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We show that the vacuum energy of a free quantized field of very low mass can significantly alter the recent
expansion of the universe. The type of particle we consider is of spin-0, but a higher spin field, such as a
graviton of ultralight mass, may well affect the expansion in the same way. The effective action of the theory
is obtained from a non-perturbative sum of scalar curvature terms in the propagator. We renormalize this
effective action and express it in terms of observable gravitational coupling constants. We numerically inves-
tigate the semiclassical Einstein equations derived from it. As a result of non-perturbative quantum effects, the
scalar curvature of the matter-dominated universe stops decreasing and approaches a constant value. The
universe in our model evolves from an open matter-dominated epoch to a mildly inflating de Sitter expansion.
The Hubble constant during the present de Sitter epoch, as well as the time at which the transition occurs from
matter-dominated to de Sitter expansion, are determined by the mass of the field and by the present matter
density. The model provides a theoretical explanation of the observed recent acceleration of the universe, and
gives a good fit to data from high-redshift type la supernovae, with a mass of abotitel) and a current
ratio of matter density to critical densit§),<0.4. The age of the universe then follows with no further free
parameters in the theory, and turns out to be greater than 13 Gyr. The model is spatially open and consistent
with the possibility of inflation in the very early universe. Furthermore, our model arises from the standard
renormalizable theory of a free quantum field in curved spacetime, and does not require a cosmological
constant or the associated fine-tunip§0556-282(99)08418-0

PACS numbd(s): 98.80.Cq, 04.62:v, 98.80.Es

I. INTRODUCTION tions. We consider a scalar field for simplicity.
The effects we investigate stem from the discoVgy]
There appear to be deep connections between phenometieat a covariant infinite series of terms in the propagators of
at the microscopic quantum level and those at the macroquantum fields in curved spacetime can be summed in closed
scopic level described by general relativity. These connecform, to all orders in the curvature. The summed infinite
tions were first elucidated by studies of quantum field theoryseries of terms arall those that involve at least one factor of
in the classical curved spacetime of general relativity, parthe scalar curvaturd® (together with any number of factors
ticularly those involving particle creation by strong gravita- of the Riemann tensor and its covariant derivativiesthe
tional fields, such as exist in the early universe and neaBchwinger-DeWitt proper-time series for the propagator. We
black holeq1,2]. The framework of quantum field theory in will refer to this partially-summed form of the propagator as
the classical curved spacetime of general relativity appears tilve R-summed form of the propagator. Although only the
be quite robust, and is the one we employ in our presenfirst several terms in the proper-time series have been calcu-
study. We are particularly concerned with certain non-lated(because of their complexitythe R-summed form can
perturbative gravitational contributions to the vacuum energye derived by means of mathematical inductj@ih A fur-
of quantized field$3]. ther reason to expect tHe-summed form of the propagator
We show that these contributions may account for theo contain information of physical significance, is that the
recent observatior|g,5] of type-la supernovaéSNe-1a that  leading term in theR-summed form of the propagator fol-
seem to imply that there is an acceleration of the recent edows directly from the Feynman path-integral expression for
pansion of the universe. In our model, the key new ingredithe propagator by means of a Gaussian integration about the
ent needed to account for the observations is the existence dbminant patt8]. Our results flow from the effective action
a particle having a very small mass of about V. This  that is obtained from th&-summed form of the propagator.
could be a scalar particle or one of higher spin, such as a We leave for a later paper, the contribution of these non-
graviton. It is well-known that in a Robertson-Walker uni- perturbative gravitational effects to early inflation at the
verse, the linearized Einstein equations obeyed by the gravgrand-unified scale and associated particle creation. In this
ton field take the same forrtfor each polarization in the paper, we focus on possible consequences of these non-
Lifshitz gauge as the equation of a minimally coupled mass- perturbative terms in the effective action that may be ob-
less scalar fiel@6]. Inclusion of a mass of about 18°eV in  served today. As noted earlier, we find that these non-
these equations would give effects similar to the ones studiepgerturbative effects in the presence of an ultralight particle
here, and would evidently not conflict with other observa-having a mass of about 18%eV, give a good fit to the
observed SNe-la data points. The effective action of our
model has a single free parameter determined by the mass of
*Electronic address: leonard@uwm.edu the particle and its curvature coupling constant. In addition,
"Electronic address: raval@uwm.edu there are two more parameters which characterize the solu-
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tions to the effective gravitational field equations. These carrosmological constant term in the effective action. We show
be taken to be the present Hubble constant and the preseihiat, for §—1/6>0, such solutions typically have Planckian
matter density. The Hubble constant is determined by lowgurvatures and are therefore not of much physical interest.
redshift measurements as usual. The mass of the particle, af) the other hand, faf—1/6<0, we show that there exist de
the present matter density are given by a fit to the SNe-Ia?";ter solutions with scalar curvature approximately equal to
data. The age of the universe, and the cosmic time, or red!’”/(1/6—¢), and that such solutions exist for a wide range
shift, at which the non-perturbative contributions of the ul-°f values ofm and¢. As argued in later sections, these so-

tralight particle first become significant, follow from these !utions could play a vital role at the present time, if there
parameters. exists an ultralight particle wit—1/6<0. In Sec. VI, we

Our model involves a renormalizable free field theory inC&TY out perturbative calculations of the scalar curvature

curved spacetime, and apart from the supposed existence 8P0Ut @ classical Robertson-Walker universe, containing
an ultralight mass, is based on previously discovered norclassical matter and radiation. We find that quantum correc-

perturbative terms. Furthermore, it requires no cosmologicaions to the classical scalar curvature of the universe can
constant in the usual sense of the term; and no fine-tuning g{€cOMe significant at an epoch determined by the mass scale

the value of the current cosmic time is necessary to explaif= M/ V1/6—¢, for {—1/6<0. Furthermore, we find that the
the current observed value of the matter density. quantum corrections tend to drive the scalar curvature to a

The outline of this paper is as follows. In Sec. Il, we constant value. These considerations lead to a scenario, pre-

calculate, by zeta-function regularization, the renormalizec€nted in Sec. VI, in which quantum corrections to a matter-
effective action that follows from thB-summed propagator. dominated universe cause a transition to a de Sitter solu_t|on
This confirms the result found with dimensional regulariza-0f the type discussed in Sec. V. The various cosmological
tion by Parker and Tomi8], and generalizes it to include the parameters in such a model universe are expressed in terms
case when there is an imaginary part of the effective actior?f three basic parameters to be determined by observation:
Variation of this effective action gives the Einstein gravita- the mass scalg, the present ratio of matter density to criti-
tional field equations, including vacuum contributions of c@l densityQ,, and the present Hubble constag.
quantized fields. In addition, an imaginary part of the effec- In Sec. VI, we develop this scenario further, using it to
tive action implies a rate of particle creation in the same wayPPtain magnitude-redshift curves, and comparing these
as it does in quantum electrodynamj€g. The effective ac- Curves to recent data from high-redshift type 1a supernovae

tion has infrared-type divergences which are treated sep&>)- The mass scalm is determined to be roughly equal to
rately in Appendix A. 10 33eV, while O is found to be less than 0.4. In Sec. IX,

The effective action at low curvatures gives rise to in-We derive from these parameters the age of the universe in

duced gravitational coupling constants, as is well-knownour model, which is found to be greater than about 13 Gyr.
These constants depend on a renormalization scale paramtnally, in Sec. IX, we conclude with a discussion of our
eter. In Sec. Ill, we consider the dependence of the inducetgsults and comment on future work.

gravitational constants on the renormalization scale, and The main results of this paper are summarized in Egs.
identify the renormalized constants with their known values(38) and(43) (the effective action of the theory in terms of
at low curvature. This identification is used to fix all the measurable gravitational coupling constantq. (53) (the
coupling constants in the effective action, in terms of theirelationship between scalar curvature and mass during the
low curvature values, except the field massand its curva- late de Sitter phageEq. (86) (the scale factor in our model
ture couplingé. In this context, the conclusions of R¢8] ~ EQ. (109 and the equations prior to it in Sec. Vlithe

are explored in greater detail and generalized here. Variduminosity-distance-redshift relatignthe discussion of the
tions of various terms in the effective action are listed ina@ge of the universe in Sec. IX, and Figs. 3 and 4.

Appendix B. Throughout this paper, we use the metric signature con-
In Sec. IV, we clarify the meaning of exact and perturba_vention(—+++), and the convention for the Riemann cur-
tive solutions to the semiclassical Einstein equations. In parvature tensor Ry, =17, , =17, ,+T%,0%,
ticular, we emphasize that a perturbative treatmeditimust —I'*,,['7,, -
be done in such a way that only genuine quantum corrections
are treated in a perturbative manner, while factors which ~ !I- QUANTUM CORRECTIONS TO EFFECTIVE ACTION
occur in t_he “classical” Klein-Gordon action are not treated  ere we derive the regularized effective action based on
perturbatively. . the propagator for a scalar field in curved space.
In Sec. V, we display a set of constant curvat(de Sit- Parker and Tom$3] define the effective action via di-

ter) solutions; which exist even in the absence of an explicit yensional regularization of the Feynman Green function and
by integrating the Green function with respect to the square
of the mass. Here we will define it by zeta-function regular-
de Sitter solutions to the effective gravitational field equationsization.
have been found by other authors in gravity theories with higher To this end, consider B-dimensional scalar field theory
derivative termg10,11). These solutions are valid at high curva- in curved spacetime, with classical action
tures. In this paper, we also find low-curvature de Sitter solutions

. . . . 1
which could play an important role in the late evolution of the _ _f Dy . [—
universe. S==5 | "XV=gd(Xx)H(X) (), 1)
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whereH(x)=—g,,,(X) Vi Vy+ m?+ ¢R(x), and we have ig- B S Cis(Hic
nored boundary contributions. The one-loop effective action,$(¥)=T'(») 1f dDXV_gfo ids(is)”~H(x|e™ """ 719|x).
W1, is defined by the functional integral (11)

einEZ=j D peiS, @) 3 %/e now introduce th&-summed form of the heat kernel

and is related to the transition amplitude for evolution from  (x|e "SH~19|x")=i(4mis) "P2AY2(x,x")

the “in” vacuum state at early times to the “out” vacuum _ s

state at late timef9]: x /(@29 7IsM™IE (x xsis),

. (12)
eIW1:<OourJOin>- ©)

where A(x,x") is the Van Vleck—Morette determinant and

For free fields, as considered here, the one-loop effectiver(x,x") is one-half the square of the geodesic distance be-

action,W?, gives thefull quantum contributions of the mat- tweenx andx’. The quantityM? is, in general, a function of

ter field to the effective action. By formally performing the x andx’ with the property that it reduces in the coincidence

functional integral in Eq(2), we get(see, for exampl€l2]) limit to

i 2 — 2 _ — 21 Zf

Wl:iln de(H/u?), @ M(X,X)=m*+ (- 1/6)R(X)=m-+ (R(x),  (13)
Wheregzg—lla The form(12) of the heat kernel sums all
where we have introduced an arbitrary real quangityith  terms explicitly involving at least one factor of the scalar
the dimensions of mass in order to rendedimensionless.  curvatureR, in the coincidence limik’—x. Away from the

In terms of the zeta function, formally defined as coincidence limit,M? can be taken to be the linear combi-

nation[7]
{(v)=TrH"", )
. . . M?(x,x")=m?+ &@R(x) + (1—a)R(x")) (14)

the one-loop effective action can be expressed in the form

with an arbitrary choice o&, and the functiorF will corre-

Wi=— I—[g’(o)+ In(?)£(0)]. (6)  spondingly depend on the value @f F may be expanded in
2 an asymptotic series in powers gf namely,

The proper-time heat kerndk, is defined to satisfy the - o B
equation F(x,x';is)= >, (is)fj(x,x"), (15
=0
0 ) _
I—5 ~HX) [K(x,x",is)=0, (7) " In the coincidence limik’—x, F does not depend ca. We

then havefo(x,x)=1, f;(x,x)=0, and
with initial condition

— B 1/1 1 Bys B
K(X,X’,0)=(—g)_1/25(D)(X—X’). (8) fz(X,X)—g g_é: LR+ @(RaﬁyﬁR _RaﬁR )
16
Because Eq(7) is a Schrodinger-like equation, the heat ker- (10
nel may be formally represented as The f; for all j contain no factor oR (with no derivatives
A acting on ij.
K(x,x",is)=(x|e""*"|x"), 9 Thus Eq.(11) becomes

with the inner productx|x’) defined by Eq(8). . o (o o
The heat kernel gives a representation for the Feynman ¢{(v)=i(4m)” =T’ (v) f d X\/—gfo ids(is)”
Green'’s function of the theory:
B x e ISM*=I9E (x x:is). (17
G(X,X')E<X|H_1|X'>=J ids(x|e""StH=19|x") (10 _ . o
0 The integral overs in the above expression is divergent at
v=0 because of the singular behavior of the integrand as
where we have added a small imaginary pattitior reasons approaches zero. This divergence actually exists for all

of convergence. Revr=<D/2. (We will assume throughout this paper ttiatis
Also, using the Mellin transform to express the zeta func-even) We therefore regulate the zeta function for these val-
tion in terms of the heat kernel, one obtains ues of v by defining the zeta function for Re<D/2 as the
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analytic continuation of the zeta function for ReD/2. To
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*. L. Cis(M2—ie
this end, we perfornD/2+1 integrations by parts before JO idsIn(is)(is)Pe *M" 19

analytically continuing, to get
I'(v)t
(v—D/2)(v—D/2+1)--v
deDx\/—gf ids(is)”
0

(9D/2+l
a(IS)D72+ [e IS(M 7IE)F(X X, |S)] (18)

{(v)=—i(—4m) P2

which is regular in a neighborhood ef=0.2 This definition
of the ¢ function therefore leads to a regularized one-loop
effective action. From Eqg6) and (18), we get where

1
WE={2(4m)P2(D/2)1}~ JdeJ_[ y+|n(M2)+D/2

+o+1

b1

D/2 ,
—is(M2-ie¢) o

XW&[E F(X,X;i8)]s=0

. D/2+1 _ o
_jo idsln(is)m,m[e's(""z'G)F(x,x;is)]],

19

where y=Euler’s constant= (d/dv)[T'(v+1)],-¢-

Fixing the renormalization scale is equivalent to fixing
the (constant phase of the out-vacuum relative to the in-
vacuum in flat space, which can be chosen arbitrarily. We
will find it convenient to define a rescaled versionwoby

In two spacetime dimensions, the above formulas lead to

p!
T (MZ—iepl

_ 1 1
X[In(l\/lz—le)+y—l—§—"'—5 ) (21)

for integer values op. This procedure finally yields

W1={2(4w)D’2}’1f dPx/= g{11(x) + 1,(x) + 15(x)},

(22
—(D2+1) D>, fll(M2—je)~'+DR2
|=D/2+1
Dgl (—1)P I+p72D/271 . ’s
X2 poriipl & " 0@
D/2+1 D/2
(—1)P
=(D/2+1 —
( ),32‘1 |=D/Z+1-p p!'(D/2+1—-p)!
I+p-D/2—1
y+In(M2=ie)— > nt
n=1
X fI1(M2—j¢)~'+D2, (24)
D/2 2
- (=M )p
l3=(y+In(Z )E —— o p- (25)

1 the one-loop effective action

1
~2\ _ .
In(&?)=In(u )+D/2+D/2 1 <41,

Then the one-loop effective action becomes

W1={2(477)D’2(D/2)!}’1J d®x\—g

D/2
X [v+ln<ﬁz>]W[e—‘swz—imx,x;is)]szo

M
W}Dzz)%(sw)—lf dzx\/—gl Mz(ln P

2

—iwe(—Mz))

- o I —
+|:22[(|—1) 1 1]m—m]. (26)

Similarly, in four spacetime dimensions, we get

- D isME—igT TS R L TR S P
—f idSIn(is)W[e*'S(M “9F(x,x:i8)]} . 1= 754 '(l\/lz—'_{ +2(1-1)7=(1-2)"7
0
(27)
(20)
1 _ _

We may now substitute tHRe-summed Schwinger-DeWitt  12=— 52— 5[v+ In|M?|—i76(—M?)](2f,+M?)
expansion(15) in the above formula for the effective action (28)
and perform the required differentiation and integration term
by term. In doing so, we use the integral identity 1 o

ls= 5[y +IN(E)](M*+2f,), (29

2We may equally well analytically continue i instead ofv.

063512-4

and the one-loop effective action takes the form



NONPERTURBATIVE EFFECTS OF VACUUM ENERGY B. .. PHYSICAL REVIEW D 60 063512

M2 _
= W= — (6412 12 nif d*x\V—g

W}D:4)~—(64w2)-1f d*xy—g{ (M*+ 2f_2)(ln

- X{AM{+pif)INMI Y + itz +..}, (D)

—imf(—M?) +3f_2+|_§)3[|*1+2(|—1)*1

where we have inserted arbitrary, species-dependent coeffi-
I - cientsn;, p; andq;, and a factor ofi is now made explicit.
—(1-2)"4 2—'_|_2f|]_ (300  The imaginary term is not shown because we are interested
(M7—ie) here in the part of the effective action that corresponds to
vacuum polarization. In the low curvature limit considered in

. . . this section, we can assume thaf=mZ+ £R>0, so there
This is theR-summed form of the effective action. The . . . f ! 3 >
iS no imaginary term. In later sections whek& can be

Gaussian approximation amounts to keeping only the term . . .
o pa ) i ping ) y — negative but the curvature is very small with respect to the
multiplying M* in the above series. The terms involvifig

, - Planck scale, the created particles make a negligible contri-
are required to obtain the correct trace anomaly. bution to the classical matter already present in the
_The first two terms in curly brackets in E0) agree  pqpertson-Walker universe under consideration. The terms
with the earlier dimensional regularization results of Parkery higher order in the curvature correspond to the asymptotic
and Toms, except for the step function teé— M?2) which series sum in Eq(30) and do not appear in Eq31). For
is purely imaginary and implies particle production Wm_ﬁ higher spin fields, the heat kern@nd the Green’s function
becomes negativéParker and Toms assum_Mj2>_O). This  generally has a matrix structure. In evaluating the effective
step function term originates from the identity f(ie)  action in such cases, one performs an additional trace over
=In|x|—i76(—x). Within the R-summed form, therefore, the 5| internal indices. It will be understood that such a trace has

particle production takes on a very simple form, w been carried out before arriving at ERO). f_2 will be un-

=0 being the threshold for vacuum instability, or the Cre-yerstood to mean the trace of the modified second

ation of particle pairs. It is conceivable that there are phys"SchWinger-DeWitt coefficient. The values of species-
cal situations where the imaginary part of the first two terms '

in the above formula for the effective action very closely d€Pendent coefficients for spin 1/2 e 1/12, nj=—4, p;

approximates the actual gravitational particle creation. In thig~ 1/2, andg;=3/2. _

paper, we do not deal with this issue further since it does not At low scalar curvature §R<m?), one may expand the

affect our results. logarithm in Eq.(31) in powers ofR. Noting thatf,; can be
Note that Eq(30) is only an asymptotic series expansion expressed as the linear combination

in inverse powers oM?, arising out of an expansion of the o

heat kernel which ignores, for example, terms that have es- fy=a0R+bR,R™+CiR,5,sR™7, (32

sential singularities as=0. Only the first two termsi.e. up

to f,) are necessary for renormalization and for the correcthe leading terms in the 1-loop effective action then give
trace anomaly. Also, these terms include the convergent in-

finite_ sum involv_ing the_ scalar curvature. Th_erefore, the ap- le—h(64772)‘12 nif d*J—a g{mfln(mf/ﬁf)
proximate effective action based on these first two terms is i

sufficient to indicate the non-perturbative effects coming

from the infinite sum of scalar curvature terms. This is the +MZER(L+2 In(MZ/ 7)) + E2R?(3/2+ In(mE/ 712))
form of the effective action that we employ. -
e + (DR WgR™+ R, R™Y) py IN(MZ/E2) + ]
+..} (33

Ill. RENORMALIZATION AND OBSERVABLE
GRAVITATIONAL COUPLINGS In the above expression, we have allowed for different renor-
malization points characterized by the different mass scales

| thmic d d f the effecti . th i . Changing these mass scales give rise to terms that can be
ogarthmic dependence of the effective action on the CUVay o peq into the bare gravitational action, as will be dis-

:ure n Eq.(Bg) I%adfs to non-trivial teffec'(cj; In strong c]:curva;] cussed below. However, one can still remove the
uf;e :eg!to_ns[ |. Before twe gé) or: Odath |scusts.|gnt'o Sufcth~i—dependence of the full effective action by using our
etiects, 11s necessary to undersiand the contribution o nowledgeof the observed gravitational coupling constants.

one_-loop effective action to the full grawtatlonal action in +"q precise, consider the bare gravitational action
regions of low curvature. Also, we will now consider the

possibility of having multiple particle species contributing to

the one-loop effective action. For particles of spiand 1, it Wy= f d4x\/—_g{(f<+ SK)[R—2(A+ 6A)]+ (ay+ Saq)R?
has been shown in R€f7] that all terms involvingR in the

heat kernel can be summed in a similar manner to the spin 0+ (a,+ day)R,, R+ (az+ daz)R,,,:R*"7° (34
case, in a simple exponential form. We will therefore con-

sider a generalization of E¢30) to the form where the counterterms are

Although we are dealing with a free field theory here, the
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A=—(1287%k) i, nimIn(ui/@?) —2koAo=A—1(6472) "1 nimi In(m?/ u?)
I I

- =k—Hh(32m%) " 12 n;m: (ln(mz/,,L )+ 1)
ox=(32m) " h >, nimPE In(u3l7i?) ?

A= 01— ﬁ(64772)*12 nigiz( |n(m|2/,uz%) + g
Say=(647%) S, & In(p2/72) | @37

a20=a2—ﬁ(64772)’1§i: nibi[ pi IN(M2/ u3) +q;]
5a2:(64772)_1ﬁ2 nibip; In( s/ ?)
I

a30=a3—ﬁ<64w2>*12 niGilp; In(m?/ 1d) +q;].

Saz=(64m7)" lﬁE nicip; IN(ug/&f). (359 Note that one can always absorb the dependence of the ob-
served constants on thg's into the bare constants. We thus
have some freedom in shifting terms within the above equa-

M12345are arbitrary constants of dimension mass, and th&ions. However, as already stated, we may, in principle, use

ni-dependence of the counterterms is required, followingour knowledge of\,, «, etc. in Eq.(36) atlow curvatureto

[3], to cancel theu;-dependence in the 1-loop effective explore the theory in regions of high curvature. Indeed, the

action® Adding Egs.(33) and (34) we obtain the full effec- full effective action in regions of high curvature now de-

tive action at low curvatures, as pends only on the observed values of the gravitational cou-
pling constants atow curvature on the physical particle

massesn; and on the values CE, (these are fixed for higher

WEWQJFlef d*—g{—2KkoA o+ KR+ aoR? s_pin fields. No_other parameters enter into the effective ac-
tion. To see this, we add Eq&81) and(34), use Eq.(35) to
+aZORaBRag+a30Ram§Raﬁya+ e (36) substitute for the counterterms, and finally use BY) to

eliminate the five mass scales in favor of the observed con-

stants. In this procedure, tlig dependence in Eq31) and
where the subscripb refers to the observed gravitational the u; dependence in Eq37) cancel the corresponding de-
constants at low curvatures. These are combinations of theendences in the counterterms of E85). Then the full
bare and induced constants, independefit;ofand given by  effective action below threshold is given by

W=Wg+W*

fd“x\/ { 2k ﬁ422nmln

J

2
m

2
Ko+ﬁ644722 nm§(1 21n

e
1 M? 3
— o . £2|R? ap aBys
XR—figzm 2 nip;In | T2t | ot figpg 20 mE | RE+ agoRupR™+ aaoRap, R, (39)

3In zeta function regularization, the divergent pieces of the one-loop effective action have been thrown away beforehand, which is why it
is not necessary to introduce those divergences into the counterterms(aitheugh this procedure of introducing counterterms could be
bypassed in zeta-function regularization, it is necessary in other regularization schemes, such as dimensional regularigiaiemsional
regularizatior 3], one explicitly keeps track of the divergent pieces and introduces corresponding divergences in the counterterms. Since the
divergences are ultimately canceled, one finally ends up with&®.in any case.
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wheref,; is given by grating out vacuum fluctuations. Furthermore, the quantity
m?/#2 is the square of the inverse Compton wavelength of
the field, and need not be large relative to the curvature sca-
lar. Therefore, it is reasonable to regard the logarithmic
terms as non-perturbative when expandindirit is conve-
Here, nient to avoid explicitly inserting factors df in the argu-
_ _ ments of logarithmic termgmore generally, in any term
Ko=(16mGo) 1, (40 which containgv1?), with the understanding that the mass of

whereG, is Newton's gravitational constant, arid, is the the field is intgrpreted as an inverse Compton waveleng_th.
usual cosmological constant. A perturbativeanalysis in, as used in Sec. VI of this

Equation(38) is a new result, relating behavior at high Paper, therefor'e treats _onIy the'quantum—vacuum correctipns
curvatures to values of the gravitational coupling constants df @ Perturbative fashion, while keeping the logarithmic

low curvatures. For scalar fieldgis the onlv undetermined terms intact. It is not inconsistent to do so, since it defines a
NS X 2 ny ; regime in which the semiclassical corrections to the effective
parameter in the effective action. For higher spins, the cor-

responding parameters have fixed values. We em hasizaCtion are much smaller than the tree-level terms involving
P gp ' b 1@0 and«x,, yet in which the scalar curvature is allowed to be

again that terms involving; and higher, omitted in Ed38),  of the same order as the square of the inverse Compton
constitute an asymptotic expansion in inverse powersl 6f wavelength. On the other hand, eractanalysis, as used in
and are therefore not necessarily expected to be physicalgec. v pelow, treats even the quantum corrections in an ex-
significant. The terms retained in E(8) are the minimal 5t fashion.
set of terms necessary for renormalization and incorporateé The reason we carry out both perturbative and exact
the sum of scalar curvature terms in the propagator. It ignalyses is as follows. Exact solutions play a significant role
readily checked that Eq36) constitutes the first few terms \yhen the perturbative analysis breaks daas signaled by a
in the low-scalar-curvature limit €R|<m?) of Eq. (38). rapid growth in the contributions of quantum corrections to
In subsequent sections, we consider the gravitational fielthe metrig. In order to obtain an understanding of the full
equations for a single scalar field, as derived from 38), dynamics of the metric, it is therefore necessary to construct
and their consequences. Comparison of Eg4) and (30) both perturbative and exact solutions to the semiclassical
gives, for scalar fieldsn;=1, pj=2, g;=3. In Sec. V, we Einstein equations.
study the case of constant curvature spacetimes. In later sec- It is well-known[13] that semiclassical equations of mo-
tions, we generalize the investigation to Robertson-Walketion can be perturbatively reduced in a manner such that the
universes containing matter and radiation. In the next secesulting equations only admit solutions that are perturbative
tion, we clarify the usage of the terms “perturbative” and in #. It has been further argued that such solutions are the

— 1
pifa=pifa+ 5 &R (39

“exact” in this paper. only physically viable solutions of the full semiclassical
equations since they do not exhibit runaway behavior in the
IV. MEANING OF EXACT AND PERTURBATIVE classical limit.
SOLUTIONS However, in Sec. V, we argue for the physical signifi-

i , , . _cance of our exact solutions. This argument is based on two
In the previous section we derived the effective action,ghservations. First, owing to the presence of a mass scale in
Eq. (38), appropriate to th&-summed propagator. All terms  he theory,# explicitly enters into the semiclassical equa-
multiplied by % in Eq. (38) will be called “quantum- {i5ng only via the dimensionless ratiesm?m2, . This ratio
vacuum” terms, also referred to as one-loop terms, becausg o necessarily small, although perturbation theory as-

they arise after vacuum fluctuations of the field have beeq,qq that it is. Thus, there could be physical effects at large
integrated out in a path-integral formulation of the theory.r not encountered in perturbation theory

However, n?t?‘ thlat fa(_:tﬁrs. @ must ?Isodpe mc!ude?j in the Secondly, we will find exact solutions that cannot be ex-
?rgurr:jent 0 rt] e logarithmic terms for dimensiona réasonSpanded in and have a well-defined limit as—0, i.e. they
ndeed, one has do not possess runaway behavior in the classical limit. Such

solutions must therefore be regarded as physical solutions.
For these reasons, we believe that exact solutions that do

An approach that is completely perturbativefinvould then not arise from perturbative reduction must be included in a
involve expanding out the logarithmic terms. However theComplete analysis of solutions of the semiclassical Einstein

factor of#i2 appearing in the above equation has its origins inequations, at least when a mass scale is present in the theory.
the generalized Klein-Gordon equation

In|M2/m?| =In|(m2+A2£R)/m?|. (41)

V. EXACT VACUUM DE SITTER SOLUTIONS

2
<—D+ F+§R) $=0, (42 In this section, we will consider exact solutions to the
equations of motion specialized to de Sitter spacetime. These
whose solutions contribute to theee-leveleffective action, eduations simplify considerably for spacetimes of constant
as Opposed to the quantum_vacuum or one_|00p effective a@urvature. This Simplification_allows us to include in the ef-
tion. That is, the? factor above does not arise from inte- fective action terms involving, and R?.
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As we shall see, there is a rich variety of constant curva- 2 _R
ture de Sitter solutions, with the scalar curvature being 2Ko(4Ao—R)=— W[ m*In |1t fmﬁ)
highly sensitive to the value of. We will argue that these 5 5
solutions are physically viable although they do not appear in _ EmZER 14 m ) _Esz m
the perturbative reduction approach. 2 YK M2
Consider, therefore, the effective action of E§8), spe- 1 R?
cialized to a single scalar field with mass and curvature - ___2(52_ i ’ (45)
coupling & 2°M 108

Note that we recover Starobinsky inflation by first taking

Ay—0 andm—0, and then taking the limi€é—0. The re-
sulting solution has scalar curvatuRe= 69120« % 1, in
agreement with Starobinsky’s resultsl]. The Starobinsky
solution is non-analytic ik and is not well-defined in the
R limit #—0. The existence of such solutions has motivated
arguments in favor of the perturbative reduction scheme

M2
m2

1

647? mIn

W= J d4x\/—g[ —2koAo— 1

2

+
m?

1
el -
K0+ f Wm E( 1-21In
[13], which discards such solutions in a self-consistent man-

1 2 3
— + 2p2 ner. .
h327rzln m2 foth 128777§ R ] (43 However, such arguments weaken in the presence of an

additional mass scale in the theory. To see this, consider
Eq. (45) rewritten in terms of the dimensionless variables
where we have assumed that the constants «,, andasz,

are negligibly smalf. y= R (46)
One may now use Eq$B1)—(B9) of Appendix B to ob- m?
tain the equations of motion resulting from the variation of )
Eq. (43). When specialized to a constant curvature maxi- _ Am
. e e r= : (47)
mally symmetric spacetime, in which 167k,

Recall thatm refers to the inverse Compton wavelength of

R the particle, sy andr are indeed dimensionless. In terms of
R,u.l/aﬁzl_z(g,u.agvﬁ_gvagp.ﬁ)a (44)  the actual mass of the particlejs given by
2
Mactual
o _ _ o =5, (48)
these equations yield a single algebraic equation satisfied by Mp
the scalar curvatur®:®
wheremp,= 16wk fi.
Equation(45) then takes the form

“4For the purposes of this section, it is actually sufficient to assume - — Ey 3— 1 ol = 1
that terms involvingay,, a,, and as, combine to yielda,f, (1+&y)in|1+gy|— 1+ 5 1+ E§y+ Ey & 1080
+negligible contributions, where, is some constant, because the y
variation of [d*x\/—gf, vanishes in a constant curvature space-

; 2 4A,
time. =—\y-— (49

SThe right-hand-sidéRHS) of Eq. (45) gives the trace of a stress- r m

tensor in de Sitter space which is not the same as the stress-tensor

for the Bunch-Davies vacuum staté4]. The stress-tensor on the The solution_fory is a function of three dimensionless pa-
RHS of Eq.(45) corresponds to a different state and is defined byrametersr, ¢ and Ao/mz. In a perturbative reduction ap-
variation of W. The leading terms of the stress-tensor agree withproach,r is regarded as a small parameter and the solution
those arising from the Gaussian approximation of Bekenstein anfbr y is constrained to be an analytic functionrofHowever,
Parker[8], which is known to be a good approximation in de Sitter it is plausible that the limiti—0 does not imply —0, i.e.
space, particularly for closely spaced points as are used in defininghat the massn is rescaled in such a manner thastays

the stress tensor. The additional term, (1/2)(1/1g8R$/M?) in constant(or roughly constantas #—0. For example, in
Eq. (45 yields the correct trace anomaly. Furthermore, this stressstring theory, one would expect that all masgasluding the
tensor is conserved, and vanishes in flat spacetife@). The  Planck massnp,) are generated by a single scétlee string
RHS of Eq.(45) diverges aM2=m?+ £R=0. Similar divergences scalg, in which case the dimensionless quantityould be
also occur in the stress tensor in the Bunch-Davies vacuum state independent of. In the absence of knowledge of the precise
de Sitter space, which diverges a’+[é+n(n+3)/12JR=0, nature of a fundamental unified theory, it is therefore prudent
wheren is a non-negative integer. to consider the possibility that the parameatés some finite
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FIG. 1. A plot of the LHS(boId-facecicurv)aand RHS(dashed FIG. 2. A plot of the LHS(bold-faced cgrv)aand RHS(dashed
line) of Eq. (49), as functions ofy, for £=0.033,r=10 andA, line) of Eqg. (49), as functions ofy, with ¢=—-0.03, r=16 and
=0. The slope of the dashed line increases dgcreases. A,=0. Asr decreases, the slope of the dashed line increases, and

the intersection point is shifted closer to the vayae—g’l. Recall

—m2 2 _ 2
quantity, not necessarily small, and to treat it in a non-thatr=m</mg, andy=R/m*.

perturbative fashiofi.In Sec. V B, we give a further justifi-

cation for the physical validity of solutions that arise without A. Solutions with £>0
expanding inr. Namely, we find that fo€<0, these solu- Forg> 1080 2 and A, =0, the only solution to Eq49)
tions have a well-defined classical limit Aor r) —0. is the trivial solutiony=0, because, foy>0, the LHS is

We now consider numerical solutions to the algebraica\yays negative, while the RHS is always positive. However,
equation(49). This equation, in general, has solutions with addition of a non-zero value of, allows the RHS to take
both positive and negative scalar curvature. We will, how-negative values, and leads to a non-trivial solution with a
ever, focus on the positive scalar curvature solutiops ( value ofy slightly lower than the classical valueA4/m?.
>0), corresponding to an inflating de Sitter universe. Fig-The deviation from classical behavior will typically be very
ures 1 and 2 are plots of the left hand sidi#lS) and right  small due to the extreme flatness of the LHS graph near the
hand side(RHS) of Eq. (49), as functions ofy, for various  origin.

values of the three parametersé andA,/m?2. The points) As one lowers the value of towards (1080)'2 the

of intersection of the LHS and RHS correspond to solutiond-HS acquires a local maximuiirig. 1). The position of this
for y. These plots are convenient ways of identifying themaximum is very sensitive to the value §fwhen¢ is close
solution space because the LHS depends solely on the pte the value (1080)Y2 For large values of (r=10 in the
rameter&, while the RHS is a linear function of, with  figure), a non-trivial intersection with the RHS graph is now
slope given by, and intercept given by ,/m?. In all plots, ~ Possible, withy-values ranging from about a hundred to ex-
therefore, the straight line is the RHS of E49). Increasing tremely large values, depending on the precise values of
the value ofr will decrease the slope of the straight line. andr. The presence of a non-zefqg, term would shift the
IncreasingA , will shift the straight line up. It is convenient RHS graph down and increase the valugyaven further.

to consider two ranges of values dfthat give qualitatively When £= (1080) ¥2=0.03042.., the non-trivial inter-
different behavior of the LHS of Eq49). These arda) ¢  Section point of the two graphs will occur at an extremely
>0, and(b) £<0 large value ofy, for typical values of. One may obtain an

analytical estimate by considering an approximation to Eq.

We will find that there exist solutions with non-zero sca- g e
(49) for largey, after settingé=(1080) 2. This gives

lar curvature, even i\ ,=0. Forg> 0, the most interesting

solutions of this type exist for values @f very close to
_ y 2 3

(1080) 2. For other values o&>0, there are either no |nm=7\/108 7 (50

solutions or solutions for which the scalar curvature is of

orderm,%,, which may thus be unphysical.

For £<0, we find that there exist solutions witR=  Forr=1 (m=mp), the above equation implies a valueyof
—m?/ &, for a large range of values gfandr, and for small  approximately equal to about ¥0 This valueincreasesasr
and large values of\,/m?. These solutions are of greater decreasegi.e. by decreasingn and holdingmp, constant
interest for the purposes of this paper, and the reader magnd vice-versa. HoweveR:mzy:mf,lry will acquire a
safely skip directly to Sec. VB. minimum value for some>1. Also, addition of aA, term

tends to decrease the valueyfind, consequenthR.
For 0< ¢<(1080) %2, there is a non-trivial solution with

*Different arguments for the physical significance of solutions that@n extremely large value ¢f. An analytic approximation to
do not arise from perturbative reduction have been given by Suekd. (49) can be made once more, after noting that the term
[15]. involving y2 in the LHS is now the dominant terfithis term
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vanishes wherE=(1080)"¥2]. Thus we obtain, in this re- €xceptionally large values, we have a solution R

gime, with zero cosmological constant, —m2gt plus a small correction. The presence of gterm
has the effect of shifting down the RHS graph, leading to
_Am 1 —EZ) -t (51) larger values of the scalar curvature. However, in this case, a
Y= | 1080 second solution will appear with<— &1, they-value be-

ing very close to the classically expected value4m?, for
y therefore scales linearly with™ 1. However, the scalar a small cosmological constant. As the cosmological constant
curvature itself is essentially independentrofin this re-  is increased to large values this second solution will now

gime, and is given by approachy=— &1, while the first solution now corresponds
_ to the classically expected large valueyof The solutiony

R= 4wm§|(i _EZ) (52) =— & Lis therefore fairly robust; it exists for large ranges of
1080 the parameter and for both small and large values &f .

] . . Numerical investigation shows that such a solution also ex-
The two equations above predict thator R) will decrease ists for a large range of values &f

as ¢ decreases. This behavior is borne out by numerical It should be noted thatyavalue slightly larger thaﬁ_g—l

study. However, whei is extremely small¢y can become  corresponds to a small negative valueM?, and therefore
small, and the larg&y approximation breaks down. For very the effective action evaluated on such a solution acquires a
small values of¢, the solution fory then increases with small imaginary part giving rise to a small rate of particle
decreasing,? giving y—o asé—0", as expected from Eq. productior!. In th.e regime we consider ip .this paper, the ef-
(49). fects of this particle production are negligible.

To summarize, fog>0 and A,=0, non-zero solutions The qualitative behavior of the LHS of E¢49) for &=

— _ —1/2 ; T : e
for constant scalar curvature occur #walues very close to (.1080) IS very similar t.o the behawor.fog— 1, gnd
(1080)~ 2 [this corresponds to the curvature couplifige- quite insensitive to the precise valuergfas in the previous
ing very close to the conformal fixed poifit= 1/6, because case. The solution will now be very close jo=—¢ *
(1080) *2is a small numbdr Such solutions also occur for =32.86.., implying that the ch:aIar curvature is about an
€=(1080)"¥2 however, in this case, the curvature is typi- order of magnltudg [arger than?, for.a Iarge_range of val-.
cally many orders of magnitude greater than Planck size, andes ofm. Again, this is a robust solution as discussed earlier.
may thus be unphysical. To summarize, foré<0, we find physically reasonable
values(in the sense that they could be small with respect to
B. Solutions with £<0 m,%,) of the scalar curvature, approximately given by

ForE<0, the LHS of Eq.(49) becomes singular at= Re _ 12_52 (53

—Efl. This value ofy becomes an exact solution to E49) ¢
in the “classical” limit r—0, as can be seen by lettiryg=

—§’1+§(r) in Eq. (49), and showing thak(r)—0 asr  for g Jarge range of values of & andA,. The approxima-
—0. This fact constitutes another argument against the pefion, in Eq. (53) breaks down ifA,=0 andr>1, in which
turbative reduction scheme in this case, because the scalggse the only solution corresponds to an extremely large sca-
curvature does not exhibit runaway behavior in the classical, «yrvature R> m%u) whose precise value depends on

limit. As we shall see, most solutions witk< 1, will lie very — . . _ . . .
— 1 e D . andé. This largeR solution will give rise to a large imagi-
close to the valug=— & . Significant deviations from this 5y contribution to the effective action, and so one expects
value will occur only for very large values of or when a  q5ious amounts of particle production to occur, which
non-zeroA,, term is present. _ could, in turn, bring the scalar curvature down to reasonable
Figure 2 is a plot of the LHS and RHS of E@9) with  y51yes. This would be consistent with a gravitational Lenz’s
representative values=—0.03 andA ,=0. An exaggerated |aw mechanisni1,16,17. We do not address this issue here.
value ofm=4mp, is used to fully display the graph. How- |nstead, we now turn to a perturbative analysis of the semi-
ever, as we will see, the solution fgris largely insensitive  classical Einstein equations.
to the precise values @f andr.
The straight line LHS graph intersects the RHS graph ata v THE GROWTH OF QUANTUM CORRECTIONS
y-value very slightly larger than-¢ 1 (=33.3... in this TO THE SCALAR CURVATURE

casg. The corresponding scalar curvature is given Ry . . , _—
— -1 The steen vertical ascent of the LHS araph near In this section, we will analyze, the effect of logarithmic
=m-¢ . P grap curvature terms in the effective action on a Robertson-

the valuey=— ¢ * implies that the solution foy is not very  \walker cosmology. We analyze this effect in two ways, valid
sensitive to the precise value of (note that decreasing  for spatially open, closed and flat models. First, we consider
increases the slope of the straight line, giving a solution eveR universe with mixed matter and radiation and assume that
closer to the value~1). For most values of, except for the scalar curvature is slowly varying so that its derivatives
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can be ignored. This analysis shows that perturbatage trace of the semiclassical Einstein equations, expressed in
defined in Sec. IY quantum corrections to the scalar curva-terms of dimensionless variables, then takes the form of a
ture can sharply increase in magnitude near a tipteat is  simple generalization of Eq49):

determined bym andg In particular, the existence of an

ultralight mass in the theory can lead to significant quantum — — &y 3
effects close to the present time. Since the background clas- r(1+é&y)n|1l+éy[—r—— |1+ E§y
sical scalar curvature is decreasing, the effect of quantum 1+ey
corrections is to prevent the scalar curvature from decreasing 1 [_ 1

further. However, as quantum corrections become more and + _y2 £ — _) +v]

more significant, perturbation theory breaks down and can- 2 1080

not be relied upon to give the full behavior of the scalar

curvature. We then carry out a second analysis of the behav-

ior of the scalar curvature for all times aftgr, without using

perturbation theory. This second analysis indeed reveals that,

for t>t;, the scalar curvature tends to decrease extremelwhereT is the trace of the classical stress tensor, sl a

slowly, ultimately approaching a constant value. The analy-quantity which vanishes in de Sitter space:

sis thus displays consistency with the original assumption of

slowly varying scalar curvature. 1 ) v
In Sec. VII, we will use the behavior of the scalar curva- V= 180m? ZR “RuR

ture to construct a model universe in which a matter-

dominated cosmology transits to a mildly inflating de Sitter All quantum contributions are grouped in the LHS of Eq.

=2m| y+

) , (54)

2
2m°k,

. (55

cosmology at the time; . (54), while its RHS contains classical terms.
Consider now the full semiclassical Einstein equations
A. Quantum corrections to the scalar curvature with a classical stress tensor source representing mixed mat-

. . . . ) ter and radiation,
In this subsection, we will consider a classical Robertson-

Walker cosmology with mixed matter and radiation, and
treat the quantum effects involving logarithmic curvature G’”=§
terms in a perturbative fashiofrecall the discussion in 0
Sec. IV, which shows why an expansion of the logarithm
itself is not appropriate in a perturbative treatment Ofdensities respectively, arfdi) represents the quantum con-
guantum-vacuum terms The universe will deviate from Iributions,. The equatic;n above implies

classical behavior when the quantum effects become suffi-

4 1
Pmt §Pr) ufu”+ §Prg‘” +0O(h), (56)

where p,, and p, represent the matter and radiation energy

ciently large. The essential idea is to allow for the possibility R o Ro
of quantum effects being significant at the present time. We y=-—>= 2—2+ —, (57)
will find that this is possible if there exist very light mass m KoM= M
fields with £<0. 2

Our starting point for the analysis here is the effective = [Pm+(4/43)§r] +0O(h), (58)
action of Eq.(43). Variation of this effective action, special- 960m™

ized to a Robertson-Walker metric, will generally yield terms

involving derivatives of the scalar curvatuRe in additionto ~ WhereRq, as defined by Eq57), is of orderf:. In a treat-

the terms of Eq.45). In this subsection, we assume that MeNt perturbative ik, we replacey andv in the LHS of Eg.
terms involving derivatives of the scalar curvature are negli{>4 by their classical values using the above equations, be-
glble We will find that, for |Ight mass fieldsmj<mp|), this cause the factor is of ord_erﬁ. Thls_treatment is valid as
assumption is justified because derivatives of the scalar cufo"9 as the LHS of Eq(54) is small with respect to the term
vature remain small until the magnitude of the quantum-7 1/(M°k,) in the RHS. In the RHS of Eq54) we keep the
vacuum contribution to the scalar curvature itself becomeguantlzjm-vacuum contribution tg as well (i.e. the term
comparable to the classical contribution to the scalar curvaRq/M?). Furthermore, in a Robertson-Walker cosmology
ture. Beyond this point, the perturbative analysis breakd'ith metric
down. In the next subsection, we carry out an exact analysis,
valid for t>t;. o ds?=—dt?+a(t)?
Although we ignore derivatives of the scalar curvature
when carrying out the variation of E@43), the resulting .
semiclassical Einstein equations differ from E45) in two ~ Wherek=—1, +1 and 0 denote spatially open, closed and
important respects. First, the fact that the Robertson-Walkefat universes respectively, we hapgea° andp,=a™*. It
universe has fewer symmetries than de Sitter space givdg then more convenient to expregsandv in terms of the
additional terms in the semiclassical Einstein equations. Sedresent matter and radiation densitjgg andp, , and the
ondly, we will include a classical stress tensor source repreredshiftz. We therefore introduce new dimensionless vari-
senting mixed matter and radiation. We also Agt=0. The  ablesd,, andd,, given by

2

1—kr?

+ erQZ), (59
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whereay is the scale factor at the present time. Furthermore,

p
e Um= "o , (60) owing to the fact that we will study the effect of very light
Mp Ko masses, we also redefine the rat@m3,:
. Pro - r=e S, (63
e r= y ) ) ) i
sz,|:<0 Equation(54) can now be rewritten by substituting fgrand
o v using Egs.(57) and (58) with the redefined variables of
and the redshifz given by Eqgs.(60), (61), (62) and(63) above. The resulting equation,
correct to leading order ik, gives an expression for the
1+7= ao (62) quantum correction to the scalar curvatuRg,, as a function
a’ of redshift. Dividing byR = pm/(2«,), we obtain

Ro_  Rg
Rcl_pm/(ZKo)
dm—2S Y 3,5-d
e’m 1— 1 1 1+2)3e> fm
=——— ) | 1+ = &(1+2)%5 I |In|1+ = &(1+2)%e5 9n| - s2+2)
m(1+2z)3 2 2

1—
1+§§(1+z)3e5’dm

_ 11—, 1 1 1
X| 1+ —£(1+2)%5 Imt —| £2— — | (1+2)%?C I — —(1+2)7e?S & dn— — (14 2)82(S ) (64)
4 2 8 £ 108 ( 480( 960( )
|
We wish to find the redshift ranges for which the quantum (1+ zj)3= —0¢ ledmS, (65)

contribution to the scalar curvature is significant in compatri-
son with the classical contributiofre. Rqg/R., of order 1.
The values ofd, andd,, in Eq. (64) are determined by the In between these early and late regimes, the quantum contri-
radiation and matter energy densities at the present timéution to the scalar curvature is extremely small and slowly
Black body radiation at a temperature of 2.726 K gives avarying, and the evolution of the universe is well-
radiation energy density,,=7.81x10 34g/cn? [18,19.  approximated by its classical evolution.
This gives a value fod,=288.06. The matter density is not ~ Numerical investigation of the behavior of the ratio
known to good precision. With the conservative estimateRRy /R, for valuesé=—1 andd,,=280, and for very light
0>0.1 for the ratio of the present matter density to themasses $>150), further reveals that in the late regime of
critical density, andH,>50 km{s Mpg) for the Hubble con-  significance of quantum vacuum terrfie. nearz=z), the
stant at the present time, we obtaipne>4.70 scalar curvature sharply increases zasz;. Sincez; de-
x 10 %g/ecn? for the matter density. This givesl, pends orS[from Eq.(65)], and therefore om, the value of
<281.66 for the exponent of E¢60). m dictates the value of; at which quantum vacuum terms
For very light masses>150), numerical investigations can become significant. As we shall see later, an ultralight
of the ratioRy /R, as a function of redshitt, using Eq.(64) mass can lead to quantum vacuum effects becoming signifi-
with [£]=1, reveal that there are two distinct regimes forcant at roughly half the age of the universe. However, it is
which this ratio is close to or larger than 1. The first suchimportant to note that when the scalar curvature begins its
regime occurs at extremely high redshifis<(107%), close to  rapid increase near redshiff, quantum effects begin to

the grand unified theoryGUT) scale.[In the standard cos-
mology, the Planck era occurs at a redshift of about,10
while the GUT era sets in at a redshift of about®LpIt is

dominate and the perturbative analysis itself breaks down.
For our purposes, we will only need the result that the
ratio Ry /R tends to rapidly increase as—>zj+ . The total

expected that quantum effects would play a significant role agcalar curvaturd, which can be written as

such high redshifts. Thesecond unexpected regime for

which the quantum-vacuum terms become large occurs at
relatively low redshifts. This second regime exists only for

£<0, and occurs when the factor¥ 1/2)£(1+z)3eS m in

Eq. (64) approaches zero. This corresponds to valueg of

near a redshifg; given by

R
R=RC,(1+—Q

RcI ' (66)

is thus a product of a decreasing functidR.() and an in-

063512-12



NONPERTURBATIVE EFFECTS OF VACUUM ENERGY . .. PHYSICAL REVIEW D 60 063512

creasing function. Foz>z;, R=R decreases, and as B. Behavior of the scalar curvature for t>t;

+ .
—7j , the quantityRq /R, tends to suppress the further de-  agt approaches; , the arguments of the previous subsec-
crease oR. tion show that the classical scalar curvature of the matter-

redshift at matter-radiation equalitg,. The quantityzeqis  now argue that the scalar curvature does not decrease further
defined by the condition of equality of matter and radiationsg, t>t;, i.e. it saturates to a value very close to, but slightly

energy densities: larger thanR; . That is, we will show that there exist ap-
proximately de Sitter-like solutions to E¢p4) for which the
Pmo(1+Zeg)®= pro(1+Zeg) . (67)  scalar curvature does not change significantly, although the
matter density keeps decreasing, eventually approaching zero
Combining Eqs(65), (67), (60) and(61), we get at very late times. We find that, for matter densities less than
pmj there exist de Sitter type solutions of E@4) of the
142, [ 2 )1’3 form
= — e4dm/3fdr78/3. (68)
142 \—¢ R=m?%(1—¢) (72)

such thafe|<1, andR is an extremely slowly varying func-

A li hat, = 288. <281.66.
s earlier, we suppose that,~288.06 anddy,=281.66 tion of the matter density. We will assume throughout that

Also, we will additionally assume th&>278.” With these

ranges, we obtain the massn is very light (r<1), and that- ¢ is positive and
of order 1.
147 AL To show that Eq(72) is indeed a solution, we substitute
Lo =] 5.61x10°2. (69 Eq. (72) in Eq. (54) and assume <1, so that one can effec-
1+2z¢q \ —¢ tively ignorev. Then Eq.(54) takes the form
e e—1 3 1 —
Thus, if — ¢ is of order 1, we have;<zg. elnje]— —{ 1+ =+ =(1— e)[1—(10802) 1] +v
It follows, for this range of masses, that the quantum cor- € 2 2
rections become significant at some time during the matter-
dominated stage of the expansion. In Sec. VII, we derive a 27 €—1 T 73
formula for the cosmic time; corresponding to the redshift T z + omlic. | (73
z;, for a spatially open matter-dominated universe. 0
To find the scalar curvature &, we use Eqs(60) and Define
(61) to write
T pm —
o= —f =L (74)
(1+Zj)3eS—de(1+Zj)3rgm£ 2mek, 2mek,
0
If pm=pmj, Wherepy,; is found from Eqs(65 and(70), &
Pmj =0; and if p,=0, 6=—¢ 1. We find that|¢ is always
= m small within this range of values. In fact, we show that it is
small for any positive value of. In the smalll¢ approxima-
tion, Eq.(73) becomes
_ 2Rqy(t) 70
m= 1 27 [ €
e ———+v|=—|-+5]. (75
2(1080 &2 r\¢

wherep,,; is the matter density at tintg, and the last equal-
ity in the above equation follows from the classical Einstein

equations. Comparing the above equation with E&p) To estimatey, we assume that it takes a value in between its

value for a classical matter-dominated universe at ttme

shows that . . . |
and a de Sitter universe, for which=0. In a classical
— matter-dominated universe, is given by Eq.(58) as
Rei(t) =m?/(— &) =m?. (71
_ o P
We will now carry out a second analysis, valid outside the V= 960MA A2 (76)
perturbative regime, which shows that the scalar curvature °
indeed approaches a constant valug-asz; (or t—t;). Attime t;, meijZZKomz- Therefore, at;, we obtain
vi=—(2408%) ", (77
"This assumption will be justified in the next section, where we
find the value of the mas@&nd therefores). We therefore assume that, fort;, v lies in the range
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—(240£2) 1<y <0. (78)
It is convenient to define an additional quantity
r 1
B=—(v——_). (79)
2m 2(1080 &2

Forr<1, andv given by Eq.(79), it follows that|B|<1.
One may now solve Eq75) for e. This yields

e=— %E[ar (82+4pE )], (80

In order to choose the correct sign in the above equation,
will require that the scalar curvature approach its classic

v;§ection show that the de Sitter phase is, to good approxima-

PHYSICAL REVIEW D 60 063512

Coupled with the findings of the previous subsection, in
which we showed that quantum effects neéatend to pre-
vent the scalar curvature from decreasing further, these re-
sults strongly point to a cosmology in which a matter-
dominated universe transits to a de Sitter-type universe. In
the next subsection, we outline such a model.

VII. MATTER DOMINATED EXPANSION LEADING INTO
ACCELERATED EXPANSION

The damping of scalar curvature, which begins at a time
close tot;, supports the idea that the universe undergoes a
transition from a matter-dominated phase to a mildly infla-
gonary de Sitter phase. The arguments of the previous sub-

value p,,/(2x,) for large values of the matter density, i.e. tion, described by a solution wit<0 andR=m?, of the

for pm/(2m?k,)>1. For large matter densities,is a large

type found in Sec. V, and that the presence of matter does

negative number. To get the correct value of the scalar curot significantly change such a solution. Within a rigorous
vature, one must then choose the solution with the minug@mework, the matter-dominated and de Sitter phases must

sign in the above equation. Even though this value isfnot

be joined in a sufficiently smooth manner to guarantee regu-

small, continuity demands that we keep the solution with thdarity of all curvature components at the joining point. How-

same sign for alls. Thus we have

e=— %E[a— (82+4pEHY2). (81)

It is clear, for5>0, that|€| is always a small number, reach-
ing a maximum value ofy B¢ at §=0 (we have assumed

thatr<1).

The approximationje|<1, which was made in order to

arrive at the solutiori81), is thus valid fort=t; . Within this
range of time, the value of evolves from

e(t)=VpE (82
whenpn,=ppy; (6=0), to

e(o)=—B¢ (83)

whenp,=0 (6=—¢1). The fractional change in the scalar

curvature during this range of time is given by E@2) as

AR —mfAe

R =m2—A€, (84)

becausde|<1 during the entire time range. Thus, witte
= €() — €(t;), we obtain

AR = =
A B eeR N

because <1.

To summarize, we have argued that, even in the presencfE
of matter, there exist de Sitter type solutions in which the
scalar curvature is very close to the valmé, and is very
slowly varying, as long as the matter density is such that

=0. For large negative values éf i.e. largep,, in Eq. (74),

it is clear that the scalar curvature continuously changes to

the scalar curvature of a matter-dominated universe.

ever, the perturbative analysis of the previous subsection
shows that the quantum effects become significant over a
short timescale, after which the scalar curvature approaches a
constant value. This effect allows us to consider, for com-
parison with observation, an approximation in which an ex-
act classical matter-dominated solution is joirtatitimet;)

to a de Sitter solution generated by quantum effects. Assum-
ing [20] a spatially open cosmologhk=—1 in Eq. (59)],

such a model is represented by the following scale factor:

1
a(t)=cy sintf(y/2), t=5Co(sinhy—), t<y

a(t)=a 'sinfa(t+cy)], t>t;. (86)

Here, s parametrizes(t) andt during the matter-dominated
stage. Fot>t;, including the present timg,, the universe
is in a de Sitter phase.

Of the five parameters,, «, tj, ¢, and the present cos-
mic time ty, that characterize the model based on &%),
not all are independent. The scalar curvature at the time of
joining, R;, must be equal to the constant scalar curvature
during the later, inflationary phase, and is determined by the

single scalem= m/\/—_g. This requirement and the require-
ment of continuity of the scale factor at the joining point,
constitute two constraints on the five parameters. The re-
maining three parameters can, for convenience, be taken to
be (i) the present Hubble constaHt,, (i) the present ratio

of matter density to critical densit{2,, and (iii) the mass
scalem. Here, we express the five parameters defining the
odel of Eq.(86) in terms of these three basic parameters.
First, the scalar curvature during the later, de Sitter phase
is given by 12¢2. Setting this equal ta"?, as required by the

de Sitter solutions of Sec. V, we get the relation

(87)

S
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The scalar curvature during the matter-dominated phase is Finally, to obtain the present cosmic tintg, we again
given by R=3cpa 3. The classical Einstein equations, use the de Sitter solution, which yields
which hold during the matter-dominated phase, thus imply
to=a '[sinh }(@ag) —sinh Y(aaj)]+t;. (99
3o=(87G)ppja; = (87G) pmo?s (88)

All parameters in the model are now expressed in terms of

where a; and a, represent the scale factor gtand the m H, andQ,.
present time, respectively, angy; andppyo are the corre- In the next section, we will compare the predictions of
sponding matter densities. The second equality in the abov@is model to recent data from high-redshift type la superno-

equation follows from the fact thaina® is constant during yae[5], using magnitude-redshift curves obtained from our
the evolution, a consequence of conservation of the mattgfgdel.

stress-energy.

Thus, Eq.(88) gives VIll. COMPARISON OF THEORY WITH HIGH-  Z
colad=QgH2, (89)  SUPERNOVAE DATA; PREDICTION OF PARTICLE WITH
MASS ~1033EV
where QO=8wGpm0/(3H§) is the present ratio of matter
density to critical density.
The Hubble constant at the present time is given by Eq

Recent observations of type la supernovae at high red-
shifts indicate a negative value of the deceleration parameter
at the present time, i.e. an accelerating univgs$ePrevious

(86) as attempts to account for this phenomenon invoke a cosmo-
Ho=a coth a(ty+¢y)] Iogical constant, or a classical sc_alar field, quintessgdtke '
with unusual potentials. To explain the observed acceleration
a1l a2 2 effect by means of a cosmological constant, it must contrib-
3 Vitapat, 0 ute a term to the Einstein equations that is of the same order
wherea, is the scale factor at the present titge We solve ~ Of magnitude as that a_ttributed by the present matter density.
for ay, and use Eq(87) to get On the other hand, quintessence models that account for the
acceleration effect typically involve potentials that would
ap=(H3—m?/12) 2, (91)  give rise to nonrenormalizable quantum field theories.
In the model we present here, the valugfis fixed by
Combining Egs(89) and(91), we obtain low-redshift measurements, while the remaining free param-
Co= QoH2(H2— ?12) 32 (92) etersm and (), are determined by the SNe-la data. Once the

mass scalen is determined, no fundamental parameters in
We may obtain the scale factor at time a; , by requir- the effective action need be chosen to fit the supernovae data.

ing that the scalar curvature of the matter-dominated phasléurthermore, the theory we work with arises out of a renor-

— . . "y . malized effective action.
approach the valug™ ast—t; . This condition yields Comparison of our model to SNe-la data is achieved by

3¢, fitting calculated magnitude-redshift curves to the data. The
aj3=ﬁ7. (93 difference between the apparent magnituehg &nd absolute
magnitude M) of a source is given in terms of the luminos-
Substituting forc, from Eq.(92), we then have ity distanced, to the source, by
= 21 A72\1/3 142 _ 12 —-1/2 d
a;=(3QHg/m?)"*(Hg—m/12)~ < (94 m—M=5 |0910Mgc+25- (99)
To obtaint;, we use the matter-dominated solution in Eq.
(86) to get The luminosity distance itself is given §22]
;=2 sinh *\a;cq (95) d =(1+2)agr, (100
and

wherea, is the present scale factor, angdis the comoving

1 coordinate distance from a source at redshift a detector

tj= 5 Co(sinhy;— ;) at redshift_ 0. For Robertson-Walker universesis given by
2 the equation

=colV(ajce H(1+ajc ) noodr [z dZ
J, e iy o

—sinh *yajcq . (96)
To obtainc,, we use the de Sitter solution in E®6) to get Wherek=0, +1, —1 correspond to flat, closed and open
universes, respectively. For a spatially open universe, the
ci=a tsinh*(aa)) —t;. (97)  above equation reduces to
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z dz7'
il — -l
sinh rl—aof

eaR (102

Consider a universe represented by the model of &),

which is a spatially open matter-dominated universe prior to 0.5

timet;, and transits into a de Sitter universetatLet z; be
the redshift at timetj. For z<z;, the universe is in a de
Sitter phase, with Hubble constant given by

H=a cotha(t+c,)

(1+2)
= a“+ 2 .
Ch

(103

Substituting the above into Eq102), and performing the
integration, we obtain, foz<z;,

aoa 2

1+z

\/1+(aoa

r(z)=

(a )
(104

wherer,_(z) denotes 1(z) for z<z;. Forz>z;, the RHS
of Eq. (102 separates into two contributions:

zi dzZ z
sinh (r,2)=a,* fj - +f

wherer ;- (z) denotes;(2) for z>z;.

dz
H(z")

) . (109

PHYSICAL REVIEW D 60 063512

Delta (m—M)

1

0.01 0.1 1

FIG. 3. A plot of the difference between apparent and absolute
magnitudes, as functions of redshift normalized to an open uni-
verse with,=0.2 and zero cosmological constant. The points
with vertical error bars represent SNe-la data obtained from Ref.
[4]. The two solid curves represent the valuém m=3.7
x10 eV and Q,=0.4 (upper solid curvg and (b) m=3.2
X 10" 3eV and),=0.3 (lower solid curvé. The horizontal dashed
line represents an open universe witlj=0.2, and the dashed line
curving downward represents a matter-dominated flat universe.
Smaller values ofQ}, also would fit the datdsee text after Eq.

(112].

For comparison, the luminosity-distance-redshift relation
for a matter-dominated Robertson-Walker universe with zero
cosmological constant and ratid, of present matter density
to critical density, is

During the matter-dominated phase, the Hubble constanty ,(0,z)=2H5 Q05 Qoz+ (Qo—2)(V1+Qoz—1)]

is calculated as

H=\coa °+a ?
1+z —
=——+v1+cgay (1+2).
Qp

(106

Using Eq. (103 for z'<z; and Eq.(106) for z'>z, the

integrations in Eq(105 may be performed to yield

r1>(z)=sinr{sinh1[r1<(zj)]

([9(2) 1][g(zj)+1]”
[9(2)+1][g(z)—1]

(107

where

9(2)=1+coa, (1+2).

Equation(100 gives the luminosity distancel, ;, for this
model, as

(108

z<Zz;

di1=(1+2)aeri1-(2), i

=(1+2)apri1=(2), z>z. (109

(110

and for a spatially flat matter-dominate® {=1) universe,

dio(12)=2H, i+ z(J1+z-1). (112
It is convenienfsee Eq(99)] to define
A(m—M)(z)=51o (M) (112
%0 4 5(0.22) )"

Figure 3 is a plot ofA(m—M) vs z, along with a plot of
SNe-la data acquired from Rdf5]. The two solid curves
represend, (z)=d,((2). In plotting this quantity, all param-
eters appearing id, ; have been expressed in terms of the
three basic parameters, Hy and )y, using the relations
derived in the previous section. Also, the valuettf has
been set to 65 kng Mpo). Thus there are two quantitiesy
and(Q), which parametrize the solid curves. The two curves
shown in the figure give a reasonable fit to the data, and
correspond toa m=3.7x10 33eV and Q,=0.4 (higher
solid curve, and(b) m=3.2x10" eV and,=0.3 (lower
solid curve.

The general features of a family of curves parametrized
by (m,(),) are as follows. For a fixed value bf, decreasing
0, has the sole effect of increasing the redshift at which the
transition occurs, i.e. a smaller value Qf; will move the
transition further from the present time. Thus we cannot rule
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out the possibility that, with more observations at higher red-a (t)
shift, a better fit to the data could be obtained with lower
values of(},. However, the data do not allow the joining
points in Fig. 3 to occur at smalleg, so the values of},
shown in the plot do represent a rough upper bounélgin

our model, and lead to the conclusion stated earligs,
<0.4. As is well known, arearly inflationary epoch would
explain why(), is not very far from 1.

For a fixed value of),, increasingm has the effect of
shifting the curves up, as well as increasing somewhat the
redshift at which the transition occurs.

The two dashed curves in Fig. 3 are shown for compari-
son, and represenft) d, =d,,(0.2z) (horizontal dashed

(Mpc)

6000

4000

2000

(1079 yrs)

line), i.e. an open matter-dominated universe wiil,
=0.2, and(d) d_=d,»(1,2) (lower dashed curyei.e. aspa- al(t) (Mpc)
tially flat matter-dominated universe.

6000

IX. THE AGE OF THE UNIVERSE

. 4
As stated earlier, the only fundamental scale that enters 000

into the effective action of the model presented herenis
Nevertheless, as we show now, the fit of our model to super-
novae data predicts reasonable values for the age of the un
versetg.

The relations derived in Sec. VII, leading up to E(g5)

2000

£ (1079
5 10 ( yrs)

and(98), give t; andt, in terms ofm, Qg andH,. ForH,
=65 kmis Mpc) m=3.7x10 eV, and Q,=0.4 (upper
solid curve in Fig. 3 we obtain

FIG. 4. Two plots of the scale factor versus time for a spatially
open model universe in which an initially spatially open matter-
dominated cosmology evolves to a de Sitter solution. The param-

eters for the top model ara=3.7x10"33eV andQ,=0.4, and for

tj=5.66x 10° yr (113  the bottom modelm=3.2x10"3%eV and Q,=0.3. The dashed
curves represent a continuation of the open matter-dominated
to=1.34x 10 yr. (114  phase.

For Hy=65km{s Mpo),
=0.3, we obtain

il — 33
m=3.2x10""eV and Qo  paicle through the SNe-la data.

Models involving interacting fields may also give a tran-
sitionary universe, and such models would be natural exten-
sions of the free field model presented here as the simplest
case.

We emphasize once again that the solutions to the gravi-

Therefore, in both cases a reasonable value of roughly 1t@tional field equations we obtain, in particular the de Sitter
billion years is obtained for the age of the universe. Moresolutions foré<0, exist without the necessity of a non-zero
data at higher redshifts may lower the value®§ in our ~ cosmological constant term in the effective action. Further-
model, which would further increase the age of the universenore, these solutions are fairly insensitive to the presence of

Figure 4 contains plots of the scale factor versus cosmi@ cosmological constant term. In this manner, our model
time for the two solid curves of Fig. 3. In each case, the operiloes not suffer from the problem of fine-tuning of the cos-
matter-dominated universe that transits to the de Sitter phaggological constant, which exists in mixed matter and cosmo-

is shown continued as a dashed curve, for comparison.  logical constant models.
The present matter density and the predicted age of the

universe agree well with the current estimates. As in other
models, a value of), not far from 1 may result from a

In summary, we showed that a model in which a transi-period of early inflation. Further constraints 6y andm in
tion occurs from a matter-dominated to a de Sitter expansiorgur model could result from comparison to cosmic micro-
fits the SNe-la data. We call such a model, a transitionaryave background data, as well as from the time-temperature
universe. Also, we have proposed a free quantum field theorselationship during nucleosynthesis. We hope to carry out
effective action, Eq(38), in which such a transition evi- such a comparison in the future.
dently occurs. The existence of a particle of very low mass Finally, we would like to mention that th&-summed
would cause the universe to make a transition from thdorm of the effective action could have consequences for
matter-dominated to a new de Sitter stage. In our model, onearly universe cosmology as well. In particular, the existence
can say that we are now observing the mass scale of thisf an imaginary term in the effective action, implying par-

t;=6.03x10° yr (115

to=1.33x 10 yr. (116

X. CONCLUSIONS
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ticle creation effects, could play a role in the exit from ansions, by keeping the first three terms in a power series ex-

inflationary univers¢23]. In future work, we plan to pursue pansion off in Eq. (15). These terms include UV-divergent
these ideas as well as to carry out a dynamical calculatiogontributions to the effective action arising from the behav-
giving the details of the transition between the matter-ior of the integrand neas=0. All higher order terms are
dominated stage and the later de Sitter stage of the expansiQyyfinite.

[20]. Thus we obtain for the truncated one-loop effective action

1 . _Dj—
ACKNOWLEDGMENTS thrunzimw)fD/z(Mz)sz/zf dDX\/__gfo ids(is) P21
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X e M9 1 4 (is) 7T, (A2)
APPENDIX A: DIVERGENCES IN THE EFFECTIVE o
ACTION AS M2-0% where we have sef;=0 without loss of generality. The

. . L above equation has a finite piece corresponding to the sum
Consider the one-loop effective action in E§0) below a P P glon

threshold, i.eM?2>0. This action is then a real series which ©Ver all powers of higher tha? 2 in the expansion efing
is divergent asM2—0. The part of the first term in this I the integrand. Therefor®V,,, as defined above differs

series, involvingVl#, vanishes in this limit. However, subse- oM what is usually regarded as the divergent part of the
effective action by this finite piece. Here, we need to keep
o ! this extra piece in order to properly take the liti—0.

—0. All terms containing ; and higher orders correspondto |, performing dimensional regularization abddt=4, it

an asymptotic series in inverse powershof and therefore is convenient to define &D—4. One can evaluate the
do not give a valid expansion for small valuesMf. The proper time integral in Eq(A2), to get

behavior of this expansion &4°—0 is thus unphysical and
does not seem to be a cause for conéeriowever, the term . 2)-1 [ gixy—gl ot M2\ 2+°

f,In(M?) is also divergent in this limit and is physically ~ Viun=(327%) J'd NTO 7 I'(=2-4)
required for renormalization of ultravioléUV) divergences

and to obtain the trace anomaly. It is therefore of interest to s
examine in detail the divergent behavior of this term\is 2
—0. We will show here that this divergence, although infra- ) )
red in nature, can be absorbed into the ultraviolet diverExpanding the exponents and the gamma functions about
gences of the theory by a procedure similar to the way infra=0 (D=4), we get

red divergences an=0 are handled in the usual one-loop 1 3

effective action24]. To this end, we will consider the one- thrun=(32772)*1J’ d“x‘/—g( M4(—— Y, 2

loop effective action30), truncated up to the terms involv- 4-D 2 4

ing f,. We will work within the dimensional regularization

guent terms, involvingﬂ for =2, are all divergent ap?

2\ 6
7) r(—5)]. (A3)

1 —( 2
scheme, which is more useful than the zeta function scheme —=In(M?/ u?) | +1, - y—ln(MZ/,uz))}
; . . L . 2 4—D
in this context because the divergent terms are explicitly dis-
played. +O(D—4). (A4)
First, Eq.(4) implies the following proper time represen-
tation of the effective actioh9,25]: The expression above already indicates that the divergence

as M?—0 may be absorbed into the UV-divergencexs

—4 in the coefficient off_z. To see this explicitly, we may
setM?=0 in Eq. (A2) at the outset, and replace the upper
limit of the s-integration by some large numb&rto regu-

1 * larize the integralinfrared regularization We can then ex-
—Z(,22-DI2| 4Dy [—a | idelic)—1
_2('“ ) f d"x gfo ids(is) amine the divergent behavior as»«. We therefore have

[ » .
Wl:__TrJ dss le isH
2 Jo

i oy —DI2a—is(M2—i &)=, ; B _ L
X (41is) e F(x,x,is), (A1) thrun:(32772) Y u?)? D/2f dDX\/—_ngIdS(IS) D/2—-1
where we used Eq12). The truncated one-loop effective o
action before renormalization is obtained, in four dimen- xe 1+ (is)"f,], (A5)

which may be evaluated in terms of the incomplete gamma

functions y(«,Xx),
81t is possible that all higher order terms sum to give a finite

contribution asV?—0. An example of such a situation is the series _ ; 1| 4a D2 2\D/2
(1—x~1H~1=37_x~", which is a valid expansion fox>1. As W= (3277) d™V=gli 7 (e/u?) " y(—DI2,€T)
x—0, every term on the right hand side is divergent, although the o

left hand side vanishes. +i 702 2 (el u?)P?72y(2—D/2,eT)}. (AB)
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We may now take the limie— 0 of the above expression by in this limit. However, this divergence can be absorbed into

using the power series expansi6]

y(a,x)= E

1) Xa+n

n=0 nl(a+n) (A7)

This yields, after some simplification
trun 32772) 1J' d4X\/ ( 2+f_2(4 ZT))
O(D - 4)] . (A8)

the UV-divergence ab—4.

We therefore find that the logarithmic divergence in the
effective action in the “infrared” limitT—c may be can-
celed by counterterms of the same geometric form as the
ones introduced into the bare gravitational action to cancel
the UV divergences aS—4, i.e. a counterterm proportional

to f, is required here. The infrared problem in the partially
summed form of the effective action is thus handled in a way
similar to the infrared divergence in the usual effective ac-
tion atm=0, where a counterterm proportional tg is re-
quired.

The analysis above may be carried out in a similar manner
even when we do not sé&f?=0 at the very beginning but

As T—, the first term in Eq(A8) drops out, leaving be- yather letM? tend to zero from positive values. Equation
hind a term proportional toz which diverges logarithmically (A8) is recovered at the end of the calculation.

APPENDIX B: VARIATIONS OF CURVATURE INVARIANTS

Here we will list the variations of the curvature invariants that occur in the effective action i(38qThey are as follows:

5(Jd4x\/—_gR>=—f d*x\/—gdg,,,G"" (B1)

5“ d“x\/—ng):jd“xx/ 5gW: g*’R?>— 2RR*"+ 2R""*—2g*"0R (B2)

5(Jd4xv—9|nlM2/mZI)=J d4x\/—gb‘gw[ — €M T2REY— £gPY(2M TOEPR. R~ M T E0R) + £(2M TOR#R”

— 1
— MR + Eg’”ln|M2/m2|] (B3)

2+M2

— —m
5“ d4x\/—_gR|n|M2/m2|)=f d4x\/—_gﬁglw[—G’“’In|M2/m2|—§M2RR“”+§—M4 (R#'—g*[R)

__2m?+M?
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