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Critical collapse and the primordial black hole initial mass function
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It has normally been assumed that primordial black holes~PBHs! always form with a mass approximately
equal to the mass contained within the horizon at that time. Recent work studying the application of critical
phenomena in gravitational collapse to PBH formation has shown that in fact, at a fixed time, PBHs with a
range of masses are formed. When calculating the PBH initial mass function it is usually assumed that all
PBHs form at the same horizon mass. It is not clear, however, that it is consistent to consider the spread in the
mass of PBHs formed at a single horizon mass, whilst neglecting the range of horizon masses at which PBHs
can form. We use the excursion set formalism to compute the PBH initial mass function, allowing for PBH
formation at a range of horizon masses, for two forms of the density perturbation spectrum. First we examine
power-law spectra withn.1, where PBHs form on small scales. We find that, in the limit where the number
of PBHs formed is small enough to satisfy the observational constraints on their initial abundance, the mass
function approaches that found by Niemeyer and Jedamzik under the assumption that all PBHs form at a single
horizon mass. Second, we consider a flat perturbation spectrum with a spike at a scale corresponding to horizon
mass;0.5M ( , and compare the resulting PBH mass function with that of the MACHOs~massive compact
halo objects! detected by microlensing observations. The predicted mass spectrum appears significantly wider
than the steeply falling spectrum found observationally.@S0556-2821~99!00918-2#

PACS number~s!: 98.80.Cq, 04.25.Dm
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I. INTRODUCTION

There has been a lot of interest recently in numerical st
ies of gravitational collapse, carried out for a wide range
matter models, which appear to exhibit critical phenome
self-similarity, universality and power-law scaling of th
black hole mass~for a review and extensive references s
e.g. @1#!. Consider a smooth one-parameter family of init
data described by a parameterp, such that forp.pc a black
hole is formed and forp,pc no black hole is formed. Nu-
merical simulations~originally carried out by Choptuik for
the case of a massless scalar field@2# and by Evans and
Coleman @3# for a perfect fluid with equation of statep
5r/3) show that the black hole mass,MBH , scales as

MBH}~p2pc!
g, ~1!

for p.pc , whereg is a universal scaling exponent which
independent, for a given matter model, of the choice ofp and
the initial shape of the density fluctuations.

It has been pointed out by Niemeyer and Jedamzik@4#
that this work has an astrophysical application to primord
black hole~PBH! formation. For critical phenomena to oc
cur, the initial distribution of fluctuations must be such th
most of the collapsing fluctuations have magnitude not
far above the critical magnitude for collapse. This situat
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arises in the formation of PBHs from density perturbations
the early universe, since the distribution of large PBH for
ing fluctuations falls off rapidly, roughly asP(d)}exp
(2d 2) whered5dr/r. Generally this is not the case durin
astrophysical black hole formation, such as stellar colla
where mass scales such as the Chandrasekhar mass a
troduced due to degeneracy pressure and other effects vi
ing the scale-free behavior.1

Niemeyer and Jedamzik@5# have investigated the evolu
tion of spherically symmetric perturbations of the ener
density in unperturbed Hubble flow during radiatio
domination2 for three different perturbation shapes at horiz
crossing: a Gaussian overdensity, which tends to the ba
ground Friedmann-Robertson-Walker metric at infinity,
Mexican Hat function, and an unspecified fourth-order po
nomial. In the latter two cases the inner overdensity is co
pensated by a surrounding underdense region. The in
conditions are tuned to super-criticality by adjusting the a
plitude of the perturbations. Their simulations confirm t

1Such physical effects may also occur on small scales in the
of PBH formation so that arbitrarily small mass PBHs will not b
formed, but this does not affect the general validity of Eq.~1!.

2Realistic PBH formation differs from the study of perfect flu
collapse in Ref.@3#, where the initial data were embedded in a
asymptotically flat space-time, in that the background spacetim
Friedmann-Robertson-Walker.
©1999 The American Physical Society09-1



B

on
de

ia

n

a
da
it
ed
a

n
ith
va
es
io
n
if
er
s
th
I

.
er

en
th

ac

s
i-

th

e-
in
e
s,

un
e.

w
g

e
re-
n

in
tic
w

th-
hed

the

f its
om

c-
ian

rge
n

on

ANNE M. GREEN AND ANDREW R. LIDDLE PHYSICAL REVIEW D60 063509
existence of the mass scaling relation in the case of P
formation:

MBH5kMH~d2dc!
g, ~2!

where MH is the horizon mass at the time the fluctuati
enters the horizon,d is defined as the additional mass insi
the horizon radius in units of the horizon mass andg
'0.37 for all three shapes of perturbation. For Gauss
shaped fluctuationsk511.9 anddc50.70, for the Mexican
Hat fluctuationsk52.85 anddc50.67, and for the fourth-
order polynomialk52.39 anddc50.71, suggesting thatdc
;0.7 for all perturbation shapes. This value ofdc is about a
factor of 2 larger than the value found analytically@6# by
requiring that the over-dense region exceeds its Jeans le
at the time that it stops expanding.

The formation, at a fixed horizon mass, of PBHs with
range of masses is a significant change from the stan
picture where it is assumed that all PBHs are formed w
MBH'MH @7,6#. Niemeyer and Jedamzik have determin
the PBH initial mass function under the assumption that
PBHs form at the same horizon mass. This assumptio
often used; for example, with a power-law spectrum w
spectral index greater than one it is assumed that the
majority of the black hole formation occurs at the short
possible scale. The usual justification is that PBH format
is extremely sensitive to the amplitude of the perturbatio
and hence inherits a strong dependence on scale even
variation of the spectrum is weak. It is not clear, howev
that it is consistent to consider the spread in the mas
PBHs formed at a single horizon mass, whilst neglecting
range of horizon masses at which the PBHs are formed.
vestigation of this issue is the main purpose of this paper
the end, we shall in fact find that this assumption works v
well in the cases of astrophysical interest.

Heuristically, to find the mass of a PBH formed at a giv
point in space we need to smooth the density field at
point, d(x), on a range of mass scales, to produced(M ),
where M is the smoothing scale, and then evaluate e
d(M ) at the time when that scale crosses the horizon,M
5MH . If d(M5MH).dc then a PBH is formed, with mas
given by Eq.~2!, at that horizon mass. However, that cond
tion will be satisfied for a range of smoothing masses;
actual mass of the PBH formed at the pointx is given by the
largest value ofMBH found as the smoothing scale is d
creased, which will not be the largest smoothing scale giv
a density contrast above the threshold due to the depend
of the mass on (d2dc). To find the optimal smoothing mas
we use the excursion set formalism@8# which was introduced
in large-scale structure studies to determine the mass f
tion, merger rates and clustering of collapsed objects
@8,9#.

II. THE EXCURSION SET FORMALISM

A. Standard formalism

To examine the density perturbations on a given scale
must smooth the density field, as described above, usin
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window functionW(Rf ,ux2x8u) with radiusRf . The density
contrast is defined asd(x)5@r(x)2 r̄ #/ r̄, and the smoothed
version is given by

d~Rf ,x!5E
0

`

W~Rf ,ux2x8u!d~x8!d3x8

5
1

~2p!3E0

`

W~kRf!d~k!exp~2 ik•x!d3k, ~3!

where W(kRf) and d(k) are the Fourier transform of th
window function and the unsmoothed density contrast
spectively, withk5uku. The variance of the mass distributio
s2(Rf), as defined in@10#, is given by

s2~Rf!5E
0

`

W~kRf!Pd ~k!
dk

k
, ~4!

wherePd (k) is the spectrum ofd

Pd ~k!5
k3

2p2
^ud~k!u2&. ~5!

The effect of varyingRf , at fixed time, can be found by
differentiating Eq.~3! @9#:

]d~Rf ,x!

]Rf
5

1

~2p!3E0

`

d~k!
]W~kRf!

]Rf
exp~2 ik•x!dk

[h~Rf ,x!. ~6!

This has the form of a Langevin equation; the change
d(Rf ,x) whenRf is changed is given in terms of a stochas
force h(Rf ,x), which depends on the form of the windo
function used.

A particularly good choice of window function if one
wants to make analytical progress is the sharpk-space win-
dow function

W̃~kRf!5Q~12kRf!. ~7!

Its strength is that the only effect of decreasing the smoo
ing radius is to add new Fourier modes of the unsmoot
density contrastd(x) to the integral fors2. For Gaussian
perturbations, as we will be assuming throughout,3 these new
modes are uncorrelated with the ones already included in
integral on a larger smoothing scale. The change ind(Rf ,x)
caused by the new modes is therefore independent o
value on the larger smoothing scale, leading to a rand
walk without memory. For other choices of window fun
tion, including the commonly-used top-hat and Gauss
forms, this nice property does not hold since changingRf

3The assumption of Gaussianity has been challenged for la
PBH-forming fluctuations@11#; however it is reasonable to maintai
this assumption in order to assess the effect of critical collapse
the PBH mass function.
9-2
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CRITICAL COLLAPSE AND THE PRIMORDIAL BLACK . . . PHYSICAL REVIEW D60 063509
alters the contribution tos2 from modes ofall wave num-
bers. That said, although the sharpk-space window function
is calculationally advantageous, one would not expect ph
cal results to be all that dependent on the choice of smo
ing.

With the sharpk-space window function, Eq.~6! simpli-
fies to

]d~x,L!

]L
5z~L!, ~8!

independent of position, whereL[s2(Rf) is a pseudo-time
variable and

^z~L1!z~L2!&5dD~L12L2!, ~9!

the right-hand side being the Dirac delta function.
Equation~8! can be integrated to give

d~L1g!2d~L!5Ag G ~10!

whereG is a Gaussian random variable with mean zero a
unit variance, and since this equation is exact the step s
g, can be chosen freely. Stochastic processes which are
erned by this equation, such as self diffusion in a hard sph
gas, are known as Wiener processes. We can think of
values ofd(L) produced asL is increased~or equivalently
Rf decreased! as mapping out a trajectory, analogous to t
path of a self-diffusing particle. Each trajectory has the init
condition d(0)50 since in the limit thatRf˜`, d(Rf ,x)
˜0 by definition of the mean density.

Using Eq.~10! and a random number generator, we c
generate an ensemble of trajectories each representing
variation, with smoothing scale, of the smoothed dens
field at a different point in space. The trajectories ofd(L)
produced for a chosen range ofL values are independent o
the form of the power spectrum. To relate each value ofL to
a mass scale,M, we need to choose a form for the pow
spectrum and then use Eq.~4! to find the relationship be
tweenL andM.

B. Application to PBH formation

The trajectories give the variation ofd(M ) at fixed time;
however, the condition for PBH formation on a given sca
d(M ).dc , and Eq.~2! which gives the mass of the PBH
produced, apply when that scale crosses the horizon, i.eM
5MH . We must therefore choose a fixed time at which
generate our trajectories, and then evolve each value
d(M ) forwards, or backwards, in time to the epoch at wh
that scale crosses the horizon. During radiation domina
perturbations which are outside the horizon grow as@10#

d}t}MH ~11!

and therefore

dhc~MH!5d ft~MH!S MH

MH, min
D , ~12!
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where ‘‘hc’’ and ‘‘ft’’ denote quantities evaluated at horizo
crossing and the chosen fixed time respectively. For P
formation we required ft(MH).dc, ft(MH) where

dc, ft~MH!5dcS MH

MH, min
D . ~13!

III. POWER-LAW POWER SPECTRA

We first examine the case where the primordial pow
spectrum is a power-law

Pd ~k!}kn13 ~14!

@equivalentlyP(k)}kn, whereP(k)5^udku2& andn is known
as the spectral index#. Inserting this form for the power spec
trum into Eq.~4! givess2(R)}R2(n13).

During radiation domination the mass in a comoving
gion evolves, reducing as 1/a. Ultimately we are interested in
the mass associated with a given scale when that s
crosses the horizon; horizon crossing is given byR}1/aH
}t1/2}MH

1/2 @12# so that, still at fixed time,

s2~MH!5s2~MH, min!S MH

MH, min
D 2(n13)/2

~15!

where we have chosen our fixed time as the epoch imm
ately after the reheating period at the end of inflation wh
the horizon mass has its minimum value,MH, min, which is
determined by the reheat temperature,TRH, via

MH,min5MH,0S Teq

T RH
D 2S T0

Teq
D 3/2

. ~16!

We can obtains(MH,min) from the mass variance on th
present horizon scale, using the variation withM of the mass
variance at horizon crossing~for details see Ref.@12#!:

s~MH, min!5s~MH, 0!S Meq

M0
D (12n)/6S MH,min

Meq
D (12n)/4

,

~17!

where ‘‘0’’ and ‘‘eq’’ denote quantities evaluated at th
present day and matter-radiation equality, ands(MH, 0)
59.531025 using the Cosmic Background Explore
~COBE! normalization@12#.

There are a number of well-known constraints on t
abundance of PBHs over a wide range of mass scales; fo
up-to-date review see Ref.@13#. Typically only of order
10220 of the energy density of the universe, at the time th
they form, can go into PBHs. This leads to the constraint t
n must be less than about 1.25@12#, with some dependenc
on the value ofMH,min. It is obviously not feasible to run
simulations where only one trajectory in 1020 produces a
PBH. Using larger values ofn, around 1.3, a manageab
number of trajectories will form PBHs but the values
dhc(MH), and henceMBH produced will typically be larger
than whenn;1.25. We can however examine how the d
tribution of PBH masses behaves asn is decreased and com
pare its limiting behavior with the mass function found an
9-3
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ANNE M. GREEN AND ANDREW R. LIDDLE PHYSICAL REVIEW D60 063509
lytically by Niemeyer and Jedamzik under the assumpt
that all PBHs form at the same horizon mass@4#:

dN

d~ ln MBH!
5

1

A2psg
S MBH

kMH
D 1/g

3expS 2
„dc1~MBH /kMH!1/g

…

2

2s2 D , ~18!

where dN is the number of PBHs per logarithmic mass i
terval d(lnMBH), and s[s(MH). The Niemeyer and
Jedamzik mass function~NJMF! will be valid if the distribu-
tion of the horizon masses at which the PBHs are forme
close to a delta function.

As an example we chooseMH,min51010 g, which corre-
sponds toTRH'331011 GeV, and in Eq.~2! we use the
values ofk and dc from Ref. @5# for Mexican hat shaped
fluctuations. Our general conclusions will however be ind
pendent of these choices. Since the probability of PBH f
mation falls off rapidly with increasing horizon mass w
generate trajectories using 1000 equally spaced steps iL,
giving adequate coverage of the range of horizon masse
which PBHs form. Fig. 1 shows a typical PBH forming tr
jectory with n51.3.

We ran simulations producing 1000 PBHs for each on
51.310, 1.305, 1.300, and 1.295 and in each case found
distributions~smoothed with a Gaussian to remove the
fects of discreteness from the finite number of PBHs! of the
PBHs masses and the horizon masses at which they form
We denote these asx(MBH) andx(MH) respectively, so tha
the number of PBHs per logarithmic mass interval produ
in our simulations is given byx(MBH)d(lnM). The upper
panel of Fig. 2 shows the smoothed mass distributi
x(MBH), along with the Niemeyer and Jedamzik mass fu
tion ~smoothed on the same scale to allow direct comparis!
evaluated for MH51010 g and s50.032, the value of
s(1010 g) for n51.23~the maximum value ofn allowed for

FIG. 1. A typical PBH forming trajectory resulting from
power-law spectrum withn51.3. The dotted points are the value
of d(MH), the long-dashed line shows the threshold, at the fi
time for PBH formationdc, ft(MH), and the short-dashed line show
the typical size of perturbations on each scale,s(MH).
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MH,min51010 g by the observational constraints!. We nor-
malize all mass distributions to 1 at their peak to facilita
comparison. Asn is decreased, the PBH mass function ten
towards that found by assuming that all PBHs form a
single horizon mass. We can test this further by examin
thehorizonmasses at which the PBHs form, rather than th
actual masses. The lower panel shows the smoothed d
butions of the horizon masses at which the PBHs form
plotted along with a delta function centered onMH51010 g
and smoothed on the same scale. Asn is decreased the ho
rizon mass distribution narrows.

We therefore conclude that for power-law spectra, w
slope satisfying the constraints from the observational lim
on PBH abundance, the assumption that all PBHs form at
same horizon mass is a good approximation. Yokoyama@14#
has re-evaluated the constraints on the initial mass fractio
PBHs, taking account of the mass scaling relation under

d

FIG. 2. The smoothed distributions of the actual PBH mass
x(MBH) ~top panel!, and the horizon masses at their formatio
x(MH) ~lower panel!. From top to bottom on the right-hand side o
each diagram, the solid lines are forn51.310, 1.305, 1.300 and
1.295. In the top panel the dotted line shows the Niemeyer
Jedamzik mass function, evaluated fors(1010 g)50.032 and
smoothed on the same scale, while in the bottom panel the do
line is a smoothed delta function, centered onMH51010 g.
9-4
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CRITICAL COLLAPSE AND THE PRIMORDIAL BLACK . . . PHYSICAL REVIEW D60 063509
assumption. He found that the constraints on the initial ab
dance of PBHs are unchanged if formation occurs atMH
,531014 g. The limit on the abundance of PBHs wit
MBH5531014 g, which are evaporating today, coming fro
the g-ray background, now leads to stronger limits on t
initial abundance if 531014 g,MH,1017 g, as for horizon
masses in this range the low-mass tail of the distribution
a significant population light enough to be evaporating tod

IV. SPIKY POWER SPECTRA

Observations of microlensing of stars in the Large Mag
lanic Cloud@15# appear to show that a large fraction of th
halo of the galaxy is in the form of massive compact h
objects~MACHOs! with masses ofM;0.5M ( . It has been
proposed that MACHOs may be PBHs formed either dur
the QCD epoch@16,17# because of the reduction in pressu
forces at that time, or due to a spike in the primordial dens
perturbation spectrum@18# at the scale corresponding t
MH;1033 g.

The mass distribution of the MACHOs is steeply peak
In Ref. @15# the observed microlensing events are fitted w
power-law mass functions:

c~M !5AMa ~Mmin,M,Mmax!50 ~otherwise!,
~19!

wherec(M )dM is the mass fraction of MACHOs betwee
M andM1dM and A is determined by the mass fraction
the halo in the form of MACHOs. The maximum likelihoo
fit ~for their 8 event sample! is found for a523.9 and
Mmin50.30M ( .4

The spread in the masses of PBHs formed at a sin
horizon mass, found when critical collapse is taken into
count, raises the question as to whether or not it is possib
produce a population of PBHs with a sufficiently sharp
peaked mass distribution. There are several models of in
tion which produce a spike in the power spectrum on a p
ticular scale@18#. For generality, we will take the spectrum
of the curvature perturbations,PR , which is defined, analo
gously toPd , as@10#

PR5
k3

2p2
^uR~k!u&, ~20!

to have the form of a Gaussian spike at a scalekc
5keq(MH, eq/MH, c)

0.554.2531010Mpc21, corresponding to
MH, c51033 g, with variable amplitude and width,S, super-
imposed on a flat spectrum normalized to the COBE data
the present horizon scale. The COBE normalization gi
PR52.2831029 @10# so our spectrum is

PR52.28310291
C

A2pS
expS 2

~k2kc!
2

2S2 D . ~21!

4For a subset of 6 events~chosen to exclude a binary lensing eve
whilst maintaining the mean duration! the most likely mass distri-
bution is a delta function.
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In practice the results from taking a spectrum of this fo
are quite general, as the bulk of the PBH production occ
right at the peak of the power spectrum. A Taylor expans
in the vicinity of the peak requires only the amplitude a
curvature, and the two parameters of the Gaussian can re
duce an arbitrary function near the peak. Our results w
therefore prove extremely general.

With this more complicated spectrum, in order to obta
L(M )[s2(M ) we have to numerically integrate Eq.~4! for
eachPR we choose, where during radiation domination

d~k!5
4

9 S k

aHD 2

R~k!, ~22!

so that

Pd5
16

81S k

aHD 4

PR . ~23!

Figure 3 showss(MH) when C5131010 Mpc21 and S
523109 Mpc21.

We have run simulations for a range of values ofC andS
producing, in each case, 1000 PBHs, choosing the fixed t
at which the trajectories are produced as the epoch w
MH51033 g, corresponding to half a solar mass. Dens
perturbation spectra with the same value ofC but differentS
have the same value ofs(MH) on small scales (MH
,1033 g), decreasing asC is increased. Once again it is no
feasible to use spectra which produce PBH abundances
sistent with the observational limits. We therefore choo
values ofC andS which lead to larger values ofs(MH) on
small scales (;0.2) and examine the behavior of the PB
mass and horizon mass distributions at formation asC andS
are varied. Figure 4 shows an example of a PBH form
trajectory withS5109 Mpc21 andC51010 Mpc21.

The upper panel of Fig. 5 shows the smoothed distribut
of the PBH masses,x(MBH), for C5131010Mpc21 and a
range of values ofS. For comparison we also plot th
smoothed NJMF evaluated fors(MH51033 g)50.053, the

FIG. 3. The form ofs(MH) produced by a spike in the densit
perturbation spectrum withC5131010 Mpc21 and S52
3109 Mpc21.
9-5
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ANNE M. GREEN AND ANDREW R. LIDDLE PHYSICAL REVIEW D60 063509
largest value compatible with the requirement that
present-day density of PBHs is consistent with the pres
day age and expansion rate of the universe, i.e.VPBH,0,1.
For all the values ofS we used, the PBH mass function h
the same shape as the NJMF, but it is centered on la
values ofMBH , shifting towards smaller values ofMBH asS
is increased. The lower panel shows the smoothed distr
tion of the horizon masses at which the PBHs form,x(MH),
for the same set ofC andS values, along with a smoothe
delta function centered onMH5131033 g. The horizon mass
distributions have the same shape as the delta function
are centered at smallerMH . As S is decreased the center o
the distribution tends towardsMH51033 g.

Figure 6 shows the same distributions forS
513109 Mpc21 and a range ofC values. AsC is decreased
the center of the PBH mass function tends to that of
NJMF. The distribution of the horizon masses at which
PBHs form is independent ofC and centered atMH,1033 g.

The horizon masses at which the PBHs form are typica
smaller than 1033 g, since whilstPR has a spike centered a
this scale,s(MH) carries on increasing, asMH is decreased
until PR!C on that scale. By increasing the scale on wh
the spike is centered we could tune the horizon mass di
bution to be precisely centered atMH51033 g.

The PBH masses are typically larger than given by
NJMF with s(1033) g50.053, despite being formed a
smallerMH . This is because our spiky density perturbati
spectra all haves(MH);0.2, in order to produce a large
number of PBHs than is allowed by observations~as is dis-
cussed above!, leading to larger values ofd(M ) and hence
MBH .

Since the spread ofMH at which the PBHs form will be
extremely small if the amplitude of the spike, and hen
s(M ), is reduced so that the number of PBHs produc
satisfies the constraintV (PBH,0),1, then the PBH mass func
tion will be the same, to a good approximation, as that fou
by assuming that all the PBHs form at a single horizon ma

FIG. 4. A PBH forming trajectory produced whenPR has a
Gaussian spike withS5109 Mpc21 and C51010 Mpc21. The
amplitude jumps dramatically when the spike is encountered.
dotted points are the values ofd(MH), the long-dashed line show
the thresholddc, ft for PBH formation, and the short-dashed lin
shows the typical size of perturbations on each scales(MH).
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We therefore compare, in Fig. 7, the observed MACH
mass function,c(M ), with that determined by Niemeyer an

Jedamzik, Eq.~18!. Defining c̃(M )d(lnM) to be the mass

fraction in a logarithmic mass interval d(lnM), then c̃(M )

5c(M )M . Since dN/d(lnM)}c̃/M, then c(MBH)
}dN/d(lnMBH). That is to say, the mass fraction per un
mass interval is just proportional to the number density
logarithmic mass interval. We adjust the horizon ma
at which the PBHs are assumed to form atMH
52.0531033 g, so that the PBH mass distribution has t
same mean mass as the MACHO distribution. The mass
tributions are normalized to give the same total mass frac
when integrated.

The PBH mass distribution is much broader than that
ted to the observed microlensing events; its full width at h
maximum is six times larger~assuming the mass function
are normalized to the same mean!. Because the derivation
assumes all black holes form at the same horizon mass,
the narrowest possible mass function which can arise if

e

FIG. 5. The smoothed distribution of the actual masses,x(MBH)
~upper panel!, and horizon masses,x(MH) ~lower panel!, of PBHs
formed due to a spike in the density perturbation spectrum withC
5131010 Mpc21. From right to left on the right-hand side of eac
diagram, the solid lines showS513108,53108,13109,1.53109

and 23109 Mpc21. The dotted line in the upper panel shows t
smoothed Niemeyer and Jedamzik mass function evaluated
s(1033 g)50.053, and in the lower panel a smoothed delta fu
tion centered onMH51033 g.
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CRITICAL COLLAPSE AND THE PRIMORDIAL BLACK . . . PHYSICAL REVIEW D60 063509
critical collapse hypothesis is correct. The mass function
almost symmetrical, extending toMBH!MH . Currently
there is a robust limit, due to the absence of short-dura
microlensing events, that less than 20 percent of the d
matter in the halo of the galaxy can be in low ma
MACHOs (1024M (,M,0.03M () @15#, but the PBH mass
function is easily consistent with that. Whether or not t
width of the predicted mass function is in agreement with
observed microlensing events, which so far have been fi
with much narrower functions, is a much more pertine
question. As the duration of microlensing searches increa
and further microlensing events are observed, the MAC
mass function will be determined much more accurately,
if the MACHOs are PBHs then the true MACHO mass fun
tion will be considerably wider than the sharply-peaked m
functions which have been fitted to the current data.

FIG. 6. The smoothed distributions of the actual mass
x(MBH) ~upper panel!, and horizon masses,x(MH) ~lower panel!,
of PBHs formed due to a spike in the density perturbation spect
with S513109 Mpc21 and ~from right to left on the right-hand
side of each diagram! C51.7531010,1.531010,1.2531010,
131010, and 7.53109 Mpc21. The dotted line in the upper pane
shows the Niemeyer and Jedamzik mass function evaluated
s(1033 g)50.053, and in the lower panel shows a smoothed d
function centered onMH51033 g.
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V. CONCLUSIONS

Critical gravitational collapse, and in particular the sc
ing relation for the black hole mass, has an astrophys
application to PBH formation. We have used the excurs
set formalism to determine the PBH mass function, wh
formation on a range of mass scales is taken account of
two different types of power spectra. The first is power-la
density perturbation spectra, and the second is flat spe
with a spike on a given scale. In both cases we find tha
the parameters are adjusted so that the abundance of P
decreases, the mass function tends towards that found
Niemeyer and Jedamzik under the assumption that all
PBHs form at a single horizon mass. There are tight obs
vational limits on the abundance of PBHs, and for pow
spectra which satisfy these constraints the assumption tha
PBHs form at the same horizon mass is a good approxi
tion.

As an application, we then compared the Niemeyer a
Jedamzik PBH mass function with that of the MACHO
found from microlensing observations. The PBH mass dis
bution is considerably broader than the sharply-pea
simple mass distributions which have so far been fitted to
observed microlensing events. If the MACHOs are inde
PBHs, then future microlensing searches should unveil
broad spread of the PBH mass distribution.
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FIG. 7. The observed distribution of the MACHOs, given by E
~19!, is shown as the solid line and the Niemeyer and Jedam
mass function, given by Eq.~18!, as the dashed line. We fixMH

52.0531033 g so that the mass functions have the same mean.
curves are chosen to have the same integrated mass fraction.
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