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Vacuum polarization of a massless spinor field in global monopole spacetime
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We calculate the renormalized vacuum average of the energy-momentum tensor of a massless left-handed
spinor field in the pointlike global monopole spacetime using point-separation approach. The general structure
of the vacuum average of the energy-momentum tensor is obtained and expressed in ten(ﬂ'%)é?”a
component, the explicit form of which is analyzed in great detail for an arbitrary solid angle deficit.
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PACS numbgs): 98.80.Cq, 14.80.Hv

I. INTRODUCTION where the parameter?=1—8m7?. The energy momentum
tensor of this monopole has diagonal form and reads:

It is well known that different types of topological objects =T [=(a?—1)/r? andTZzngo. The main peculiarity of
may have been created by the vacuum phase transition in theis space is a solid angle deficit which is the difference
early Universe[1,2]. These include domain walls, cosmic petween the solid angle in the flat spacetime 4nd the
strings, and monopoles. Among them, cosmic strings andolid angle in the global monopole spacetime which is given
monopoles seem to be the best candidates to be observedpy 474, For a<1 one has solid angle deficit and far

A global monopole is a heavy object formed in the phase>1 one has the solid angle exceéé/e would like to call
transition of a system composed of a self-coupling scalagttention that the physical values far predicted by field
field triplet ¢* whose original globalO(3) symmetry is theory is smaller than urli) The spacetime produced by a
spontaneously broken 1d(1). Thescalar matter field plays global monopole has no Newtonian gravitational potential in
the role of an order parameter which outside the monopolgpite of the geometry produced by this heavy object has a
core acquires a nonvanishing value. The main part of theonvanishing curvature. For this reason the mass of the
monopole’s energy is concentrated into its small core. Thenonopole is divergent and proportional to the distance from
simplest model which gives rise to a global monopole ismonopole origin[3]. In context of the monopole formation
described by the Langrangian density below, and was anahe cosmological horizon is a natural cutoff distance for the
|yZ€d by Barriola and Vllenklrﬁ3] monopo|e’s mass.

Although the global monopole has no Newtonian gravita-
1 av omgay Ly aa 202 tional potential it gives enormous tidal acceleraten 1/r?
L= E(‘?ud’ V(0% ¢%) — Z)‘(¢ ¢°— 7). @D which is important from the cosmological point of view and
may be used for obtaining upper bound on the number den-
Coupling this matter field with the Einstein equations, aSiy of them in the Universe, which is at most one global

spherically symmetric metric tensor given by the line ele-Monopole in the local group galaxi¢S]. However, the nu-
ment merical simulations made by Bennet and Rhie show that real

upper boundary is smaller than that given[B] by many
d?= — B(r)dt2+A(r)dr2+r2(d6+ sir? 6de?), (2) orders[6]. In fact, one has scaling solution with a few global
monopoles per horizon volunié].

The quantum effects due to the monopole background in
the matter fields have been considered explicitly for scalar
field in Ref.[7] and by general consideration in Rg8]. It
has been shown from general consideration that the vacuum
expectation value of the energy-momentum tensor of mass-

) _ less fields has the following general form:
The mass parametdi ~M_,,.. Numerical details concern-

presents solutions for the functioBgr) andA(r) far from
the monopole’s core given by

B=A"1=1-8m7»?’-2M/r. (3

ing this function can be seen in R¢4]. Neglecting the mass S*(pr)
term we get the pointlike global monopole spacetime with (T;)re“: Mr“ , (5)
metric

d?= — a2dt+dr2/ a®+r2(d6?+ sir? 6de?),  (4) where the tensofS;, depgnds on Fhe arbitrary mass scale
parameteq and the metric coefficient. In Ref.[8], it has
been assumed that the teng;gris the function of the metric
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paramete, only. Manifest calculations in scalar case have\yhere W =0 which, under the Lorentz transformation

shown[7] that this tensor depends on renormalization mas%qS(A)‘P transforms asl’—»@Sfl(A) whereA is the

arametern and it has the following structur&) =A" . .
S'BV N ur # here tensord” andB” degend onl oﬁ thezﬂ parameter of the transformation, a8¢lA\) is a local repre-
p LW M n G€P y " sentation of the Lorentz group.

This is in agreement with Wal®] who noted that an unam- : ; : : P
biguous prescripton fo(T,‘i)”*” cannot be defined without This propagator obeys the following differential equation:
introducing a length scale. Nevertheless, one-loop Einstein

equations do not depend on scale paramegtéelue to renor- 1

malization group equation. The backreaction problem in the (VY =M)Se(x,X") = —== M (x=x")1 4, (7)
scalar massless case has been investigated by Mazzitelli and \/—_g

Lousto[7]. It must be noted that only the general structure of

vacuum expectation value of the energy-momentum tensqfereq = det(g ) The covariant derivative operator in the
has been considered. An explicit form of the tenShrwas  apove equation is

not obtained.

Ground state energy of massive scalar field in the space-
time of pointlike global monopole was considered in Ref. V=e(;)y<a>(aﬂ+rﬂ), (8
[10] in the frameworks of zeta function approach. It was
shown that the ground state energy is zero. As it was noted in ) ) ) o »

Ref.[10], this result may be obtained from dimensional con-&() P€ing the vierbein satisfying the condition
siderations because in this case there is no dimensional pa-
rameter into metric coefficients.

In this paper we would like to obtain the explicit value of
this tensor, considering the massless spinor field on the back-
ground of the pointlike global monopole with metric given and I',, is the spin connection, given in terms of the flat
by Eq.(4). As opposed to the massless scalar field ¢d@$e spacetimey matrix by
we get a simpler expression for the Green function and the
energy-momentum tensor which is obtained in closed form,
for arbitrary angle deficit. r —

The analysis of the quantum behavior of two massless r= g7
left-handed SU(2) doublets fermionic field in the back-
ground of a pointlike monopole, taking into account the
magnetic field, has been developed by Refi. The Ruba- The Green function given in Ed7) is a bispinor, i.e., it
kov and Callan effect was analyzed therein, and it was foungransforms asl atx and as¥ atx’.
that there a small correction appears due to the parameter If a bispinor Dg(x,x’) satisfies the differential equation
into the fermion number condensate. below,

This paper is organized as follows. In Sec. Il we consider
the Green functions for massive and massless spinor fields
on the background of the pointlike global monopole and ob- , 1 N 1 @) ,
tain, in closed form, the Euclidean Green function for mass- | 5 ~M“= 7R De(x,x") =~ \/?5 (X=X,
less left-handed spinor field. In Sec. Il we analyze this func- g (11)
tion at coincidence limit and extract all divergencies from it
in manifest form. We obtain also the general structure of
renormalized energy-momentum tensor. Each component ofhere the generalized d’Alembertian is expressed by
this tensor may be expressed in terms of only the zero-zero
component/ T9)"®" which is analyzed with great details. In
Sec. IV we summarize our results. Appendices A and B con-
tain some technical formulas. The signature of the spacetime,

the sign of Riemann and Ricci tensors are the same as 1@1 .
. : en the spinor Feynman propagator may be read as
Christensen’s papdd8]. We use unitsi=c=G=1. P y propag y

€(2)€(b) 7*P=g"", 9

@0l ey - (10)

O=g*"V,V,=g*"(4,V,+I,V,—-T7.V,), (12

II. SPINOR GREEN FUNCTIONS Se(X,x")=(iV+M)Dg(x,x"), (13

In this section we want to obtain the expression for the
fermion propagator of massive spinor field in the pointlike which shows that the nonminimal coupling to the curvature
monopole spacetime. Massless field will be recognized adoes play a role when spinor fields are considered.
particular case. The spinor Feynman propagator is defined as Now after this brief review about the calculation of spinor
follows [12]: Feynman propagator in the general manifold, let us special-
_ ize it to the spacetime of a global monopole. We shall choose
iSp(X,X")=(0|T(¥(x)¥(x"))|0), (6)  the following basis tetrad:
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1l 0 0 0
0 asinfcose cosfcose/r — singlrsing
&la)= . . . . . (14
0 asinfsing cosfsine/r  cose/rsing
0 acos6 —siné/r 0
|
For this case, the only nonzero spin connections are Now we shall consider the case where the fermionic field has
no mass. In this case we are able to obtain a closed expres-
l-a sion for the fermionic propagator as follows.
= (1),(2) (2),,(3) gj . . .
Po=——[¥y"y7cose+y?ysine], (19 The system which we shall consider consists of a mass-
less left-handed fermionic field in a global monopole mani-
1—a fold. The Dirac equation reduces to &2 matrix differen-
Fy=———I Y2 sin g+ 4143 cosh sing tial one, as shown below:
— (243 cosh cose]sin 6. D x=0, (20
. . . where
If we had made another choice for the vierbein, for example
€(» = diag(le,a, 1,1k sing), the only nonzero spin con- 11 . 1 “ “
nection would be T,=—ay®y?/2 and T, D =il —o—aoVo——0'9y= —= o',
= — a[ Yy sin 6+ ¥+ cosg)/2. Although this tetradic
basis is simpler than previous one given in Eif}), the spin 11—« ©
connection obtained by the former does not vanish when we o (21)

take Minkowski limit «=1.
In order to obtain the explicit form for the differential 2> =3 (o~ > P =

equation for the bispinaPg given in Eq.(11) in this geom- Witho’=0-1,0°%=0-0,0""=0-¢, wherer,d andp are

etry we shall adopt the following representation for thethe standard unit vectors along the three spatial directions in

y-matrix: spherical coordinates.
The Feynman two-component propagator obeys the equa-
1 0 0 o* tion
(0)= (k) =
iD Se(x,x")=—=86(x—x")l,, (22)
X being the 22 Pauli matrices. These matrices above v—0

obey the anticommutator relatiofig®, y(®)} = —222P, o o
After some intermediate steps, we get the following ex-and can be given in terms of the bispir@ by
pression for the d’Alembertian operator:

Se(x,x") =10 Ge(x,x"), (23
2 _ 2 _
O=— i25t2+ a—zﬁr(rzﬂr)— izfz_ (12_;“) - l_zai L, where nowGe(x,x") obeys the X 2 differential equation
a r r r r
17 _ 1
LGe(x,X") == —= 6" (x=x')I, (24)
where v—9
) with
i:( »). (19 )
0 ¢ — , « ) 1., 1-«a - -
- — 2¢9t+r—28rr (9r—r—2L - r2 (1+(TL)
From the above operator we can see that, although it is a 4 (25)

X 4 matrix differential one, it is diagonal in block of>22
matrices, which means that the two upper components ofhe vacuum average value of the energy-momentum tensor
Dirac spinor interact with the gravitational field in the similar may be expressed in terms of the Euclidean Green function

way as the two lower components. which is simpler than the ordinary Feynman Green function.
The complete differential operator in EQL1) is They are connected by the relatidd?] G,(=r;7',r)
5 =—1Ge(x,x"), wheret=ir. In the following we shall con-
1 a 1 1-a sider the Euclidean Green function. In order to find a solu-

_ 2, % 2, T2 S Y2
S L S re (1+2-L)=M*% tion for the bispinorG,(x,x’), we shall obtain the solution
(190  for the eigenvalue equation
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Lo\ (x)= _)\2¢>\(X)- (26)
with A°=0, so we can write

X X
-3 ( )qsx( ) o

2 [Qu,-1WCH(2,Q)
+QV2—1/2(U)C1(,2%J.(Q,Q')], (34

where Q,(u) are the Legendre functions of second kind;

u—1+ ANTPH AT 2rr! and c (0,0’
Due to fact that our operatd®25) is self-adjoint, the set of its (a (Tk)+ ) ) _ !*mj(_ ) )
eigenfunctions constitutes a basis for the Hilbert space ass6- o) m, n(D)efh (). Again we can see that in Minkowski
ciated with two-component spinors. Moreover, because ophmit, for a= 1 v1=v,=1+1/2 and we get

erator L is a parity even operator, its eigenfunctions present

. . . . . 1 1
a _deflned parity, so the normalized eigenfunctions can be G.(XX') = = L, (35
written as 872 om(x,x")

(1) Ers(1) (1)
¢ =e =TI e (0.0), (28 \yhere we have used the relation involving the sum of Leg-

endre functions and polynomial§l4]. Here oy (x,x’)

=(A+(r—r")?)/2 is one-half the square of geodesic dis-
® . ) ) . tance betweem andx’ in the flat Euclidean space.

whereg;’ m with k=1,2, are the spinor spherical harmonlcs Now in order to obtain the Green functic} let us go

which are’ eigenfunctions of the operatdr and o-L as back to Eq.(34). Using Eq.(23) we have

shown below:

$I0) = E1A(r)¢f?) (6.0),

1 1 - -
C2e(D=1(1+ 1) el3, (29 Se(xx)=i| == aoVo+ —oWo-L
(12)__ 1,2 (12) l-«a
U'Lgo (1+ K« ))(P (30 + T0_(r) Ge(x,x"). (36)
with kM=—(1+1)=—(j+1/2) andx@=1=j+1/2. Ex-
plicit form of above standard function are given in Rdf3], Il. VACUUM EXPECTATION VALUES
for example. ) )
Substitutinge (" into Eq. (26), we obtain the following Now let us proceed with the calculation of the vacuum
eigenfunctions: expectation valugVEV) of the energy-momentum tensor.
Initially, we would like to discuss the general structure of
. P . this tensor. As it will be seen later and has already been
M (x)= - _'ETJVk(IOf)QDJ( r)n , (31)  discussed in scalar case in Réf], the renormalized vacuum
expectation valugVEV) of the energy-momentum tensor
N2=E% a?+ a?p? has the following structure:
+1 1 I 1 vyren_ v gyt
V=———2, Vy=—+ 2, (32 (T 8mort AutByIn al 37
@ 2 a 2
whereJ, is the Bessel function of first kind. We can see thatVhere the tensor&, andB,, depend on the metric parameter
for M|nkowsk| spacetime wheree=1 we havev;=,=| a, only. The scallng parametw appears after renormaliza-
+1/2 tion procedure. Obviously these tensors are diagonal and the
. o_ b_ i
Now we are in condition to obtain the bispinGr which ~ componentA;=A¢ andB,=B¢ due to spherical symmetry
is given by of the problem. Therefore we have six unknown compo-
nents. The renormalized VEV of the energy-momentum ten-
sor must be conserved, i.e.,
G.(x,x") f dE f dp
(Thye"=0, (39)

(1) X )+ X’ + (2) X (2)+ XI
PO (2 )2 ¢”2 (2 VX ), and gives the right conformal anomdli5], which for mass-
EYa+a’p less spinor two-component field, redd$]

(33

x>
.m;

Finall bstituti ; i (T =rmtray=o—7. (39
y, substituting our result for the two-component spinor © 161 87r2r

¢ given by Egs.(31) and (32) into Eq. (33) we obtain,

with the help of Ref[14], an expression for the Euclidean Here we introduce the new variableby the following rela-
Green function tion [see Eq(49)]:
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defr 4¢rg 1— o The Green functior(45) is divergent in the coincidence
T= 2__ . (40) limit b—0. For renormalization in the massless case it is
2 60 more suitable to subtract from the Green functid®) the

Taking into account EqL38), (39) We may express tensors ﬁr;zg]r;_funcnon in the Hadamard form given bel@see Refs.

A’ andB” in terms of the zero-zero compone$,B) and

the traceT by a. 3a
swzgg'(x,x')zAl’Z'—O——za
v H 0 0 0 0 1 0 0 1 0 7 8
A, =dia AO;—T+A0+BO;T—AO—EBO;T—AO—EBO, 4 a 1
1 2
(41) + —?‘l‘za' |n(§,u20')]. (47)
v _ p04; 11
B,=Bodiag1;1;—1;—1). (42) In order to obey the conservation 1a88) we must subtract

Theref bl . btain th from the energy-momentum tensor additional contribution
ere oreoour pr(()) €m Now 1S to_ 0 ta|_n _t € Zero-zero Com'gM,,traz/64v7r2 according to Wald9]. The general form of the
ponentsAg and Bg. Using the point-splitting approach, the qetficientsa, may be found in Ref{18] and for the global

VEV of the energy-momentum tensor for spinor field has themonopole spacetime they have the following form:
following form (see Ref[12] for example:

1 A=1a,=] 1_az| 1_a4| (49)
H ' = ya = !a- = < 2 ,a e .
(TW>=ZI|m o, (V,—V,)+0,(V,—V,)]ISe(x,X"), 02 6re 22 6ort 2
x"—=x
(43 From our expression for the Green functigtb), it is pos-
i sible to extract all divergencies in manifest form. To do this
by means of which we have let us consider the right-hand sidRHS) of Eq. (45). We
. divide the integral in two parts—first one fromto unit and
<T8>: '_2 lim &ftr(gF(x X'))=— iz lim 72tr(G.(x.x")). second from unit to infinity. In the first part we have the form
a o oy below:
(44)
The fi ith time derivative in E¢36) gi \Y o ! I (49
e first term with time derivative in gives nonzero 1=53 — 5.
contribution in the zero-zero component of the energy- 2r%Jb Jx*=b SH? ﬂ
momentum tensor, only. Indeed, the Euclidean Green func-

tion (34) is proportional to the unit matrik, after taking the ) o ) ]
coincidence limit’ = Q and sum ovem; . The same is true Subtracting and adding into the integrand the three first terms

for the third term in Eq(36) due to Eq(30). We obtain zero  Of the power series of the function
contribution from these terms because Pauli matrices are

traceless. In above expression we have used also that the 1 a? 1-a? 1-a*x?
Green function(34) depends on the\ r and henced,. G, —r? a2 3 T3 2t (50
=—0.G,. S

o

Taking the coincidence Iimi€)'=Q,r’ =r into Eq. (34),
summing ovem; and after using the integral representation
for the Legendre functiofl4], it is possible to develop the
sum overj, which is geometric series and we arrive at the
following formula for the Euclidean Green function:

we get
Vy=V{"+ Vv, (51)

The first term is given by expression

870,(87.0= gz | s gl (49
T (ATN)= 55 2,
2r%Jb \x2=b? ol arsix g L [rox R
@ L 72r2 )y x2—p2 2 arshe| x° 3
S —
where the functiorb may be expressed in terms of the one- a
half of the square geodesic distangan = direction 1—ab %2
) a? a? [ @A TP 15 o2 2, (52
T AT 48

In the case when only the angular variablé= () coincides, and its two derivatives with respect to timeare finite in the
we shall get the same formula for Green functid®) with coincidence limitb— 0. All divergencies are contained in the
o=(a’ A7+ Ar?la?)[2 andr’—rr’. second part of Eq51) which has the form
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v 1 { 2@_ —azln 1+1-b? jo L[ [rdx o? " 6a* 2(1-a?
b? 3 b 0" 84 Jo x W x 15
S —
/1_b2 o
2
30 — [\/1 b%+b In b l,. (53 v dx W2 " et
+f X arshx XA (58)
Expanding this expression in the power series dveip to ! si?
the terms which will survive after taking the second deriva- @
tive and coincidence limit, we may represent it in the form 4 4
o_traz 1-o” (59)
di 1 a® 1-a* 0 2 60 °
ViYel=—+ 52| -5+t 307 _ L .
2r 2 30« where the prime means the derivative with respeck.tin

4 209 _ 2 this expression we have already taken into account additional
o a’(l—a®) ap S 2
|52+ — + Vil contribution — tra,/644<.
3x 48 Now we have explicit expressions for zero-zero compo-
a, a, | o’ nentsAJ andBj for arbitrary values ofx. Let us analyzeA
+| — ?-f‘ —o|ln o P (54)  componentsee Appendix B for details
(1) For large solid angle deficita(<1),
We see that the divergent part of this expression has the o 1
Hadamard form given by Eq47). The next powers in the Ap~— —In a+Cy,C=0.0104. (60)
expansion(50) will give finite contribution to the energy-
momentum tensor. (2) For small solid angle deficitexces$ (|a—1|<1),
The second part,
~Cy(1-a),C,=0.0773. (61
V., = ! fw dx ! [ 55 (3) The large solid angle excesa¥$ 1)
22r? )y @—p? _,[arsh) ?’ (55 ’
st —— A%~ —C.a*C.=0.0173 (62
0 o) y o . .

0
does not contain divergencies and it may be easily expande U‘e numerical calculation oA, is shown in Fig. 1.
in terms ofb Now, we would like to compare our results with the simi-

lar one for the VEV of the energy-momentum tensor of the

1 g 1 2 (o " massless spinor field in the infinitely thin cosmic string

v :_J ax Ly ‘Tf ax | spacetime with line element, in cylindrical coordinate sys-
272r2)1 x arshe| 2' 8r* tem, given by

sk

a

2
p
+0(0?). (56) ds’=—dt*+dp?+ —5de?+dZ" (63)

Taking into account all above formulas we obtain the follow- In Ref.[19] the following result has been obtained:
ing expression for the renormalized Green function: ) )
, (v =1)(7Tv°+17)

8m2G " =87 G, (AT,r)—GH(ATI)] rT O 1440K 42p*

diag'1;1;1;—-3). (64)

In this case there is no logarithmic contribution because this

—viingy, + i _ “_2+ 1-a* spacetime is locally flat. Therefore we may compare now the
L 27 2r? 2 30a° Ag given by Eq.(58) for global monopole spacetime with the
4 2 2 analogous one for infinitely thin cosmic string spacetime
N AR I which is given by the expression
3 48* 8 ,
0 (v2—1)(7Tv?+ 17)
+a- 2o, (57) 09~ 720 €5

_ To do so, we have to change the radial variabteap be-
whereV!™™ andV, are given by Eqs(52) and(55), respec- cause in this coordinate system the sectibam/2 of the
tively. Plugging this expression for the renormalized Greermonopole spacetimé&l) coincides with sectiorz=constof
function into Eq.(44) we obtain the following formulas for the infinitely thin cosmic string spacetimé3) and the pa-
the zero-zero components Aﬁ and 88 (see Appendix A rametera=1/v. Therefore we may compav@g(cs)(v) with
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35 RO

0.1
30

25

0 ‘ ' ' FIG. 1. Zero-zero componed and distance
2 Ro,, where the componer{Td)'®" of energy-
momentum tensor changes its sign, are plotted as

functions of the metric parameter.
-0.1

-0.2

o

05 1 15 3

[Ag(gm)(a)/a“]a:l,y. We have qualitative agreement of = The main goal of this work was to obtain the renormal-
both these quantities. Fer<1 they go to negative constant; ized vacuum expectation value of the energy-momentum ten-
for small angle deficit they are proportional to-1; for » ~ sor. Because all components of the VEV of the energy-
>1 we have Ag(cs)” v* and []/4A8(gm)(1/y)]~ v[Iny ~ mMomentum tensor can be expressed in terms of its zero-zero
+60C,]. Both of these quantities change the sign at poincomponent, we used only the Euclidean Green function at
rv=1. the coincidence limif)’ = andr’ =r. In this case, in order
The dependence dfT%)™®" on the distance from origin in to obtain the regularized expression {dfo), we were able
the global monopole spacetime is completely different fromt© subtract all divergencies in a manifest form.
the case of the infinitely thin cosmic string due to the loga- After the renormalization, the Green functidb7) de-
rithmic term. Let us consider the physical distanBe Pends on the scale parameferwhich leads to logarithm
= urla measured in a mass scale Then, the(T9)"®" mea- contribution to the energy-momentum tensor given by Eq.

sured in unitsu? has the form (37). But, as it was noted in Ref7] the one-loop Einstein
equations
4_
8mu To) e =g In =, (66) 1
60a”R RO R,uv_ ERng+ el(l)H;w"_ 62(2)H,uy:87T{T;|35+<T,u,,>ren},
whereR,= exp(—AYBY). In the casen<1 the energy den- (67)

sity (T9)"®" is positive in the domaitRe (0,R,); it changes ) o
the sign in the poinR=R, and goes, through the minimum do not depend on this parameter due to the renormalization
at pointR, =R,e"4, to zero in infinity. In the case>1 we  9roup equations for the coefficiends andes. Any-va}rlatlon
have opposite picture with maximum at the poiy. The  Of the scale parameter may be absorbed by variation of the
dependence dR, on thea is shown in the Fig. 1. For small €k

a it is proportional to 14 and it goes to constant for great . 1aKing into account the conservation 1&88), the expres-
sion for conformal anomaly39) and the spherical symmetry

of problem we expressed all components of energy-
momentum tensor in terms of zero-zero compongtf)

In this paper we have considered the quantum, a 1/2-spiwhich has the form
left-handed field in the background of a pointlike global
monopole described by the metric tensor given in &j.
More specifically, we have obtained the complete Feynman
propagator, expressed in terms of a bispinor, in a closed
form. Differently from the results obtained in RdfZ] for WhereA8 and Bg are given by Eqs(58) and(59). The com-
scalar field, in this analysis there appears two effective anponentAg depicted in Fig. 1 as a function af, and it is
gular total quantum numbers, which we call by andv,.  qualitatively agreed with similar one in the infinitely thin
These angular total quantum numbers are related with thggsmic string spacetime.
explicit properties of the spinor harmoniosg},%j and @,(,2%1. The scaling parametez leads to the logarithmic contri-
and they have the following formv;=(I+1)/a—1/2 and  bution in the energy-momentum tengé8). For this reason
v,=1/a+1/2. For the scalar case the effective orbital quan<{T5)"®" changes its sign in some poiRg and has the extre-
tum numbers take a simple form only under specific situatiormum at the poinR, =Rye'* The dependence &, on the
[7], namely foré=1/8. «a is depicted in the Fig. 1.

IV. CONCLUSION

(9=

mr
g AS+ Bgln:}, (68)
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Before we finish this paper we would like to make a brief 1 2 1-a? 1-a* X2
comment about some results previously obtained in the lit- fX)=—Fr ot —5———% 3. (A2
erature related with quantum calculation of the energy- SH ﬂ X 3 15
momentum tensof ., in the spacetime of a pointlike global a

)23
monopole. Hiscock, in Ref8], using general consideration,

obtained a formal expression for the vacuum expectatio
value of the energy-momentum tensor for an arbitrary col- I
lection of conformal massless fields in this manifold. Later, %flﬂf”(x): b
Mazzitelly and Lousto, in Ref[7], developed the explicit P“Jb x?—b? b2
calculation for renormalized vacuum average of the square of

a massless scalar quantum field and also, by general consid- %
eration, inferred the structure fdr, which disagrees with

the Hiscock’s results and manifestly depends on the scal

parametey. This is in agreement with general consideration
by Wald in Ref.[9]. In our paper we obtained the explicit

Ij‘l'he last integral may be represented in the following form:

(f"(DH—-F(1)+

J'l dx
N

1 1
f"(x)— ;f’(x)—k Ff(x) . (A3)

s?aking into account the above expression and puttind)
we have that

expression for vacuum average value of the energy- g2yfin
momentum tensor for a massless fermionic field in this mani- op2_ "1
fold, giving the complete information about this tensor in db?

b=0
terms ofAJ andBJ. We also have analyzed the behavior of

these functions with the parameter and the dependence of - f 1)+ f ax

T8 with the physical distancR. Finally we want to say that 0 X

our expression for VEV of the energy-momentum tensor de-

pend on the scale parameter in agreement with Ref9], (Ad)

due to the appearance of a logarithm term, which is a conmtegrating by parts the term with second derivative we ar-

sequence of the regularization procedure. This term is rerjye at the expression

sponsible for the changing in the sign of the vacuum energy-

momentum tensor when we vary the physical distaRce d2viin 1 ridx
The explicit expression for the massless left-handed two- — =?f ?f(x). (A5)

component spinor Green function, is obtained in the back- db b=0

ground of global monopole spacetime. It is our interest to

develop a similar calculation for the massive case and als¢n® second derivative df; may be easily found from Eg.
obtain the vacuum average for the energy-momentum tensoro> and is given by

1 1
00— 2100+ 2100 .

0
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APPENDIX A 1—a? 1—a* X2
In order to find derivatives of/{" with respect tob we 3 15 o
have to change variabbe—bx because integrand Mfl'” is
divergent at the poink=b. The second derivative has the 5 5
form below: N J"”dx 1 o 1l
1 x3 arshx X2 3
davin 1—b? 1 sk "
2r? = f(1)— /(1)
db?>  b?(1-b?)?%? b2\1—b? tra, ur 5 1
+ ——In—— stra,— stra,. (A7)
N 1 fl dXX2 f” ) (Al) 2 o 8 8
b%Jb 2= b2 ), Because we have used for renormalization of the Green func-
tion in the Hadamard forn47) the last term has been added
where in order to obey conservation la{88) according to Wald
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[9]. Integrating two times by parts we arrive at the formula

(58); the last two terms in EqA7) are cancelled.

APPENDIX B

Here we will analyzeAS component in three domaina:
<1,/a—1|<1 anda>1. AJ has the form below

A0 1 1dx]c jwdxf B1
=78 o x 2t L x (B1)
where
. 2ax  chy 2 1 3chy a*
Y(1+xd)%2 sty 14X\ sy siy xt
fo=f 2 1-a* 1 hx B2
=14 1—5( a®),y= Zars . (B2)

1 adXx

(1) Casea<1. Here we represemg in the following
=dx
_f2

form:
[ o [

The first and second integrals are finite in the limit>0
(after changingc— ax) and the last integral gives logarithm
term. Putting together we obtain

2 1dx
- 1—5(1— a4) J;Y?] .
(B3)

A=~ 5o

Ina+Cy, (B4)

PHYSICAL REVIEW D 60 063506

c 1 fldx 1 3chx 3 1
ZalJox s sk XTI
+f°°dx 1 3cfx 3 10,0104
1 X \stx  stfx  x* ' '

(B5)

(2) Case|a—1|<1. There is no problem to exparf
near the poine=1 and we get

7 1
—+ —In2=0.0773.

Ao=Cal1=a).Cr 555" 15

(B6)
(3) Casea>1. In this case
(B7)

2X 1
(1+x2)%2 arsk¥x

1dx

)

N 6 1 6+2
1+x ars]‘fx_? 1_5

dex
+ R
1 X
N 6 1
1+%* arstx

X

2X 1
(1+x2)%? arshx

6
—4) ] =0.0173.
X
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