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The tunneling rate, with an exact prefactor, is calculated to first ord&rfor an empty closed Friedmann-
Robertson-Walker universe with a decaying cosmological tArmR™™ (R is the scale factor andh is a
parameter &m=2). This model is equivalent to a cosmology with the equation of giate(m/3—1)p, .

The calculations are performed by applying the dilute-instanton approximation on the corresponding Duru-
Kleinert path integral. It is shown that the highest tunneling rate occunsmife? corresponding to the cosmic

string matter universe. The most probable cosmological term obtained, such as the one obtained by Strominger,
accounts for a possible solution to the cosmological constant prob&p656-282(199)03016-7

PACS numbd(s): 98.80.Hw

[. INTRODUCTION stant\ is fine tuned such that the effective cosmological
constantA satisfies the above inequality after all symmetry

The most accurately measured value of the cosmologicdlreakings. There are some possible solutions to this problem
constantA provided by measurements of the Hubble con-renderingA exactly or almost exactly vanishing; some out-

stant places an upper bound on its present vgljie standing ones are as follow&l) Trying to find some relax-
o ation mechanisms by whicih could relax to zero or its
|A|/87G=10"?° glcn®. present small valug4]; (2) the Baum-Coleman-Hawking

) ] mechanism that wormhole solutions can lead the cosmologi-
According to modern quantum field theory, the structure of &5/ constant\ to become a dynamical variable giving rise to

vacuun: tukr)ns ?(L_Jt to bﬁ? ir:ter:ﬁlatedhwithh somedspon:_aneougistribution functions P(A)~exp(3VI§/8A) and P(A)
symmetry-breaxing - etiects throug € condensation O~ex;{exp(3\/l§/8A)] peaking atA =0 [5]; (3) a Lorentzian

quantum(scalay fields. This phenomenon gives rise to aanalysis of quantum cosmological tunneling leading to the
nonvanishing vacuum energy densitya:~ My, (M, is the ost probable valud ~9M?2/16R? at a given scale factd®
Planck mass The appearance of this characteristic mas p

scale may have an important effect on the cosmological co 6]. Qne indirect solution to the cosmologi(_:al constgnt prob-
stant because it receives potential contributions from thidem is also suggested4) To assume thad is dynamically
mass scale due to the mass spectrum of the correspondifyolving and not constant, that is evolving from very large
physical fields in quantum field theory. By taking into ac- value to its present small valyi2,3]. This last case, although
count this contribution, an effectii@bserved cosmological  not well stablished, is interesting to the present work. There
constant is defined as the sum of the bare cosmological coire strong observational motivations for considering models
stant\ and 87Gp, 4 [2,3]. This type of contribution, how- in which A decreases a&~R™™ (m is a parameter
ever, gives rise to an immediate difficulty called the cosmo- For 0=m<3 [3], the effect of the decaying cosmological
logical constant problem. The essence of this problem is thatonstant on the cosmic microwave background anisotropy is
it is very difficult to believe that the bare cosmological con- studied and the angular power spectrum for different values
of m and density parameté? o is computed. Models with
0,0=0.2 andm=1.6 are shown to be in good agreement

*Email address: jafarzadeh@ark.tabrizu.ac.ir with data.

TEmail address: f-darabi@cc.sbu.ac.ir For m=2 [2], it is shown that in the early universk
*Email address: a-rezaei-a@ark.tabrizu.ac.ir could be several tens of orders bigger than its present value,
SEmail address: rastgar@ark.tabrizu.ac.ir but not big enough to disturb the physics in the radiation-

0556-2821/99/6(%)/0635148)/$15.00 60 063514-1 ©1999 The American Physical Society



JAFARIZADEH, DARABI, REZAEI-AGHDAM, AND RASTEGAR PHYSICAL REVIEW D60 063514

dominant epoch in the standard cosmology. In the matterFourier transforming the causal propagator in the time vari-
dominant epoch such a varyinyg shifts the three space cur- able, we obtain the fixed energy amplitude
vature paramete by a constant which changes the standard
cosmology predictions reconciling observations with the in- _ |- iE(ty—ta)/%
flationary scenario. Such a vanishing cosmological constant (Xblxa)E_f dtpe =TT (Xptp| Xata) - @
also leads to present creation of matter with a rate compa-
rable to that in the steady-state cosmology. Although thelhis amplitude contains as much information on the system
ansatzA ~R 2 does not directly solve the cosmological con- @s the propagatoX,t,|X,t,), and its path integral form is as
stant problem but reduces it and the age problem to one arf@llows:
the same “reduced problem”: How can our universe be so .
old having a radiu®k much larger than the Planc!< _s_ca[@?. (Xb|xa)E:f dth Dx(t)el4e/ 3)

In the present work we advocate the possibility that ta
varies asR™ "(t) in favor of the forth solution to the cosmo- | )
logical constant problem. We approach this problem indi-With the action
rectly in the sense that we try to find a possible solution to ‘

. . b
the reduced problem instead of cosmological constant prob- AE:J dt
lem. We shall study the quantum tunneling for an empty ta
closed Friedmann-Robertson-WalkeiFRW) cosmology _
with A~R™™(t) (0=m=2) as effectively being a cosmo- Wherex denotes the derivatives with respecttto In Ref.
logical model with an exoticy fluid with the equation of [12] it has been shown that fixed energy amplitu@ is
statep, = (m/3—1)p, . Then we calculate the tunneling rate €quivalent to the fixed energy amplitude
for this cosmology and show that the maximum tunneling " f
rate corresponds td ~R 2 (m=2) as the most probable (Xb|xa)E:j ds{fr(xb)fl(xa)f Dx(s)e e
cosmological term as obtained by Strominf@l Therefore, 0
we obtain a reasonable answer to the reduced problem insist- )
ing on the birth from “nothing” of our universe through the With the action
tunneling effect consistent with ~R~2 simply because it s M
can lead, through various symmetry breakipgk to an old AfE:J ds[—x’z(s)— fIx(s) {V[x(s)]— E}],
universe after tunneling. It is worth emphasizing that some 0 2f[x(s)]
connections between quantum tunneling and inflafidh (6)
have already been discussed whose relation to this work m
deserve further investigations.

a

, 4

M.
?XZ(t)—V[x(t)]JrE

(5

a\%herefr and f, are arbitrary regulating functions such that
We shall calculate the tunneling rate by applying thef=f|fr a_mdx denotesfthe derlvatlves_ with respect to time

dilute-instanton approximation to first orderAn[8], on the ~ 1n€ actionsAg and Ag, both of which lead to the same

corresponding Duru-Kleinert path integfal. Its prefactoris ~ fixed-energy amplitude X,|Xz)e are called Duru-Kleinert

calculated by the heat kernel methfitD], using the shape €duivalent. _ _ ,
invariance symmetry11]. In the following section we shall use this equivalence to

This paper is organized as follows. In Sec. II, the Dury-Calculate the quantum tunneling rate. For a quantum-
Kleinert path integral formula and Duru-Kleinert equiva- mechan_lcal deqay of the grou_n_d state, Fhe standard instanton
lence of corresponding actions is briefly reviewed. In Sect@lculation[8] yields the transition amplitude
[ll, we introduce the cosmological model of a closed FRW T
universe filled with an exotic fluid matter. This is effectively <f|i>EJ Dq exp{ _iJ
an empty closed FRW universe with &varying cosmo- 0
logical term. Finally in Sec. 1V, the tunneling rate for this ) , )
model is fully calculated to first order i by applying the yvhereF is the tunneling rate. The essential feature_of(Eq. _
dilute-instanton approximation on the corresponding DurudS that the ground state energy of the corresponding Hamil-

Kleinert path integral. The paper is ended with a conclusiontonian picks up a small imaginary pdrtsignaling the insta-
bility. In the instanton calculation this is taken care by the

negative mode in the bounce solution. Note that the basic
object in these calculations is the transition amplitude which

In this section we briefly review the Duru-Kleinert path Plays a key role in the Duru-Kleinert equivalence. It is well
integral[12]. The fundamental object of path integration is known that for a quantum-cosmological tunneling we should
the time displacement amplitude or propagator of a systerfinPose the “zero energy” condition on the corresponding
(Xptp|Xata). For a system with a time independent Hamil- transition amplitude. Thus we rewrite the actio!nfE in a
tonian, the objectXyty| Xata) supplied by a path integral is suitable form such that it describes a system with zero en-
the causal propagator

1.
EXZ—V

dt] =e 1T (7

II. DURU-KLEINERT PATH INTEGRAL

(Xptpl|Xata) = 0(ta—tp)(Xp|exd —iH (t,— )/ ]| X,). 1Of course a third actiod2"; is also Duru-Kleinert equivalent of
(1) Ag and AL but we do not consider it hefd2].
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ergy; as only in this sense can we describe a quantum- 1 1 . 1
cosmological model with zero energy. Imposigg-0 in Eq. = fo dt| — ERR2+ ER

; . . : i 3
(6), with a simple manipulation, gives

1- &RZH (14)

1 with the constraint of Einstein equation

Af=J ds' SX(s’
£= | dS'STX(s)] .

R+

1-— %RZ} =0. (15)

2l '
XH(s") = VIX(sD], ®) It is easy to show that the equation of stgte=(m/3

X —

[Z{SEX(S’)]}Z Lo T > .
—1)p, upon substitution into the continuity equation

where X denotes the derivative with respect to new param9°Py/dR=—(3/R)(p,+p,) leads to the following behavior

eters’ defined by of the energy density in a closed FRW univef&d]:
r=g71 Ro|™
s'=S""s ©) py(R)=p,( RO)(E) . (16)
with Sas a dimensionless scale parameter. . .
After a Wick rotations’' = —ir, we get the required Eu- Now, we may define the cosmological term
clidean action and the path integral
P g A=p(R)
1 . .
|B:f drSX(7)]| ——————X3(1) +V[X(7)]}, which leads to
0 2{SX(7)]}?
(10 |=fldt S T P (17)
0 2 2 3
(Xp|Xq)= f d@[ﬁ(xb)f'(xa) f DX(r)e W, (1) g
0
Whgrer is the Euclidean time. The actidd0) is the Duru- R2+|1— éRz —0. (18)
Kleinert equivalent of 3
7 M. Using A=p,, we may have equivalentl
|0=J "dr| X0+ VIX(7)]], (12 IR / | y
Ta m

R
A(R)=A(Ro)

0

wherer, and 7, correspond ta, andt,, respectively, an&

denotes the derivative with respect to Euclidean tme whereR is the value of the scale factor at an arbitrary ref-

erence time. It is worth emphasizing that one possible expla-
nation for a smallA term is to assume that it is dynamically
We shall consider a closed FRW universe filled with an€Vvolving and not constant, that is, as the universe evolves
exotic fluid having the equation of stafg,=(m/3—1)p, from an earlier hotter and denser epoch, the gffectwe cosmo-
with the parametem restricted to the range<om=2. Such logical term also evolves and decreases to its present value
fractional equation of state is possible since the exotic mattitS- There are also strong observational motivations for
may have an effective equation of state anywhere in a rangePnSidering cosmological models with a decayifigterm
between well established values. For instance, for cosmithstead of a constant ori8]. _ .
strings 2<m/3<%, and for domain wallss<m/3<%, de- Chen and W{J2] have given sorrjg interesting arguments
pending on their velocitieE13]. in favor of a cosrr_]olog|cal term~R WhICh was phe_nom-_
The system has only one collective coordinate, name|y§epolog|cal and did not come from particle physics first prin-

the scale factoR. Using the usual Robertson-Walker metric CiPles. This behavior could be obtained under some simple
we obtain the scalar curvature and general assumptions conforming quantum cosmology.

From dimensional considerations one can always wkites

Mgl times a dimensionless product of quantities. Supposing
(13)  that no other parameters are relevant except the scale factor
R, the natural ansatz is that varies according to a power
law in R as[2]

Ill. MODEL

R 1+R?

R=6| g+~

Substituting Eq(13) into the Einstein-Hilbert action plus a
matter term indicating an exotijg fluid with the equation of
statep, = (m/3—1)p, leads to the actidn A(R)~M3,

Rpl m .
R (with A=c=1),

where M, and R, are the Planck mass and the Planck
2In what follows we shall take units such thatr&=1. length, respectively.
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Silveira and Weg#3] have also suggested a class of mod- IV. TUNNELING RATE
els in whichA decreases as a power-law dependence on the The Euclidean form of the actidf21) is not suitable to be

scale factorA~R™™, wherem is a constant (&m=3). - . . )
. . . used in instanton calculation techniques. The reason is that
Recently they investigated some properties of flat cosmolo; o . S i
. . > the kinetic term is not in its standard quadratic form. It has
gies with a cosmological term 48]

been recently showf®] that in such a cosmological model

Ta

RZ 1,
HE=7—§R

A=8mGpya=3aR ™™ one may use the Duru-Kleinert equivalence to work with the
standard form of the action. Using the same procedure, we
with =0 and 6sm<3. These models are equivalent to find the Duru-Kleinert equivalent action in the cosmological
standard cosmology with matter and radiation plus an exotienodel here as follows:
fluid with the equation of statp, =(m/3—1)p, . They stud- "
ied the effect of the decayind term on the cosmic micro- | = fdetPR( e }Rz 1_(5) “ 23)
wave background anisotropy and computed the angular 0 2 2 Ro '
power spectrum for different values ofand density param-
eterQ 0. Now, the Euclidean actiof23) has the right kinetic term to

It is to be noted that regarding the equation of stafe be used in instanton calculations. The Euclidean-type Hamil-
=(m/3—1)p, with 0=m=2, our model resembles a nega- tonian corresponding to the acti¢®3) is given by
tive pressure matter universe violating the strong energy con-
dition. Dabrowski[16] has already considered similar prob- R\
lem for oscillating closed Friedmann models with the matter 1- Ry (24)
source being domain wallsvhich scale aR ') and a nega-
tive cosmological constant. Domain walls are, of course, amwhose vanishing constrafiiti.=0 gives a nontrivial instan-
example of the matter violating strong energy conditionton solution
since for themm=1. Cosmic strings on the other hand have

m=2. Thus, we can reinterpret them as decaying cosmologi- Ro
cal terms’ R(7)= (25)
' , . [cosh7/a)]
Based on thesA decaying models, we were motivated to

take the present model in which a time dependénterm  corresponding to the potential

with a power-law dependence on the scale fa&las con-

sidered. By introducing a new parameterestricted to the 1, 2l _

range k= a<o we may rewrite Eq(19) as V(R)=5R1- Ro for R=0. (26)

AR)=A(R )(&)Z_M (20) Each solution witha>0 describes a particle rolling down

IR ' from the top of the potentiat-V(R) at 7— —o andR=0,

) ) L ) bouncing back atr=0 andR=R;, and finally reaching the
The casen=2, having some interesting implications in rec- o of the potential ar— +o andR=0. The region of the
onciling observations with the inflationary mod¢B, may — parrier 0< R<R, is classically forbidden for the zero energy
be obtained ag— . Also, this value fom accounts for an  particle, but quantum mechanically it can tunnel through it
tuting Eq. (20) into the action(17) and Eq.(18) leads to instanton solution(25). The quantized FRW universe is
1 1 1 R\ 2 mathematically equivalent to this particle, such that the par-
|:J dt[ —_RR+ —R[l—(—) H (21)  ticle atR=0 andR=R, represents “nothing” and "FRW”
0 2 2 Ro universes, respectively. Therefore one can find the probabil-
ity

2l
R2+ 1—(R—O) }zo, (22 |{FRW(Rp)|nothing |2.

The rate of tunnelind” is calculated through the dilute in-

whereA (Rp) =3/R(2,. The issue of quantum tunneling for this nen .
gStanton approximation to first order inas[8]

A decaying model may be investigated in two ways: th
WKB approximation and dilute-instanton approximation
techniques. In the first one, we may solve the corresponding
Wheeler-DeWitt equation obtaining the tunneling wave
functions to calculate the tunneling probabilify; while in

the second one we may solve the Euclidean field equationghere det is the determinant without the zero eigenvalue,
obtaining instanton solutions to calculdteHere, in orderto  V”(R) is the second derivative of the potential at the instan-
calculatel” we shall follow the second approach.

-1/2
e~ lo(R)/A

1/2

det[— %+ V"(R)] -

dei — 9>+ w?)

lo(R)
2mh

“The constrainHg=0 corresponds to Euclidean form of the Ein-
3Private communication with M. P. Dabrowski. stein equation.
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ton solution(25), w?=V"(R)|g=o With w?*=1 for the poten- ~ with eigenvaluesE, ,=1?—m?. Also its continuous spec-
tial (26), and 1y(R) is the corresponding Euclidean action trum consists of
evaluated at the instanton soluti¢?26). The determinant in

the numerator is defined as . B/ (x) B/ 4(x) Bi(x) ek a8
. OIEZ UEE (12 \KEr 1 2r
det[—a?+V"(R) =11 N, 28
L=+ VIR)] nl;[1| o 8 with eigenvaluesE; ,=12+k? where [ 2 (X) ¢ o (x)dx

=J5(k—k’). Now, we can calculate the ratio of the determi-
where\, are the nonzero eigenvalues of the operata”?  nants as follows. First we explain very briefly how one can
+V'(R). calculate the determinant of an operator by the heat kernel
The explicit form of this operator is obtained as method[10]. We introduce the generalized Riemann zeta
function of the operatoA by
> (a+1)(at2)
S R o)

dx? coslx (a(9)=S

1
m [\l

(37)

where we have used Eq&5) and (26) with a change of

variablex=7/a. Now, in order to find the eigenvalues and where\,, are eigenvalues of the operatdy and the deter-
eigenfunctions of the operat¢29) exactly we assume to  minant of the operatoA is given by

be a positive integer. By relabeling- «+ 1, the eigenvalue

equation of the operatdqR9) can be written as det A= e ¢A(0). (39)
A (x)=(E =21+ 1) ¢(x) (30 It is obvious from Eqs(37) and (38) that for an arbitrary
. constantc
with
defcA) =cAOdetA. (39
A d* |(|+1)+|2 (31
1= d?  cosiix ' On the other hand,(s) is the Mellin transformation of the

heat kernél G(x,y, 7) which satisfies the following heat dif-

where the factor 2 is ignored for the moment. Equation fusion equation:
(30) is a time-independent Schitimger equation. Now, by

ignoring the constant shift of energy21 and by introduc- AG(X,y,7)=— M (40)
ing the following first order differential operators: ar

d with an initial condition G(x,y,0)=8(x—y). Note that

Bi(x):= &‘F' tanhx, G(x,y,7) can be written in terms of its spectrum
q (32)
B (x):= — o +1 tanhx, G(X.Y,T) =2 € MMy (X) hn(Y). (42)
m
the operator\, can be factorized and using the shape invari-An integral is written for the sum if the spectrum is continu-
ance symmetry we hayjd.1] ous. From relation$38) and (40) it is clear that
! oar (s)= ird S—1f+wdxe(x X, ) (42
h(X)= \/_EBI (X)ih-1(X), (33 {als)= Tis)lo " ). 1T

1 Now, in order to calculate the ratio of the determinants in Eg.
b —1(X) = —=B,(X) (). (34)  (27), called a prefactor, we need to find the difference of the
\/_| functionsG(x,y, ) for two operators\,,A(0), where

Therefore, for a given, its first (bounded excited state can 2
be obtained from the ground statelef 1. Consequently, the A(0):=— a2 +12, (43
excited statem of a givenl, that is¢, ,,, can be written as X

Considering the fact thak,+1—2I [or A;(0)+1—2l] has

W m(X)= 2(2m—1)! 1 the same eigenspacesfmsor A;(0)] and the eigenspectrum
m I j (21 =) 2™(m—1)! is shifted by 1-2I, we have
X B[ (X)B]_y(x)---B! (x); (35)
! -1 mrt cost™x’ Here 7 is a typical time parameter.
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o ( : e (I-1)?%7 I 44 A —ikzm —ik*x(m-1)
— X1 3 = e T, Im X)= PN

A0 +1-21(X,Y, T —2\/77_7 N mk JZrm? 2+ (m—1)2
-1 —ik+1 exp(ikx)
GA|+172I(X1y77)=m=§n#l P m(X) 1 m(Y) X\/m J2m
« e~ |(m=1)[2~(m+1)]|7 ™ ik

H ( )exmkx) (47)

e

+
+ f dke D5 K7 () k(y).
o Substituting these asymptotic behaviors in the recursion re-
(45) lations between the norms of the wave functighg, asso-
] ) ciated with the continuous spectrui®6), then using the ob-
In order to calculate the functiof, .1, according to the  tained recursion relations together with the orthonormality of
relation (42) we have to take the trace of heat kerneldiscrete spectrum we get the following result for the differ-
Gy +1-21(Xy,7) where we need to integrate ovf, W% ence of traces of heat kernels:

Using the relation B, /VE, \) ¥ k(X) = - 1x(X) we have .
fﬁ AX[Gy, +1-21(X,%,7) = Gy (0)+1-21(X, X, ) ]

1-1

= > exp—|(m=-1)[2l—(m+1)]|7}

f AXi 1 (X) iy k(X) = — I|m \/Ed/l k(X)  —1(X)

m=0m#1
1M ==y ()t 14(X)
o (Epy T 1y (f exp{—[(1 - 1)2+K?] 7}
-— m
T ek T m=1 - [k2+(1-1)7]
+f AXih_ 1k (X) thy — 1 (X). L
- o[ exp[—[(l—1)+k])
(46) = m]ﬁ e mrer -2/

The first and the second terms appearing on the right hand (48)
side of the recursion relatiofd6) are proportional to the

asymptotic value of the wave functions @tand —«, re-  Hence, using the Mellin transformaticgd2) and the well-
spectively, where the latter is calculated as known Feynman integrdlAl) we finally get

-1

-s 1 —(2s+1) 11
{a+1-21(8) = Lao)+1-21(8) = > {l(m=D[2l—(m+1)][} - 2—|(| +1)(1-1) B| s+ 215
m=0m#1 T
1 F(S+3/2)I§ e N PO
\/; I'(st2) m=1 m( ) A )T Mok s 2’ ST, (I _1)2
1 F(s+3/2) 2 3 (1-1)?
_ N 7= (s+1)(1-21) = _
\/_ T(s+ 2) Fql s+ 5 ,S+1s+2,1 2 , (49
|
where g is the beta function. corresponding operator. The appearance-df on the right
For s=0, we obtain hand side of the relation is due to the ignorance of the eigen-
functions associated with the zero eigenvalue of the operator
{a+1-21(8) = Eay0)+1-2(8)]s=0= — 1. (500 A,+1-2I. Therefore, its number of eigenstates is the same

as that of the operatak,(0)+1—2l. In order to calculate
This means that the operators;+1—21 and A;(0)+1 the ratio of the determinant of the operatarst1— 2| and
— 2l have the same number of eigenspa@&n though for A;(0)+1—2| we need to know the derivative of their asso-
both of them this number is infinitesince from the definition ciated zeta functions as=0. Hence differentiating both
of Riemann’s zeta function, it is obvious that its valuesat sides of the relatior(50) with respect tos and evaluating
=0 can be interpreted as the number of eigenspaces of theich integrals as Eq$A2),(A3) we get

063514-6



TUNNELING IN A DECAYING COSMOLOGIES AND THE ... PHYSICAL REVIEW D 60 063514

2(21—1)! small cosmological constant. This may be consistent with an
ggﬁl,m(s)— §QA|(O)+1,Z|(S)|S=0= log| ———|. inflationary model in which an extraordinarily brief period of
[(1=2)!] rapid expansion occurs where the universe is about the

(51) Planck size after quantum tunneling. We remark that this
decaying model has some advantages in that alleviates some
problems in reconciling observations with the inflationary
scenario; in particular it leads to creation of maftgy. It is
interesting to note that the tunneling rate in this model is the
same one obtained for a closed FRW cosmology with perfect
fluid violating the strong energy condition with the equation

Therefore, according to the relatiofi®7), (38), (39), (50),
and (51) the prefactor associated with the potentia6) is
calculated as

N2 A2/ A2 a2 of statep=(m/3—1)p [17] such that the most probable cos-
def[1/(1 - 1)"][ —d*/dx*— 1 (1 + 1)/costtx+ (1~ 1)°]} mological term corresponding tm=2 is equivalent to the
def[1/(1-1)?][ —d¥dx?+ (1 - 1)2]} least violation of the strong energy condition. This may ac-
[(I=1)17? count for another possible solution to the reduced problem
=" - (52)  from the point of view ofenergy conditionsin other words,
2(21-1)! one may think that our universe could have escaped the

death at the Planck size because the violation of energy con-

. . . ditions is minimized right after quantum tunneling.
Finally, the decay rate of metastable state of this potential is g q g

calculated as ACKNOWLEDGMENTS
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(53
APPENDIX
where we have used the valuelgfat the instanton solution
(25):
1
- sinh( 7/ ) ]2 3 D3'D3% D"
|0:f R2 Lsinh 2)(]1+ )dTIaR(Z)ﬁ<§,a>. (54) to "
-= [cosi7/a)]""" ¢ _ T(agtat---+ay) f ded. . dt
a(a)l’(az)---I'(a,) e "
V. CONCLUSION y S(1—ty—ty - —tti it it
In this paper we have calculated the tunneling rate, with (t;Dy+t,Dp+ - -+ 1D )3t At Fan
exact prefactor, to first order it from “nothing” to a (A1)
closed FRW universe with decayinly. The tunneling rate
(53) increases for higher values of the positive integeior
[) such that fora— the most tunneling rate corresponds to 1 . o3
the most probable cosmological term As-R™2. This de- . dt{[(I = 1)"=m?]t+m}~“qogt
caying cosmological term may have its origin in the cosmic
string as the exotic matter with the effective equation of state 4
p,=—3p,. Itis probable that the universe could have tun- = ——————[log2+logm—2log(l = 1+m)],
neled with highest probability from nothing to an empty m{(I=1)"=m
closed FRW cosmology with a typical Planck sRg and a (A2)

large cosmological ternA~R,;2. Then, after tunnelingA
may have evolved and decreased to its present small value as
the universe has expanded classically. As is discussed in Ref(1 — o 3
[2] it does not directly solve the cosmological constant prob- | dt{[(I=1)"=m?]t+m?}
lem but reduces it with the age problem to one and the same
problem: How could our universe have escaped the death at  Xlog{[ (I —1)?— m?]t+m?}logt
the Planck size?
One possible solution to this problem is that the value of 4 m (I=1-—m)

A after tunneling might be large enough to derive various :m[(| 12— logmi—log(l=1)+ ——
symmetry breakings necessary to the appearance of a uni-
verse which has evolved to the present universe with a —2log(l—1+m). (A3)
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