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Nonperturbative effects of vacuum energy on the recent expansion of the universe
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We show that the vacuum energy of a free quantized field of very low mass can significantly alter the recent
expansion of the universe. The type of particle we consider is of spin-0, but a higher spin field, such as a
graviton of ultralight mass, may well affect the expansion in the same way. The effective action of the theory
is obtained from a non-perturbative sum of scalar curvature terms in the propagator. We renormalize this
effective action and express it in terms of observable gravitational coupling constants. We numerically inves-
tigate the semiclassical Einstein equations derived from it. As a result of non-perturbative quantum effects, the
scalar curvature of the matter-dominated universe stops decreasing and approaches a constant value. The
universe in our model evolves from an open matter-dominated epoch to a mildly inflating de Sitter expansion.
The Hubble constant during the present de Sitter epoch, as well as the time at which the transition occurs from
matter-dominated to de Sitter expansion, are determined by the mass of the field and by the present matter
density. The model provides a theoretical explanation of the observed recent acceleration of the universe, and
gives a good fit to data from high-redshift type Ia supernovae, with a mass of about 10233 eV, and a current
ratio of matter density to critical density,V0,0.4. The age of the universe then follows with no further free
parameters in the theory, and turns out to be greater than 13 Gyr. The model is spatially open and consistent
with the possibility of inflation in the very early universe. Furthermore, our model arises from the standard
renormalizable theory of a free quantum field in curved spacetime, and does not require a cosmological
constant or the associated fine-tuning.@S0556-2821~99!08418-0#

PACS number~s!: 98.80.Cq, 04.62.1v, 98.80.Es
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I. INTRODUCTION

There appear to be deep connections between phenom
at the microscopic quantum level and those at the ma
scopic level described by general relativity. These conn
tions were first elucidated by studies of quantum field the
in the classical curved spacetime of general relativity, p
ticularly those involving particle creation by strong gravit
tional fields, such as exist in the early universe and n
black holes@1,2#. The framework of quantum field theory i
the classical curved spacetime of general relativity appea
be quite robust, and is the one we employ in our pres
study. We are particularly concerned with certain no
perturbative gravitational contributions to the vacuum ene
of quantized fields@3#.

We show that these contributions may account for
recent observations@4,5# of type-Ia supernovae~SNe-Ia! that
seem to imply that there is an acceleration of the recent
pansion of the universe. In our model, the key new ingre
ent needed to account for the observations is the existenc
a particle having a very small mass of about 10233eV. This
could be a scalar particle or one of higher spin, such a
graviton. It is well-known that in a Robertson-Walker un
verse, the linearized Einstein equations obeyed by the gr
ton field take the same form~for each polarization in the
Lifshitz gauge! as the equation of a minimally coupled mas
less scalar field@6#. Inclusion of a mass of about 10233eV in
these equations would give effects similar to the ones stu
here, and would evidently not conflict with other observ

*Electronic address: leonard@uwm.edu
†Electronic address: raval@uwm.edu
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tions. We consider a scalar field for simplicity.
The effects we investigate stem from the discovery@3,7#

that a covariant infinite series of terms in the propagators
quantum fields in curved spacetime can be summed in clo
form, to all orders in the curvature. The summed infin
series of terms areall those that involve at least one factor
the scalar curvature,R ~together with any number of factor
of the Riemann tensor and its covariant derivatives! in the
Schwinger-DeWitt proper-time series for the propagator. W
will refer to this partially-summed form of the propagator
the R-summed form of the propagator. Although only th
first several terms in the proper-time series have been ca
lated~because of their complexity!, theR-summed form can
be derived by means of mathematical induction@7#. A fur-
ther reason to expect theR-summed form of the propagato
to contain information of physical significance, is that t
leading term in theR-summed form of the propagator fo
lows directly from the Feynman path-integral expression
the propagator by means of a Gaussian integration abou
dominant path@8#. Our results flow from the effective actio
that is obtained from theR-summed form of the propagato

We leave for a later paper, the contribution of these n
perturbative gravitational effects to early inflation at t
grand-unified scale and associated particle creation. In
paper, we focus on possible consequences of these
perturbative terms in the effective action that may be o
served today. As noted earlier, we find that these n
perturbative effects in the presence of an ultralight parti
having a mass of about 10233eV, give a good fit to the
observed SNe-Ia data points. The effective action of
model has a single free parameter determined by the ma
the particle and its curvature coupling constant. In additi
there are two more parameters which characterize the s
©1999 The American Physical Society12-1
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LEONARD PARKER AND ALPAN RAVAL PHYSICAL REVIEW D 60 063512
tions to the effective gravitational field equations. These
be taken to be the present Hubble constant and the pre
matter density. The Hubble constant is determined by
redshift measurements as usual. The mass of the particle
the present matter density are given by a fit to the SNe
data. The age of the universe, and the cosmic time, or
shift, at which the non-perturbative contributions of the
tralight particle first become significant, follow from thes
parameters.

Our model involves a renormalizable free field theory
curved spacetime, and apart from the supposed existenc
an ultralight mass, is based on previously discovered n
perturbative terms. Furthermore, it requires no cosmolog
constant in the usual sense of the term; and no fine-tunin
the value of the current cosmic time is necessary to exp
the current observed value of the matter density.

The outline of this paper is as follows. In Sec. II, w
calculate, by zeta-function regularization, the renormaliz
effective action that follows from theR-summed propagator
This confirms the result found with dimensional regulariz
tion by Parker and Toms@3#, and generalizes it to include th
case when there is an imaginary part of the effective act
Variation of this effective action gives the Einstein gravit
tional field equations, including vacuum contributions
quantized fields. In addition, an imaginary part of the effe
tive action implies a rate of particle creation in the same w
as it does in quantum electrodynamics@9#. The effective ac-
tion has infrared-type divergences which are treated se
rately in Appendix A.

The effective action at low curvatures gives rise to
duced gravitational coupling constants, as is well-know
These constants depend on a renormalization scale pa
eter. In Sec. III, we consider the dependence of the indu
gravitational constants on the renormalization scale,
identify the renormalized constants with their known valu
at low curvature. This identification is used to fix all th
coupling constants in the effective action, in terms of th
low curvature values, except the field massm and its curva-
ture couplingj. In this context, the conclusions of Ref.@3#
are explored in greater detail and generalized here. Va
tions of various terms in the effective action are listed
Appendix B.

In Sec. IV, we clarify the meaning of exact and perturb
tive solutions to the semiclassical Einstein equations. In p
ticular, we emphasize that a perturbative treatment in\ must
be done in such a way that only genuine quantum correct
are treated in a perturbative manner, while factors of\ which
occur in the ‘‘classical’’ Klein-Gordon action are not treate
perturbatively.

In Sec. V, we display a set of constant curvature~de Sit-
ter! solutions,1 which exist even in the absence of an expli

1de Sitter solutions to the effective gravitational field equatio
have been found by other authors in gravity theories with hig
derivative terms@10,11#. These solutions are valid at high curv
tures. In this paper, we also find low-curvature de Sitter soluti
which could play an important role in the late evolution of t
universe.
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cosmological constant term in the effective action. We sh
that, for j21/6.0, such solutions typically have Planckia
curvatures and are therefore not of much physical inter
On the other hand, forj21/6,0, we show that there exist d
Sitter solutions with scalar curvature approximately equa
m2/(1/62j), and that such solutions exist for a wide ran
of values ofm and j. As argued in later sections, these s
lutions could play a vital role at the present time, if the
exists an ultralight particle withj21/6,0. In Sec. VI, we
carry out perturbative calculations of the scalar curvat
about a classical Robertson-Walker universe, contain
classical matter and radiation. We find that quantum corr
tions to the classical scalar curvature of the universe
become significant at an epoch determined by the mass s
m̄5m/A1/62j, for j21/6,0. Furthermore, we find that th
quantum corrections tend to drive the scalar curvature t
constant value. These considerations lead to a scenario,
sented in Sec. VII, in which quantum corrections to a matt
dominated universe cause a transition to a de Sitter solu
of the type discussed in Sec. V. The various cosmolog
parameters in such a model universe are expressed in t
of three basic parameters to be determined by observa
the mass scalem̄, the present ratio of matter density to crit
cal densityV0 , and the present Hubble constantH0 .

In Sec. VIII, we develop this scenario further, using it
obtain magnitude-redshift curves, and comparing th
curves to recent data from high-redshift type 1a superno
@5#. The mass scalem̄ is determined to be roughly equal t
10233eV, while V0 is found to be less than 0.4. In Sec. IX
we derive from these parameters the age of the univers
our model, which is found to be greater than about 13 G
Finally, in Sec. IX, we conclude with a discussion of o
results and comment on future work.

The main results of this paper are summarized in E
~38! and ~43! ~the effective action of the theory in terms o
measurable gravitational coupling constants!, Eq. ~53! ~the
relationship between scalar curvature and mass during
late de Sitter phase!, Eq. ~86! ~the scale factor in our model!,
Eq. ~109! and the equations prior to it in Sec. VIII~the
luminosity-distance-redshift relation!, the discussion of the
age of the universe in Sec. IX, and Figs. 3 and 4.

Throughout this paper, we use the metric signature c
vention ~2111!, and the convention for the Riemann cu
vature tensor Rmnr

s 5Gs
mr,n2Gs

nr,m1Ga
mrGs

an

2Ga
nrGs

am .

II. QUANTUM CORRECTIONS TO EFFECTIVE ACTION

Here we derive the regularized effective action based
the propagator for a scalar field in curved space.

Parker and Toms@3# define the effective action via di
mensional regularization of the Feynman Green function
by integrating the Green function with respect to the squ
of the mass. Here we will define it by zeta-function regula
ization.

To this end, consider aD-dimensional scalar field theor
in curved spacetime, with classical action

S52
1

2 E dDxA2gf~x!H~x!f~x!, ~1!

s
r

s
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NONPERTURBATIVE EFFECTS OF VACUUM ENERGY ON . . . PHYSICAL REVIEW D 60 063512
whereH(x)52gmn(x)¹x
m¹x

n1m21jR(x), and we have ig-
nored boundary contributions. The one-loop effective acti
W1, is defined by the functional integral

eiW1
[Z5E DfeiS, ~2!

and is related to the transition amplitude for evolution fro
the ‘‘in’’ vacuum state at early times to the ‘‘out’’ vacuum
state at late times@9#:

eiW1
5^0outu0in&. ~3!

For free fields, as considered here, the one-loop effec
action,W1, gives thefull quantum contributions of the ma
ter field to the effective action. By formally performing th
functional integral in Eq.~2!, we get~see, for example@12#!

W15
i

2
ln det~H/m2!, ~4!

where we have introduced an arbitrary real quantitym with
the dimensions of mass in order to renderZ dimensionless.

In terms of the zeta function, formally defined as

z~n!5Tr H2n, ~5!

the one-loop effective action can be expressed in the for

W152
i

2
@z8~0!1 ln~m2!z~0!#. ~6!

The proper-time heat kernel,K, is defined to satisfy the
equation

S i
]

]s
2H~x! DK~x,x8,is!50, ~7!

with initial condition

K~x,x8,0!5~2g!21/2d (D)~x2x8!. ~8!

Because Eq.~7! is a Schrodinger-like equation, the heat ke
nel may be formally represented as

K~x,x8,is!5^xue2 isHux8&, ~9!

with the inner product̂xux8& defined by Eq.~8!.
The heat kernel gives a representation for the Feynm

Green’s function of the theory:

G~x,x8![^xuH21ux8&5E
0

`

ids^xue2 is(H2 i e)ux8&, ~10!

where we have added a small imaginary part toH for reasons
of convergence.

Also, using the Mellin transform to express the zeta fun
tion in terms of the heat kernel, one obtains
06351
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z~n!5G~n!21E dDxA2gE
0

`

ids~ is!n21^xue2 is(H2 i e)ux&.

~11!

We now introduce theR-summed form of the heat kerne
@3,7#

^xue2 is(H2 i e)ux8&5 i ~4p is!2D/2D1/2~x,x8!

3ei ~s/2s!2 is(M22 i e)F̄~x,x8; is!,

~12!

whereD(x,x8) is the Van Vleck–Morette determinant an
s(x,x8) is one-half the square of the geodesic distance
tweenx andx8. The quantityM2 is, in general, a function of
x andx8 with the property that it reduces in the coinciden
limit to

M2~x,x!5m21~j21/6!R~x![m21 j̄R~x!, ~13!

wherej̄[j21/6. The form~12! of the heat kernel sums a
terms explicitly involving at least one factor of the scal
curvatureR, in the coincidence limitx8˜x. Away from the
coincidence limit,M2 can be taken to be the linear comb
nation @7#

M2~x,x8!5m21 j̄„aR~x!1~12a!R~x8!… ~14!

with an arbitrary choice ofa, and the functionF̄ will corre-
spondingly depend on the value ofa. F̄ may be expanded in
an asymptotic series in powers ofs, namely,

F̄~x,x8; is!'(
j 50

`

~ is! j f̄ j~x,x8!, ~15!

In the coincidence limitx8˜x, F̄ does not depend ona. We
then havef̄ 0(x,x)51, f̄ 1(x,x)50, and

f̄ 2~x,x!5
1

6 S 1

5
2j DhR1

1

180
~RabgdRabgd2RabRab!.

~16!

The f̄ j for all j contain no factor ofR ~with no derivatives
acting on it!.

Thus Eq.~11! becomes

z~n!5 i ~4p!2D/2G~n!21E dDxA2gE
0

`

ids~ is!n212D/2

3e2 is(M22 i e)F̄~x,x; is!. ~17!

The integral overs in the above expression is divergent
n50 because of the singular behavior of the integrand as
approaches zero. This divergence actually exists for
Ren<D/2. ~We will assume throughout this paper thatD is
even.! We therefore regulate the zeta function for these v
ues ofn by defining the zeta function for Ren<D/2 as the
2-3
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analytic continuation of the zeta function for Ren.D/2. To
this end, we performD/211 integrations by parts befor
analytically continuing, to get

z~n!52 i ~24p!2D/2
G~n!21

~n2D/2!~n2D/211!¯n

3E dDxA2gE
0

`

ids~ is!n

3
]D/211

]~ is!D/211 @e2 is(M22 i e)F̄~x,x; is!#, ~18!

which is regular in a neighborhood ofn50.2 This definition
of the z function therefore leads to a regularized one-lo
effective action. From Eqs.~6! and ~18!, we get

W15$2~4p!D/2~D/2!! %21E dDxA2gH S g1 ln~m2!1
1

D/2

1
1

D/221
1¯11D

3
]D/2

]~ is!D/2 @e2 is(M22 i e)F̄~x,x; is!#s50

2E
0

`

ids ln~ is!
]D/211

]~ is!D/211 @e2 is(M22 i e)F̄~x,x; is!#J ,

~19!

whereg5Euler’s constant5(d/dn)@G(n11)#n50 .
Fixing the renormalization scalem is equivalent to fixing

the ~constant! phase of the out-vacuum relative to the i
vacuum in flat space, which can be chosen arbitrarily.
will find it convenient to define a rescaled version ofm by

ln~m̃2!5 ln~m2!1
1

D/2
1

1

D/221
1¯11.

Then the one-loop effective action becomes

W15$2~4p!D/2~D/2!! %21E dDxA2g

3H @g1 ln~m̃2!#
]D/2

]~ is!D/2 @e2 is(M22 i e)F̄~x,x; is!#s50

2E
0

`

ids ln~ is!
]D/211

]~ is!D/211 @e2 is(M22 i e)F̄~x,x; is!#J .

~20!

We may now substitute theR-summed Schwinger-DeWit
expansion~15! in the above formula for the effective actio
and perform the required differentiation and integration te
by term. In doing so, we use the integral identity

2We may equally well analytically continue inD instead ofn.
06351
e

E
0

`

ids ln~ is!~ is!pe2 is(M22 i e)

52
p!

~M22 i e!p11

3H ln~M22 i e!1g212
1

2
2¯2

1

pJ , ~21!

for integer values ofp. This procedure finally yields

W15$2~4p!D/2%21E dDxA2g$I 1~x!1I 2~x!1I 3~x!%,

~22!

where

I 152~D/211! (
l 5D/211

`

f̄ l l ! ~M22 i e!2 l 1D/2

3 (
p50

D/211
~21!p

p! ~D/2112p!! (
n51

l 1p2D/221

n21 ~23!

I 25~D/211! (
p51

D/211

(
l 5D/2112p

D/2
~21!p

p! ~D/2112p!!

3S g1 ln~M22 i e!2 (
n51

l 1p2D/221

n21D
3 f̄ l l ! ~M22 i e!2 l 1D/2. ~24!

I 35~g1 ln~m̃2!! (
p50

D/2
~2M2!p

p!
f̄ D/22p . ~25!

In two spacetime dimensions, the above formulas lead
the one-loop effective action

W(D52)
1 '~8p!21E d2xA2gH M2S lnUM2

m̃2U2 ipu~2M2! D
1(

l 52

`

@~ l 21!212 l 21#
l !

~M22 i e! l 21 f̄ lJ . ~26!

Similarly, in four spacetime dimensions, we get

I 152
1

2 (
l 53

`

f̄ l

l !

~M22 i e! l 22 $ l 2112~ l 21!212~ l 22!21%

~27!

I 252
3

2
f̄ 22

1

2
@g1 lnuM2u2 ipu~2M2!#~2 f̄ 21M4!

~28!

I 35
1

2
@g1 ln~m̃2!#~M412 f̄ 2!, ~29!

and the one-loop effective action takes the form
2-4
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W(D54)
1 '2~64p2!21E d4xA2gH ~M412 f̄ 2!S lnUM2

m̃2U
2 ipu~2M2! D13 f̄ 21(

l 53

`

@ l 2112~ l 21!21

2~ l 22!21#
l !

~M22 i e! l 22 f̄ lJ . ~30!

This is theR-summed form of the effective action. Th
Gaussian approximation amounts to keeping only the t
multiplying M4 in the above series. The terms involvingf̄ 2
are required to obtain the correct trace anomaly.

The first two terms in curly brackets in Eq.~30! agree
with the earlier dimensional regularization results of Par
and Toms, except for the step function termu(2M2) which
is purely imaginary and implies particle production whenM2

becomes negative~Parker and Toms assumedM2.0!. This
step function term originates from the identity ln(x2ie)
5lnuxu2ipu(2x). Within theR-summed form, therefore, th
particle production takes on a very simple form, withM2

50 being the threshold for vacuum instability, or the cr
ation of particle pairs. It is conceivable that there are phy
cal situations where the imaginary part of the first two ter
in the above formula for the effective action very close
approximates the actual gravitational particle creation. In
paper, we do not deal with this issue further since it does
affect our results.

Note that Eq.~30! is only an asymptotic series expansio
in inverse powers ofM2, arising out of an expansion of th
heat kernel which ignores, for example, terms that have
sential singularities ats50. Only the first two terms~i.e. up
to f̄ 2! are necessary for renormalization and for the corr
trace anomaly. Also, these terms include the convergen
finite sum involving the scalar curvature. Therefore, the
proximate effective action based on these first two term
sufficient to indicate the non-perturbative effects com
from the infinite sum of scalar curvature terms. This is t
form of the effective action that we employ.

III. RENORMALIZATION AND OBSERVABLE
GRAVITATIONAL COUPLINGS

Although we are dealing with a free field theory here, t
logarithmic dependence of the effective action on the cur
ture in Eq.~30! leads to non-trivial effects in strong curva
ture regions@3#. Before we go on to a discussion of suc
effects, it is necessary to understand the contribution of
one-loop effective action to the full gravitational action
regions of low curvature. Also, we will now consider th
possibility of having multiple particle species contributing
the one-loop effective action. For particles of spin1

2 and 1, it
has been shown in Ref.@7# that all terms involvingR in the
heat kernel can be summed in a similar manner to the sp
case, in a simple exponential form. We will therefore co
sider a generalization of Eq.~30! to the form
06351
m

r

-
i-
s

is
ot

s-

t
n-
-
is

e

-

e

0
-

W152\~64p2!21(
i

niE d4xA2g

3$~Mi
41pi f̄ 2i !lnuMi

2/m̃ i
2u1qi f̄ 2i1...%, ~31!

where we have inserted arbitrary, species-dependent co
cientsni , pi andqi , and a factor of\ is now made explicit.
The imaginary term is not shown because we are intere
here in the part of the effective action that corresponds
vacuum polarization. In the low curvature limit considered
this section, we can assume thatMi

25mi
21 j̄R.0, so there

is no imaginary term. In later sections whereMi
2 can be

negative but the curvature is very small with respect to
Planck scale, the created particles make a negligible co
bution to the classical matter already present in
Robertson-Walker universe under consideration. The te
of higher order in the curvature correspond to the asympt
series sum in Eq.~30! and do not appear in Eq.~31!. For
higher spin fields, the heat kernel~and the Green’s function!
generally has a matrix structure. In evaluating the effect
action in such cases, one performs an additional trace o
all internal indices. It will be understood that such a trace h
been carried out before arriving at Eq.~30!. f̄ 2 will be un-
derstood to mean the trace of the modified seco
Schwinger-DeWitt coefficient. The values of specie
dependent coefficients for spin 1/2 arej̄51/12, ni524, pi
51/2, andqi53/2.

At low scalar curvature (j̄R!m2), one may expand the
logarithm in Eq.~31! in powers ofR. Noting that f̄ 2i can be
expressed as the linear combination

f̄ 2i5aihR1biRabRab1ciRabgdRabgd, ~32!

the leading terms in the 1-loop effective action then give

W1.2\~64p2!21(
i

niE d4xA2g$mi
4 ln~mi

2/m̃ i
2!

1mi
2j̄ iR„112 ln~mi

2/m̃ i
2!…1 j̄ i

2R2
„3/21 ln~mi

2/m̃ i
2!…

1~biRabRab1ciRabgdRabgd!@pi ln~mi
2/m̃ i

2!1qi #

1...%, ~33!

In the above expression, we have allowed for different ren
malization points characterized by the different mass sc
m̃ i . Changing these mass scales give rise to terms that ca
absorbed into the bare gravitational action, as will be d
cussed below. However, one can still remove t
m̃ i-dependence of the full effective action by using o
knowledgeof the observed gravitational coupling constan
To be precise, consider the bare gravitational action

Wg5E d4xA2g$~k1dk!@R22~L1dL!#1~a11da1!R2

1~a21da2!RmnRmn1~a31da3!RmngdRmngd% ~34!

where the counterterms are
2-5
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dL52~128p2k!21\(
i

nimi
4 ln~m1

2/m̃ i
2!

dk5~32p2!21\(
i

nimi
2j̄ i ln~m2

2/m̃ i
2!

da15~64p2!21\(
i

ni j̄ i
2 ln~m3

2/m̃ i
2!

da25~64p2!21\(
i

nibipi ln~m4
2/m̃ i

2!

da35~64p2!21\(
i

nicipi ln~m5
2/m̃ i

2!. ~35!

m1,2,3,4,5 are arbitrary constants of dimension mass, and
m̃ i-dependence of the counterterms is required, follow
@3#, to cancel them̃ i-dependence in the 1-loop effectiv
action.3 Adding Eqs.~33! and ~34! we obtain the full effec-
tive action at low curvatures, as

W[Wg1W15E d4xA2g$22koLo1koR1a1oR2

1a2oRabRab1a3oRabgdRabgd1...%, ~36!

where the subscripto refers to the observed gravitation
constants at low curvatures. These are combinations of
bare and induced constants, independent ofm̃ i , and given by
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22koLo5L2\~64p2!21(
i

nimi
4 ln~mi

2/m1
2!

ko5k2\~32p2!21(
i

nimi
2j̄ i S ln~mi

2/m2
2!1

1

2D
a1o5a12\~64p2!21(

i
ni j̄ i

2S ln~mi
2/m3

2!1
3

2D
~37!

a2o5a22\~64p2!21(
i

nibi@pi ln~mi
2/m4

2!1qi #

a3o5a32\~64p2!21(
i

nici@pi ln~mi
2/m5

2!1qi #.

Note that one can always absorb the dependence of the
served constants on them i ’s into the bare constants. We thu
have some freedom in shifting terms within the above eq
tions. However, as already stated, we may, in principle,
our knowledge ofLo , ko etc. in Eq.~36! at low curvatureto
explore the theory in regions of high curvature. Indeed,
full effective action in regions of high curvature now d
pends only on the observed values of the gravitational c
pling constants atlow curvature, on the physical particle
massesmi and on the values ofj̄ i ~these are fixed for highe
spin fields!. No other parameters enter into the effective a
tion. To see this, we add Eqs.~31! and~34!, use Eq.~35! to
substitute for the counterterms, and finally use Eq.~37! to
eliminate the five mass scales in favor of the observed c
stants. In this procedure, them̃ i dependence in Eq.~31! and
the m i dependence in Eq.~37! cancel the corresponding de
pendences in the counterterms of Eq.~35!. Then the full
effective action below threshold is given by
is why it
be

Since the
W[Wg1W1

5E d4xA2gH 22koLo2\
1

64p2 (
i

nimi
4 lnUMi

2

mi
2U

1Fko1\
1

64p2 (
i

nimi
2j̄ i S 122 lnUMi

2

mi
2U D G

3R2\
1

64p2 (
i

nipi lnUMi
2

mi
2U f 2i1S a1o1\

3

128p2 (
i

ni j̄ i
2DR21a2oRabRab1a3oRabgdRabgd1...J , ~38!

3In zeta function regularization, the divergent pieces of the one-loop effective action have been thrown away beforehand, which
is not necessary to introduce those divergences into the counterterms either~although this procedure of introducing counterterms could
bypassed in zeta-function regularization, it is necessary in other regularization schemes, such as dimensional regularization!. In dimensional
regularization@3#, one explicitly keeps track of the divergent pieces and introduces corresponding divergences in the counterterms.
divergences are ultimately canceled, one finally ends up with Eq.~37! in any case.
2-6
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where f 2i is given by

pi f 2i5pi f̄ 2i1
1

2
j̄ i

2R2. ~39!

Here,

ko5~16pGo!21, ~40!

whereGo is Newton’s gravitational constant, andLo is the
usual cosmological constant.

Equation~38! is a new result, relating behavior at hig
curvatures to values of the gravitational coupling constant
low curvatures. For scalar fields,j̄ is the only undetermined
parameter in the effective action. For higher spins, the c
responding parameters have fixed values. We empha
again that terms involvingf̄ 3 and higher, omitted in Eq.~38!,
constitute an asymptotic expansion in inverse powers ofM2

and are therefore not necessarily expected to be physic
significant. The terms retained in Eq.~38! are the minimal
set of terms necessary for renormalization and incorpo
the sum of scalar curvature terms in the propagator. I
readily checked that Eq.~36! constitutes the first few term
in the low-scalar-curvature limit (u j̄Ru!m2) of Eq. ~38!.

In subsequent sections, we consider the gravitational fi
equations for a single scalar field, as derived from Eq.~38!,
and their consequences. Comparison of Eqs.~31! and ~30!
gives, for scalar fields,ni51, pi52, qi53. In Sec. V, we
study the case of constant curvature spacetimes. In later
tions, we generalize the investigation to Robertson-Wal
universes containing matter and radiation. In the next s
tion, we clarify the usage of the terms ‘‘perturbative’’ an
‘‘exact’’ in this paper.

IV. MEANING OF EXACT AND PERTURBATIVE
SOLUTIONS

In the previous section we derived the effective actio
Eq. ~38!, appropriate to theR-summed propagator. All term
multiplied by \ in Eq. ~38! will be called ‘‘quantum-
vacuum’’ terms, also referred to as one-loop terms, beca
they arise after vacuum fluctuations of the field have b
integrated out in a path-integral formulation of the theo
However, note that factors of\ must also be included in th
argument of the logarithmic terms for dimensional reaso
Indeed, one has

lnuM2/m2u5 lnu~m21\2j̄R!/m2u. ~41!

An approach that is completely perturbative in\ would then
involve expanding out the logarithmic terms. However, t
factor of\2 appearing in the above equation has its origins
the generalized Klein-Gordon equation

S 2h1
m2

\2 1jRDf50, ~42!

whose solutions contribute to thetree-leveleffective action,
as opposed to the quantum-vacuum or one-loop effective
tion. That is, the\2 factor above does not arise from int
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grating out vacuum fluctuations. Furthermore, the quan
m2/\2 is the square of the inverse Compton wavelength
the field, and need not be large relative to the curvature s
lar. Therefore, it is reasonable to regard the logarithm
terms as non-perturbative when expanding in\. It is conve-
nient to avoid explicitly inserting factors of\ in the argu-
ments of logarithmic terms~more generally, in any term
which containsM2!, with the understanding that the mass
the field is interpreted as an inverse Compton wavelengt

A perturbativeanalysis in\, as used in Sec. VI of this
paper, therefore treats only the quantum-vacuum correct
in a perturbative fashion, while keeping the logarithm
terms intact. It is not inconsistent to do so, since it define
regime in which the semiclassical corrections to the effect
action are much smaller than the tree-level terms involv
Lo andko , yet in which the scalar curvature is allowed to b
of the same order as the square of the inverse Comp
wavelength. On the other hand, anexactanalysis, as used in
Sec. V below, treats even the quantum corrections in an
act fashion.

The reason we carry out both perturbative and ex
analyses is as follows. Exact solutions play a significant r
when the perturbative analysis breaks down~as signaled by a
rapid growth in the contributions of quantum corrections
the metric!. In order to obtain an understanding of the fu
dynamics of the metric, it is therefore necessary to const
both perturbative and exact solutions to the semiclass
Einstein equations.

It is well-known @13# that semiclassical equations of mo
tion can be perturbatively reduced in a manner such that
resulting equations only admit solutions that are perturba
in \. It has been further argued that such solutions are
only physically viable solutions of the full semiclassic
equations since they do not exhibit runaway behavior in
classical limit.

However, in Sec. V, we argue for the physical signi
cance of our exact solutions. This argument is based on
observations. First, owing to the presence of a mass sca
the theory,\ explicitly enters into the semiclassical equ
tions only via the dimensionless ratior[m2/mPl

2 . This ratio
is not necessarily small, although perturbation theory
sumes that it is. Thus, there could be physical effects at la
r , not encountered in perturbation theory.

Secondly, we will find exact solutions that cannot be e
panded in\ and have a well-defined limit asr˜0, i.e. they
do not possess runaway behavior in the classical limit. S
solutions must therefore be regarded as physical solution

For these reasons, we believe that exact solutions tha
not arise from perturbative reduction must be included in
complete analysis of solutions of the semiclassical Eins
equations, at least when a mass scale is present in the th

V. EXACT VACUUM DE SITTER SOLUTIONS

In this section, we will consider exact solutions to th
equations of motion specialized to de Sitter spacetime. Th
equations simplify considerably for spacetimes of const
curvature. This simplification allows us to include in the e
fective action terms involvingf̄ 2 andR2.
2-7
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LEONARD PARKER AND ALPAN RAVAL PHYSICAL REVIEW D 60 063512
As we shall see, there is a rich variety of constant cur
ture de Sitter solutions, with the scalar curvature be

highly sensitive to the value ofj̄. We will argue that these
solutions are physically viable although they do not appea
the perturbative reduction approach.

Consider, therefore, the effective action of Eq.~38!, spe-
cialized to a single scalar field with massm and curvature
couplingj:

W5E d4xA2gH 22koLo2\
1

64p2 m4 lnUM2

m2U
1Fko1\

1

64p2 m2j̄S 122 lnUM2

m2U D GR
2\

1

32p2 lnUM2

m2U f 21\
3

128p2 j̄2R2J , ~43!

where we have assumed that the constantsa1o , a2o anda3o

are negligibly small.4

One may now use Eqs.~B1!–~B9! of Appendix B to ob-
tain the equations of motion resulting from the variation
Eq. ~43!. When specialized to a constant curvature ma
mally symmetric spacetime, in which

Rmnab5
R

12
~gmagnb2gnagmb!, ~44!

these equations yield a single algebraic equation satisfie
the scalar curvatureR:5

4For the purposes of this section, it is actually sufficient to assu
that terms involvinga1o , a2o and a3o combine to yieldaof 2

1negligible contributions, whereao is some constant, because th
variation of *d4xA2g f2 vanishes in a constant curvature spac
time.

5The right-hand-side~RHS! of Eq. ~45! gives the trace of a stress
tensor in de Sitter space which is not the same as the stress-t
for the Bunch-Davies vacuum state@14#. The stress-tensor on th
RHS of Eq.~45! corresponds to a different state and is defined
variation of W. The leading terms of the stress-tensor agree w
those arising from the Gaussian approximation of Bekenstein
Parker@8#, which is known to be a good approximation in de Sitt
space, particularly for closely spaced points as are used in defi

the stress tensor. The additional term, (1/2)(1/1080)j̄(R3/M2) in
Eq. ~45! yields the correct trace anomaly. Furthermore, this stre
tensor is conserved, and vanishes in flat spacetime (R50). The

RHS of Eq.~45! diverges atM25m21 j̄R50. Similar divergences
also occur in the stress tensor in the Bunch-Davies vacuum sta
de Sitter space, which diverges atm21@j1n(n13)/12#R50,
wheren is a non-negative integer.
06351
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2ko~4Lo2R!52
\

16p2 H m4 lnUM2

m2US 11 j̄
R

m2D
2

1

2
m2j̄RS 11

m2

M2D2 j̄2R2
m2

M2

2
1

2
j̄

R3

M2 S j̄22
1

1080D J . ~45!

Note that we recover Starobinsky inflation by first takin
Lo˜0 andm˜0, and then taking the limitj̄˜0. The re-
sulting solution has scalar curvatureR569120p2ko\21, in
agreement with Starobinsky’s results@11#. The Starobinsky
solution is non-analytic in\ and is not well-defined in the
limit \˜0. The existence of such solutions has motiva
arguments in favor of the perturbative reduction sche
@13#, which discards such solutions in a self-consistent m
ner.

However, such arguments weaken in the presence o
additional mass scalem in the theory. To see this, conside
Eq. ~45! rewritten in terms of the dimensionless variables

y5
R

m2 ~46!

r 5
\m2

16pko
. ~47!

Recall thatm refers to the inverse Compton wavelength
the particle, soy andr are indeed dimensionless. In terms
the actual mass of the particle,r is given by

r 5
mactual

2

mPl
2 , ~48!

wheremPl5A16pko\.
Equation~45! then takes the form

~11 j̄y!lnu11 j̄yu2
j̄y

11 j̄y
H 11

3

2
j̄y1

1

2
y2S j̄22

1

1080
D J

5
2p

r
S y2

4Lo

m2 D . ~49!

The solution fory is a function of three dimensionless p
rameters:r , j̄ and Lo /m2. In a perturbative reduction ap
proach,r is regarded as a small parameter and the solu
for y is constrained to be an analytic function ofr . However,
it is plausible that the limit\˜0 does not implyr˜0, i.e.
that the massm is rescaled in such a manner thatr stays
constant~or roughly constant! as \˜0. For example, in
string theory, one would expect that all masses~including the
Planck massmPl! are generated by a single scale~the string
scale!, in which case the dimensionless quantityr would be
independent of\. In the absence of knowledge of the preci
nature of a fundamental unified theory, it is therefore prud
to consider the possibility that the parameterr is some finite
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quantity, not necessarily small, and to treat it in a no
perturbative fashion.6 In Sec. V B, we give a further justifi-
cation for the physical validity of solutions that arise witho

expanding inr . Namely, we find that forj̄,0, these solu-
tions have a well-defined classical limit as\ ~or r ! ˜0.

We now consider numerical solutions to the algebr
equation~49!. This equation, in general, has solutions w
both positive and negative scalar curvature. We will, ho
ever, focus on the positive scalar curvature solutionsy
.0), corresponding to an inflating de Sitter universe. F
ures 1 and 2 are plots of the left hand side~LHS! and right
hand side~RHS! of Eq. ~49!, as functions ofy, for various

values of the three parametersr , j̄ andLo /m2. The point~s!
of intersection of the LHS and RHS correspond to solutio
for y. These plots are convenient ways of identifying t
solution space because the LHS depends solely on the
rameter j̄, while the RHS is a linear function ofy, with
slope given byr , and intercept given byLo /m2. In all plots,
therefore, the straight line is the RHS of Eq.~49!. Increasing
the value ofr will decrease the slope of the straight lin
IncreasingLo will shift the straight line up. It is convenien
to consider two ranges of values ofj̄ that give qualitatively
different behavior of the LHS of Eq.~49!. These are~a! j̄

.0, and~b! j̄,0.
We will find that there exist solutions with non-zero sc

lar curvature, even ifLo50. For j̄.0, the most interesting
solutions of this type exist for values ofj̄ very close to
(1080)21/2. For other values ofj̄.0, there are either no
solutions or solutions for which the scalar curvature is
ordermPl

2 , which may thus be unphysical.

For j̄,0, we find that there exist solutions withR.
2m2/ j̄, for a large range of values ofj̄ andr , and for small
and large values ofLo /m2. These solutions are of greate
interest for the purposes of this paper, and the reader
safely skip directly to Sec. V B.

6Different arguments for the physical significance of solutions t
do not arise from perturbative reduction have been given by S
@15#.

FIG. 1. A plot of the LHS~bold-faced curve! and RHS~dashed

line! of Eq. ~49!, as functions ofy, for j̄50.033, r 510 andLo

50. The slope of the dashed line increases asr decreases.
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A. Solutions with j̄>0

For j̄.108021/2 andLo50, the only solution to Eq.~49!
is the trivial solutiony50, because, fory.0, the LHS is
always negative, while the RHS is always positive. Howev
addition of a non-zero value ofLo allows the RHS to take
negative values, and leads to a non-trivial solution with
value of y slightly lower than the classical value 4Lo /m2.
The deviation from classical behavior will typically be ve
small due to the extreme flatness of the LHS graph near
origin.

As one lowers the value ofj̄ towards (1080)21/2, the
LHS acquires a local maximum~Fig. 1!. The position of this
maximum is very sensitive to the value ofj̄ when j̄ is close
to the value (1080)21/2. For large values ofr ~r 510 in the
figure!, a non-trivial intersection with the RHS graph is no
possible, withy-values ranging from about a hundred to e
tremely large values, depending on the precise valuesj̄
and r . The presence of a non-zeroLo term would shift the
RHS graph down and increase the value ofy even further.

When j̄5(1080)21/250.03042..., the non-trivial inter-
section point of the two graphs will occur at an extreme
large value ofy, for typical values ofr . One may obtain an
analytical estimate by considering an approximation to E
~49! for largey, after settingj̄5(1080)21/2. This gives

ln
y

A1080
5

2p

r
A10801

3

2
. ~50!

For r 51 (m5mPl), the above equation implies a value ofy
approximately equal to about 1091. This valueincreasesasr
decreases~i.e. by decreasingm and holdingmPl constant!
and vice-versa. HoweverR5m2y5mpl

2 ry will acquire a
minimum value for somer .1. Also, addition of aLo term
tends to decrease the value ofy and, consequently,R.

For 0, j̄,(1080)21/2, there is a non-trivial solution with
an extremely large value ofy. An analytic approximation to
Eq. ~49! can be made once more, after noting that the te
involving y2 in the LHS is now the dominant term@this term

t
n

FIG. 2. A plot of the LHS~bold-faced curve! and RHS~dashed

line! of Eq. ~49!, as functions ofy, with j̄520.03, r 516 and
Lo50. As r decreases, the slope of the dashed line increases,

the intersection point is shifted closer to the valuey52 j̄21. Recall
that r 5m2/mPl

2 andy5R/m2.
2-9
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LEONARD PARKER AND ALPAN RAVAL PHYSICAL REVIEW D 60 063512
vanishes whenj̄5(1080)21/2#. Thus we obtain, in this re
gime, with zero cosmological constant,

y5
4p

r S 1

1080
2 j̄2D 21

. ~51!

y therefore scales linearly withr 21. However, the scala
curvature itself is essentially independent ofm in this re-
gime, and is given by

R54pmPl
2 S 1

1080
2 j̄2D 21

. ~52!

The two equations above predict thaty ~or R! will decrease
as j̄ decreases. This behavior is borne out by numer
study. However, whenj̄ is extremely small,j̄y can become
small, and the large-j̄y approximation breaks down. For ver
small values ofj̄, the solution fory then increases with
decreasingj̄, giving y˜` as j̄˜01, as expected from Eq
~49!.

To summarize, forj̄.0 and Lo50, non-zero solutions
for constant scalar curvature occur forj̄ values very close to
(1080)21/2 @this corresponds to the curvature couplingj be-
ing very close to the conformal fixed pointj51/6, because
(1080)21/2 is a small number#. Such solutions also occur fo
j̄5(1080)21/2; however, in this case, the curvature is typ
cally many orders of magnitude greater than Planck size,
may thus be unphysical.

B. Solutions with j̄<0

For j̄,0, the LHS of Eq.~49! becomes singular aty5

2 j̄21. This value ofy becomes an exact solution to Eq.~49!
in the ‘‘classical’’ limit r˜0, as can be seen by lettingy5

2 j̄211e(r ) in Eq. ~49!, and showing thate(r )˜0 as r
˜0. This fact constitutes another argument against the
turbative reduction scheme in this case, because the s
curvature does not exhibit runaway behavior in the class
limit. As we shall see, most solutions withr ,1, will lie very
close to the valuey52 j̄21. Significant deviations from this
value will occur only for very large values ofr , or when a
non-zeroLo term is present.

Figure 2 is a plot of the LHS and RHS of Eq.~49! with
representative valuesj̄520.03 andLo50. An exaggerated
value of m54mPl is used to fully display the graph. How
ever, as we will see, the solution fory is largely insensitive
to the precise values ofj̄ and r .

The straight line LHS graph intersects the RHS graph
y-value very slightly larger than2 j̄21 ~533.3... in this
case!. The corresponding scalar curvature is given byR

.m2j̄21. The steep vertical ascent of the LHS graph n
the valuey52 j̄21 implies that the solution fory is not very
sensitive to the precise value ofr ~note that decreasingr
increases the slope of the straight line, giving a solution e
closer to the valuej̄21!. For most values ofr , except for
06351
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exceptionally large values, we have a solution atR5

2m2j̄21 plus a small correction. The presence of aLo term
has the effect of shifting down the RHS graph, leading
larger values of the scalar curvature. However, in this cas
second solution will appear withy,2 j̄21, the y-value be-
ing very close to the classically expected value 4Lo /m2, for
a small cosmological constant. As the cosmological cons
is increased to large values this second solution will n
approachy52 j̄21, while the first solution now correspond
to the classically expected large value ofy. The solutiony

.2 j̄21 is therefore fairly robust; it exists for large ranges
the parameterr and for both small and large values ofLo .
Numerical investigation shows that such a solution also
ists for a large range of values ofj̄.

It should be noted that ay value slightly larger than2 j̄21

corresponds to a small negative value ofM2, and therefore
the effective action evaluated on such a solution acquire
small imaginary part giving rise to a small rate of partic
production. In the regime we consider in this paper, the
fects of this particle production are negligible.

The qualitative behavior of the LHS of Eq.~49! for j̄5

2(1080)21/2 is very similar to the behavior forj̄521, and
quite insensitive to the precise value ofr , as in the previous
case. The solution will now be very close toy52 j̄21

.32.86..., implying that the scalar curvature is about a
order of magnitude larger thanm2, for a large range of val-
ues ofm. Again, this is a robust solution as discussed earl

To summarize, forj̄,0, we find physically reasonabl
values~in the sense that they could be small with respec
mPl

2 ! of the scalar curvature, approximately given by

R.2
m2

j̄
5m̄2 ~53!

for a large range of values ofr , j̄ andLo . The approxima-
tion in Eq. ~53! breaks down ifLo50 and r @1, in which
case the only solution corresponds to an extremely large
lar curvature (R@mPl

2 ) whose precise value depends onr

and j̄. This largeR solution will give rise to a large imagi-
nary contribution to the effective action, and so one expe
copious amounts of particle production to occur, whi
could, in turn, bring the scalar curvature down to reasona
values. This would be consistent with a gravitational Len
law mechanism@1,16,17#. We do not address this issue her
Instead, we now turn to a perturbative analysis of the se
classical Einstein equations.

VI. THE GROWTH OF QUANTUM CORRECTIONS
TO THE SCALAR CURVATURE

In this section, we will analyze, the effect of logarithm
curvature terms in the effective action on a Roberts
Walker cosmology. We analyze this effect in two ways, va
for spatially open, closed and flat models. First, we consi
a universe with mixed matter and radiation and assume
the scalar curvature is slowly varying so that its derivativ
2-10
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NONPERTURBATIVE EFFECTS OF VACUUM ENERGY ON . . . PHYSICAL REVIEW D 60 063512
can be ignored. This analysis shows that perturbative~as
defined in Sec. IV! quantum corrections to the scalar curv
ture can sharply increase in magnitude near a timet j that is
determined bym and j̄. In particular, the existence of a
ultralight mass in the theory can lead to significant quant
effects close to the present time. Since the background c
sical scalar curvature is decreasing, the effect of quan
corrections is to prevent the scalar curvature from decrea
further. However, as quantum corrections become more
more significant, perturbation theory breaks down and c
not be relied upon to give the full behavior of the sca
curvature. We then carry out a second analysis of the be
ior of the scalar curvature for all times aftert j , without using
perturbation theory. This second analysis indeed reveals
for t.t j , the scalar curvature tends to decrease extrem
slowly, ultimately approaching a constant value. The ana
sis thus displays consistency with the original assumption
slowly varying scalar curvature.

In Sec. VII, we will use the behavior of the scalar curv
ture to construct a model universe in which a matt
dominated cosmology transits to a mildly inflating de Sit
cosmology at the timet j .

A. Quantum corrections to the scalar curvature

In this subsection, we will consider a classical Roberts
Walker cosmology with mixed matter and radiation, a
treat the quantum effects involving logarithmic curvatu
terms in a perturbative fashion~recall the discussion in
Sec. IV, which shows why an expansion of the logarith
itself is not appropriate in a perturbative treatment
quantum-vacuum terms!. The universe will deviate from
classical behavior when the quantum effects become s
ciently large. The essential idea is to allow for the possibi
of quantum effects being significant at the present time.
will find that this is possible if there exist very light mas
fields with j̄,0.

Our starting point for the analysis here is the effect
action of Eq.~43!. Variation of this effective action, specia
ized to a Robertson-Walker metric, will generally yield term
involving derivatives of the scalar curvatureR, in addition to
the terms of Eq.~45!. In this subsection, we assume th
terms involving derivatives of the scalar curvature are ne
gible. We will find that, for light mass fields (m!mPl), this
assumption is justified because derivatives of the scalar
vature remain small until the magnitude of the quantu
vacuum contribution to the scalar curvature itself becom
comparable to the classical contribution to the scalar cu
ture. Beyond this point, the perturbative analysis bre
down. In the next subsection, we carry out an exact analy
valid for t.t j .

Although we ignore derivatives of the scalar curvatu
when carrying out the variation of Eq.~43!, the resulting
semiclassical Einstein equations differ from Eq.~45! in two
important respects. First, the fact that the Robertson-Wa
universe has fewer symmetries than de Sitter space g
additional terms in the semiclassical Einstein equations. S
ondly, we will include a classical stress tensor source rep
senting mixed matter and radiation. We also setLo50. The
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trace of the semiclassical Einstein equations, expresse
terms of dimensionless variables, then takes the form o
simple generalization of Eq.~49!:

r ~11 j̄y!lnu11 j̄yu2r
j̄y

11 j̄y
H 11

3

2
j̄y

1
1

2
y2S j̄22

1

1080
D 1vJ

52pS y1
T

2m2ko
D , ~54!

whereT is the trace of the classical stress tensor, andv is a
quantity which vanishes in de Sitter space:

v5
1

180m4 S 1

4
R22RmnRmnD . ~55!

All quantum contributions are grouped in the LHS of E
~54!, while its RHS contains classical terms.

Consider now the full semiclassical Einstein equatio
with a classical stress tensor source representing mixed
ter and radiation,

Gmn5
1

2ko
F S rm1

4

3
r r Dumun1

1

3
r rg

mnG1O~\!, ~56!

whererm and r r represent the matter and radiation ener
densities, respectively, andO~\! represents the quantum con
tributions. The equation above implies

y[
R

m25
rm

2kom2 1
RQ

m2 , ~57!

v52
@rm1~4/3!r r #

2

960m4ko
2 1O~\!, ~58!

whereRQ , as defined by Eq.~57!, is of order\. In a treat-
ment perturbative in\, we replacey andv in the LHS of Eq.
~54! by their classical values using the above equations,
cause the factorr is of order\. This treatment is valid as
long as the LHS of Eq.~54! is small with respect to the term
pT/(m2ko) in the RHS. In the RHS of Eq.~54! we keep the
quantum-vacuum contribution toy as well ~i.e. the term
RQ /m2!. Furthermore, in a Robertson-Walker cosmolo
with metric

ds252dt21a~ t !2S dr2

12kr2 1r 2dV2D , ~59!

wherek521, 11 and 0 denote spatially open, closed a
flat universes respectively, we haverm}a23 andr r}a24. It
is then more convenient to expressy and v in terms of the
present matter and radiation densitiesrm0

and r r 0
, and the

redshift z. We therefore introduce new dimensionless va
ablesdm anddr , given by
2-11
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e2dm[
rm0

mPl
2 ko

, ~60!

e2dr[
r r 0

mPl
2 ko

, ~61!

and the redshiftz given by

11z5
a0

a
, ~62!
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wherea0 is the scale factor at the present time. Furthermo
owing to the fact that we will study the effect of very ligh
masses, we also redefine the ratiom2/mPl

2 :

r 5e2S. ~63!

Equation~54! can now be rewritten by substituting fory and
v using Eqs.~57! and ~58! with the redefined variables o
Eqs.~60!, ~61!, ~62! and~63! above. The resulting equation
correct to leading order in\, gives an expression for th
quantum correction to the scalar curvature,RQ , as a function
of redshift. Dividing byRcl5rm /(2ko), we obtain
RQ

Rcl
[

RQ

rm /~2ko!

5
edm22S

p~11z!3 H S 11
1

2
j̄~11z!3eS2dmD lnU11

1

2
j̄~11z!3eS2dmU2

1

2

j̄~11z!3eS2dm

11
1

2
j̄~11z!3eS2dm

3F11
3

4
j̄~11z!3eS2dm1

1

8
S j̄22

1

108
D ~11z!6e2(S2dm)2

1

480
~11z!7e2S2dr2dm2

1

960
~11z!8e2(S2dr )G J . ~64!
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We wish to find the redshift ranges for which the quantu
contribution to the scalar curvature is significant in compa
son with the classical contribution~i.e. RQ /Rcl of order 1!.
The values ofdr and dm in Eq. ~64! are determined by the
radiation and matter energy densities at the present t
Black body radiation at a temperature of 2.726 K gives
radiation energy densityr r0.7.81310234g/cm3 @18,19#.
This gives a value fordr.288.06. The matter density is no
known to good precision. With the conservative estima
V0.0.1 for the ratio of the present matter density to t
critical density, andH0.50 km/~s Mpc! for the Hubble con-
stant at the present time, we obtainrm0.4.70
310231g/cm3 for the matter density. This givesdm
,281.66 for the exponent of Eq.~60!.

For very light masses (S.150), numerical investigation
of the ratioRQ /Rcl as a function of redshiftz, using Eq.~64!

with u j̄u.1, reveal that there are two distinct regimes f
which this ratio is close to or larger than 1. The first su
regime occurs at extremely high redshifts (z.1026), close to
the grand unified theory~GUT! scale.@In the standard cos
mology, the Planck era occurs at a redshift of about 1031,
while the GUT era sets in at a redshift of about 1026.# It is
expected that quantum effects would play a significant rol
such high redshifts. Thesecond, unexpected regime fo
which the quantum-vacuum terms become large occur
relatively low redshifts. This second regime exists only
j̄,0, and occurs when the factor 11(1/2)j̄(11z)3eS2dm in
Eq. ~64! approaches zero. This corresponds to values oz
near a redshiftzj given by
-

e.
a

s

r

at

at
r

~11zj !
3522j̄21edm2S. ~65!

In between these early and late regimes, the quantum co
bution to the scalar curvature is extremely small and slow
varying, and the evolution of the universe is we
approximated by its classical evolution.

Numerical investigation of the behavior of the rat
RQ /Rcl for valuesj̄521 anddm.280, and for very light
masses (S.150), further reveals that in the late regime
significance of quantum vacuum terms~i.e. nearz5zj !, the
scalar curvature sharply increases asz˜zj . Since zj de-
pends onS @from Eq.~65!#, and therefore onm, the value of
m dictates the value ofzj at which quantum vacuum term
can become significant. As we shall see later, an ultrali
mass can lead to quantum vacuum effects becoming sig
cant at roughly half the age of the universe. However, it
important to note that when the scalar curvature begins
rapid increase near redshiftzj , quantum effects begin to
dominate and the perturbative analysis itself breaks dow

For our purposes, we will only need the result that t
ratio RQ /Rcl tends to rapidly increase asz˜zj

1 . The total
scalar curvatureR, which can be written as

R5RclS 11
RQ

Rcl
D , ~66!

is thus a product of a decreasing function (Rcl) and an in-
2-12
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creasing function. Forz@zj , R.Rcl decreases, and asz
˜zj

1 , the quantityRQ /Rcl tends to suppress the further d
crease ofR.

It will be useful to have an estimate ofzj relative to the
redshift at matter-radiation equality,zeq . The quantityzeq is
defined by the condition of equality of matter and radiati
energy densities:

rm0~11zeq!
35r r0~11zeq!

4. ~67!

Combining Eqs.~65!, ~67!, ~60! and ~61!, we get

11zj

11zeq

5S 2

2 j̄
D 1/3

e4dm/32dr2S/3. ~68!

As earlier, we suppose thatdr.288.06 anddm,281.66.
Also, we will additionally assume thatS.278.7 With these
ranges, we obtain

11zj

11zeq

,S 2

2 j̄
D 1/3

5.6131023. ~69!

Thus, if 2 j̄ is of order 1, we havezj!zeq .
It follows, for this range of masses, that the quantum c

rections become significant at some time during the mat
dominated stage of the expansion. In Sec. VII, we deriv
formula for the cosmic timet j corresponding to the redshi
zj , for a spatially open matter-dominated universe.

To find the scalar curvature att j , we use Eqs.~60! and
~61! to write

~11zj !
3eS2dm[~11zj !

3
rm0

m2k0

5
rm j

m2k0

5
2Rcl~ t j !

m2 , ~70!

whererm j is the matter density at timet j , and the last equal
ity in the above equation follows from the classical Einste
equations. Comparing the above equation with Eq.~65!
shows that

Rcl~ t j !5m2/~2 j̄ !5m̄2. ~71!

We will now carry out a second analysis, valid outside t
perturbative regime, which shows that the scalar curva
indeed approaches a constant value asz˜zj ~or t˜t j !.

7This assumption will be justified in the next section, where
find the value of the mass~and thereforeS!.
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B. Behavior of the scalar curvature for t>t j

As t approachest j , the arguments of the previous subse
tion show that the classical scalar curvature of the mat
dominated universe approaches the valueRj5m̄2. We will
now argue that the scalar curvature does not decrease fu
for t.t j , i.e. it saturates to a value very close to, but sligh
larger thanRj . That is, we will show that there exist ap
proximately de Sitter-like solutions to Eq.~54! for which the
scalar curvature does not change significantly, although
matter density keeps decreasing, eventually approaching
at very late times. We find that, for matter densities less t
rm j there exist de Sitter type solutions of Eq.~54! of the
form

R5m̄2~12e! ~72!

such thatueu!1, andR is an extremely slowly varying func
tion of the matter density. We will assume throughout th
the massm is very light (r !1), and that2 j̄ is positive and
of order 1.

To show that Eq.~72! is indeed a solution, we substitut
Eq. ~72! in Eq. ~54! and assumev!1, so that one can effec
tively ignorev. Then Eq.~54! takes the form

e lnueu2
e21

e
H 11

3

2
1

1

2
~12e!2@12~1080j̄2!21#1vJ

5
2p

r S e21

j̄
1

T

2m2ko
D . ~73!

Define

d[
T

2m2ko
2 j̄2152

rm

2m2ko
2 j̄21. ~74!

If rm5rm j , whererm j is found from Eqs.~65! and ~70!, d
50; and if rm50, d52 j̄21. We find that ueu is always
small within this range ofd values. In fact, we show that it is
small for any positive value ofd. In the smallueu approxima-
tion, Eq. ~73! becomes

e21S 2
1

2~1080!j̄2
1v D 5

2p

r S e

j̄
1d D . ~75!

To estimatev, we assume that it takes a value in between
value for a classical matter-dominated universe at timet j ,
and a de Sitter universe, for whichv50. In a classical
matter-dominated universe,v is given by Eq.~58! as

v52
rm

2

960m4ko
2 . ~76!

At time t j , rm5rm j52kom̄2. Therefore, att j , we obtain

v j52~240j̄2!21. ~77!

We therefore assume that, fort.t j , v lies in the range
2-13
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2~240j̄2!21,v,0. ~78!

It is convenient to define an additional quantity

b5
r

2p S v2
1

2~1080!j̄2D . ~79!

For r !1, andv given by Eq.~78!, it follows that ubu!1.
One may now solve Eq.~75! for e. This yields

e52
1

2
j̄@d6~d214bj̄21!1/2#. ~80!

In order to choose the correct sign in the above equation
will require that the scalar curvature approach its class
value rm /(2ko) for large values of the matter density, i.
for rm /(2m2ko)@1. For large matter densities,d is a large
negative number. To get the correct value of the scalar
vature, one must then choose the solution with the mi
sign in the above equation. Even though this value ofe is not
small, continuity demands that we keep the solution with
same sign for alld. Thus we have

e52
1

2
j̄@d2~d214bj̄21!1/2#. ~81!

It is clear, ford.0, thatueu is always a small number, reach

ing a maximum value ofAbj̄ at d50 ~we have assumed
that r !1!.

The approximationueu!1, which was made in order to
arrive at the solution~81!, is thus valid fort>t j . Within this
range of time, the value ofe evolves from

e~ t j !5Abj̄ ~82!

whenrm5rm j (d50), to

e~`!.2bj̄ ~83!

whenrm50 (d52 j̄21). The fractional change in the scala
curvature during this range of time is given by Eq.~72! as

DR

R
5

2m̄2De

m̄2~12e!
.2De, ~84!

becauseueu!1 during the entire time range. Thus, withDe
5e(`)2e(t j ), we obtain

UDR

R U.Abj̄~11Abj̄!!1, ~85!

becauser !1.
To summarize, we have argued that, even in the prese

of matter, there exist de Sitter type solutions in which t
scalar curvature is very close to the valuem̄2, and is very
slowly varying, as long as the matter density is such thad
>0. For large negative values ofd, i.e. largerm in Eq. ~74!,
it is clear that the scalar curvature continuously change
the scalar curvature of a matter-dominated universe.
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Coupled with the findings of the previous subsection,
which we showed that quantum effects neart j tend to pre-
vent the scalar curvature from decreasing further, these
sults strongly point to a cosmology in which a matte
dominated universe transits to a de Sitter-type universe
the next subsection, we outline such a model.

VII. MATTER DOMINATED EXPANSION LEADING INTO
ACCELERATED EXPANSION

The damping of scalar curvature, which begins at a ti
close tot j , supports the idea that the universe undergoe
transition from a matter-dominated phase to a mildly infl
tionary de Sitter phase. The arguments of the previous s
section show that the de Sitter phase is, to good approxi
tion, described by a solution withj̄,0 andR.m̄2, of the
type found in Sec. V, and that the presence of matter d
not significantly change such a solution. Within a rigoro
framework, the matter-dominated and de Sitter phases m
be joined in a sufficiently smooth manner to guarantee re
larity of all curvature components at the joining point. How
ever, the perturbative analysis of the previous subsec
shows that the quantum effects become significant ove
short timescale, after which the scalar curvature approach
constant value. This effect allows us to consider, for co
parison with observation, an approximation in which an e
act classical matter-dominated solution is joined~at time t j !
to a de Sitter solution generated by quantum effects. Ass
ing @20# a spatially open cosmology@k521 in Eq. ~59!#,
such a model is represented by the following scale facto

a~ t !5c0 sinh2~c/2!, t5
1

2
c0~sinhc2c!, t,t j

a~ t !5a21 sinh@a~ t1c1!#, t.t j . ~86!

Here,c parametrizesa(t) andt during the matter-dominated
stage. Fort.t j , including the present timet0 , the universe
is in a de Sitter phase.

Of the five parameters,c0 , a, t j , c1 and the present cos
mic time t0 , that characterize the model based on Eq.~86!,
not all are independent. The scalar curvature at the time
joining, Rj , must be equal to the constant scalar curvat
during the later, inflationary phase, and is determined by

singlescalem̄[m/A2 j̄. This requirement and the require
ment of continuity of the scale factor at the joining poin
constitute two constraints on the five parameters. The
maining three parameters can, for convenience, be take
be ~i! the present Hubble constantH0 , ~ii ! the present ratio
of matter density to critical densityV0 , and ~iii ! the mass
scalem̄. Here, we express the five parameters defining
model of Eq.~86! in terms of these three basic parameter

First, the scalar curvature during the later, de Sitter ph
is given by 12a2. Setting this equal tom̄2, as required by the
de Sitter solutions of Sec. V, we get the relation

a5
m̄

A12
. ~87!
2-14
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The scalar curvature during the matter-dominated phas
given by R53c0a23. The classical Einstein equation
which hold during the matter-dominated phase, thus imp

3c05~8pG!rm jaj
35~8pG!rm0a0

3 , ~88!

where aj and a0 represent the scale factor att j and the
present timet0 , respectively, andrm j andrm0 are the corre-
sponding matter densities. The second equality in the ab
equation follows from the fact thatrma3 is constant during
the evolution, a consequence of conservation of the ma
stress-energy.

Thus, Eq.~88! gives

c0 /a0
35V0H0

2 , ~89!

where V058pGrm0 /(3H0
2) is the present ratio of matte

density to critical density.
The Hubble constant at the present time is given by

~86! as

H05a coth@a~ t01c1!#

5a0
21A11a0

2a2, ~90!

wherea0 is the scale factor at the present timet0 . We solve
for a0 , and use Eq.~87! to get

a05~H0
22m̄2/12!21/2. ~91!

Combining Eqs.~89! and ~91!, we obtain

c05V0H0
2~H0

22m̄2/12!23/2. ~92!

We may obtain the scale factor at timet j , aj , by requir-
ing that the scalar curvature of the matter-dominated ph
approach the valuem̄2 as t˜t j

2 . This condition yields

aj
35

3c0

m̄2 . ~93!

Substituting forc0 from Eq. ~92!, we then have

aj5~3V0H0
2/m̄2!1/3~H0

22m̄2/12!21/2. ~94!

To obtaint j , we use the matter-dominated solution in E
~86! to get

c j52 sinh21Aajc0
21 ~95!

and

t j5
1

2
c0~sinhc j2c j !

5c0@A~ajc0
21!~11ajc0

21!

2sinh21Aajc0
21#. ~96!

To obtainc1 , we use the de Sitter solution in Eq.~86! to get

c15a21 sinh21~aaj !2t j . ~97!
06351
is

ve

er

.

se

.

Finally, to obtain the present cosmic timet0 , we again
use the de Sitter solution, which yields

t05a21@sinh21~aa0!2sinh21~aaj !#1t j . ~98!

All parameters in the model are now expressed in terms
m̄, H0 andV0 .

In the next section, we will compare the predictions
this model to recent data from high-redshift type Ia super
vae @5#, using magnitude-redshift curves obtained from o
model.

VIII. COMPARISON OF THEORY WITH HIGH- Z
SUPERNOVAE DATA; PREDICTION OF PARTICLE WITH

MASS ;10233 EV

Recent observations of type Ia supernovae at high r
shifts indicate a negative value of the deceleration param
at the present time, i.e. an accelerating universe@5#. Previous
attempts to account for this phenomenon invoke a cos
logical constant, or a classical scalar field, quintessence@21#,
with unusual potentials. To explain the observed accelera
effect by means of a cosmological constant, it must cont
ute a term to the Einstein equations that is of the same o
of magnitude as that attributed by the present matter den
On the other hand, quintessence models that account fo
acceleration effect typically involve potentials that wou
give rise to nonrenormalizable quantum field theories.

In the model we present here, the value ofH0 is fixed by
low-redshift measurements, while the remaining free para
etersm̄ andV0 are determined by the SNe-Ia data. Once
mass scalem̄ is determined, no fundamental parameters
the effective action need be chosen to fit the supernovae d
Furthermore, the theory we work with arises out of a ren
malized effective action.

Comparison of our model to SNe-Ia data is achieved
fitting calculated magnitude-redshift curves to the data. T
difference between the apparent magnitude (m) and absolute
magnitude (M ) of a source is given in terms of the lumino
ity distancedL to the source, by

m2M55 log10

dL

Mpc
125. ~99!

The luminosity distance itself is given by@22#

dL5~11z!a0r 1 , ~100!

wherea0 is the present scale factor, andr 1 is the comoving
coordinate distance from a source at redshiftz to a detector
at redshift 0. For Robertson-Walker universes,r 1 is given by
the equation

E
0

r 1 dr

~12kr2!1/25a0
21E

0

z dz8

H~z8!
, ~101!

where k50, 11, 21 correspond to flat, closed and ope
universes, respectively. For a spatially open universe,
above equation reduces to
2-15
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sinh21 r 15a0
21E

0

z dz8

H~z8!
. ~102!

Consider a universe represented by the model of Eq.~86!,
which is a spatially open matter-dominated universe prio
time t j , and transits into a de Sitter universe att j . Let zj be
the redshift at timet j . For z,zj , the universe is in a de
Sitter phase, with Hubble constant given by

H5a cotha~ t1c1!

5Aa21
~11z!2

a0
2 . ~103!

Substituting the above into Eq.~102!, and performing the
integration, we obtain, forz,zj ,

r 1,~z!5
11z

~a0a!2 FA11~a0a!22A11S a0a

11zD
2G ,

~104!

wherer 1,(z) denotesr 1(z) for z,zj . For z.zj , the RHS
of Eq. ~102! separates into two contributions:

sinh21~r 1.!5a0
21S E

0

zj dz8

H~z8!
1E

zj

z dz8

H~z8! D , ~105!

wherer 1.(z) denotesr 1(z) for z.zj .
During the matter-dominated phase, the Hubble cons

is calculated as

H5Ac0a231a22

5
11z

a0
A11c0a0

21~11z!.

~106!

Using Eq. ~103! for z8,zj and Eq.~106! for z8.zj , the
integrations in Eq.~105! may be performed to yield

r 1.~z!5sinhFsinh21@r 1,~zj !#

1 lnS @g~z!21#@g~zj !11#

@g~z!11#@g~zj !21# D G , ~107!

where

g~z!5A11c0a0
21~11z!. ~108!

Equation~100! gives the luminosity distance,dL1 , for this
model, as

dL15~11z!a0r 1,~z!, z,zj

5~11z!a0r 1.~z!, z.zj . ~109!
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For comparison, the luminosity-distance-redshift relati
for a matter-dominated Robertson-Walker universe with z
cosmological constant and ratioV0 of present matter density
to critical density, is

dL2~V0 ,z!52H0
21V0

22@V0z1~V022!~A11V0z21!#,

~110!

and for a spatially flat matter-dominated (V051) universe,

dL2~1,z!52H0
21A11z~A11z21!. ~111!

It is convenient@see Eq.~99!# to define

D~m2M !~z!55 log10S dL~z!

dL2~0.2,z! D . ~112!

Figure 3 is a plot ofD(m2M ) vs z, along with a plot of
SNe-Ia data acquired from Ref.@5#. The two solid curves
representdL(z)5dL1(z). In plotting this quantity, all param-
eters appearing indL1 have been expressed in terms of t
three basic parametersm̄, H0 and V0 , using the relations
derived in the previous section. Also, the value ofH0 has
been set to 65 km/~s Mpc!. Thus there are two quantities,m̄
andV0 , which parametrize the solid curves. The two curv
shown in the figure give a reasonable fit to the data, a
correspond to~a! m̄53.7310233eV and V050.4 ~higher
solid curve!, and~b! m̄53.2310233eV andV050.3 ~lower
solid curve!.

The general features of a family of curves parametriz
by (m̄,V0) are as follows. For a fixed value ofm̄, decreasing
V0 has the sole effect of increasing the redshift at which
transition occurs, i.e. a smaller value ofV0 will move the
transition further from the present time. Thus we cannot r

FIG. 3. A plot of the difference between apparent and abso
magnitudes, as functions of redshiftz, normalized to an open uni
verse with V050.2 and zero cosmological constant. The poin
with vertical error bars represent SNe-Ia data obtained from R
@4#. The two solid curves represent the values~a! m̄53.7
310233 eV and V050.4 ~upper solid curve!, and ~b! m̄53.2
310233 eV andV050.3 ~lower solid curve!. The horizontal dashed
line represents an open universe withV050.2, and the dashed line
curving downward represents a matter-dominated flat unive
Smaller values ofV0 also would fit the data@see text after Eq.
~112!#.
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out the possibility that, with more observations at higher r
shift, a better fit to the data could be obtained with low
values ofV0 . However, the data do not allow the joinin
points in Fig. 3 to occur at smallerzj , so the values ofV0
shown in the plot do represent a rough upper bound onV0 in
our model, and lead to the conclusion stated earlier,V0
,0.4. As is well known, anearly inflationary epoch would
explain whyV0 is not very far from 1.

For a fixed value ofV0 , increasingm̄ has the effect of
shifting the curves up, as well as increasing somewhat
redshift at which the transition occurs.

The two dashed curves in Fig. 3 are shown for comp
son, and represent~c! dL5dL2(0.2,z) ~horizontal dashed
line!, i.e. an open matter-dominated universe withVm
50.2, and~d! dL5dL2(1,z) ~lower dashed curve!, i.e. a spa-
tially flat matter-dominated universe.

IX. THE AGE OF THE UNIVERSE

As stated earlier, the only fundamental scale that en
into the effective action of the model presented here ism̄.
Nevertheless, as we show now, the fit of our model to sup
novae data predicts reasonable values for the age of the
verset0 .

The relations derived in Sec. VII, leading up to Eqs.~96!
and ~98!, give t j and t0 in terms ofm̄, V0 andH0 . For H0
565 km/~s Mpc!, m̄53.7310233eV, and V050.4 ~upper
solid curve in Fig. 3!, we obtain

t j55.663109 yr ~113!

t051.3431010 yr. ~114!

For H0565 km/~s Mpc!, m̄53.2310233eV and V0
50.3, we obtain

t j56.033109 yr ~115!

t051.3331010 yr. ~116!

Therefore, in both cases a reasonable value of roughly
billion years is obtained for the age of the universe. Mo
data at higher redshifts may lower the value ofV0 in our
model, which would further increase the age of the unive

Figure 4 contains plots of the scale factor versus cos
time for the two solid curves of Fig. 3. In each case, the op
matter-dominated universe that transits to the de Sitter ph
is shown continued as a dashed curve, for comparison.

X. CONCLUSIONS

In summary, we showed that a model in which a tran
tion occurs from a matter-dominated to a de Sitter expans
fits the SNe-Ia data. We call such a model, a transition
universe. Also, we have proposed a free quantum field the
effective action, Eq.~38!, in which such a transition evi
dently occurs. The existence of a particle of very low ma
would cause the universe to make a transition from
matter-dominated to a new de Sitter stage. In our model,
can say that we are now observing the mass scale of
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particle through the SNe-Ia data.
Models involving interacting fields may also give a tra

sitionary universe, and such models would be natural ex
sions of the free field model presented here as the simp
case.

We emphasize once again that the solutions to the gr
tational field equations we obtain, in particular the de Sit
solutions forj̄,0, exist without the necessity of a non-ze
cosmological constant term in the effective action. Furth
more, these solutions are fairly insensitive to the presenc
a cosmological constant term. In this manner, our mo
does not suffer from the problem of fine-tuning of the co
mological constant, which exists in mixed matter and cosm
logical constant models.

The present matter density and the predicted age of
universe agree well with the current estimates. As in ot
models, a value ofV0 not far from 1 may result from a
period of early inflation. Further constraints onV0 andm̄ in
our model could result from comparison to cosmic micr
wave background data, as well as from the time-tempera
relationship during nucleosynthesis. We hope to carry
such a comparison in the future.

Finally, we would like to mention that theR-summed
form of the effective action could have consequences
early universe cosmology as well. In particular, the existe
of an imaginary term in the effective action, implying pa

FIG. 4. Two plots of the scale factor versus time for a spatia
open model universe in which an initially spatially open matt
dominated cosmology evolves to a de Sitter solution. The par
eters for the top model arem̄53.7310233 eV andV050.4, and for
the bottom model,m̄53.2310233 eV and V050.3. The dashed
curves represent a continuation of the open matter-domin
phase.
2-17



an

tio
er
s

.

h

-

to

y

t t

ra
e
fra
p
-
-
n
em
dis

-

e
n

ex-
t
v-

ion

sum

the
ep

e

ut

nce

er

ma

ite
es

th

LEONARD PARKER AND ALPAN RAVAL PHYSICAL REVIEW D 60 063512
ticle creation effects, could play a role in the exit from
inflationary universe@23#. In future work, we plan to pursue
these ideas as well as to carry out a dynamical calcula
giving the details of the transition between the matt
dominated stage and the later de Sitter stage of the expan
@20#.
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APPENDIX A: DIVERGENCES IN THE EFFECTIVE
ACTION AS M 2

˜01

Consider the one-loop effective action in Eq.~30! below
threshold, i.e.M2.0. This action is then a real series whic
is divergent asM2

˜0. The part of the first term in this
series, involvingM4, vanishes in this limit. However, subse
quent terms, involvingf̄ l for l>2, are all divergent asM2

˜0. All terms containingf̄ 3 and higher orders correspond
an asymptotic series in inverse powers ofM2 and therefore
do not give a valid expansion for small values ofM2. The
behavior of this expansion asM2

˜0 is thus unphysical and
does not seem to be a cause for concern.8 However, the term
f̄ 2 ln(M2) is also divergent in this limit and is physicall
required for renormalization of ultraviolet~UV! divergences
and to obtain the trace anomaly. It is therefore of interes
examine in detail the divergent behavior of this term asM2

˜0. We will show here that this divergence, although inf
red in nature, can be absorbed into the ultraviolet div
gences of the theory by a procedure similar to the way in
red divergences atm50 are handled in the usual one-loo
effective action@24#. To this end, we will consider the one
loop effective action~30!, truncated up to the terms involv
ing f̄ 2 . We will work within the dimensional regularizatio
scheme, which is more useful than the zeta function sch
in this context because the divergent terms are explicitly
played.

First, Eq.~4! implies the following proper time represen
tation of the effective action@9,25#:

W152
i

2
TrE

0

`

dss21e2 isH

5
1

2
~m2!22D/2E dDxA2gE

0

`

ids~ is!21

3~4p is!2D/2e2 is(M22 i e)F̄~x,x,is!, ~A1!

where we used Eq.~12!. The truncated one-loop effectiv
action before renormalization is obtained, in four dime

8It is possible that all higher order terms sum to give a fin
contribution asM2

˜0. An example of such a situation is the seri
(12x21)215(n50

` x2n, which is a valid expansion forx.1. As
x˜0, every term on the right hand side is divergent, although
left hand side vanishes.
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sions, by keeping the first three terms in a power series
pansion ofF̄ in Eq. ~15!. These terms include UV-divergen
contributions to the effective action arising from the beha
ior of the integrand nears50. All higher order terms are
UV-finite.

Thus we obtain for the truncated one-loop effective act

Wtrun
1 5

1

2
~4p!2D/2~m2!22D/2E dDxA2gE

0

`

ids~ is!2D/221

3e2 is(M22 i e)@11~ is!2 f̄ 2#, ~A2!

where we have setf̄ 150 without loss of generality. The
above equation has a finite piece corresponding to the

over all powers ofs higher than 2 in the expansion ofe2 isj̄R

in the integrand. ThereforeWtrun
1 as defined above differs

from what is usually regarded as the divergent part of
effective action by this finite piece. Here, we need to ke
this extra piece in order to properly take the limitM2

˜0.
In performing dimensional regularization aboutD54, it

is convenient to define 2d5D24. One can evaluate th
proper time integral in Eq.~A2!, to get

Wtrun
1 5~32p2!21E d4xA2gH m4S M2

m2 D 21d

G~222d!

1 f̄ 2S M2

m2 D d

G~2d!J . ~A3!

Expanding the exponents and the gamma functions abod
50 (D54), we get

Wtrun
1 5~32p2!21E d4xA2gH M4S 1

42D
2

g

2
1

3

4

2
1

2
ln~M2/m2! D1 f̄ 2S 2

42D
2g2 ln~M2/m2! D J

1O~D24!. ~A4!

The expression above already indicates that the diverge
as M2

˜0 may be absorbed into the UV-divergence asD

˜4 in the coefficient off̄ 2 . To see this explicitly, we may
set M250 in Eq. ~A2! at the outset, and replace the upp
limit of the s-integration by some large numberT to regu-
larize the integral~infrared regularization!. We can then ex-
amine the divergent behavior asT˜`. We therefore have

Wtrun
1 5~32p2!21~m2!22D/2E dDxA2gE

0

T

ids~ is!2D/221

3e2se@11~ is!2 f̄ 2#, ~A5!

which may be evaluated in terms of the incomplete gam
functionsg(a,x),

Wtrun
1 5~32p2!21E d4xA2g$ i 2D/2~e/m2!D/2g~2D/2,eT!

1 i 2D/212 f̄ 2~e/m2!D/222g~22D/2,eT!%. ~A6!
e
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We may now take the limite˜0 of the above expression b
using the power series expansion@26#

g~a,x!5 (
n50

`
~21!nxa1n

n! ~a1n!
. ~A7!

This yields, after some simplification

Wtrun
1 5~32p2!21E d4xA2gH 1

2
T221 f̄ 2S 2

42D
1 ln~m2T! D

1O~D24!J . ~A8!

As T˜`, the first term in Eq.~A8! drops out, leaving be-
hind a term proportional tof̄ 2 which diverges logarithmically
06351
in this limit. However, this divergence can be absorbed i
the UV-divergence asD˜4.

We therefore find that the logarithmic divergence in t
effective action in the ‘‘infrared’’ limitT˜` may be can-
celed by counterterms of the same geometric form as
ones introduced into the bare gravitational action to can
the UV divergences asD˜4, i.e. a counterterm proportiona
to f̄ 2 is required here. The infrared problem in the partia
summed form of the effective action is thus handled in a w
similar to the infrared divergence in the usual effective a
tion at m50, where a counterterm proportional tof 2 is re-
quired.

The analysis above may be carried out in a similar man
even when we do not setM250 at the very beginning bu
rather let M2 tend to zero from positive values. Equatio
~A8! is recovered at the end of the calculation.
APPENDIX B: VARIATIONS OF CURVATURE INVARIANTS

Here we will list the variations of the curvature invariants that occur in the effective action in Eq.~38!. They are as follows:

dS E d4xA2gRD52E d4xA2gdgmnGmn ~B1!

dS E d4xA2gR2D5E d4xA2gdgmnH 1

2
gmnR222RRmn12R;nm22gmnhRJ ~B2!

dS E d4xA2g lnuM2/m2u D5E d4xA2gdgmnH 2 j̄M 22Rmn2 j̄gmn~2M 26j̄2R;aR;a2M 24j̄hR!1 j̄~2M 26R;mR;n

2M 24j̄R;nm!1
1

2
gmn lnuM2/m2uJ ~B3!

dS E d4xA2gR lnuM2/m2u D5E d4xA2gdgmnH 2Gmn lnuM2/m2u2 j̄M 22RRmn1 j̄
m21M2

M4 ~R;mn2gmnhR!

2 j̄2
2m21M2

M6 ~R;mR;n2gmnR;aR;a!J ~B4!

dS E d4xA2gR2 lnuM2/m2u D5E d4xA2gdgmnH lnuM2/m2uS 1

2
gmnR222RRmn12R;nmD1 j̄M 22~2R2Rmn16R;mR;n

14RR;nm!2 j̄2M 24R~6R;mR;n1RR;nm!12j̄3M 26R2R;mR;nJ ~B5!

dS E d4xA2g f̄2D5
1

180E d4xA2gdgmnH 3hRmn2R;mn2
1

2
gmnhR12RmsntRst1

1

2
gmnRstR

st12Rm
strRnstr

2
1

2
gmnRstrlRstrl24Rm

sRnsJ ~B6!
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dS E d4xA2ghR lnuM2/m2u D5E d4xA2gdgmnj̄M 22H 22gmnhhR12~hR! ;mn2
1

2
gmnR;aR;a1R;mR;n

1 j̄M 22@4gmn~hR! ;aR;a12gmn~hR!224R;(m~hR! ;n)22hRR;mn1RmnR;aR;a

12R;a~gmnh2¹m¹n!R;a12gmnR;abR;ab22R;a
n R;am#12j̄2M 24@2R;aR;a~gmnh

2¹m¹n!R14R;(mRa
n)R;a24gmnR;aR;bR;ab#16j̄3M 26~gmnR;aR;a2R;mR;n!J ~B7!

dS E d4xA2gRabRab lnuM2/m2u D5E d4xA2gdgmnH lnuM2/m2uS 1

2
gmnRabRab23RmaRa

n 1hRmn1
1

2
gmnhR2R;mn

1RanbmRabD1 j̄M 22~2RmnRabRab1RmnhR22Ra(mR;a
n)1gmnRabR;ab

12R;aRmn;a1gmnR;aR;a2R;mR;n22R;aRa(m;n)22gmnRabhRab22gmnRab;kRab
;k

12Rab
;nmRab12Rab

;mRab;n!1 j̄2M 24~2RmnR;aR;a2gmnRabR;aR;b12R;(mRn)aR;a

14gmnRabR;kRab;k1gmnRabRabhR24Rab
;(mR;n)Rab2RabRabR;mn!

12j̄3M 26RabRab~R;mR;n2gmnR;aR;a!J ~B8!

dS E d4xA2gRabgdRabgd lnuM2/m2u D5E d4xA2gdgmnH lnuM2/m2uS 1

2
gmnRabgdRabgd22RmkgdRn

kgd24Rbnam
;baD

1 j̄M 22~2RmnRabgdRabgd22gmnRabgdRabgd;k
k22gmnRabgd;kRabgd;k

12Rabgd
;nmRabgd12Rabgd

;nRabgd;m24Rbnam
;aR;b24RbnamR;ba!

1 j̄2M 24~4gmnRabgdRabgd
;kR;k1gmnRabgdRabgdhR24RabgdRabgd

;(nR;m)

2RabgdRabgdR;mn14RbnamR;bR;a!12j̄3M 26~2gmnR;aR;a1R;mR;n!J . ~B9!
o
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