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It has normally been assumed that primordial black h@RBHS always form with a mass approximately
equal to the mass contained within the horizon at that time. Recent work studying the application of critical
phenomena in gravitational collapse to PBH formation has shown that in fact, at a fixed time, PBHs with a
range of masses are formed. When calculating the PBH initial mass function it is usually assumed that all
PBHs form at the same horizon mass. It is not clear, however, that it is consistent to consider the spread in the
mass of PBHs formed at a single horizon mass, whilst neglecting the range of horizon masses at which PBHs
can form. We use the excursion set formalism to compute the PBH initial mass function, allowing for PBH
formation at a range of horizon masses, for two forms of the density perturbation spectrum. First we examine
power-law spectra witm>1, where PBHs form on small scales. We find that, in the limit where the number
of PBHs formed is small enough to satisfy the observational constraints on their initial abundance, the mass
function approaches that found by Niemeyer and Jedamzik under the assumption that all PBHs form at a single
horizon mass. Second, we consider a flat perturbation spectrum with a spike at a scale corresponding to horizon
mass~0.5M, and compare the resulting PBH mass function with that of the MACK@assive compact
halo objecty detected by microlensing observations. The predicted mass spectrum appears significantly wider
than the steeply falling spectrum found observationdB0556-282(199)00918-2

PACS numbs(s): 98.80.Cq, 04.25.Dm

I. INTRODUCTION arises in the formation of PBHs from density perturbations in

There has been a lot of interest recently in numerical studiEhe early universe, since the distribution of large PBH form-

ies of gravitational collapse, carried out for a wide range of9 fluctuations falls off rapidly, roughly a$(s)=exp

2 _ L !
matter models, which appear to exhibit critical phenomena.( %) whe_zreé oplp. Generally_thls is not the case during
self-similarity, universality and power-law scaling of the astrophysical black hole formation, such as stellar collapse

black hole masgfor a review and extensive references seeWhere mass scales such as the Chandrasekhar mass are in-

e.g.[1]). Consider a smooth one-parameter family of initial f[roduced due to degenerficy pressure and other effects violat-
data described by a paramefgrsuch that fop>p. a black Ing the scale-free behavidr. . .
hole is formed and fop<p. no black hole is formed. Nu- . Niemeyer gnd Jedamzl}S]_ have mves_’ugated the evolu-

merical simulationgoriginally carried out by Choptuik for tion of spherically symmetric perturbations of the energy

' density in unperturbed Hubble flow during radiation
the case of a massless scalar figk] and by Evans and o X : .
Coleman([3] for a perfect fluid with equation of state dominatiorf for three different perturbation shapes at horizon

crossing: a Gaussian overdensity, which tends to the back-
=pl3) show that the black hole maddg,, scales as groundgFriedmann-Robertson-W)éllker metric at infinity, a
Mgp(p—po)?, (1) Mexi_can Hat function, and an unsp_ecified fourth-o_rde_r poly-
nomial. In the latter two cases the inner overdensity is com-
for p=p., wherey is a universal scaling exponent which is pensated by a surrounding underdense region. The initial
independent, for a given matter model, of the choicp ahd  conditions are tuned to super-criticality by adjusting the am-
the initial shape of the density fluctuations. plitude of the perturbations. Their simulations confirm the
It has been pointed out by Niemeyer and Jedanpik
that this work has an astrophysical application to primordial
black ho_le_(PBH) fo_rme_ltlon. For C”t'?al phenomena to oc-  1igcp physical effects may also occur on small scales in the case
cur, the initial dlstrlt_)utlon of flu_ctuatlons must k_)e such thatst pgH formation so that arbitrarily small mass PBHs will not be
most of the collapsing fluctuations have magnitude not t0qgrmed, but this does not affect the general validity of Eq.
far above the critical magnitude for collapse. This situation 2Rrealistic PBH formation differs from the study of perfect fluid
collapse in Ref[3], where the initial data were embedded in an
asymptotically flat space-time, in that the background spacetime is
*Present address. Friedmann-Robertson-Walker.
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existence of the mass scaling relation in the case of PBhyindow functionW(Ry,|x—x’|) with radiusR;. The density

formation: contrast is defined a&(x)=[p(x)—p]/p, and the smoothed
version is given by
Mgy=KMy(5—6¢)7, 2 .
5(Rf,x)=f W(R;,|x—x']) 8(x")d®x’
where My, is the horizon mass at the time the fluctuation 0
enters the horizory is defined as the additional mass inside 1
the horizon radius in units of the horizon mass amd _ - ik B
~0.37 for all three shapes of perturbation. For Gaussian (277)3fo W(kRy) s(kjexp(—ik-xd%,  (3)
shaped fluctuationk=11.9 ands.=0.70, for the Mexican
Hat fluctuationsk=2.85 ands,=0.67, and for the fourth- where W(kR;) and §(k) are the Fourier transform of the
order polynomialk=2.39 ands.=0.71, suggesting thag,  window function and the unsmoothed density contrast re-
~0.7 for all perturbation shapes. This value&fis about a  spectively, withk=|k|. The variance of the mass distribution
factor of 2 larger than the value found analytical§] by — o*(Ry), as defined irf10], is given by
requiring that the over-dense region exceeds its Jeans length ok
at the time that it stops expanding. 2 _ " ur
The formation, at a fixed horizon mass, of PBHs with a o (R)= fo W(KkR)Ps (K) k’ @)
range of masses is a significant change from the standard
picture where it is assumed that all PBHs are formed withwherePs (k) is the spectrum o
Mgu~My [7,6]. Niemeyer and Jedamzik have determined
the PBH initial mass function under the assumption that all )
PBHs form at the same horizon mass. This assumption is Pé(k):ﬁqé(k” 2 )
often used; for example, with a power-law spectrum with
spgct(al index greater than one ?t is assumed that the vast The effect of varyingR;, at fixed time can be found by
majority of the black hole formation occurs at the ShorteStdifferentiating Eq.(3) [9]:
possible scale. The usual justification is that PBH formation
is extremely sensitive to the amplitude of the perturbatlo_ns, 98(R: ,X) 1 foo IW(KRy) _
and hence inherits a strong dependence on scale even if the = O(K)———=—exp(—ik-x)dk
variation of the spectrum is weak. It is not clear, however, IR (2m)%Jo IR
that it is consistent to consider the spread in the mass of — (R, X) ©6)
PBHSs formed at a single horizon mass, whilst neglecting the KA Nes

range of horizon masses at which the PBHs are formed. Intpig has the form of a Langevin equation; the change in
vestigation of this issue is the main purpose of this paper. '”o‘(Rf,x) whenR; is changed is given in terms of a stochastic

the end, we shall in fact find that this assumption works very, .o 7(R;,x), which depends on the form of the window
well in the cases of astrophysical interest. function used.

Heuristically, to find the mass of a PBH formed at a given 5 particularly good choice of window function if one

point in space we need to smooth the density field at thaf,ants to make analytical progress is the shegpace win-
point, 8(x), on a range of mass scales, to produ{®), dow function

where M is the smoothing scale, and then evaluate each
8(M) at the time when that scale crosses the horiZdn, " _ _
=My. If S(M=M)> 5, then a PBH is formed, with mass W(kR)=6(1-kRy. ™

given by Eq.(2), at that horizon mass. However, that condi- |t5 strength is that the only effect of decreasing the smooth-
tion will be satisfied for a range of smoothing masses; theng radius is to add new Fourier modes of the unsmoothed
actual mass of the PBH formed at the potris given by the  gensity contrasi(x) to the integral foro2. For Gaussian
largest value ofMpy found as the smoothing scale is de- perturbations, as we will be assuming throughbiliese new
creased, which will not be the largest smoothing scale givingnodes are uncorrelated with the ones already included in the
a density contrast above the threshold due to the dependenﬁ:ﬁegra| on a larger smoothing scale. The changé(iR,x)

of the mass ond— &;). To find the optimal smoothing mass, caysed by the new modes is therefore independent of its
we use the excursion set formaligB] which was introduced \5jue on the larger smoothing scale, leading to a random
in large-scale structure studies to determine the mass fungygik without memory. For other choices of window func-
tion, merger rates and clustering of collapsed objects €.%jon, including the commonly-used top-hat and Gaussian

[8,9]. forms, this nice property does not hold since chanditg

3

Il. THE EXCURSION SET FORMALISM
3The assumption of Gaussianity has been challenged for large
PBH-forming fluctuation$11]; however it is reasonable to maintain
To examine the density perturbations on a given scale wehis assumption in order to assess the effect of critical collapse on
must smooth the density field, as described above, using tae PBH mass function.

A. Standard formalism
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alters the contribution ter? from modes ofall wave num- Where “hc” and “ft” denote quantities evaluated at horizon
bers. That said, although the sharspace window function crossing and the chosen fixed time respectively. For PBH
is calculationally advantageous, one would not expect physiformation we requiresy(My)> & (My) where

cal results to be all that dependent on the choice of smooth-

INg. Oc, t(My) = 5c<& (13
With the sharpk-space window function, Eq6) simpli- ' My, min
fies to
Ill. POWER-LAW POWER SPECTRA
do(x,A) . . . .
T=§(A), (8) We flrs_t examine the case where the primordial power
spectrum is a power-law
independent of position, where=o?(R;) is a pseudo-time Ps(k)ockn*3 (14)
variable and
[equivalentlyP(k) «<k", whereP(k) ={(| ,|2) andn is known
(L(A1)E(A2))=6p(A1—Ay), (9 as the spectral indéxinserting this form for the power spec-
_ _ . . . trum into Eq.(4) gives 0?(R)xR™("*3),
the right-hand side being the Dirac delta function. During radiation domination the mass in a comoving re-
Equation(8) can be integrated to give gion evolves, reducing asa/Ultimately we are interested in
the mass associated with a given scale when that scale
O(A+y)—6(A)= \/;G (10 crosses the horizon; horizon crossing is givenRyyl/aH
ot M2 [12] so that, still at fixed time,

whereG is a Gaussian random variable with mean zero and
unit variance, and since this equation is exact the step size, My |~(+3)72
v, can be chosen freely. Stochastic processes which are gov- o’ (Mp)=0*(My min)<r>
erned by this equation, such as self diffusion in a hard sphere H, min

gas, are known as Wiener processes. We can think of thgnere we have chosen our fixed time as the epoch immedi-
values of5(A) produced as\ is increasedor equivalently  ately after the reheating period at the end of inflation when
Ry decreasexdas mapping out a trajectory, analogous to theihe horizon mass has its minimum valid,; nin, Which is

path of a self-diffusing particle. Each trajectory has the initialgetermined by the reheat temperatuFg,, via
condition §(0)=0 since in the limit thatR;—x, S(Rs,X)
Teq)2

(15

—0 by definition of the mean density. 812

Using Eq.(10) and a random number generator, we can My min= MH,O(T
generate an ensemble of trajectories each representing the RH
variation, with smoothing scale, of the smoothed densitywe can obtaina(My mip) from the mass variance on the
field at a different point in space. The trajectories®f\)  present horizon scale, using the variation virof the mass
produced for a chosen range Afvalues are independent of variance at horizon crossin@or details see Ref.12]):
the form of the power spectrum. To relate each valua ¢

To
=

(16)

€q

a mass scaleyl, we need to choose a form for the power M — (M eq (1-ne My min (1=
spectrum and then use E€) to find the relationship be- (M, min) = (My, 0 Mo Meq :
tweenA andM. (17)

where “0” and “eq” denote quantities evaluated at the
present day and matter-radiation equality, am{My o)

The trajectories give the variation 6{M) at fixed time; =95x10°° using the Cosmic Background Explorer
however, the condition for PBH formation on a given scale,(COBE) normalization[12].
o(M)> 6., and Eq.(2) which gives the mass of the PBH  There are a number of well-known constraints on the
produced, apply when that scale crosses the horizoni.e. abundance of PBHs over a wide range of mass scales; for an
=M. We must therefore choose a fixed time at which toup-to-date review see Refl13]. Typically only of order
generate our trajectories, and then evolve each value dfo~2° of the energy density of the universe, at the time that
6(M) forwards, or backwards, in time to the epoch at whichthey form, can go into PBHSs. This leads to the constraint that
that scale crosses the horizon. During radiation dominatiom must be less than about 1.P52], with some dependence
perturbations which are outside the horizon growj &3 on the value oMy, . It is obviously not feasible to run
simulations where only one trajectory in 2’Oproduces a
PBH. Using larger values ofi, around 1.3, a manageable
number of trajectories will form PBHs but the values of
ond{My), and henceM gy produced will typically be larger
than whenn~1.25. We can however examine how the dis-
Snd M) = 5ﬁ(MH)( M ) (12) tribution of PBH masses behavesras decreased and com-

M, min pare its limiting behavior with the mass function found ana-

B. Application to PBH formation

Soctoc My (12)

and therefore
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FIG. 1. A typical PBH forming trajectory resulting from a log,(Mg,/10%g)

power-law spectrum witim=1.3. The dotted points are the values
of 8(My), the long-dashed line shows the threshold, at the fixed
time for PBH formations, «(My), and the short-dashed line shows
the typical size of perturbations on each scalé\l,,).
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lytically by Niemeyer and Jedamzik under the assumptior
that all PBHs form at the same horizon m#4§

=
= 05 -
dN 1 (MBH)”7 ~
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xex;{ = B 5 & , (18
20 0 | e
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where &N is the number of PBHs per logarithmic mass in- log,,(M,/ 101%g)
terval d(InMgy), and o=o0(My). The Niemeyer and
Jedamzik mass functioiNJMF) will be valid if the distribu- FIG. 2. The smoothed distributions of the actual PBH masses,
tion of the horizon masses at which the PBHs are formed ig(Mgy) (top panel, and the horizon masses at their formation,
close to a delta function. x(My) (lower pane). From top to bottom on the right-hand side of

As an example we choosd ; i,= 10" g, which corre-  each diagram, the solid lines are for=1.310, 1.305, 1.300 and
sponds toTry~3X 10" GeV, and in Eq.(2) we use the 1.295. In the top panel the dotted line shows the Niemeyer and
values ofk and &, from Ref.[5] for Mexican hat shaped Jedamzik mass function, evaluated fe(10'® g)=0.032 and
fluctuations. Our general conclusions will however be inde-smoothed on the same scale, while in the bottom panel the dotted
pendent of these choices. Since the probability of PBH forJine is a smoothed delta function, centeredMp=10"° g.
mation falls off rapidly with increasing horizon mass we
generate trajectories using 1000 equally spaced steps in My, .;,=10'° g by the observational constraintsVe nor-
giving adequate coverage of the range of horizon masses atalize all mass distributions to 1 at their peak to facilitate
which PBHs form. Fig. 1 shows a typical PBH forming tra- comparison. As1is decreased, the PBH mass function tends
jectory withn=1.3. towards that found by assuming that all PBHs form at a

We ran simulations producing 1000 PBHs for eacmof single horizon mass. We can test this further by examining
=1.310, 1.305, 1.300, and 1.295 and in each case found thtae horizonmasses at which the PBHs form, rather than their
distributions (smoothed with a Gaussian to remove the ef-actual masses. The lower panel shows the smoothed distri-
fects of discreteness from the finite number of PBBisthe  butions of the horizon masses at which the PBHs formed,
PBHs masses and the horizon masses at which they formeglotted along with a delta function centered bh,=10 g
We denote these ag M) and x(My) respectively, so that and smoothed on the same scale.rAis decreased the ho-
the number of PBHs per logarithmic mass interval producedizon mass distribution narrows.
in our simulations is given by (Mgy)d(InM). The upper We therefore conclude that for power-law spectra, with
panel of Fig. 2 shows the smoothed mass distributionslope satisfying the constraints from the observational limits
x(Mgy), along with the Niemeyer and Jedamzik mass func-on PBH abundance, the assumption that all PBHs form at the
tion (smoothed on the same scale to allow direct comparisorsame horizon mass is a good approximation. Yokoygtrdh
evaluated forM, =10 g and 0=0.032, the value of has re-evaluated the constraints on the initial mass fraction of
(10 g) for n=1.23(the maximum value of allowed for ~ PBHSs, taking account of the mass scaling relation under this
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0

assumption. He found that the constraints on the initial abun-
dance of PBHs are unchanged if formation occurdviaf
<5x10" g. The limit on the abundance of PBHs with
Mgy =5x 10 g, which are evaporating today, coming from
the y-ray background, now leads to stronger limits on the
initial abundance if X 10" g<M,<10' g, as for horizon
masses in this range the low-mass tail of the distribution has
a significant population light enough to be evaporating today.

IV. SPIKY POWER SPECTRA

Observations of microlensing of stars in the Large Magel-
lanic Cloud[15] appear to show that a large fraction of the | | |
halo of the galaxy is in the form of massive compact halo —05 0 05
objects(MACHOSs) with masses oM ~0.5M . It has been log, (M, /10%g)
proposed that MACHOs may be PBHs formed either during 108
the QCD epocli16,17 because of the reduction in pressure  FIG. 3. The form ofs (M) produced by a spike in the density
forces at that time, or due to a spike in the primordial densityperturbation spectrum withC=1x10 Mpc™! and 3=2
perturbation spectruni18] at the scale corresponding to x10° Mpc™t.

My~10% g.

The mass distribution of the MACHOs is steeply peaked. In practice the results from taking a spectrum of this form
In Ref.[15] the observed microlensing events are fitted withare quite general, as the bulk of the PBH production occurs
power-law mass functions: right at the peak of the power spectrum. A Taylor expansion

) in the vicinity of the peak requires only the amplitude and
H(M)=AM? (Mpn<M <Mpg)=0 (otherwisg, curvature, and the two parameters of the Gaussian can repro-
19 gduce an arbitrary function near the peak. Our results will

where /(M)dM is the mass fraction of MACHOs between there_fore prove extremel_y general. . )
M andM +dM and A is determined by the mass fraction of _ With this more complicated spectrum, in order to obtain
the halo in the form of MACHOs. The maximum likelihood (M)=0(M) we have to numerically integrate E) for

fit (for their 8 event sampleis found for @=—3.9 and eachPr we choose, where during radiation domination

M min=0.30M 5, .*

2

The spread in the masses of PBHs formed at a single 5(k)=i<L) R(K), (22)
horizon mass, found when critical collapse is taken into ac- 9\aH
count, raises the question as to whether or not it is possible to
produce a population of PBHs with a sufficiently sharply SO that
peaked mass distribution. There are several models of infla- 4
tion which produce a spike in the power spectrum on a par- P :E L P (23)
ticular scale[18]. For generality, we will take the spectrum ° g1laH) "*

of the curvature perturbation®y, which is defined, analo-
gously toP;, as[10] Figure 3 showso(My) when C=1x10° Mpc™ ! and 3
=2x10° Mpc L.

We have run simulations for a range of value<adind,
producing, in each case, 1000 PBHs, choosing the fixed time
at which the trajectories are produced as the epoch when
M,=10*® g, corresponding to half a solar mass. Density

perturbation spectra with the same valueCdiut different,

3

k
PR:ﬁdR(k)Dv (20)

to have the form of a Gaussian spike at a schle
=Ke My eg/Mp 0 %°=4.25x 10" Mpc™*, corresponding to
My =10 g, with variable amplitude and widtf,, super- have the same value o#(M;) on small scales Niy

3 . - . - . -
imposed on a flat spectrum normalized to the COBE data oft 1Q3 9), decreasing a€ is increased. Once again it is not
the present horizon scale. The COBE normalization givedeasible to use spectra which produce PBH abundances con-
Pr=2.28<10"° [10] S0 our spectrum is sistent with the observational limits. We therefore choose

values ofC andX which lead to larger values @f(M,;) on

C (k—k,)2 small scales {-0.2) and examine the behavior of the PBH
Pr=2.28x10 %+ exp ———5, |- (21 mass and horizon mass distributions at formatio€ asnd>,
V27X 2% are varied. Figure 4 shows an example of a PBH forming

trajectory with% =10° Mpc ! andC=10" Mpc ™.
The upper panel of Fig. 5 shows the smoothed distribution
“For a subset of 6 eventshosen to exclude a binary lensing event Of the PBH massesy(Mgy), for C=1x10*"Mpc™* and a

whilst maintaining the mean duratipthe most likely mass distri-
bution is a delta function.

range of values of%. For comparison we also plot the
smoothed NJMF evaluated fer(M,=10* g)=0.053, the
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log,o(My/10%g) log,(Mgy,/10%g)
FIG. 4. A PBH forming trajectory produced whef, has a 1 T
Gaussian spike witt®=10° Mpc ! and C=10" Mpc L. The
amplitude jumps dramatically when the spike is encountered. The
dotted points are the values 6tMy), the long-dashed line shows
the thresholdd, ¢ for PBH formation, and the short-dashed line
shows the typical size of perturbations on each sodhd ). -~
= 05 -
largest value compatible with the requirement that the .
present-day density of PBHs is consistent with the present-
day age and expansion rate of the universe,(ggy <1.
For all the values o, we used, the PBH mass function has
the same shape as the NJMF, but it is centered on larger | |
values ofM gy, shifting towards smaller values Mgy, as> 0.1 ~0.05 0 0.05 0.1
is increased. The lower panel shows the smoothed distribu- log,,(M,/10%g)

tion of the horizon masses at which the PBHs fogtM ),

for the same set of and2 values, along with a smoothed  FIG. 5. The smoothed distribution of the actual masgéd| g)
delta function centered ol ;= 1% 10> g. The horizon mass (upper pane| and horizon masseg(My) (lower pane), of PBHs
distributions have the same shape as the delta function bffrmed due to a spike in the density perturbation spectrum @ith

are centered at smalléd,,. As S is decreased the center of =1%10* Mpc™*. From right to left on the right-hand side of each
the distribution tends towardd ;=10 g. diagram, the solid lines sho®=1x 10°,5x 10%,1x 10°,1.5x 10°

Figure 6 shows the same distributions foE and 2<10° Mpc™t. The dotted line in the upper panel shows the
—1x10° Mpc ! and a range of values. AsC is decreased smoothed Niemeyer and Jedamzik mass function evaluated for
the center of the PBH mass function tends to that of th .(1033 9)=0.053, andogr; the lower panel a smoothed delta func-
NJMF. The distribution of the horizon masses at which the'*" centered oMy =10"g.

PBHs form is independent & and centered a8,<10°°g.  \we therefore compare, in Fig. 7, the observed MACHO
The horizon masses at which the PBHs form are typically,455 functiony(M), with that determined by Niemeyer and

smaller than 1% g, since whilstP; has a spike centered at . L~
this scaleg (M) carries on increasing, a4, is decreased, Jedamzik, Eq(18). Defining ¢(M)d(InM) to be the mass

until Pr<C on that scale. By increasing the scale on whichfraction in a logarithmic mass interval d(W), then (M)
the spike is centered we could tune the horizon mass distri~ H(MYM. Since dN/d(In |v|)o<~,r/,/|v|, then ¢(Mgp)

bution to be precisely centered ity =10 g. «dN/d(InMg). That is to say, the mass fraction per unit

The PBH masses are typically larger than given by themass interval is just proportional to the number density per
NJMF with o(10®) g=0.053, despite being formed at |ogarithmic mass interval. We adjust the horizon mass
smallerMy. This is because our spiky density perturbationat which the PBHs are assumed to form &,
spectra all haver(M;)~0.2, in order to produce a larger =2,05x10* g, so that the PBH mass distribution has the
number of PBHs than is allowed by observatigas is dis- same mean mass as the MACHO distribution. The mass dis-
cussed above leading to larger values af(M) and hence tributions are normalized to give the same total mass fraction
Mgy - when integrated.

Since the spread d¥l, at which the PBHs form will be The PBH mass distribution is much broader than that fit-
extremely small if the amplitude of the spike, and henceted to the observed microlensing events; its full width at half
o(M), is reduced so that the number of PBHs producednaximum is six times largefassuming the mass functions
satisfies the constraif} pgy y<1, then the PBH mass func- are normalized to the same mgaBecause the derivation
tion will be the same, to a good approximation, as that founchssumes all black holes form at the same horizon mass, it is
by assuming that all the PBHs form at a single horizon masshe narrowest possible mass function which can arise if the
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x(Mgy)

0 : o , o bl | — :
-1 -0.5 0 0.5 1 0 0.2 0.4 0.6 0.8 1

log,,(Mgy/10%g) Mg/ Mg

T FIG. 7. The observed distribution of the MACHOSs, given by Eq.
(19), is shown as the solid line and the Niemeyer and Jedamzik
mass function, given by Eq18), as the dashed line. We fiM
=2.05x 10°3 g so that the mass functions have the same mean. The
curves are chosen to have the same integrated mass fraction.

X(MH)
o
|

V. CONCLUSIONS

Critical gravitational collapse, and in particular the scal-
ing relation for the black hole mass, has an astrophysical
_ application to PBH formation. We have used the excursion
0 - — set formalism to determine the PBH mass function, when
-0.1 -0.05 0 0.05 0.1 . :

Jog,,(M,/10%g) formation on a range of mass scales is taken account of, for
1ot two different types of power spectra. The first is power-law

FIG. 6. The smoothed distributions of the actual massesd€nsity perturbation spectra, and the second is flat spectra
¥(Mgy) (upper pang| and horizon masseg(M,) (lower panel, ~ With a spike on a given scale. In both cases we find that as
of PBHs formed due to a spike in the density perturbation spectrurin€ parameters are adjusted so that the abundance of PBHs
with 3=1x10° Mpc™! and (from right to left on the right-hand decreases, the mass function tends towards that found by
side of each diagram C=1.75x10% 1.5x 10'° 1.25x 10, Niemeyer and Jedamzik under the assumption that all the
1x10', and 7.5¢10° Mpc'. The dotted line in the upper panel PBHs form at a single horizon mass. There are tight obser-
shows the Niemeyer and Jedamzik mass function evaluated forational limits on the abundance of PBHs, and for power
a(10* g)=0.053, and in the lower panel shows a smoothed deltaspectra which satisfy these constraints the assumption that all
function centered oMy=10"g. PBHSs form at the same horizon mass is a good approxima-
critical collapse hypothesis is correct. The mass function istlon' o ,

As an application, we then compared the Niemeyer and

almosf[ symmetnc.al,. extending Mg <M. Currently . Jedamzik PBH mass function with that of the MACHOs
there is a robust limit, due to the absence of short—duratlo%

microlensing events, that less than 20 percent of the dar ound frpm micrplensing observations. The PBH mass distri-
matter in the halo , of the galaxy can be in low mass ution 1s con_5|d_erat_)ly broader than the sharply-peaked
MACHOS (10 M » <M <0.03M ) [15], but the PBH mass simple mass dlstrlbu_tlons which have so far been fltte(_j to the
function is easinOconsisteﬁt wi(tah that’ Whether or not theobserved mlcrolensmg events. If the MACHOs are mdeed
width of the predicted mass function is'in agreement with th PBHS, then future microlensing s_earchgs should unveil the
! . . ... road spread of the PBH mass distribution.

observed microlensing events, which so far have been fitte

with much narrower functions, is a much more pertinent
guestion. As the duration of microlensing searches increases,
and further microlensing events are observed, the MACHO
mass function will be determined much more accurately, and A.M.G. was supported by PPARC and A.R.L. in part by
if the MACHOSs are PBHs then the true MACHO mass func-the Royal Society. We thank Bernard Carr, Karsten
tion will be considerably wider than the sharply-peaked masgedamzik and Jens Niemeyer for useful discussions. A.M.G.
functions which have been fitted to the current data. acknowledges use of the Starlink computer system at QMW.
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