moving fermion op-
erator. We then M lift to M5-branes in M˜ theory on T4/Z2
3S1 at Eq.~13!. Next, we have to apply the chain of dual
tiesM ,T(3) ,S near~21!. From the M reduction we obtain D4˜
branes on T3/(21)FLV. This is because the M reductio
along an orbifold direction yields the twist eigenvalues, f
the massless spectrum,

gmn1, f1, Bmn2, C(1)2, C(3)1, ~41!

while the world-sheet parity operatorV acts on this spectrum
as

gmn1, f1, Bmn2, C(1),(2),(5),(6)1, C(0),(3),(4),(7),(8)2,
~42!

and the action of (21)FL yields

NSNS1, RR2. ~43!

The T duality on T3 brings us to D1-branes in type IIB
theory on S13T3/V, which is type I theory on S13T3. This
is because

T(3)b (3)~21!FLVT(3)
215~21!FLV. ~44!

Finally, theS duality culminates in the geometry ofN black
heterotic strings smeared on the T3. The Horowitz-
2-12
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BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002
Polchinski correspondence curve~24! patches this phas
onto that of the heterotic matrix string phase, whose equa
of state obeys the scaling~36!. We thus verify the following
previous suggestions@44–46,79# from the perspective o
Maldacena’s conjecture:

Heterotic matrix string theory emerges in the UV of t
~2,0! theory.

Heterotic matrix strings can be described via theO(N)
SYM of type-I D-strings

The structure of the phase diagram has not changed, bu
labelling of some of the phases has. The additional symm
structure of the orbifold background entered our discuss
trivially; the critical behaviors are unaffected.

To complete the discussion, we need to address a se
change to the T4 compactification. The localization trans
tions, say the one occurring at Eq.~14!, are of a somewha
different nature than the ones encountered earlier. Local
black geometries on orbifold backgrounds are unstable
ward collapse toward the nearest fixed point; by virtue
being above extremality, there are static forces, and by vi
of the symmetry structure of the orbifold, there is no balan
of forces as in the toroidal case. It is then most probable
the localized D0-branes sit at the orbifold points, with th
black horizons surrounding the singularity. The most natu
geometry is the one corresponding to 16 black D0 geo
etries distributed among the singularities, yielding a no
singular geometry outside the horizons.

C. Little strings and five-branes on T5

In this section, we study the thermodynamics of fiv
branes wrapped on a square T5. The notation is as before; w
express all equations in terms of the parameters of a LC
theory on T5. The structure of the phase diagram forV.1 is
similar to the one already encountered. We will therefore
discuss the D0,D0, W11,W11, 11DBH,11DBH, and per-
turbative (511)D phases except for noting that the on
changes to our previous discussion are to Eqs.~15!, ~31! and
~38!, which become, respectively,

S;V25/2N3/2 ~45!

E;S R11

N

1

l pl
2 DV5/2S3/2 ~46!

E;S R11

N

1

l pl
2 DVN3/5S6/5. ~47!

We start from the D5 geometry and move counterclockw
on the phase diagram.

The M5 phase(M5̃). This phase consists of seven ge
metrical patches. For two of these, theD0 andW11, we refer
the reader to@7#. The relevant harmonic functions are

H511
q2

r 2
, h512

r 0
2

r 2
, ~48!
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q2;
l pl
4

R11
2

N

V5
, r 0

4;
S2

N
l pl
4 V25. ~49!

The phase is described by the equation of state18

E5
1

2p

R11

l pl
2

SN21/2V5/2, ~50!

characteristic of a string in a Hagedorn phase. Our star
point is theblack D5 geometry~D5! given by

ds10
2 5H21/2~2hdt21dy(5)

2 !1H1/2~h21dr21r 2dV3
2!

ef5H21/2. ~51!

The patch is parametrized by

gstr5
l pl

R11
V25, a85

l pl
3

R11
, y(5)'

l pl
2

R11
V21. ~52!

The relevant restrictions are:

The Horowitz-Polchinski correspondence principle be s
isfied for

S.V15/2N21/2. ~53!

Beyond this point, we sew onto the perturbative
11)D SYM phase whose equation of state is given by E
~47!.

Requiring that the coupling at the horizon be small yie

S,V15/2N3/2. ~54!

We thenS dualize to the geometry of black NS5 branes
the type IIB theory.

The condition of large T5 cycles at the horizon requires

S.V3/2N3/2. ~55!

Otherwise, weT dualize on the T5 and obtain the geom
etry of smeared D0-branes,D0.

The black NS5 geometry~NS5B! is theS dual of Eq.~51!,

ds10
2 52hdt21dy5

21H~h21dr21r 2dV3
2!

ef5H1/2, ~56!

and the new asymptotic moduli are

gstr5
R11

l pl
V5, a85

l pl
4

R11
2

V25, y5'
l pl
2

R11
V21. ~57!

The relevant restrictions are:

18Note that we have kept track of the exact numerical coeffici
for this equation of state for later use.
2-13
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Requiring that the cycle size of the fivey’s be greater than
the string scale yields the condition

V.1. ~58!

Beyond this point, we need toT dualize on the T5 and we
obtain the geometry of black NS5-branes in a type I
theory.

The correspondence point is at

N;1. ~59!

We note that the dual theory is the non-local~1,1! theory
of type IIB NS5-branes. At low energy, it is described
(511)D perturbative SYM.

The geometry of the black NS5 branes in type IIA the
~NS5A! is theT dual of NS5B@Eq. ~56!#:

ds10
2 52hdt21dy(5)

2 1H~h21dr21r 2dV3
2!

ef5H1/2. ~60!

The parameters of the type IIA theory are

gstr5
R11

l pl
V25/2, a85

l pl
4

R11
2

V25, y(5)'
l pl
2

R11
V24. ~61!

The new restrictions are:

The correspondence point occurs for

N;1. ~62!

The dual theory is the non-local~2,0! theory of type IIA
NS5-branes, related to the~1,1! theory we encountered abov
via a T duality on the T5.

Requiring small coupling at the horizon yields

S.V215/2N3/2. ~63!

Otherwise, we lift to an M˜ theory and obtain smeare
M5̃-branes.

The smeared black M5 geometry(M5̃) is described by the
metric

ds11
2 5H2/3~dx̃11

2 1h21dr21r 2dV3
2!1H21/3~dy(5)

2 2hdt2!.
~64!

The parameters of the M˜ theory are

R̃115 l plV
25, l̃ pl

3 5
l pl
5

R11
2

V210, y(5)'
l pl
2

R11
V24. ~65!

The new restrictions are:

Requiring that the size ofx̃11 as measured at the horizo
be smaller than the size of the object gives

S.V215/2N1/2. ~66!
06400
y

Otherwise, we localize in the manner of Gregor
LaFlamme onx̃11 to the geometry of localized M5-branes.

The correspondence condition yields

S.V215/2N23/2, ~67!

which is rendered irrelevant by the previous condition.
Requiring that the cycle size of they’s at the horizon be

bigger than the Planck scale yields

S.V3/2N3/2. ~68!

Beyond this point, we reduce on one of the cycles of T5 to
a type IIA theory. We find that we need to furtherT dualize
on the remaining T4. The resulting geometry of black D0
branes is found strongly coupled at the horizon; we theref
lift to another M̂theory, and we have the geometry of bla
M̂ waves smeared on the T4.

The geometry of smeared waves in the Mˆ theory(M̂W11) is
given by

ds11
2 5~H21!~dx̂112dt!21dx̂11

2 2dt21H21~12h!dt2

1dy(4)
2 1dx̃11

2 1h21dr21r 2dV3
2 . ~69!

The parameters of the Mˆ theory are

R̂115R11, l̂ pl5 l plV
22, y(4)' l plV

22, R̃11' l plV
25.
~70!

The relevant restrictions are:

Requiring that the cycle size ofx̃11 at the horizon be big-
ger than the Planck scalel̂ pl yields

V,1. ~71!

Otherwise, we reduce alongx̃11 to a type IIA theory,T
dualize on the T4, and M lift back to the original LC M
theory with Planck scalel pl and five torus moduliVlpl .

The system would localize onx̃11 unless

S.V215/2N1/2. ~72!

We then have localized waves in Mˆ theory which are still
smeared on the remaining T4.

We find that the cycle sizes of the foury’s as measured a
the horizon are of order the Planck scalel̂ pl .

The system would localize on the T4 unless

S.V23/2N1/2. ~73!

This condition is never realized because of the other
strictions.

The system can localize onx̂11 unless

S.N. ~74!

Otherwise, we collapse to the geometry of an 11D bla
hole in LC M̂ theory; this black hole is still smeared on th
T4 and onx̃11.
2-14
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We thus conclude the discussion of this phase comprise
seven patches. We have two non-local theories sitting on
of the phase, the~2,0! theory and the~1,1! theory, related by
a T duality, and bounded by three curves due to finite s
effects, and one curve due to the correspondence princi

The black M5 phase~M5!. This phase consists of tw
patches.The M5 patch~M5! is the localized version of Eq
~64!,

ds11
2 5H2/3~h21dr21r 2dV4

2!1H21/3~dy(5)
2 2hdt2!, ~75!

with the changes

q3;
l pl
5

R11
2

NV210, r 0
5; l pl

5 N21S2V210. ~76!

The equation of state becomes

E;
R11

l pl
2 S6/5V4N23/5. ~77!

In other words,S;N1/2(y(5)E)5/6 in the parameters~65! of
this patch; this equation of state is characteristic of a
11)D gas, as one expects for the theory on the M5-bran
large volume and sufficiently low energy. The new restr
tions are:

The correspondence point is now at

N;1. ~78!

Reduction on they’s along the discussion for the smear
M5̃ branes encountered above occurs at

S;N4/3. ~79!

We then emerge into the phase of Mˆ W11 black waves.

The geometry of 11D black waves(M̂W11) is obtained via
localization on x̃11 of the smeared geometry Mˆ W11. The
resulting phase is still smeared on the T4. It can however
further localize at

S;N ~80!

along x̂11 into a smeared 11D LC black hole 11D̂BH. The
condition of localization on the T4 is, however,

S,N1/2, ~81!

and therefore never arises due to Eq.~80!.
The smeared 11D LC black hole phase(11D̂BH). This

phase is described by the equation of state

E;
R11

l pl
2

N21V4S8/5. ~82!

It is smeared on the T4 but localized onx̃11. Minimizing its
Gibbs energy as given by Eq.~82! with respect to that of the
hole smeared onx̃11, Eq. ~46! yields the transition curve
06400
of
p

e
e.
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S;V215. ~83!

Localization on the T4 occurs atS;1, and therefore is no
seen on our phase diagrams. This can be seen by matc
Eq. ~82! with

E;
R11

l pl
2

N21V4S16/9, ~84!

i.e. the equation of state of the totally localized hole in theˆ
theory.

This completes the phase diagram obtained from the
system. The structure can be verified by using the vari
equations of state. We conclude by noting that there are
eral different interpretation of this diagram. It is that of th
~2,0! theory; it is that of the~1,1! related to the latter byT
duality, but it also encompasses the phase structure of LC
theory on T5. Various previous observations regarding m
trix theory on T5 are thus confirmed@23,22# via the Mal-
dacena conjecture.

D. D6 system

The Taub-NUT~Newman-Unti-Tamburino! phase.This
phase consists of 8 patches. The harmonic functions are

H511
q

r
, h512

r 0

r
, ~85!

with

r 0;S2/3N21/3V22l pl

q;
l pl
3

R11
2

NV26. ~86!

The equation of state is

E;
R11

l pl
2 S2/3N21/3V4. ~87!

Our starting point isthe black D6 geometry~D6!, given
by

ds10
2 5H21/2~2hdt21dy(6)

2 !1H1/2~h21dr21r 2dV2
2!

ef5H23/4

Frty1¯y6
5] rH

21. ~88!

The parameters of this type IIA theory are

a85
l pl
3

R11
, gs5S l pl

R11
D 3/2

V26, y'
l pl
2

R11
V21. ~89!

The various restrictions are:

Weak coupling at the horizon requires

S,N2V6. ~90!
2-15
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Otherwise, we lift to a Taub-NUT geometry in 11 dime
sions.

The correspondence point is at

S.V6. ~91!

Perturbative 611D SYM emerges beyond this point.
T duality on they(6) must be applied unless

S.N2. ~92!

Otherwise, we have the geometry of smearedD0-branes.

The black Taub-NUT patch in M¯ theory(M̄TN) is given by
the geometry

ds11
2 5H~h21dr21r 2dV2

2!1H21~dx112Adf!2

2hdt21dy(6)
2 . ~93!

We have introduced a gauge potentialA5(12cosu)N/2 lo-
cally (uÞ0) for the magnetically charged 2-form dual to E
~88!. In the Maldacena limit, this is an 11-dimensional AL
space with AN21 singularity. The parameters of this M¯
theory are

R̃115
l pl
3

R11
2

V26, l̃ pl
3 5

l pl
6

R11
3

V26, y(6)'
l pl
2

R11
V21. ~94!

The relevant restrictions are:

The correspondence point

S.N21V6. ~95!

This is seen to be irrelevant.
The T6 must be bigger than the Planck scale:

V.1. ~96!

Otherwise, we have to reduce along one of the cycles
type IIA theory, andT dualize along the other five cycles t
a type IIB Taub-NUT geometry. We then need toS dualize,
and T dualize again on the five torus; finally, we lift to
Taub-NUT geometry in an M˜ . Instead of following this path
we will map theV,1 region from theD0 geometry.

As mentioned above, we now pick up the trail from it theD0
patch. This patch localizes on the T6 to the D0 geometry for

S.V9/2N1/2, ~97!

and lifts toan M theory waveW11 for

S,V26N2. ~98!

The latter localizes on the T6 at Eq.~97!. For

V,1 ~99!

we need to reduce theW11 geometry along one of the cycle
of the T6, andT dualize on the other five. We find the cou
06400
a

pling at the horizon is bigger than one, so weS dualize, and
find that the T5 is substringy. WeT dualize again and find
that the resulting type IIA wave geometry is strongly coupl
at the horizon. We therefore, and finally, lift to a black wa
geometry in an M˜ theory. The chain of dualities is the
M ,T5 ,S,T5 ,M . The new M̃wave geometry (M˜ W11) is pa-
rametrized by

z(6)' l plV
25, l̃ pl5 l plV

24, x11'R11. ~100!

The M̃ circle is one of thez(6) , and the wave is alongx11.
This geometry localizes on the T6 for

S,V29/2N1/2. ~101!

The T6 at the horizon is bigger thanl̃ pl for V,1, andx11 at
the horizon is bigger thanl̃ pl for

S,V6N2. ~102!

Otherwise, we reduce to a type IIA˜ theory alongx11 to the

geometry of smeared D0-branes, D0¯̃. The curvature at the
horizon is small with respect to the Planck scale for

S.V23N1/2, ~103!

which is rendered irrelevant by the other considerations.

The smeared D0 geometryD0̃̄ is parametrized by

gstr5S R11

l pl
D 3/2

V6, a85
l pl
3

R11
V212, z(6)' l plV

25. ~104!

A T duality on the T6 takes us to the D6˜ geometry for

S.N2, ~105!

and localization on the T6 occurs for Eq.~101!.
The D6̃geometryis parametrized by

gstr5S l pl

R11
D 3/2

, a85
l pl
3

R11
V212, z(6)'

l pl
2

R11
V27. ~106!

This has a correspondence point at

S;V26, ~107!

and lifts to a Taub-NUT geometry in some Mˆ theory for

S.V26N2. ~108!

The Taub-NUT geometryM̂TN obtained from the D6˜ patch
is parametrized by

R̂115
l pl
3

R11
2

V26, l̂ pl5
l pl
2

R11
V26, z(6)'

l pl
2

R11
V27. ~109!

It patches onto the M̄TN geometry atV;1 via a chain of
five dualitiesM ,T5 ,S,T5 ,M discussed above.
2-16
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We note the symmetry of the diagram aboutV;1. The
remaining phases were encountered in the previous S
examples; there is a phase of localized black D0-brane
LC black hole, a smeared LC black hole, and a (611)D
perturbative SYM phase. In the D6 system, each of th
phases has a mirror phase about theV;1. The structure can
be further verified by matching the energies, at fixed entro
of the various phases. This completes the phase diagram
the D6 system, shown in Fig. 3. We note that:

The gravitational coupling does not vanish in the M¯TN
and M̂TN patches, whereas it does for all the other patche
the diagram.

For p55,6 diagrams involving (p11)D SYM, the energy
decreases for higher entropies, unlike thep,5 cases; i.e.,
the specific heat is negative.

E. Little strings with winding charge

We will map here the thermodynamic phase diagram
Q5 five-branes andQ1 strings. Our starting point is the
D1-D5 geometry.

Black five-branes and strings.This phase consists of 1
patches. We start withthe D1D5 geometry~D1D5! given by

ds10
2 5~H1H5!21/2~2hdt21dx5

2!1H1
1/2H5

21/2dx(4)
2

1~H1H5!1/2~h21dr21r 2dV3
2!

ef5H1
1/2H5

21/2

Frtx5
5] rS 11

r1
2

r 2 D 21

, Fu1u2f52r5
2~«3!u1u2f .

~110!

The harmonic functions are given by

Hi511
r i

2

r 2
i 51,5, h512

r 0
2

r 2
; ~111!

the charge radii of the branesr i , i 51,5, are related to the
parametersr i by

r1
25~2p!4gstra83

~kq!1/2

V4
, r5

25gstrk
1/2q21/2a8,

r i
252r iAr 0

21r i
2. ~112!

Here we make a distinction between the antisymmetric t
sor field strength’s harmonic functions and those of the m
ric, since we will be interested below in the numerical co
ficients of some of the equations of state; the extremal li
corresponds tor 0˜0 with the r i held fixed. For scaling
purposes, we can writer i5r i in the Maldacena limit. We
also have traded the two integersQ1 and Q5 for the new
variablesk andq:

Q1[Akq, Q5[Ak

q
. ~113!
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This type IIB theory is parametrized bygstr , a8, and resides
on T43S1; the T4 is square with volumeV4 , and we define
@29#

v[
V4

a82
, g6[

gs

v1/2
. ~114!

The S1 is compact with radiusR5 . The Maldacena limit cor-
responds to

a8˜0 with
r

a8
,

R5

a81/2
, g6 and v held fixed.

~115!

This reduces the geometry above to AdS33S33T4. The (1
11)D boundary theory is conformal with central chargec
56k. The gravitational coupling in our conventions is

G105~2p!7gstr
2 a84. ~116!

From the area law, we have

S5
~2p!4

G10
r 1r 5r 0R5V4 ~117!

or

r 0;Sgstra8k21/2v21/2R5
21 . ~118!

The Arnowitt-Deser-Misner~ADM ! mass is

M5
~2p!3

2

R5V4

G10
@3r 0

212~r 1
21r 5

2!#, ~119!

yielding the equation of state

E5
S2

8p2kR5

~120!

characteristic of a (111)D conformal field theory@28#.
The various restrictions on the D1-D5 geometry are:

The Horowitz-Polchinski correspondence principle d
tates

g6.k21/2. ~121!

Beyond this point, the (111)D conformal theory takes
over. Its equation of state is fixed by conformal symmet
using Cardy’s formula@73,74# and the central charge 6k, we
find precisely Eq.~120!, as expected.

Requiring that the coupling at the horizon be small yie

g6,q21/2. ~122!

Otherwise, weS dualize to the geometry of NS5-brane
and fundamental strings.

Requiring the T4 as measured at the horizon be big wi
respect to the string scale gives

q.1. ~123!
2-17
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Otherwise, we apply aT duality on the T4, and exchange
the roles ofQ1 and Q5 . Without loss of generality, we re
strict our attention toq.1 only. We also note thatq,k; the
upper bound corresponds toQ551. We therefore have

1,q,k. ~124!

Requiring that the size ofx5 as measured at the horizon b
bigger than the string scale gives

S.g6
21/2k3/4. ~125!

Otherwise, weT dualize to the geometry of smeare
D0-D4 branes.

The smeared D0D4 geometry(D0D4) is given by

ds10
2 52~H1H5!21/2f dt21H1

1/2H5
21/2dx(4)

2

1~H1H5!1/2~dx5
21 f 21dr21r 2dV3

2!

ef5H1
3/4H5

21/4. ~126!

The parameters of this type IIA theory become

g̃s5gstra81/2R5
21 , ã85a8,

x(4)'a81/2v1/4, x5'a8R5
21 . ~127!

The restrictions are:

Small curvature at the horizon yields the condition

g6.k21/2. ~128!

This will be rendered irrelevant by the subsequent con
tions.

Small coupling at the horizon requires

S.g6
1/2k3/4q1/2. ~129!

Otherwise, we lift to the geometry of smeared boos
M5-branes.

Requiring that the size ofx5 as measured at the horizon b
smaller than the transverse size of the object yields

S.g6
21k1/2. ~130!

Beyond this point, the system localizes in the manner
Gregory and LaFlamme alongx5 , and we have the geometr
of localized D0-D4-branes.

Finally, a large T4 is associated with the condition~123!.

The smeared boosted M5 geometry(M5W) is the M lift of
the D0-D4 geometry@Eq. ~126!# at Eq.~129!:

ds11
2 5H1

21H5
21/3~2 f dt21H1dx(4)

2 !

1H5
2/3~dx5

21 f 21dr21r 2dV3
2!

1H1H5
21/3@dx112~H1

2121!dt#2. ~131!

The parameters of this M theory are
06400
i-

d

f

R115gstra8R5
21 , l pl

3 5gstra82R5
21 ,

x(4)'a81/2v1/4, x5'a8R5
21 . ~132!

The restrictions are:

The correspondence principle requires

S.g6
21q1/2. ~133!

This condition is rendered irrelevant by the others forq
,k. At q;k, it coincides with the localization condition o
x5 we will find shortly.

Requiring that the size ofx5 as measured at the horizon b
bigger than the Planck scale yields

S,g6
21k3/4q21/4. ~134!

Otherwise, we reduce alongx5 to a type IIA theory and to
the geometry of boosted NS5-branes.

Requiring that the size of the T4 as measured at the hor
zon be bigger than the Planck length gives

S.g6
1/2k3/4q21/4. ~135!

Otherwise, we reduce to a type IIA theory along one
the cycles of the T4. We find as always that the other thre
cycles are substringy andT dualize along them. Finally, the
resulting boosted D1 geometry is seen to be strongly coup
at the horizon, and weS dualize to the geometry of booste
type IIB fundamental strings smeared onx5 .

The localization condition onx5 is as for theD0-D4 phase
~130!.

The geometry of NS5 branes and fundamental stri
~NS5FB! is obtained from the D1-D5 geometry viaS duality:

ds10
2 5H1

21~2 f dt21H1dx(4)
2 !1H1

21dx5
2

1H5~ f 21dr21r 2dV3
2!

ef5H1
21/2H5

1/2. ~136!

The parameters of the type IIB theory are

g̃s5gstr
21 , ã85gstra8, x(4)'a81/2v1/4, x5'R5 . ~137!

The restrictions are:

Small curvature at the horizon requires

k.q, ~138!

which is trivially satisfied.
Largex5 at the horizon requires

S.k3/4q1/4. ~139!

Otherwise, weT dualize alongx5 and emerge into the
geometry of boosted NS5-branes in type IIA theory; the l
ter was encountered from theM5W phase via an M reduction
alongx5 .

Large T4 at the horizon requires
2-18
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BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002
g6,1. ~140!

Otherwise, weT dualize along the T4, yielding to a simi-
lar system with altered asymptotic moduli.

The boosted black type IIB string geometry(F1WB) is ob-
tained from theM5W patch by a chain of three dualities a
described after Eq.~135!; this gives the metric

ds10
2 52~H1H5!21f dt21H1H5

21dx̂11
2 1dx(3)

2

1 f 21dr21r 2dV3
21dx5

2

ef5H5
21/2. ~141!

The parameters of the type IIB theory are

ĝstr5gstr
21a821/2v3/4R5 , â85gstr

2 a82v21R5
22

x(3)'gstra8v21/2R5
21 , x5'a8R5

21 , x̂11'gstra8R5
21 .
~142!

The restrictions are:

Small curvature at the horizon requires

S.k1/2. ~143!

This will be rendered irrelevant by other restrictions.
Largex5 as measured at the horizon requires

g6,1. ~144!

Otherwise, weT dualize alongx5 , and obtain a similar
geometry.

Localization onx5 occurs unless condition~130! is satis-
fied.

Localization onx(3) occurs unless condition~143! is sat-
isfied. This is irrelevant in view of Eq.~130!.

Requiring thatx̂11 as measured at the horizon be bigg
than the string scale yields Eq.~123!.

Small coupling at the horizon requires the reverse of
~135!.

And, finally, we note that the geometry is at the self-du
point for the three cyclesx(3) .

The geometry of boosted NS5 branes of the type IIA the
~NS5WA! is obtained from the NS5FB patch viaT duality or
the M5W via M reduction. The only relevant restriction
that of large T4 at the horizon. This occurs for

g6,1. ~145!

Otherwise, we have theT dual, and identical, geometry wit
different asymptotic moduli.

We have completed the boosted M5 phase up to the c
dition ~145!. We note that all duality transformations alon
g6;1 leave the geometries unchanged, and change
asymptotic moduli. It is easy then to check that ventur
into domains withg6.1 yields a mirrored picture of the
phase diagram aboutg6;1. Our six patches have six othe
mirror geometries across theg6;1 line. We therefore see
signature of a strong-weak symmetryg6˜1/g6 in the dual
06400
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theory, which isT duality of the little string. As we scan
through 1,q,k, at the lower bound the phase structure
such that, via dualities exchangingQ1 and Q5 , a mirrored
phase diagram forq,1 emerges; for the upper bound, th
geometrical vacua across the diagram break down via
correspondence principle. These comments carry over to
other phases, which we describe next.

The black localized boosted M5 phase~M5W!. The local-
ization transition alongx5 yields the change in the harmon
functions

f˜12
r 0

3

r 3
, Hi˜12

r i
3

r 3
, ~146!

with

r 1
3;

a82gstr

vR5
k1/2q1/2

r 5
3;

a82gstr

R5
k1/2q21/2. ~147!

The expression~118! for the entropy is unaffected by thi
transition, unlike all other cases encountered here and in@7#.
The equation of state of the localized phase becomes

E;
g6

R5
S S

k1/2D 3

. ~148!

There are three patches.The localized boosted fundame
tal string ~F1WB! is obtained from theF1WB patch by lo-
calization onx5 . The relevant restrictions are:

Small curvature at the horizon requires

S.k1/2. ~149!

At this point, we emerge in a matrix string phase carryi
two charges. More on this later.

Localization onx(3) occurs unless Eq.~149! is satisfied.
This is similar to what we saw in the (411)D SYM case.

Largex11 at the horizon requires Eq.~123!.
Small coupling at the horizon necessitates

S,k2/3q21/6. ~150!

Beyond this point, we apply the chainS,T(3) ,M to patch
onto the localized boosted M5 geometry. The reverse of
chain was described in the smeared case above.

Finally, the geometry is at the self-dual point for thex(3)
cycles.

The localized boosted black M5 brane geometry~M5W! has
the same parameters as Eq.~132!. It is subject to one addi-
tional non-trivial condition, that of M reduction alongx11
unless

S,k2/3q1/3. ~151!
2-19
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EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 60 064002
We then emerge into the geometry of localized D0-D
branes.

The localized D0-D4 brane geometry~D0-D4! is subject
to the following additional condition; its curvature at th
horizon is small when

S,k. ~152!

Otherwise, the dual geometrical description breaks do
Comparing the equations of state~148! and ~120!, we find
that we do not have a match atS;k. This is identical to the
situation encountered in all the SYM cases atS;N2. There
is a non-trivial transition at this point through a phase w
zero specific heat. On the (111)D gas side,S;k is where
the thermal wavelength becomes the size of the box,R5 ; the
dynamics is then frozen into a quantum mechanics.

The BPS matrix string.At S;k1/2, the emerging phase i
that of the Ramond ground states of the conformal theo
which are those of a BPS matrix string. The situation can
compared to the matrix string transition of the M5-brane
T43S1 discussed in Sec. II A. There, we found a corresp
dence curve atS;V23Q5

1/2, beyond which a perturbative
string description should be valid. At the transition, the ra
of the cycle sizes at the horizon of the T4 and the S1 was
(y4 /R̃11)

2;V6;Q5 /S2; in particular, sinceV!1, the dy-
namics is effectively one dimensional. In the localiz
~M5W! phase of the D1-D5 system, we have (y4 /R11)

2

;H1
21(a8v1/2R5

2/gs
2a82);Q1

21 at the transitionS;k1/2,
which is again of orderQ5 /S2. We conclude that the two
transitions are the same. In the present case, the eme
phase is BPS; a perturbative string carrying both windingQ5
and momentumQ1 quanta obeys the Virasoro constraints

E25~Q1l str /R!21~Q5R/2l str!
212NL12NR

k5Q1Q55NL2NR ; ~153!

when e.g. the left oscillator levelNL!NR , there are of order
k1/2 states, and the system becomes BPS saturated aNR
50.

Comments on DLCQ of the M5-brane.As mentioned in
the introductory summary, the limitQ5 fixed, Q1@Q5 , is
relevant to the DLCQ description of the M5-brane@33–36#.
In terms of the D1-D5 parameters, the DLCQ parameters

l pl
2

R11
5 l strS R5

l strgstr
D 1/3

x(4)

l pl
5v1/4S R5

l strgstr
D 1/3

[n4
1/4

x5

l pl
5

l str

R5
S R5

l strgstr
D 1/3

[L. ~154!

Converting Eq.~120! to DLCQ parameters, we find

S52p~Q5 /L !1/2l plM , ~155!
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which is indeed the equation of state of a Hagedorn str
with tension proportional toL/Q5 , as has been seen prev
ously from several related points of view@80,81#. It is a
nontrivial check that this equation of state agrees precis
with Eq. ~50! when we use the parameters~65! of the M5̃
phase.19

The same exercise can be repeated for the local
~M5W! phase. The equation of state~148! in DLCQ param-
eters, again assuming light-cone kinematicsELC;M2/2P,
takes the form

S;Q5
1/2Q1

1/6~n4
1/4 l plM !2/3. ~156!

In terms of scaling, this equation of state is the ener
entropy relation of a (211)D gas~extensive in the box size
n4

1/4), although it is difficult to explain the dependence onQ1

and Q5 . A natural candidate for the object being observ
here is an excited M2-brane embedded in the M5-br
~which is indeed one of the bound states of M theory!. The
Q1 dependence appears to violate Lorentz invariance
would be interesting to understand why light-cone kinem
ics does not work in the low-energy, low-entropy regim
and why the low-entropy phase is not a boosted version
the (511)D gas found for the M5-brane in Eq.~77!.

F. Spectral flow and rotating black holes

We now turn to a discussion of angular momentum in
D1-D5 system. As pointed out in Sec. I D, spectral flow is
adiabatic twisting of boundary conditions in the full strin
theory before the Maldacena limit; the near-horizon lim
maps the twist onto the spectral flow operation in the sup
conformal algebra. On the geometry side, a point on
unitarity diagram~Fig. 5! in the NS sector, far from the
boundary and at high conformal weight, is described by
BTZ black hole geometry~independent of the fermion
boundary conditions! @82,29,30,83#, in a space which is
asymptotically locally AdS33S33M4 ; in the R sector, such
a point represents the near horizon geometry of a rota
D1-D5 system@84# ~due to the shift in conventions betwee
canonical definitions of NS and R sector quantum numbe!.
The isometrySO(4)5SU(2)L3SU(2)R of the transverse
S3 combines with the~4,4! supersymmetry generators an
the SL(2,R)3SL(2,R) symmetry of AdS3 to yield two cop-
ies of theN54 superconformal algebra; a gauge transform
tion in SU(2) can be used to shift the boundary conditio
on the supercharges, yielding an isomorphism between
NS and R sectors@66#. The charges under the Cartan su
groups of each of the twoSU(2)’s parametrize the angula
momenta of the rotating D1-D5 or BTZ hole geometries. T
subalgebra of concern is then two copies of theN52 super-
conformal algebra with twoU(1) R-symmetry generators
JL,R

3 5 1
2qL,R

U(1)[ j that implement the spectral flow. We re
strict our attention to equal left and rightU(1) charges.

19The light-cone scaling was determined in@81#; our contribution
is a check that the precise numerical coefficient agrees.
2-20



o

n
,

ca

se

is

n-
m
or

a

ra
t
-

ct

d
a

o

c

b

th

ild

stic
-

a

urs
orn

of
di-

n

tor
ugh
on
at
he
ua-
ters
ical

e is

n-
be-

en-

vity
t the
the
e
ey
tum
by

in
hich
-

an
om
e

an

BLACK HOLES AND FIVE-BRANE THERMODYNAMICS PHYSICAL REVIEW D60 064002
Consider first the NS sector. The qualitative features
the density of states aboutj 50 were discussed in@75#.
There are several phases. Consider the regime of sufficie
large effective couplinggeff

2 [g6
2k.1; in the present notation

for ERAdS52h*k one is in the BTZ black hole phase@75#
with20 S;(kh)1/2. For kgeff

23/2&h&k, there is a phase of (5
11)D Schwarzschild black holes because the horizon lo
izes on S3; the entropy is of orderS;k21/3h4/3. The lower
bound is the correspondence point; thus, forgeff

3/2&h
&kgeff

23/2, there is a Hagedorn phase, withS;hgeff
21/2. Fi-

nally, for h&geff
3/2, the system is in a supergravity gas pha

with S;h5/6. At weak coupling geff,1, the (511)D
Schwarzschild phase and the supergravity gas phase d
pear.

Consider next the R sector~i.e. j 'k/2), and defineh8
[h2 1

4k and j 85 j 2 1
2k as the energy and angular mome

tum in R sector conventions. We first focus on the regi
geff.1, i.e. the middle part of the diagram in Fig. 4. F
geff

22k&h8, we have the black D1-D5 system. For 0,h8
&geff

22k, we have the M5W or D0-D4 phase localized onx5 .
Finally, at h8;0, the BPS matrix string cuts the diagram
finite and large entropyS;k1/2. For geff,1, we have an
additional phase with entropyS;k for geffk&h8&k squeezed
between the D1-D5 and D0-D4 phases. In the phase diag
of Fig. 4, this corresponded to the horizontal line segmen
S;k. As argued in@85#, we see that the D1-D5 system with
out angular momentum does not localize on the S3 at low
energies, whereas the stationary BTZ hole in the NS se
does undergo such a localization@75#. The spectral flow map
adiabatically relates the states of these two sectors; the
fering phase structures obtained at zero charge in the NS
R sectors~the latter flowing to e.g.j 5k/2 in the NS sector!
then implies that the spinning D1-D5 system must underg
localization transition on the S3 at a critical value of the
angular momentum. We next analyze the possibility for su
a transition.

The equation of state of the rotating D1-D5 phase can
extracted from the corresponding geometry@84#, and is given
by Eq. ~5!

SBTZ
2 ;kh82 j 82. ~157!

This phase should collapse at a critical value ofj 8 to a (5
11)D black hole localized and spinning on the S3. Angular
momentum is introduced in this phase by spinning up
black hole along an orbit on the equator of S3 with momen-
tum p; j 8/RAdS; kinematic relations and the Schwarzsch
equation of state then imply

S6D;k21/3~h822 j 82!2/3
˜k21/3h84/3, ~158!

20The standard conventions for the BTZ metric, where length
time scales are referred to the AdS curvature radius, differ fr
those of the D1-D5 geometry encountered in the R sector, wh
scales are often referred to the scaleR5 . Matching the asymptotics
of the metrics yields the relationENSRAdS;ERR5;h, whereRAdS

4

;G6k. We write subsequent equations in terms of the invari
conformal weighth to avoid confusion.
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where, in the last step, we have taken the non-relativi
limit h8@ j 8; we will see that this is justified. In the relativ
istic limit the hole approaches extremality; one obtains
gravitational wave on S3 with h8; j 8, thus matching onto the
BPS spectrum of supergravity states. This regime occ
near the boundary of the unitarity plot, where the Haged
or gas phase takes over the (511)D black hole. The local-
ization on the S3 will then occur if SBTZ,S6D at a given
energy, i.e.

h8

k
,S j 8

k D 2

1S h8

k D 8/3

. ~159!

For h8,k, i.e., for the horizon size smaller than the size
the S3, we can ignore the last term, and we have the con
tion

h8,
j 82

k
. ~160!

Note that for j 8 near zero, the corresponding localizatio
condition cannot be met@85#. For j 8;k, however, this equa-
tion can be satisfied: The direct analysis in the NS sec
j 85 1

2k shows that a localized phase exists at large eno
geff . We conclude that the D1-D5 system indeed localizes
the S3 at a critical value of the angular momentum. Note th
our uncertainty in the location of the transition is due to t
fact that it is sensitive to the numerical accuracy of the eq
tions, not just the scalings of the thermodynamic parame
~and therefore lies beyond the scope of our geometr
analysis!. Continuing to lower conformal weights in the R
sector, the equation of state of the rotating D0-D4 phas
given by @86#

S2;kS h8

g6
D 2/3

2 j 82. ~161!

In the NS sector, the rotating BTZ hole localizes on S3 as the
energy is lowered; the equation of state is roughly Eq.~158!
~without the primes!. As extremality is approached, the spi
ning black hole reaches the correspondence point and
comes a large fundamental string carrying angular mom
tum

SHag;@geff
21/2h2 j 2#. ~162!

Below this, there should be a transition where a supergra
gas extremizes the free energy. The phase structure abou
NS sectorj ;0 should sew onto the phase structure about
R sector j ;k/2 in some intermediate regime. Most of th
above formulas are not invariant under spectral flow; th
are determined in an analysis about zero angular momen
relative to the NS or R sectors, and may be corrected
large gravitational back reaction whenj ;k. We leave an
analysis of these effects to future work.

For geff,1, the picture is slightly different~see Fig. 6!.
There is no (511)D black hole or supergravity gas phase
the NS sector. The phase labeled SQM has an entropy w
is energy independentS;k. As mentioned above, it corre

d

re

t

2-21



f i
to
a

e
n
i

;
is

e
a-

o
off
ical
ous
m-

-

nd
p-

EMIL MARTINEC AND VATCHE SAHAKIAN PHYSICAL REVIEW D 60 064002
sponds to the horizontal line atS;k in Fig. 4. We again
defer a detailed analysis to future work.

It is a curious fact that, for finitek, the spectral flow
relation between the NS and R sectors implies an IR cutof
the spectrum of particle states in the latter. In the NS sec
the eigenmodes of the free scalar wave equation have a n
ral gap in the spectrum of order 1/RAdS;(g6

2ka8)21/2; how-
ever, in the R sector, the free spectrum is continuous. N
ertheless, in the full quantum theory, spectral flow from o
sector to the other implies that the finite density of states
the NS sector gives a finite R sector density of states
other words, finitek generates an effective IR cutoff. Th
cutoff disappears in the classicalk˜` limit, as one sees for
example in the fact that the number of BPS states in th
sector isO(Ak). This feature is a property of all Maldacen
tt

y

ys

J

’
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inspired definitions of quantum gravity~i.e. using finiteN
dual nongravitational systems! where the dual theory is in
finite volume~e.g. a torus!; the finite density of states due t
the IR cutoff in the gauge theory imposes an effective cut
at large radius in the supergravity—even though the class
wave equations in such geometries can have continu
spectra. It would be interesting to understand this pheno
enon better~it is not obviously related to the UV-IR corre
spondence of@51#!.
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