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Large quantum gravity effects and nonlocal variables
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We reconsider here the model where large quantum gravity effects were first found, but now in its null
surface formulatiofNSF. We find that although the set of coherent state<Zfdhe basic variable of NSF, is
as restricted as is the one for the metric, while some type of small deviations from these states may cause huge
fluctuations on the metric, the corresponding fluctuationg eamain small[S0556-282(99)02916-1

PACS numbg(s): 04.60.Ds, 04.20.Gz, 04.20.Ha, 04.60.Kz

An interesting effect found recently, that points to poten-The equations forV' are those of a scalar field on a flat
tial problems and/or surprises that could be found in quanfiducial spacetime. Onc# is known, the metric can be ob-
tum gravity, is the presence, in the quantization of certairtained by quadratures, and it takes the form
midisuperspaces, of what has been called “large quantum
gravity effects” (LE). In the original analysis of Ashtekar
[1], the model chosen is rotationally symmetri¢ 2 gravity
coupled to a massless scalar fi¢ddspacetime that may be
obtained by symmetry reducing Einstein-Rosen wavAs 1 r
shown in Ref.[1], in the quantized version of this model, F(r,t)z—f
coherent states for the scalar field emerge as natural candi- 2
dates for a set of coherent states for the metric. It is then

n h nl low fr ncies is the mean val f th . .
oted that only at low frequencies is the mean value of t ote thatI'(r,t) is the energy of¥ enclosed on a disk of

metric in these states sharply peaked around its classical ;. . i . R
value. This implies that there are classical solutions that a’r-'iad'usr’ at timet, just as would be measured if the fiducial

ds?=eCt ("0 (—dt?+dr?) +r2d¢?,

ar ot

acb(?,t)) 2+ ( acb(?,t)) Zl?d?

spurious: they do not arise as classical limits of the quanturfjat SPacetime were physical. The range for the coordinates is

theory, and, curiously, even states very close to those that'® usual:teR,r=0,¢$<[0.2m]. The total mass isH

= _ o 4GH it coinei i
minimize the uncertainties on the metric cause huge fluctua-, (1/4G)(1 ¢ ©), and it c0|r,1’C|des with the tOtaI. energy
of the scalar field, the C energy” Hy=1I"(,t), only in the

tions on the later. On the other hand, Gambini and PuIIir\. ed L icul is bounded f
have analyzed a different family of states, for which the un-nearize approximatioriin particular,H is bounded from

certainties on the metric can be diminished at the expense GPOVe: as opposed tdo) [8]. L

increased fluctuations on the matter field Beetle[3] and Suppose from now on that the initial dat, say,t=0)

Varadarajari4] have also analyzed other models, along lineg©"_the scalar field has compact support, contained in

similar to those of Ashtekar, and found results in agreement: Ro» @nd callO the region outside the support of the field,

with those in Ref[1]. le., Fh(_a region given by=0 y t—r=u<-R,. In O the
Although the usual formulation of general relativiggRr) ~ Metrc is

is in terms of local variables, e.g., metric, connection, etc.,

there exists a reformulation, the null surface formulation ds?=eCHo(— dt?+dr?) + r2d 4. 1)

(NSP of GR, whose basic variable can be taken asz’*

function, that,a posterioriturns out to describe light cone

cuts at future null infinity of a metric that satisfies Einstein It is in this zone and for the metrid) that the LE have been

equations. The purpose of this paper is to reconsider thtéound.

model analyzed by Ashtekar, but now focusing our attention, Consider the light cone emanating from a poixt

not on the metric, but o@. As we shall see, coherent states =(t,r,¢), and its intersection with future null infinitg *

for the scalar field are also coherent statesZpm exactly ~ [9]. This “light cone cut”[10] is a closed curvéwith wind-

the same regime as that for the metric. But, while smalling number 1 and, in general, with self-intersections and

deviations from this regime are amplified in the metric, theycusps, that can be described by an equation of the type

are damped irZ. A recent review of NSF, together with a =Z(&,x*,[V]), where (1,£) are Bondi coordinates faf *,

complete list of references, can be found in REEs6], and  and[ VW] denotes functional dependence with Conversely,

some results of classical NSF int2L in Ref.[7]. for each (1,6)eZ™, the set of pointsx* that satisfyu
Let us start by briefly discussing some classical aspects of const=Z(¢&,x*,[W]) comprise the past light cone of

the model. Coordinate§'Weyl coordinates™ can be cho- (u,£). In this way,Z admits two dual interpretations.

sen, on which the scalar fieMr decouples from the metric. If a Z(&,x#,[W]) function satisfies the so called metricity

conditions, then there exists a conformal metric such Zhat
has the interpretation above mentioned. This metric can be
*Electronic address: domingue@fis.uncor.edu obtained as follows. For each there exist intrinsic coordi-
TElectronic address: tiglio@fis.uncor.edu natesf#”=(u,w,R), given by
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u:Z(ngM![q,])’ w:agz(gixﬂl[ql])! A(gygv,[\p])zagR(gixﬂ(0”),[\]/])
R=0Z(&,x*,[¥]).

The A(¢,6",[W]) function is defined by expressing the co- The cobasisf;=(d¢"),, and its dualé’, 6,=&;,, are intro-
ordinates#” in term of x*, inserting them irR, and differ-  duced. Then the components of the conformal metric in the

entiating with respect t@: basis{¢%} are
0 0 -1
gi=0| 0 -1 —(1/3)9gA . 2

—1 —(U3)aA [~ (L3I IrA) + (19 (IrA)2+d,A]

One must also solve certain equations that ensureQhiat If the coherent states for the scalar fieldr simplicity we
such that Eq(2) satisfies Einstein’s equations. consider monochromatic states, of frequengy:
In order to make contact with RdfL], we also look at the

region ©. We then restrict ourselves to the portion B c2\M2 ¢
given byu< — R, and &< ¢+arcosf/r + Ry/r), whereZ is | W)= e~ leol¥20 > (—0) —In, ). (5)
given by aso \ ) ni 0

u GH? are taken as candidates for coherent states for the metric,
Z(gxH,[W])=t—rcoge "= ¢)]. () closed expressions for its classical valgese®H), as well

. o . _ as for its mean value and fluctuations, can be given. They are
The main reason for such restriction is that it suffices to

obtain the metric att(r,¢) e O. That is, following the pro-

cedure above sketched one finds that g=e®, <é>:eao(900*1)/90,
o ~\ 2
ds?=0"te 2CHo[eCHo(—dt?+dr?)+r2d¢?].  (4) A9 gaoeto-n2_ g (6)
(9)

Instead of solving the corresponding equations &r we
note that if we choose it as an arbitrary constant, then4q. with No=|co|?/%>1 the number of particle),=G# w,,
satisfies the vacuum equations. We can rescale ifdas anda,=N,(),. The conditionN,>1 must then be satisfied,
=e~%CMo, to reobtain in this way the metric in Weyl coor- in order for the uncertainties on the scalar field to be small.

dinates. Once this is done, it can be checked that, fixing But this does not suffice for the mean value fy)fto be
point (t,r,¢) € O, (31 gives the portion of the light cone cut gnar1y peaked aroungt from Egs.(6) it can be seen that,
that, on its way taZ ™, did not cross matter. _ for fixed but arbitrarya,, this happens only at low frequen-

Summarizing, at this point we have two equivalent de-gjeq ) <1. In such a case, one can obtain the quantum
scriptions of the geometry in the regi@i One of them is ., rections in a perturbative expansion aroudg=0. Al-
given by the local variabl€l), and the other by the nonlocal 4,9 we do not have closed expressions for the mean value
one(3). of the cut and its fluctuationghe last are straightforward to

In the usual approach one encodes the degrees of freedofain but rather lengthy, so we do not write them down

in 'V, promotes it to an operator acting on the Hilbert space,qreaftey, exactly the same above mentioned properties are
suggested by the fiducial flat background and obtains thg,iq for the cut: its mean value

covariant metric operatdr 1]

—~ ~ 5 (6— )% —0gn
0 —t_ S v (e o"-1)/0

452=eCFo( — dt2+ dr2) + 21 d g2, (2)=t-r2, G (e 0,
whose unique nontrivial component ig=e®o. Within
NSF, we can quantize the light cone cuts, by promo#rtg

2 .

an operator {;Z andd;Z also have to be considered, but the o
results are similar[12]: Z=t—rcoge H(E-@)],

is sharply peaked around the classical one

R R A _ only at low frequencies. In that case, one can obtain the
Z=Z(&x*[¥])=tl—r coge CHo2(¢—¢)]. quantum corrections in a perturbative expansion:
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(2)=2+ Ea Qodx2Z+0(Q2) (Z)=t—r, w(—l)“
29077074 0 n=o (2n)!
. ag(e™2o"—1)/0y+ae” 21— 1)/0
AA—Z 2=ir2(§— ¢)? sir[e”20(¢— ¢p)Jage™ %0, - l )
(z)] 4z?
) and therefore, fof)y<1, a;<1, andQ,>1, we have
+0(Qp).
Therefore, up to this point we do not find differences be- . (= )2
tween metric and cut. But now suppose that certain number (Zy~t—r, ?(— 1)"ed"
N, of particles of high frequencies is added to the state given i=o  (2n)!
by Eg. (5), with Ng<1, Qy<1 and fixed but arbitrarg, —t— —agl2 ¢_
’ ‘ F0 rcoge “0(&—¢)].
(i.e., a coherent state for the scalar field that also minimizes
the uncertainties for the metric or, equivalently, for the)cut
1.€., In conclusion, if the coherent states for the whole theory
are taken as the ones that minimize the uncertainties on the
(oot legB2h c3\"2( c2\m2 scalar field, then they have to satisNp>1 and Qy<1,
[W)=efcl e ngo mgo H H whether the geometry is characterized by the metric or the

cuts. If these conditions are not satisfied, the classical values
of the cut and metric are spurious, in the sense given above.
xﬁlnwomwlx (7) Nevertheless, there is a significative difference between met-
m:n: ric and cut: a “little blip” of high frequency causes the met-
ric to have wild fluctuations and hugely deviates its mean
value from the classical one; as opposed to this, the mean
value of the cut remains very close to the classical one and
fluctuations on it are damped. Finally, we mention that
within NSF one can also quantize local variables correspond-
g=ed0t3, (@)=eao(e“"‘1)/90+a1(691‘1)/91, ing to the spacetime poinfd2] and it can be seen that they
behave in a manner very similar to that of the metiie.,
-\ 2 they have huge fluctuations, etc., details will be considered
(ﬂ) — g0 1) +ay(e1-1)%0; 1 ) elsewherg o _
<@> The fact that fluctuations i@ are damped while the ones
for the covariant metric are amplified can be understood no-
Recalling thatQ),<1 andQ,>1, we have that ticing from Eg.(2) that the components of the contravariant
metric typically go agderivatives of Z. Now, if fluctuations
A\ 2 for the covariant metric are large, it is quite natural that the
ﬂ) ~ed1€?M0 1 (9) ones for its inverse are small. Thus, one expects that similar
(9) results may hold in 3 1, where one has an expression simi-
lar to Eq. (1), in the sense that one could try to see if large
Now suppose that the number of particles with high fre-quantum gravity effects are present in that case by analyzing
quency is very smallN;<1, such thata;<1. This corre- the fluctuations inZ.! But whether or not the later are
sponds to a small deviation from the regime in which the paidamped will depend on the relation between the free Bondi
(d,9) is sharply peaked in their corresponding classical valdata atZ * andZ. The problem is that at present such relation
ues(a “little blip” ). Even ifa, is very small, forQ); large  is only knowp in perturbative schemes. Since LE are nonl!n-
ear effects, it does not seem possible to obtain information
érom a perturbative approach.

with Q,=Ghw,;>1, N;=|c,|%% (the number of particles
added and fixed but arbitrarya;=N;Q ;. Closed expres-
sions for the metric quantities can also be given:

<©>%eao+a1e91/91’ (

enough, the fluctuations apare huge, its mean value differs
in the same way from the classical one. The terms of th
form e?12”21 cause this behavior. At this point is where the ~ The authors thank A. Ashtekar, R. J. Gleiser, M. Iriondo,
cut behaves in a completely different way. It can be seen thd€. N. Kozameh, and J. Pullin for valuable discussions, espe-
its fluctuations are very small, in fact there are terms of thecially A.A. and C.N.K. for suggesting this work. M.H.T. is
form (ealefﬂunl_l), and they quickly to zero whefd, particularly indebted with R. Omi. A.E.D. acknowledges fi-
increases. In other words, while small fluctuations are “am-@ncial support from CONICOR, and M.H.T. from CONI-
plified” in the metric, they are “damped” on the cut. The COR and CONICET. This work was supported in part by

mean value of the cut has similar behavior, it remains verfunds of the University of quoba, and grants from
close to the classical value. The later ig=t CONICET and CONICORArgenting.

—r coge @T2(£— )], and therefore  Z~t
—r co§e ?(¢— )] for a;<1; while the mean value is
given by IWe thank J. Pullin for pointing out all this to us.
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