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The tunneling rate, with an exact prefactor, is calculated to first order in\ for an empty closed Friedmann-
Robertson-Walker universe with a decaying cosmological termL;R2m (R is the scale factor andm is a
parameter 0<m<2). This model is equivalent to a cosmology with the equation of statepx5(m/321)rx .
The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-
Kleinert path integral. It is shown that the highest tunneling rate occurs form52 corresponding to the cosmic
string matter universe. The most probable cosmological term obtained, such as the one obtained by Strominger,
accounts for a possible solution to the cosmological constant problem.@S0556-2821~99!03016-7#

PACS number~s!: 98.80.Hw
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I. INTRODUCTION

The most accurately measured value of the cosmolog
constantL provided by measurements of the Hubble co
stant places an upper bound on its present value@1#:

uLu/8pG<10229 g/cm3.

According to modern quantum field theory, the structure o
vacuum turns out to be interrelated with some spontane
symmetry-breaking effects through the condensation
quantum ~scalar! fields. This phenomenon gives rise to
nonvanishing vacuum energy densityrvac;M p

4 (M p is the
Planck mass!. The appearance of this characteristic ma
scale may have an important effect on the cosmological c
stant because it receives potential contributions from
mass scale due to the mass spectrum of the correspon
physical fields in quantum field theory. By taking into a
count this contribution, an effective~observed! cosmological
constant is defined as the sum of the bare cosmological
stantl and 8pGrvac @2,3#. This type of contribution, how-
ever, gives rise to an immediate difficulty called the cosm
logical constant problem. The essence of this problem is
it is very difficult to believe that the bare cosmological co
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stant l is fine tuned such that the effective cosmologic
constantL satisfies the above inequality after all symme
breakings. There are some possible solutions to this prob
renderingL exactly or almost exactly vanishing; some ou
standing ones are as follows:~1! Trying to find some relax-
ation mechanisms by whichL could relax to zero or its
present small value@4#; ~2! the Baum-Coleman-Hawking
mechanism that wormhole solutions can lead the cosmol
cal constantL to become a dynamical variable giving rise
distribution functions P(L);exp(3Mp

2/8L) and P(L)
;exp@exp(3Mp

2/8L)# peaking atL50 @5#; ~3! a Lorentzian
analysis of quantum cosmological tunneling leading to
most probable valueL;9M p

2/16R2 at a given scale factorR
@6#. One indirect solution to the cosmological constant pro
lem is also suggested:~4! To assume thatL is dynamically
evolving and not constant, that is evolving from very lar
value to its present small value@2,3#. This last case, although
not well stablished, is interesting to the present work. Th
are strong observational motivations for considering mod
in which L decreases asL;R2m (m is a parameter!.

For 0<m,3 @3#, the effect of the decaying cosmologic
constant on the cosmic microwave background anisotrop
studied and the angular power spectrum for different val
of m and density parameterVm0 is computed. Models with
Vm0>0.2 andm>1.6 are shown to be in good agreeme
with data.

For m52 @2#, it is shown that in the early universeL
could be several tens of orders bigger than its present va
but not big enough to disturb the physics in the radiatio
©1999 The American Physical Society14-1
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dominant epoch in the standard cosmology. In the mat
dominant epoch such a varyingL shifts the three space cu
vature parameterk by a constant which changes the stand
cosmology predictions reconciling observations with the
flationary scenario. Such a vanishing cosmological cons
also leads to present creation of matter with a rate com
rable to that in the steady-state cosmology. Although
ansatzL;R22 does not directly solve the cosmological co
stant problem but reduces it and the age problem to one
the same ‘‘reduced problem’’: How can our universe be
old having a radiusR much larger than the Planck scale?@2#.

In the present work we advocate the possibility thatL
varies asR2m(t) in favor of the forth solution to the cosmo
logical constant problem. We approach this problem in
rectly in the sense that we try to find a possible solution
the reduced problem instead of cosmological constant p
lem. We shall study the quantum tunneling for an em
closed Friedmann-Robertson-Walker~FRW! cosmology
with L;R2m(t) (0<m<2) as effectively being a cosmo
logical model with an exoticx fluid with the equation of
statepx5(m/321)rx . Then we calculate the tunneling ra
for this cosmology and show that the maximum tunnel
rate corresponds toL;R22 (m52) as the most probabl
cosmological term as obtained by Strominger@6#. Therefore,
we obtain a reasonable answer to the reduced problem in
ing on the birth from ‘‘nothing’’ of our universe through th
tunneling effect consistent withL;R22 simply because it
can lead, through various symmetry breakings@2#, to an old
universe after tunneling. It is worth emphasizing that so
connections between quantum tunneling and inflation@7#
have already been discussed whose relation to this work
deserve further investigations.

We shall calculate the tunneling rate by applying t
dilute-instanton approximation to first order in\ @8#, on the
corresponding Duru-Kleinert path integral@9#. Its prefactor is
calculated by the heat kernel method@10#, using the shape
invariance symmetry@11#.

This paper is organized as follows. In Sec. II, the Du
Kleinert path integral formula and Duru-Kleinert equiv
lence of corresponding actions is briefly reviewed. In S
III, we introduce the cosmological model of a closed FR
universe filled with an exotic fluid matter. This is effective
an empty closed FRW universe with anR varying cosmo-
logical term. Finally in Sec. IV, the tunneling rate for th
model is fully calculated to first order in\ by applying the
dilute-instanton approximation on the corresponding Du
Kleinert path integral. The paper is ended with a conclusi

II. DURU-KLEINERT PATH INTEGRAL

In this section we briefly review the Duru-Kleinert pa
integral @12#. The fundamental object of path integration
the time displacement amplitude or propagator of a sys
(XbtbuXata). For a system with a time independent Ham
tonian, the object (XbtbuXata) supplied by a path integral i
the causal propagator

~XbtbuXata!5u~ ta2tb!^Xbuexp@2 iĤ ~ tb2ta!/\#uXa&.
~1!
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Fourier transforming the causal propagator in the time v
able, we obtain the fixed energy amplitude

~XbuXa!E5E
ta

`

dtbeiE(tb2ta)/\~XbtbuXata!. ~2!

This amplitude contains as much information on the syst
as the propagator (XbtbuXata), and its path integral form is a
follows:

~XbuXa!E5E
ta

`

dtbE Dx~ t !eiAE /\ ~3!

with the action

AE5E
ta

tb
dtFM

2
ẋ2~ t !2V@x~ t !#1EG , ~4!

where ẋ denotes the derivatives with respect tot . In Ref.
@12# it has been shown that fixed energy amplitude~3! is
equivalent to the fixed energy amplitude

~XbuXa!E5E
0

`

dSF f r~xb! f l~xa!E Dx~s!eiA E
f /\G ~5!

with the action

A E
f 5E

0

S

dsH M

2 f @x~s!#
x82~s!2 f @x~s!#$V@x~s!#2E%J ,

~6!

where f r and f l are arbitrary regulating functions such th
f 5 f l f r andx8 denotes the derivatives with respect to times.
The actionsAE andA E

f , both of which lead to the sam
fixed-energy amplitude (XbuXa)E are called Duru-Kleinert
equivalent.1

In the following section we shall use this equivalence
calculate the quantum tunneling rate. For a quantu
mechanical decay of the ground state, the standard insta
calculation@8# yields the transition amplitude

^ f u i &[E Dq expH 2 i E
0

TF1

2
ẋ22VGdtJ .e2GT, ~7!

whereG is the tunneling rate. The essential feature of Eq.~7!
is that the ground state energy of the corresponding Ha
tonian picks up a small imaginary partG signaling the insta-
bility. In the instanton calculation this is taken care by t
negative mode in the bounce solution. Note that the ba
object in these calculations is the transition amplitude wh
plays a key role in the Duru-Kleinert equivalence. It is we
known that for a quantum-cosmological tunneling we sho
impose the ‘‘zero energy’’ condition on the correspondi
transition amplitude. Thus we rewrite the actionA E

f in a
suitable form such that it describes a system with zero

1Of course a third actionAE,«
DK is also Duru-Kleinert equivalent o

AE andA E
f but we do not consider it here@12#.
4-2
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ergy; as only in this sense can we describe a quant
cosmological model with zero energy. ImposingE50 in Eq.
~6!, with a simple manipulation, gives

A E
f 5E

0

1

ds8S f@X~s8!#

3H M

2$S f@X~s8!#%2
Ẋ2~s8!2V@X~s8!#J , ~8!

whereẊ denotes the derivative with respect to new para
eters8 defined by

s85S21s ~9!

with S as a dimensionless scale parameter.
After a Wick rotations852 i t, we get the required Eu

clidean action and the path integral

I 0
f 5E

0

1

dtS f@X~t!#H M

2$S f@X~t!#%2
Ẋ2~t!1V@X~t!#J ,

~10!

~XbuXa!5E
0

`

dSF f r~Xb! f l~Xa!E DX~t!e2I 0
f /\G , ~11!

wheret is the Euclidean time. The action~10! is the Duru-
Kleinert equivalent of

I 05E
ta

tb
dtFM

2
Ẋ2~t!1V@X~t!#G , ~12!

whereta andtb correspond tota andtb , respectively, andẊ
denotes the derivative with respect to Euclidean timet.

III. MODEL

We shall consider a closed FRW universe filled with
exotic fluid having the equation of statepx5(m/321)rx

with the parameterm restricted to the range 0<m<2. Such
fractional equation of state is possible since the exotic ma
may have an effective equation of state anywhere in a ra
between well established values. For instance, for cos
strings 2

3 <m/3< 4
3 , and for domain walls1

3 <m/3< 4
3 , de-

pending on their velocities@13#.
The system has only one collective coordinate, nam

the scale factorR. Using the usual Robertson-Walker metr
we obtain the scalar curvature

R56F R̈

R
1

11Ṙ2

R2 G . ~13!

Substituting Eq.~13! into the Einstein-Hilbert action plus
matter term indicating an exoticx fluid with the equation of
statepx5(m/321)rx leads to the action2

2In what follows we shall take units such that 8pG51.
06351
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I 5E
0

1

dtF2
1

2
RṘ21

1

2
RS 12

rx

3
R2D G ~14!

with the constraint of Einstein equation

Ṙ21F12
rx

3
R2G50. ~15!

It is easy to show that the equation of statepx5(m/3
21)rx upon substitution into the continuity equatio
drx /dR52(3/R)(rx1px) leads to the following behavio
of the energy density in a closed FRW universe@14#:

rx~R!5rx~R0!S R0

R D m

. ~16!

Now, we may define the cosmological term

L[rx~R!

which leads to

I 5E
0

1

dtF2
1

2
RṘ21

1

2
RS 12

L

3
R2D G ~17!

and

Ṙ21F12
L

3
R2G50. ~18!

Using L[rx , we may have equivalently

L~R!5L~R0!S R0

R D m

, ~19!

whereR0 is the value of the scale factor at an arbitrary re
erence time. It is worth emphasizing that one possible ex
nation for a smallL term is to assume that it is dynamical
evolving and not constant, that is, as the universe evo
from an earlier hotter and denser epoch, the effective cos
logical term also evolves and decreases to its present v
@15#. There are also strong observational motivations
considering cosmological models with a decayingL term
instead of a constant one@3#.

Chen and Wu@2# have given some interesting argumen
in favor of a cosmological termL;R22 which was phenom-
enological and did not come from particle physics first pr
ciples. This behavior could be obtained under some sim
and general assumptions conforming quantum cosmolo
From dimensional considerations one can always writeL as
M pl

4 times a dimensionless product of quantities. Suppos
that no other parameters are relevant except the scale fa
R, the natural ansatz is thatL varies according to a powe
law in R as @2#

L~R!;M pl
4 S Rpl

R D m

~with \5c51!,

where M pl and Rpl are the Planck mass and the Plan
length, respectively.
4-3
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JAFARIZADEH, DARABI, REZAEI-AGHDAM, AND RASTEGAR PHYSICAL REVIEW D60 063514
Silveira and Wega@3# have also suggested a class of mo
els in whichL decreases as a power-law dependence on
scale factorL;R2m, where m is a constant (0<m<3).
Recently they investigated some properties of flat cosm
gies with a cosmological term as@3#

L58pGrvac53aR2m

with a>0 and 0<m,3. These models are equivalent
standard cosmology with matter and radiation plus an ex
fluid with the equation of statepx5(m/321)rx . They stud-
ied the effect of the decayingL term on the cosmic micro
wave background anisotropy and computed the ang
power spectrum for different values ofm and density param
eterVm0.

It is to be noted that regarding the equation of statepx

5(m/321)rx with 0<m<2, our model resembles a neg
tive pressure matter universe violating the strong energy c
dition. Dabrowski@16# has already considered similar pro
lem for oscillating closed Friedmann models with the mat
source being domain walls~which scale asR21) and a nega-
tive cosmological constant. Domain walls are, of course,
example of the matter violating strong energy conditi
since for themm51. Cosmic strings on the other hand ha
m52. Thus, we can reinterpret them as decaying cosmol
cal terms.3

Based on theseL decaying models, we were motivated
take the present model in which a time dependentL term
with a power-law dependence on the scale factorR is con-
sidered. By introducing a new parametera restricted to the
range 1<a,` we may rewrite Eq.~19! as

L~R!5L~R0!S R0

R D 222/a

. ~20!

The casem52, having some interesting implications in re
onciling observations with the inflationary models@2#, may
be obtained asa˜`. Also, this value form accounts for an
exotic fluid matter source, namely the cosmic string. Sub
tuting Eq.~20! into the action~17! and Eq.~18! leads to

I 5E
0

1

dtH 2
1

2
RṘ21

1

2
RF12S R

R0
D 2/aG J , ~21!

Ṙ21F12S R

R0
D 2/aG50, ~22!

whereL(R0)53/R0
2. The issue of quantum tunneling for th

L decaying model may be investigated in two ways:
WKB approximation and dilute-instanton approximatio
techniques. In the first one, we may solve the correspond
Wheeler-DeWitt equation obtaining the tunneling wa
functions to calculate the tunneling probabilityG, while in
the second one we may solve the Euclidean field equat
obtaining instanton solutions to calculateG. Here, in order to
calculateG we shall follow the second approach.

3Private communication with M. P. Dabrowski.
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IV. TUNNELING RATE

The Euclidean form of the action~21! is not suitable to be
used in instanton calculation techniques. The reason is
the kinetic term is not in its standard quadratic form. It h
been recently shown@9# that in such a cosmological mode
one may use the Duru-Kleinert equivalence to work with t
standard form of the action. Using the same procedure,
find the Duru-Kleinert equivalent action in the cosmologic
model here as follows:

I 05E
ta

tb
dtH 1

2
Ṙ~t!21

1

2
R2F12S R

R0
D 2/aG J . ~23!

Now, the Euclidean action~23! has the right kinetic term to
be used in instanton calculations. The Euclidean-type Ham
tonian corresponding to the action~23! is given by

HE5
Ṙ2

2
2

1

2
R2F12S R

R0
D 2/aG ~24!

whose vanishing constraint4 HE50 gives a nontrivial instan-
ton solution

R~t!5
R0

@cosh~t/a!#a
~25!

corresponding to the potential

V~R!5
1

2
R2F12S R

R0
D 2/aG for R>0. ~26!

Each solution witha.0 describes a particle rolling dow
from the top of the potential2V(R) at t˜2` andR50,
bouncing back att50 andR5R0 and finally reaching the
top of the potential att˜1` andR50. The region of the
barrier 0,R,R0 is classically forbidden for the zero energ
particle, but quantum mechanically it can tunnel through
with a tunneling probability which is calculated using th
instanton solution~25!. The quantized FRW universe i
mathematically equivalent to this particle, such that the p
ticle atR50 andR5R0 represents ‘‘nothing’’ and ‘‘FRW’’
universes, respectively. Therefore one can find the proba
ity

u^FRW~R0!unothing&u2.

The rate of tunnelingG is calculated through the dilute in
stanton approximation to first order in\ as @8#

G5Fdet8@2]t
21V9~R!#

det~2]t
21v2!

G21/2

e2I 0(R)/\F I 0~R!

2p\ G1/2

, ~27!

where det8 is the determinant without the zero eigenvalu
V9(R) is the second derivative of the potential at the insta

4The constraintHE50 corresponds to Euclidean form of the Ein
stein equation.
4-4
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ton solution~25!, v25V9(R)uR50 with v251 for the poten-
tial ~26!, and I 0(R) is the corresponding Euclidean actio
evaluated at the instanton solution~25!. The determinant in
the numerator is defined as

det8@2]t
21V9~R!#[ )

n51

`

ulnu, ~28!

whereln are the nonzero eigenvalues of the operator2]t
2

1V9(R).
The explicit form of this operator is obtained as

O[a22F2
d2

dx2
2

~a11!~a12!

cosh2x
1a2G , ~29!

where we have used Eqs.~25! and ~26! with a change of
variablex5t/a. Now, in order to find the eigenvalues an
eigenfunctions of the operator~29! exactly we assumea to
be a positive integer. By relabelingl 5a11, the eigenvalue
equation of the operator~29! can be written as

D lc l~x!5~El22l 11!c l~x! ~30!

with

D lª2
d2

dx2
2

l ~ l 11!

cosh2x
1 l 2, ~31!

where the factora22 is ignored for the moment. Equatio
~30! is a time-independent Schro¨dinger equation. Now, by
ignoring the constant shift of energy 2l 21 and by introduc-
ing the following first order differential operators:

H Bl~x!:5
d

dx
1 l tanhx,

Bl
†~x!:52

d

dx
1 l tanhx,

~32!

the operatorD l can be factorized and using the shape inva
ance symmetry we have@11#

c l~x!5
1

AEl

Bl
†~x!c l 21~x!, ~33!

c l 21~x!5
1

AEl

Bl~x!c l~x!. ~34!

Therefore, for a givenl, its first ~bounded! excited state can
be obtained from the ground state ofl 21. Consequently, the
excited statem of a givenl, that isc l ,m , can be written as

c l ,m~x!5A 2~2m21!!

P j 51
m j ~2l 2 j !

1

2m~m21!!

3Bl
†~x!Bl 21

† ~x!•••Bm11
† ~x!

1

coshmx
, ~35!
06351
-

with eigenvaluesEl ,m5 l 22m2. Also its continuous spec
trum consists of

c l ,k5
Bl

†~x!

Ak21 l 2

Bl 21
† ~x!

Ak21~ l 21!2
•••

B1
†~x!

Ak2112

eikx

A2p
, ~36!

with eigenvaluesEl ,k5 l 21k2 where*2`
1`c l ,k* (x)c l ,k8(x)dx

5d(k2k8). Now, we can calculate the ratio of the determ
nants as follows. First we explain very briefly how one c
calculate the determinant of an operator by the heat ke
method @10#. We introduce the generalized Riemann ze
function of the operatorA by

zA~s!5(
m

1

ulmus
, ~37!

wherelm are eigenvalues of the operatorA, and the deter-
minant of the operatorA is given by

det A5e2zA8 (0). ~38!

It is obvious from Eqs.~37! and ~38! that for an arbitrary
constantc

det~cA!5czA(0)detA. ~39!

On the other handzA(s) is the Mellin transformation of the
heat kernel5 G(x,y,t) which satisfies the following heat dif
fusion equation:

AG~x,y,t!52
]G~x,y,t!

]t
, ~40!

with an initial condition G(x,y,0)5d(x2y). Note that
G(x,y,t) can be written in terms of its spectrum

G~x,y,t!5(
m

e2lmtcm* ~x!cm~y!. ~41!

An integral is written for the sum if the spectrum is contin
ous. From relations~38! and ~40! it is clear that

zA~s!5
1

G~s!
E

0

`

dtts21E
2`

1`

dxG~x,x,t!. ~42!

Now, in order to calculate the ratio of the determinants in E
~27!, called a prefactor, we need to find the difference of
functionsG(x,y,t) for two operatorsD l ,D l(0), where

D l~0!ª2
d2

dx2
1 l 2. ~43!

Considering the fact thatD l1122l @or D l(0)1122l # has
the same eigenspaces asD l @or D l(0)# and the eigenspectrum
is shifted by 122l , we have

5Heret is a typical time parameter.
4-5
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GD l (0)1122l~x,y,t!5
e2( l 21)2t

2Apt
e2(x2y)2/4t, ~44!

GD l1122l~x,y,t!5 (
m50,mÞ1

l 21

c l ,m* ~x!c l ,m~y!

3e2u(m21)[2l 2(m11)]ut

1E
2`

1`

dke2[( l 21)21k2] tc l ,k* ~x!c l ,k~y!.

~45!

In order to calculate the functionzD l1122l , according to the
relation ~42! we have to take the trace of heat kern
GD l1122l(x,y,t) where we need to integrate overuc l ,ku2.

Using the relation (Bl /AEl ,k)c l ,k(x)5c l 21,k(x) we have

E
2`

1`

dxc l ,k* ~x!c l ,k~x!52 lim
x˜`

1

A~El ,k

c l ,k* ~x!c l 21,k~x!

1 lim
x˜2`

1

A~El ,k

c l ,k* ~x!c l 21,k~x!

1E
2`

1`

dxc l 21,k* ~x!c l 21,k~x!.

~46!

The first and the second terms appearing on the right h
side of the recursion relation~46! are proportional to the
asymptotic value of the wave functions at` and 2`, re-
spectively, where the latter is calculated as
t
f t

06351
l

nd

lim
x˜6`

cm,k~x!5
2 ik6m

Ak21m2

2 ik6~m21!

Ak21~m21!2
•••

3
2 ik61

Ak211

exp~ ikx!

A2p

5
1

A2p
)
j 51

m S 2 ik6 j

Ak21 j 2D exp~ ikx!. ~47!

Substituting these asymptotic behaviors in the recursion
lations between the norms of the wave functionscm,k asso-
ciated with the continuous spectrum~36!, then using the ob-
tained recursion relations together with the orthonormality
discrete spectrum we get the following result for the diffe
ence of traces of heat kernels:

E
2`

1`

dx@GD l1122l~x,x,t!2GD l (0)1122l~x,x,t!#

5 (
m50,mÞ1

l 21

exp$2u~m21!@2l 2~m11!#ut%

2
1

p (
m51

l

mS E
2`

1`

dk
exp$2@~ l 21!21k2#t%

@k21~ l 21!2#

1@~ l 21!22m2#E
2`

1`

dk
exp$2@~ l 21!21k2#

~k21m2!@k21~ l 21!2#
D .

~48!

Hence, using the Mellin transformation~42! and the well-
known Feynman integral~A1! we finally get
zD l1122l~s!2zD(0)1122l~s!5 (
m50,mÞ1

l 21

$u~m21!@2l 2~m11!#u%2s2
1

2p
l ~ l 11!~ l 21!2(2s11)bS s1

1

2
,
1

2D
2

1

Ap

G~s13/2!

G~s12! (
m51

l 21

m~ l 21!2(2s13)@~ l 21!22m2#2F1S s1
3

2
,1,s12,12

m2

~ l 21!2D
2

1

Ap

G~s13/2!

G~s12!
l 2

22(s11)(122l )F1S s1
3

2
,s11,s12,12

~ l 21!2

l 2 D , ~49!
en-
ator
me

o-
whereb is the beta function.
For s50, we obtain

zD l1122l~s!2zD l (0)1122l~s!us50521. ~50!

This means that the operatorsD l1122l and D l(0)11
22l have the same number of eigenspaces~even though for
both of them this number is infinite! since from the definition
of Riemann’s zeta function, it is obvious that its value as
50 can be interpreted as the number of eigenspaces o
 he

corresponding operator. The appearance of21 on the right
hand side of the relation is due to the ignorance of the eig
functions associated with the zero eigenvalue of the oper
D l1122l . Therefore, its number of eigenstates is the sa
as that of the operatorD l(0)1122l . In order to calculate
the ratio of the determinant of the operatorsD l1122l and
D l(0)1122l we need to know the derivative of their ass
ciated zeta functions ats50. Hence differentiating both
sides of the relation~50! with respect tos and evaluating
such integrals as Eqs.~A2!,~A3! we get
4-6
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zD l1122l8 ~s!2zD l (0)1122l8 ~s!us505 logS 2~2l 21!!

@~ l 22!! #2D .

~51!

Therefore, according to the relations~27!, ~38!, ~39!, ~50!,
and ~51! the prefactor associated with the potential~26! is
calculated as

det$@1/~ l 21!2#@2d2/dx22 l ~ l 11!/cosh2x1~ l 21!2#%

det$@1/~ l 21!2#@2d2/dx21~ l 21!2#%

5
@~ l 21!! #2

2~2l 21!!
. ~52!

Finally, the decay rate of metastable state of this potentia
calculated as

G5
1

Ap\
R02l 21expS 2

~ l 21!R0
2b~3/2,l 21!

\ D 1O~\!,

~53!

where we have used the value ofI 0 at the instanton solution
~25!:

I 05E
2`

`

R0
2 @sinh~t/a!#2

@cosh~t/a!#2(11a)
dt5aR0

2bS 3

2
,a D . ~54!

V. CONCLUSION

In this paper we have calculated the tunneling rate, w
exact prefactor, to first order in\ from ‘‘nothing’’ to a
closed FRW universe with decayingL. The tunneling rate
~53! increases for higher values of the positive integera ~or
l ) such that fora˜` the most tunneling rate corresponds
the most probable cosmological term asL;R22. This de-
caying cosmological term may have its origin in the cosm
string as the exotic matter with the effective equation of st
px52 1

3 rx . It is probable that the universe could have tu
neled with highest probability from nothing to an emp
closed FRW cosmology with a typical Planck sizeRp and a
large cosmological termL;Rp

22 . Then, after tunneling,L
may have evolved and decreased to its present small valu
the universe has expanded classically. As is discussed in
@2# it does not directly solve the cosmological constant pr
lem but reduces it with the age problem to one and the s
problem: How could our universe have escaped the dea
the Planck size?

One possible solution to this problem is that the value
L after tunneling might be large enough to derive vario
symmetry breakings necessary to the appearance of a
verse which has evolved to the present universe wit
06351
is

h

c
e
-

as
ef.
-
e
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f
s
ni-
a

small cosmological constant. This may be consistent with
inflationary model in which an extraordinarily brief period o
rapid expansion occurs where the universe is about
Planck size after quantum tunneling. We remark that thisL
decaying model has some advantages in that alleviates s
problems in reconciling observations with the inflationa
scenario; in particular it leads to creation of matter@2#. It is
interesting to note that the tunneling rate in this model is
same one obtained for a closed FRW cosmology with per
fluid violating the strong energy condition with the equati
of statep5(m/321)r @17# such that the most probable co
mological term corresponding tom52 is equivalent to the
least violation of the strong energy condition. This may a
count for another possible solution to the reduced prob
from the point of view ofenergy conditions. In other words,
one may think that our universe could have escaped
death at the Planck size because the violation of energy
ditions is minimized right after quantum tunneling.
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APPENDIX

1

D1
a1D2

a2
•••Dn

an

5
G~a11a21•••1an!

a~a1!G~a2!•••G~an!
E dt1dt2•••dtn

3
d~12t12t2•••2tn!t1

a121t2
a221

•••tn
an21

~ t1D11t2D21•••1tnDn!a11a21•••1an
.

~A1!

E
0

1

dt$@~ l 21!22m2#t1m2%23/2logt

5
4

m@~ l 21!22m2#
@ log21 logm22log~ l 211m!#,

~A2!

E
0

1

dt$@~ l 21!22m2#t1m2%23/2

3 log$@~ l 21!22m2#t1m2% logt

5
4

m@~ l 21!22m2#
S logm

m

l 21
log~ l 21!1

~ l 212m!

l 21 Dm

22log~ l 211m!. ~A3!
4-7



ys.

cs

-

as-

JAFARIZADEH, DARABI, REZAEI-AGHDAM, AND RASTEGAR PHYSICAL REVIEW D60 063514
@1# S. Weinberg, Rev. Mod. Phys.61, 1 ~1989!; J. R. Gott, J. E.
Gunn, D. N. Schramm, and B. M. Tinsloy, Astrophys. J.194,
54 ~1974!.

@2# W. Chen and Y.-S. Wu, Phys. Rev. D41, 695 ~1990!.
@3# V. Silveira and I. Waga, Phys. Rev. D56, 4625 ~1997!; 50,

4890 ~1994!.
@4# F. Wilczek, inThe Very Early Universe, edited by G. W. Gib-

bons, S. W. Hawking, and S. T. C. Siklos~Cambridge Univer-
sity Press, Cambridge, England, 1983!; A. D. Dolgov, in ibid;
S. Adler, Rev. Mod. Phys.54, 729~1982!; L. F. Abbott, Phys.
Lett. 150B, 427 ~1985!; S. M. Barr, Phys. Rev. D36, 1691
~1987!; P. J. E. Peebles and B. Ratra, Astrophys. J. Lett.325,
L17 ~1988!; B. Ratra and P. J. E. Peebles, Phys. Rev. D37,
3406 ~1988!.

@5# S. W. Hawking, Phys. Lett.134B, 403 ~1984!; E. Baum,ibid.
133B, 185~1983!; S. Coleman, Nucl. Phys.B310, 643~1988!.

@6# A. Strominger, Nucl. Phys.B319, 722 ~1989!.
@7# J. W. Norbury, Phys. Lett. B433, 263 ~1998!.
@8# C. G. Callan and S. Coleman, Phys. Rev. D16, 1762~1977!;

R. H. Brandenberger, Rev. Mod. Phys.57, 1 ~1985!.
@9# M. A. Jafarizadeh, F. Darabi, A. Rastegar, Phys. Lett. A248,

19 ~1998!.
06351
@10# A. J. Leggetet al., Rev. Mod. Phys.59, 1 ~1987!.
@11# M. A. Jafarizadeh and H. Fakhri, Phys. Lett. A230, 157

~1997!; M. A. Jafarizadeh and S. Jalalzadeh, J. Math. Ph
~submitted!.

@12# H. Kleinert, Path Integrals in Quantum Mechanics, Statisti
and Polymer Physics~World Scientific, Singapore, 1991!;
Phys. Lett.84B, 30 ~1979!; Fortschr. Phys.30, 401 ~1982!.

@13# E. W. Kolb and M. S. Turner,The Early Universe~Addison-
Wesley, Reading, MA, 1990!.

@14# D. Atkatz and H. Pagels, Phys. Rev. D25, 2065~1982!; Am. J.
Phys.62 ~7!, 619 ~1994!.

@15# See, e.g., M. Ozer and M. O. Taha, Nucl. Phys.B287, 776
~1987!; K. Freeseet al., ibid. B287, 797 ~1987!; B. Ratra and
P. J. E. Peebles, Phys. Rev. D37, 3406~1988!; I. Waga, As-
trophys. J.414, 436 ~1993!; J. A. Friemanet al., Phys. Rev.
Lett. 75, 2077~1995!; K. Coble, S. Dodelson, and J. A. Frie
man, Phys. Rev. D55, 1851~1997!.

@16# M. P. Dabrowski, Ann. Phys.~N.Y.! 248, 199 ~1996!; Phys.
Rev. D52, 3424~1995!.

@17# M. A. Jafarizadeh, F. Darabi, A. Rezaei-Aghdam, and A. R
tegar, Mod. Phys. Lett. A13, 3213~1998!.
4-8


