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Large quantum gravity effects and nonlocal variables
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We reconsider here the model where large quantum gravity effects were first found, but now in its null
surface formulation~NSF!. We find that although the set of coherent states forZ, the basic variable of NSF, is
as restricted as is the one for the metric, while some type of small deviations from these states may cause huge
fluctuations on the metric, the corresponding fluctuations onZ remain small.@S0556-2821~99!02916-1#
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An interesting effect found recently, that points to pote
tial problems and/or surprises that could be found in qu
tum gravity, is the presence, in the quantization of cert
midisuperspaces, of what has been called ‘‘large quan
gravity effects’’ ~LE!. In the original analysis of Ashteka
@1#, the model chosen is rotationally symmetric 211 gravity
coupled to a massless scalar field~a spacetime that may b
obtained by symmetry reducing Einstein-Rosen waves!. As
shown in Ref.@1#, in the quantized version of this mode
coherent states for the scalar field emerge as natural ca
dates for a set of coherent states for the metric. It is t
noted that only at low frequencies is the mean value of
metric in these states sharply peaked around its clas
value. This implies that there are classical solutions that
spurious: they do not arise as classical limits of the quan
theory, and, curiously, even states very close to those
minimize the uncertainties on the metric cause huge fluc
tions on the later. On the other hand, Gambini and Pu
have analyzed a different family of states, for which the u
certainties on the metric can be diminished at the expens
increased fluctuations on the matter fields@2#. Beetle@3# and
Varadarajan@4# have also analyzed other models, along lin
similar to those of Ashtekar, and found results in agreem
with those in Ref.@1#.

Although the usual formulation of general relativity~GR!
is in terms of local variables, e.g., metric, connection, e
there exists a reformulation, the null surface formulati
~NSF! of GR, whose basic variable can be taken as a ‘‘Z’ ’
function, that,a posteriori turns out to describe light con
cuts at future null infinity of a metric that satisfies Einste
equations. The purpose of this paper is to reconsider
model analyzed by Ashtekar, but now focusing our attenti
not on the metric, but onZ. As we shall see, coherent stat
for the scalar field are also coherent states forZ, in exactly
the same regime as that for the metric. But, while sm
deviations from this regime are amplified in the metric, th
are damped inZ. A recent review of NSF, together with
complete list of references, can be found in Refs.@5,6#, and
some results of classical NSF in 211 in Ref. @7#.

Let us start by briefly discussing some classical aspect
the model. Coordinates~‘‘Weyl coordinates’’! can be cho-
sen, on which the scalar fieldC decouples from the metric
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The equations forC are those of a scalar field on a fla
fiducial spacetime. OnceC is known, the metric can be ob
tained by quadratures, and it takes the form

ds25eGG(r ,t)~2dt21dr2!1r 2df2,

G~r ,t ![
1

2E0

r F S ]F~ r̃ ,t !

] r̃
D 2

1S ]F~ r̃ ,t !

]t
D 2G r̃ d r̃.

Note thatG(r ,t) is the energy ofC enclosed on a disk o
radiusr, at time t, just as would be measured if the fiduci
flat spacetime were physical. The range for the coordinate
the usual: tPR,r>0,fP@0,2p#. The total mass isH
5(1/4G)(12e24GH0), and it coincides with the total energ
of the scalar field, the ‘‘C energy’’ H0[G(`,t), only in the
linearized approximation~in particular,H is bounded from
above, as opposed toH0) @8#.

Suppose from now on that the initial data~at, say,t50)
for the scalar field has compact support, contained inr
<R0 , and callO the region outside the support of the fiel
i.e., the region given byt>0 y t2r[u,2R0 . In O the
metric is

ds25eGH0~2dt21dr2!1r 2df2. ~1!

It is in this zone and for the metric~1! that the LE have been
found.

Consider the light cone emanating from a pointxm

5(t,r ,f), and its intersection with future null infinityI1

@9#. This ‘‘light cone cut’’ @10# is a closed curve~with wind-
ing number 1 and, in general, with self-intersections a
cusps!, that can be described by an equation of the typeu
5Z(j,xm,@C#), where (u,j) are Bondi coordinates forI1,
and@C# denotes functional dependence withC. Conversely,
for each (u,j)PI1, the set of pointsxm that satisfy u
5const5Z(j,xm,@C#) comprise the past light cone o
(u,j). In this way,Z admits two dual interpretations.

If a Z(j,xm,@C#) function satisfies the so called metricit
conditions, then there exists a conformal metric such thaZ
has the interpretation above mentioned. This metric can
obtained as follows. For eachj, there exist intrinsic coordi-
natesun5(u,v,R), given by
©1999 The American Physical Society01-1
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u5Z~j,xm,@C#!, v5]jZ~j,xm,@C#!,

R5]j
2Z~j,xm,@C#!.

The L(j,un,@C#) function is defined by expressing the c
ordinatesun in term of xm, inserting them inR, and differ-
entiating with respect toj:
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L~j,un,@C#![]jR~j,xm~un!,@C#!.

The cobasisua
n[(dun)a , and its dualum

a ua
n5dm

n , are intro-
duced. Then the components of the conformal metric in
basis$um

a % are
gi j 5ṼS 0 0 21

0 21 2~1/3!]RL

21 2~1/3!]RL @2~1/3!]j~]RL!1~1/9!~]RL!21]vL#
D . ~2!
tric,

are

,
all.

,
-
um

alue

n
are

the
One must also solve certain equations that ensure thatṼ is
such that Eq.~2! satisfies Einstein’s equations.

In order to make contact with Ref.@1#, we also look at the
regionO. We then restrict ourselves to the portion ofI1

given byu<2R0 andj,f1arcos(t/r 1R0 /r ), whereZ is
given by

Z~j,xm,@C#!5t2r cos@e2GH0/2~j2f!#. ~3!

The main reason for such restriction is that it suffices
obtain the metric at (t,r ,f)PO. That is, following the pro-
cedure above sketched one finds that

ds25Ṽ21e22GH0@eGH0~2dt21dr2!1r 2df2#. ~4!

Instead of solving the corresponding equations forṼ, we
note that if we choose it as an arbitrary constant, then Eq~4!
satisfies the vacuum equations. We can rescale it aṼ
5e22GH0, to reobtain in this way the metric in Weyl coo
dinates. Once this is done, it can be checked that, fixin
point (t,r ,f)PO, ~3! gives the portion of the light cone cu
that, on its way toI1, did not cross matter.

Summarizing, at this point we have two equivalent d
scriptions of the geometry in the regionO. One of them is
given by the local variable~1!, and the other by the nonloca
one ~3!.

In the usual approach one encodes the degrees of free
in C, promotes it to an operator acting on the Hilbert spa
suggested by the fiducial flat background and obtains
covariant metric operator@11#

dŝ25eGH0̂~2dt21dr2!1r 2Î df2,

whose unique nontrivial component isg[eGH0. Within
NSF, we can quantize the light cone cuts, by promotingZ to
an operator (]jZ and]j

2Z also have to be considered, but th
results are similar! @12#:

Ẑ5Z~j,xm,@Ĉ#!5t Î 2r cos@e2GH0̂/2~j2f!#.
o
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If the coherent states for the scalar field~for simplicity we
consider monochromatic states, of frequencyv0):

uC&5e2uc0u2/2\ (
n>0

S c0
2

\ D n/2 1

An!
unv0

&. ~5!

are taken as candidates for coherent states for the me
closed expressions for its classical value,g[eG^H0&, as well
as for its mean value and fluctuations, can be given. They

g5ea0, ^ĝ&5ea0(eV021)/V0,

S Dĝ

^ĝ&
D 2

5ea0(eV021)221. ~6!

with N0[uc0u2/\@1 the number of particles,V0[G\v0 ,
anda0[N0V0 . The conditionN0@1 must then be satisfied
in order for the uncertainties on the scalar field to be sm
But this does not suffice for the mean value ofĝ to be
sharply peaked aroundg; from Eqs.~6! it can be seen that
for fixed but arbitrarya0 , this happens only at low frequen
cies, V0!1. In such a case, one can obtain the quant
corrections in a perturbative expansion aroundV050. Al-
though we do not have closed expressions for the mean v
of the cut and its fluctuations~the last are straightforward to
obtain but rather lengthy, so we do not write them dow
hereafter!, exactly the same above mentioned properties
valid for the cut: its mean value

^Ẑ&5t2r (
n>0

~j2f!2n

~2n!!
~21!nea0(e2V0n21)/V0,

is sharply peaked around the classical one

Z5t2r cos@e2a0/2~j2f!#,

only at low frequencies. In that case, one can obtain
quantum corrections in a perturbative expansion:
1-2
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LARGE QUANTUM GRAVITY EFFECTS AND NONLOCAL . . . PHYSICAL REVIEW D 60 064001
^Ẑ&5Z1
1

2
a0V0]a

0
2Z1O~V0

2!

S DẐ

^Ẑ&
D 2

5
1

4Z2
r 2~j2f!2 sin2@e2a0/2~j2f!#a0e2a0V0

1O~V0
2!.

Therefore, up to this point we do not find differences b
tween metric and cut. But now suppose that certain num
N1 of particles of high frequencies is added to the state gi
by Eq. ~5!, with N0!1, V0!1 and fixed but arbitrarya0
~i.e., a coherent state for the scalar field that also minimi
the uncertainties for the metric or, equivalently, for the cu!,
i.e.,

uC&5e2(uc0u21uc1u2)/2\ (
n>0

(
m>0

S c0
2

\ D n/2S c1
2

\ D m/2

3
1

Am!n!
unv0

mv1
&, ~7!

with V1[G\v1@1, N1[uc1u2/\ ~the number of particles
added! and fixed but arbitrarya1[N1V1 . Closed expres-
sions for the metric quantities can also be given:

g5ea01a1, ^ĝ&5ea0(eV021)/V01a1(eV121)/V1,

S Dĝ

^ĝ&
D 2

5ea0(eV021)2/V01a1(eV121)2/V121. ~8!

Recalling thatV0!1 andV1@1, we have that

^ĝ&'ea01a1eV1/V1, S Dĝ

^ĝ&
D 2

'ea1e2V1/V121. ~9!

Now suppose that the number of particles with high f
quency is very small,N1!1, such thata1!1. This corre-
sponds to a small deviation from the regime in which the p
(F̂,ĝ) is sharply peaked in their corresponding classical v
ues~a ‘‘little blip’’ !. Even if a1 is very small, forV1 large
enough, the fluctuations onĝ are huge, its mean value differ
in the same way from the classical one. The terms of
form ea1eV1/V1 cause this behavior. At this point is where th
cut behaves in a completely different way. It can be seen
its fluctuations are very small, in fact there are terms of
form (ea1e2V1/V121), and they quickly to zero whenV1
increases. In other words, while small fluctuations are ‘‘a
plified’’ in the metric, they are ‘‘damped’’ on the cut. Th
mean value of the cut has similar behavior, it remains v
close to the classical value. The later isZ5t
2r cos@e2(a01a1)/2(j2f)#, and therefore Z't
2r cos@e2a0/2(j2f)# for a1!1; while the mean value is
given by
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^Ẑ&5t2r (
n>0

~j2f!2n

~2n!!
~21!n

3ea0(e2V0n21)/V01a1e2V1n21)/V1,

and therefore, forV0!1, a1!1, andV1@1, we have

^Ẑ&'t2r (
n>0

~j2f!2n

~2n!!
~21!nea0n

5t2r cos@e2a0/2~j2f!#.

In conclusion, if the coherent states for the whole theo
are taken as the ones that minimize the uncertainties on
scalar field, then they have to satisfyN0@1 and V0!1,
whether the geometry is characterized by the metric or
cuts. If these conditions are not satisfied, the classical va
of the cut and metric are spurious, in the sense given ab
Nevertheless, there is a significative difference between m
ric and cut: a ‘‘little blip’’ of high frequency causes the me
ric to have wild fluctuations and hugely deviates its me
value from the classical one; as opposed to this, the m
value of the cut remains very close to the classical one
fluctuations on it are damped. Finally, we mention th
within NSF one can also quantize local variables correspo
ing to the spacetime points@12# and it can be seen that the
behave in a manner very similar to that of the metric~i.e.,
they have huge fluctuations, etc., details will be conside
elsewhere!.

The fact that fluctuations inZ are damped while the one
for the covariant metric are amplified can be understood
ticing from Eq.~2! that the components of the contravaria
metric typically go as~derivatives of! Z. Now, if fluctuations
for the covariant metric are large, it is quite natural that t
ones for its inverse are small. Thus, one expects that sim
results may hold in 311, where one has an expression sim
lar to Eq.~1!, in the sense that one could try to see if lar
quantum gravity effects are present in that case by analy
the fluctuations inZ.1 But whether or not the later ar
damped will depend on the relation between the free Bo
data atI1 andZ. The problem is that at present such relati
is only known in perturbative schemes. Since LE are non
ear effects, it does not seem possible to obtain informa
from a perturbative approach.

The authors thank A. Ashtekar, R. J. Gleiser, M. Iriond
C. N. Kozameh, and J. Pullin for valuable discussions, es
cially A.A. and C.N.K. for suggesting this work. M.H.T. i
particularly indebted with R. Omi. A.E.D. acknowledges
nancial support from CONICOR, and M.H.T. from CON
COR and CONICET. This work was supported in part
funds of the University of Co´rdoba, and grants from
CONICET and CONICOR~Argentina!.

1We thank J. Pullin for pointing out all this to us.
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