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Vacuum polarization of a massless spinor field in global monopole spacetime

E. R. Bezerra de Mello,* V. B. Bezerra,† and N. R. Khusnutdinov‡
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~Received 26 February 1999; published 13 August 1999!

We calculate the renormalized vacuum average of the energy-momentum tensor of a massless left-handed
spinor field in the pointlike global monopole spacetime using point-separation approach. The general structure
of the vacuum average of the energy-momentum tensor is obtained and expressed in terms of a^T0

0& ren

component, the explicit form of which is analyzed in great detail for an arbitrary solid angle deficit.
@S0556-2821~99!00816-4#
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I. INTRODUCTION

It is well known that different types of topological objec
may have been created by the vacuum phase transition in
early Universe@1,2#. These include domain walls, cosm
strings, and monopoles. Among them, cosmic strings
monopoles seem to be the best candidates to be observ

A global monopole is a heavy object formed in the pha
transition of a system composed of a self-coupling sca
field triplet fa whose original globalO(3) symmetry is
spontaneously broken toU(1). Thescalar matter field plays
the role of an order parameter which outside the monop
core acquires a nonvanishing value. The main part of
monopole’s energy is concentrated into its small core. T
simplest model which gives rise to a global monopole
described by the Langrangian density below, and was a
lyzed by Barriola and Vilenkin@3#:

L5
1

2
~]mfa!~]mfa!2

1

4
l~fafa2h2!2. ~1!

Coupling this matter field with the Einstein equations,
spherically symmetric metric tensor given by the line e
ment

ds252B~r !dt21A~r !dr21r 2~du21 sin2 udw2!, ~2!

presents solutions for the functionsB(r ) andA(r ) far from
the monopole’s core given by

B5A215128ph222M /r . ~3!

The mass parameterM;Mcore . Numerical details concern
ing this function can be seen in Ref.@4#. Neglecting the mass
term we get the pointlike global monopole spacetime w
metric

ds252a2dt21dr2/a21r 2~du21 sin2 udw2!, ~4!
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where the parametera25128ph2. The energy momentum
tensor of this monopole has diagonal form and reads:Tt

t

5T r
r5(a221)/r 2 andTu

u5Tw
w50. The main peculiarity of

this space is a solid angle deficit which is the differen
between the solid angle in the flat spacetime 4p and the
solid angle in the global monopole spacetime which is giv
by 4pa2. For a,1 one has solid angle deficit and fora
.1 one has the solid angle excess.~We would like to call
attention that the physical values fora predicted by field
theory is smaller than unit1.! The spacetime produced by
global monopole has no Newtonian gravitational potentia
spite of the geometry produced by this heavy object ha
nonvanishing curvature. For this reason the mass of
monopole is divergent and proportional to the distance fr
monopole origin@3#. In context of the monopole formation
the cosmological horizon is a natural cutoff distance for
monopole’s mass.

Although the global monopole has no Newtonian gravi
tional potential it gives enormous tidal accelerationa;1/r 2

which is important from the cosmological point of view an
may be used for obtaining upper bound on the number d
sity of them in the Universe, which is at most one glob
monopole in the local group galaxies@5#. However, the nu-
merical simulations made by Bennet and Rhie show that
upper boundary is smaller than that given in@5# by many
orders@6#. In fact, one has scaling solution with a few glob
monopoles per horizon volume@6#.

The quantum effects due to the monopole background
the matter fields have been considered explicitly for sca
field in Ref. @7# and by general consideration in Ref.@8#. It
has been shown from general consideration that the vac
expectation value of the energy-momentum tensor of ma
less fields has the following general form:

^Tm
n & ren5

Sm
n ~mr !

r 4 , ~5!

where the tensorSm
n depends on the arbitrary mass sca

parameterm and the metric coefficienta. In Ref. @8#, it has
been assumed that the tensorSm

n is the function of the metric

s- 1In fact for a typical grand unified theory the parameterh is of
order 1016 GeV. So 12a258ph2;1025.
©1999 The American Physical Society06-1
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parametera, only. Manifest calculations in scalar case ha
shown@7# that this tensor depends on renormalization m
parameterm and it has the following structureSm

n 5Am
n

1Bm
n ln mr, where tensorsAm

n andBm
n depend only on thea.

This is in agreement with Wald@9# who noted that an unam
biguous prescripton for̂Tm

n & ren cannot be defined withou
introducing a length scale. Nevertheless, one-loop Eins
equations do not depend on scale parameterm due to renor-
malization group equation. The backreaction problem in
scalar massless case has been investigated by Mazzitell
Lousto@7#. It must be noted that only the general structure
vacuum expectation value of the energy-momentum ten
has been considered. An explicit form of the tensorSm

n was
not obtained.

Ground state energy of massive scalar field in the spa
time of pointlike global monopole was considered in R
@10# in the frameworks of zeta function approach. It w
shown that the ground state energy is zero. As it was note
Ref. @10#, this result may be obtained from dimensional co
siderations because in this case there is no dimensiona
rameter into metric coefficients.

In this paper we would like to obtain the explicit value
this tensor, considering the massless spinor field on the b
ground of the pointlike global monopole with metric give
by Eq. ~4!. As opposed to the massless scalar field case@7#
we get a simpler expression for the Green function and
energy-momentum tensor which is obtained in closed fo
for arbitrary angle deficit.

The analysis of the quantum behavior of two massl
left-handedSU(2) doublets fermionic field in the back
ground of a pointlike monopole, taking into account t
magnetic field, has been developed by Ren@11#. The Ruba-
kov and Callan effect was analyzed therein, and it was fo
that there a small correction appears due to the parameta
into the fermion number condensate.

This paper is organized as follows. In Sec. II we consi
the Green functions for massive and massless spinor fi
on the background of the pointlike global monopole and
tain, in closed form, the Euclidean Green function for ma
less left-handed spinor field. In Sec. III we analyze this fu
tion at coincidence limit and extract all divergencies from
in manifest form. We obtain also the general structure
renormalized energy-momentum tensor. Each componen
this tensor may be expressed in terms of only the zero-z
component̂ T0

0& ren which is analyzed with great details. I
Sec. IV we summarize our results. Appendices A and B c
tain some technical formulas. The signature of the spacet
the sign of Riemann and Ricci tensors are the same a
Christensen’s paper@18#. We use units\5c5G51.

II. SPINOR GREEN FUNCTIONS

In this section we want to obtain the expression for
fermion propagator of massive spinor field in the pointli
monopole spacetime. Massless field will be recognized
particular case. The spinor Feynman propagator is define
follows @12#:

iSF~x,x8!5^0uT„C~x!C̄~x8!…u0&, ~6!
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where C̄5C1g0 which, under the Lorentz transformatio

C˜S(n)C, transforms asC̄˜C̄S21(n), wheren is the
parameter of the transformation, andS(n) is a local repre-
sentation of the Lorentz group.

This propagator obeys the following differential equatio

~ i¹” 2M !SF~x,x8!5
1

A2g
d (4)~x2x8!I 4 , ~7!

whereg5det(gmn). The covariant derivative operator in th
above equation is

¹” 5e(a)
m g (a)~]m1Gm!, ~8!

e(a)
m being the vierbein satisfying the condition

e(a)
m e(b)

n hab5gmn, ~9!

and Gm is the spin connection, given in terms of the fl
spacetimeg matrix by

Gm52
1

4
g (a)g (b)e(a)

n e(b)n;m . ~10!

The Green function given in Eq.~7! is a bispinor, i.e., it

transforms asC at x and asC̄ at x8.
If a bispinorDF(x,x8) satisfies the differential equatio

below,

S h2M22
1

4
RDDF~x,x8!52

1

A2g
d (4)~x2x8!I 4 ,

~11!

where the generalized d’Alembertian is expressed by

h5gmn¹m¹n5gmn~]m¹n1Gm¹n2Gmn
a ¹a!, ~12!

then the spinor Feynman propagator may be read as

SF~x,x8!5~ i¹” 1M !DF~x,x8!, ~13!

which shows that the nonminimal coupling to the curvatu
does play a role when spinor fields are considered.

Now after this brief review about the calculation of spin
Feynman propagator in the general manifold, let us spec
ize it to the spacetime of a global monopole. We shall cho
the following basis tetrad:
6-2
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e(a)
m 5S 1/a 0 0 0

0 a sinu cosw cosu cosw/r 2 sinw/r sinu

0 a sinu sinw cosu sinw/r cosw/r sinu

0 acosu 2 sinu/r 0

D . ~14!
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For this case, the only nonzero spin connections are

G25
12a

2
@g (1)g (2) cosw1g (2)g (3) sinw#, ~15!

G352
12a

2
@g (1)g (2) sinu1g (1)g (3) cosu sinw

2g (2)g (3) cosu cosw#sinu.

If we had made another choice for the vierbein, for exam
e(a)

m 5diag(1/a,a,1/r ,1/r sinu), the only nonzero spin con
nection would be G252ag (1)g (2)/2 and G3
52a@g (1)g (3) sinu1g(2)g(3) cosu#/2. Although this tetradic
basis is simpler than previous one given in Eq.~14!, the spin
connection obtained by the former does not vanish when
take Minkowski limit a51.

In order to obtain the explicit form for the differentia
equation for the bispinorDF given in Eq.~11! in this geom-
etry we shall adopt the following representation for t
g-matrix:

g (0)5S 1 0

0 21D , g (k)5S 0 sk

2sk 0 D , ~16!

sk being the 232 Pauli matrices. These matrices abo
obey the anticommutator relations$g (a),g (b)%522hab.

After some intermediate steps, we get the following e
pression for the d’Alembertian operator:

h52
1

a2 ] t
21

a2

r 2 ] r~r 2] r !2
1

r 2LW 22
~12a!2

2r 2 2
12a

r 2 SW •LW ,

~17!

where

SW 5S sW 0

0 sW
D . ~18!

From the above operator we can see that, although it is
34 matrix differential one, it is diagonal in block of 232
matrices, which means that the two upper components
Dirac spinor interact with the gravitational field in the simil
way as the two lower components.

The complete differential operator in Eq.~11! is

L52
1

a2 ] t
21

a2

r 2 ] r r
2] r2

1

r 2LW 22
12a

r 2 ~11SW •LW !2M2.

~19!
06350
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Now we shall consider the case where the fermionic field
no mass. In this case we are able to obtain a closed exp
sion for the fermionic propagator as follows.

The system which we shall consider consists of a ma
less left-handed fermionic field in a global monopole ma
fold. The Dirac equation reduces to a 232 matrix differen-
tial one, as shown below:

iD” Lx50, ~20!

where

D” L5 i F 1

a
] t2as (r )] r2

1

r
s (u)]u2

1

r sinu
s (w)]w

1
12a

r
s (r )G , ~21!

with s (r )5sW •rŴ,s (u)5sW •uŴ ,s (w)5sW •wŴ , whererŴ,uŴ andwŴ are
the standard unit vectors along the three spatial direction
spherical coordinates.

The Feynman two-component propagator obeys the eq
tion

iD” LSF~x,x8!5
1

A2g
d (4)~x2x8!I 2 , ~22!

and can be given in terms of the bispinorGF by

SF~x,x8!5 iD” LGF~x,x8!, ~23!

where nowGF(x,x8) obeys the 232 differential equation

L̄GF~x,x8!52
1

A2g
d (4)~x2x8!I 2 , ~24!

with

L̄52
1

a2 ] t
21

a2

r 2 ] r r
2] r2

1

r 2LW 22
12a

r 2 ~11sW •LW !.

~25!

The vacuum average value of the energy-momentum te
may be expressed in terms of the Euclidean Green func
which is simpler than the ordinary Feynman Green functi
They are connected by the relation@12# G«(t,rW;t8,r 8W )
52 iGF(x,x8), wheret5 i t. In the following we shall con-
sider the Euclidean Green function. In order to find a so
tion for the bispinorG«(x,x8), we shall obtain the solution
for the eigenvalue equation
6-3
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L̄fl~x!52l2fl~x!, ~26!

with l2>0, so we can write

G«~x,x8!5(
l

fl~x!fl
1~x8!

l2
. ~27!

Due to fact that our operator~25! is self-adjoint, the set of its
eigenfunctions constitutes a basis for the Hilbert space a
ciated with two-component spinors. Moreover, because
eratorL̄ is a parity even operator, its eigenfunctions pres
a defined parity, so the normalized eigenfunctions can
written as

fl
(1)~x!5e2 iEt f (1)~r !w j ,mj

(1) ~u,w!, ~28!

fl
(2)~x!5e2 iEt f (2)~r !w j ,mj

(2) ~u,w!,

wherew j ,mj

(k) , with k51,2, are the spinor spherical harmoni
which are eigenfunctions of the operatorsLW 2 and sW •LW as
shown below:

LW 2w j ,mj

(1,2)5 l ~ l 11!w j ,mj

(1,2) , ~29!

sW LW w j ,mj

(1,2)52~11k (1,2)!w j ,mj

(1,2) , ~30!

with k (1)52( l 11)52( j 11/2) andk (2)5 l 5 j 11/2. Ex-
plicit form of above standard function are given in Ref.@13#,
for example.

Substitutingfl
(1,2) into Eq. ~26!, we obtain the following

eigenfunctions:

fl
(k)~x!5A p

2pr
e2 iEtJnk

~pr !w j ,mj

(k) , ~31!

l25E2/a21a2p2,

n15
l 11

a
2

1

2
, n25

l

a
1

1

2
, ~32!

whereJn is the Bessel function of first kind. We can see th
for Minkowski spacetime wherea51 we haven15n25 l
11/2.

Now we are in condition to obtain the bispinorG« which
is given by

G«~x,x8!5E
2`

1`

dEE
0

`

dp

3(
j ,mj

fl
(1)~x!fl

(1)1~x8!1fl
(2)~x!fl

(2)1~x8!

E2/a21a2p2
.

~33!

Finally, substituting our result for the two-component spin
fl

(k) given by Eqs.~31! and ~32! into Eq. ~33! we obtain,
with the help of Ref.@14#, an expression for the Euclidea
Green function
06350
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t
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G«~x,x8!5
1

2prr 8
(
j ,mj

@Qn121/2~u!Cj ,mj

(1) ~V,V8!

1Qn221/2~u!Cj ,mj

(2) ~V,V8!#, ~34!

where Qn(u) are the Legendre functions of second kin
u511(a4nt21nr 2)/2rr 8 and Cj ,mj

(k) (V,V8)

5w j ,mj

(k) (V)w j ,mj

(k)1(V8). Again we can see that in Minkowsk

limit, for a51, n15n25 l 11/2 and we get

G«~x,x8!5
1

8p2

1

sM~x,x8!
I 2, ~35!

where we have used the relation involving the sum of Le
endre functions and polynomials@14#. Here sM(x,x8)
5(nt21(rW2rW8)2)/2 is one-half the square of geodesic d
tance betweenx andx8 in the flat Euclidean space.

Now in order to obtain the Green functionSF let us go
back to Eq.~34!. Using Eq.~23! we have

SF~x,x8!5 i F 1

a
] t2as (r )] r1

1

r
s (r )sW •LW

1
12a

r
s (r )GGF~x,x8!. ~36!

III. VACUUM EXPECTATION VALUES

Now let us proceed with the calculation of the vacuu
expectation value~VEV! of the energy-momentum tenso
Initially, we would like to discuss the general structure
this tensor. As it will be seen later and has already be
discussed in scalar case in Ref.@7#, the renormalized vacuum
expectation value~VEV! of the energy-momentum tenso
has the following structure:

^Tm
n & ren5

1

8p2r 4 FAm
n 1Bm

n ln
mr

a G , ~37!

where the tensorsAm
n andBm

n depend on the metric paramet
a, only. The scaling parameterm appears after renormaliza
tion procedure. Obviously these tensors are diagonal and
componentAu

u5Aw
w andBu

u5Bw
w due to spherical symmetry

of the problem. Therefore we have six unknown comp
nents. The renormalized VEV of the energy-momentum t
sor must be conserved, i.e.,

^Tm
n & ;n

ren50, ~38!

and gives the right conformal anomaly@15#, which for mass-
less spinor two-component field, reads@16#

^Tm
m& ren5

1

16p2tra25
T

8p2r 4 . ~39!

Here we introduce the new variableT by the following rela-
tion @see Eq.~48!#:
6-4
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T5
defr 4tra2

2
52

12a4

60
. ~40!

Taking into account Eqs.~38!, ~39! we may express tensor
Am

n andBm
n in terms of the zero-zero componentsA0

0 ,B0
0 and

the traceT by

Am
n 5diagS A0

0 ;2T1A0
01B0

0 ;T2A0
02

1

2
B0

0 ;T2A0
02

1

2
B0

0D ,

~41!

Bm
n 5B0

0diag~1;1;21;21!. ~42!

Therefore our problem now is to obtain the zero-zero co
ponentsA0

0 and B0
0. Using the point-splitting approach, th

VEV of the energy-momentum tensor for spinor field has
following form ~see Ref.@12# for example!:

^Tmn&5
1

4
lim

x8˜x

tr@sm~¹n2¹n8!1sn~¹m2¹m8!#SF~x,x8!,

~43!

by means of which we have

^T0
0&5

i

a2 lim
x8˜x

] t
2tr„GF~x,x8!…52

1

a2 lim
x8˜x

]t
2tr„G«~x,x8!….

~44!

The first term with time derivative in Eq.~36! gives nonzero
contribution in the zero-zero component of the ener
momentum tensor, only. Indeed, the Euclidean Green fu
tion ~34! is proportional to the unit matrixI 2 after taking the
coincidence limitV85V and sum overmj . The same is true
for the third term in Eq.~36! due to Eq.~30!. We obtain zero
contribution from these terms because Pauli matrices
traceless. In above expression we have used also tha
Green function~34! depends on thent and hence]t8G«

52]tG« .
Taking the coincidence limitV85V,r 85r into Eq. ~34!,

summing overmj and after using the integral representati
for the Legendre function@14#, it is possible to develop the
sum overj, which is geometric series and we arrive at t
following formula for the Euclidean Green function:

8p2G«~nt,r !5
1

2r 2E
b

` dx

Ax22b2

1

sh2S arshx

a D I 2 , ~45!

where the functionb may be expressed in terms of the on
half of the square geodesic distances in t direction

b25
a2

2r 2 s5
a2

2r 2 S a2nt2

2 D . ~46!

In the case when only the angular variableV85V coincides,
we shall get the same formula for Green function~45! with
s5(a2nt21nr 2/a2)/2 andr 2

˜rr 8.
06350
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The Green function~45! is divergent in the coincidence
limit b˜0. For renormalization in the massless case it
more suitable to subtract from the Green function~45! the
Green function in the Hadamard form given below~see Refs.
@17,9#!:

8p2G «
H~x,x8!5n1/2H a0

s
2

3a2

8
s

1F2
a1

2
1

a2

4
s G lnS 1

8
m2s D J . ~47!

In order to obey the conservation law~38! we must subtract
from the energy-momentum tensor additional contribut
gmntra2/64p2 according to Wald@9#. The general form of the
coefficientsak may be found in Ref.@18# and for the global
monopole spacetime they have the following form:

n51,a05I 2 ,a152
12a2

6r 2 I 2 ,a252
12a4

60r 4 I 2 . ~48!

From our expression for the Green function~45!, it is pos-
sible to extract all divergencies in manifest form. To do th
let us consider the right-hand side~RHS! of Eq. ~45!. We
divide the integral in two parts—first one fromb to unit and
second from unit to infinity. In the first part we have the for
below:

V15
1

2r 2E
b

1 dx

Ax22b2

1

sh2S arshx

a D I 2 . ~49!

Subtracting and adding into the integrand the three first te
of the power series of the function

1

sh2S arshx

a D 5
a2

x2 2
12a2

3
1

12a4

15

x2

a2 1•••, ~50!

we get

V15V1
f in1V1

div . ~51!

The first term is given by expression

V1
f in5

1

2r 2E
b

1 dx

Ax22b2 H 1

sh2S arshx

a D 2
a2

x2 1
12a2

3

2
12a4

15

x2

a2J I 2 , ~52!

and its two derivatives with respect to timet are finite in the
coincidence limitb˜0. All divergencies are contained in th
second part of Eq.~51! which has the form
6-5
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V1
div5

1

2r 2 Fa2

b2A12b22
12a2

3
ln

11A12b2

b

1
12a4

30a2 HA12b21b2 ln
11A12b2

b J G I 2 . ~53!

Expanding this expression in the power series overb up to
the terms which will survive after taking the second deriv
tive and coincidence limit, we may represent it in the for

V1
div5H 1

s
1

1

2r 2 F2
a2

2
1

12a4

30a2 G
1F2

a4

32r 4 1
a2~12a2!

48r 4 1
a2

4 Gs
1F2

a1

2
1

a2

4
sG ln a2s

8r 2 J I 2 . ~54!

We see that the divergent part of this expression has
Hadamard form given by Eq.~47!. The next powers in the
expansion~50! will give finite contribution to the energy
momentum tensor.

The second part,

V25
1

2r 2E
1

` dx

Ax22b2

1

sh2S arshx

a D I 2 , ~55!

does not contain divergencies and it may be easily expan
in terms ofb

V25
1

2r 2E
1

`dx

x

1

sh2S arshx

a D I 21
a2s

8r 4 E
1

`dx

x3

1

sh2S arshx

a D I 2

1O~s2!. ~56!

Taking into account all above formulas we obtain the follo
ing expression for the renormalized Green function:

8p2G «
ren58p2@G«~nt,r !2G «

H~nt,r !#

5V1
f in1V21H 1

2r 2 F2
a2

2
1

12a4

30a2 G
1F2

a4

32r 4 1
a2~12a2!

48r 4 1
5a2

8 Gs
1Fa12

a2

2
sG ln mr

a J I 2 , ~57!

whereV1
f in andV2 are given by Eqs.~52! and ~55!, respec-

tively. Plugging this expression for the renormalized Gre
function into Eq.~44! we obtain the following formulas for
the zero-zero components ofA0

0 andB0
0 ~see Appendix A!:
06350
-

e

ed

-

n

A0
052

1

8 H E0

1dx

x F S a2

sh2S arshx

a D D 9
2

6a4

x4 2
2~12a4!

15 G
1E

1

`dx

x F S a2

sh2S arshx

a D D 9
2

6a4

x4 G J , ~58!

B0
05

r 4tra2

2
52

12a4

60
, ~59!

where the prime means the derivative with respect tox. In
this expression we have already taken into account additio
contribution2tra2/64p2.

Now we have explicit expressions for zero-zero comp
nentsA0

0 andB0
0 for arbitrary values ofa. Let us analyzeA0

0

component~see Appendix B for details!.
~1! For large solid angle deficit (a!1),

A0
0;2

1

60
ln a1C0 ,C050.0104. ~60!

~2! For small solid angle deficit~excess! (ua21u!1),

A0
0;C1~12a!,C150.0773. ~61!

~3! The large solid angle excess (a@1),

A0
0;2C`a4,C`50.0173. ~62!

The numerical calculation ofA0
0 is shown in Fig. 1.

Now, we would like to compare our results with the sim
lar one for the VEV of the energy-momentum tensor of t
massless spinor field in the infinitely thin cosmic strin
spacetime with line element, in cylindrical coordinate sy
tem, given by

ds252dt21dr21
r2

n2 dw21dz2. ~63!

In Ref. @19# the following result has been obtained:

Tm
n 5

~n221!~7n2117!

144034p2r4 diag~1;1;1;23!. ~64!

In this case there is no logarithmic contribution because
spacetime is locally flat. Therefore we may compare now
A0

0 given by Eq.~58! for global monopole spacetime with th
analogous one for infinitely thin cosmic string spacetim
which is given by the expression

A0(cs)
0 5

~n221!~7n2117!

720
. ~65!

To do so, we have to change the radial variabler 5ar be-
cause in this coordinate system the sectionu5p/2 of the
monopole spacetime~4! coincides with sectionz5constof
the infinitely thin cosmic string spacetime~63! and the pa-
rametera51/n. Therefore we may compareA0(cs)

0 (n) with
6-6
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FIG. 1. Zero-zero componentA0
0 and distance

R0, where the component̂T0
0& ren of energy-

momentum tensor changes its sign, are plotted
functions of the metric parametera.
f
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e
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n
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@A0(gm)
0 (a)/a4#a51/n . We have qualitative agreement o

both these quantities. Forn!1 they go to negative constan
for small angle deficit they are proportional ton21; for n
@1 we have A0(cs)

0 ;n4 and @n4A0(gm)
0 (1/n)#;n4@ ln n

160C0#. Both of these quantities change the sign at po
n51.

The dependence of^T0
0& ren on the distance from origin in

the global monopole spacetime is completely different fr
the case of the infinitely thin cosmic string due to the log
rithmic term. Let us consider the physical distanceR
5mr /a measured in a mass scalem. Then, thê T0

0& ren mea-
sured in unitsm4 has the form

8p2m24^T0
0& ren5

a421

60a4R4 ln
R

R0
, ~66!

whereR05 exp(2A0
0/B0

0). In the casea,1 the energy den-
sity ^T0

0& ren is positive in the domainRP(0,R0); it changes
the sign in the pointR5R0 and goes, through the minimum
at pointR* 5R0e1/4, to zero in infinity. In the casea.1 we
have opposite picture with maximum at the pointR* . The
dependence ofR0 on thea is shown in the Fig. 1. For sma
a it is proportional to 1/a and it goes to constant for greata.

IV. CONCLUSION

In this paper we have considered the quantum, a 1/2-
left-handed field in the background of a pointlike glob
monopole described by the metric tensor given in Eq.~4!.
More specifically, we have obtained the complete Feynm
propagator, expressed in terms of a bispinor, in a clo
form. Differently from the results obtained in Ref.@7# for
scalar field, in this analysis there appears two effective
gular total quantum numbers, which we call byn1 and n2.
These angular total quantum numbers are related with
explicit properties of the spinor harmonics,w j ,mj

(1) and w j ,mj

(2)

and they have the following formn15( l 11)/a21/2 and
n25 l /a11/2. For the scalar case the effective orbital qua
tum numbers take a simple form only under specific situat
@7#, namely forj51/8.
06350
t

-

in
l

n
d

n-

e

-
n

The main goal of this work was to obtain the renorm
ized vacuum expectation value of the energy-momentum
sor. Because all components of the VEV of the ener
momentum tensor can be expressed in terms of its zero-
component, we used only the Euclidean Green function
the coincidence limitV85V andr 85r . In this case, in order
to obtain the regularized expression for^T0

0&, we were able
to subtract all divergencies in a manifest form.

After the renormalization, the Green function~57! de-
pends on the scale parameterm which leads to logarithm
contribution to the energy-momentum tensor given by E
~37!. But, as it was noted in Ref.@7# the one-loop Einstein
equations

Rmn2
1

2
Rgmn1e1

(1)Hmn1e2
(2)Hmn58p$Tmn

clas1^Tmn&
ren%,

~67!

do not depend on this parameter due to the renormaliza
group equations for the coefficientse1 ande2. Any variation
of the scale parameterm may be absorbed by variation of th
ek .

Taking into account the conservation law~38!, the expres-
sion for conformal anomaly~39! and the spherical symmetr
of problem we expressed all components of ener
momentum tensor in terms of zero-zero component~42!
which has the form

^T0
0& ren5

1

8p2r 4 FA0
01B0

0 ln
mr

a G , ~68!

whereA0
0 andB0

0 are given by Eqs.~58! and~59!. The com-
ponentA0

0 depicted in Fig. 1 as a function ofa, and it is
qualitatively agreed with similar one in the infinitely thi
cosmic string spacetime.

The scaling parameterm leads to the logarithmic contri
bution in the energy-momentum tensor~68!. For this reason
^T0

0& ren changes its sign in some pointR0 and has the extre
mum at the pointR* 5R0e1/4. The dependence ofR0 on the
a is depicted in the Fig. 1.
6-7
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Before we finish this paper we would like to make a br
comment about some results previously obtained in the
erature related with quantum calculation of the ener
momentum tensorTm

n in the spacetime of a pointlike globa
monopole. Hiscock, in Ref.@8#, using general consideration
obtained a formal expression for the vacuum expecta
value of the energy-momentum tensor for an arbitrary c
lection of conformal massless fields in this manifold. Lat
Mazzitelly and Lousto, in Ref.@7#, developed the explicit
calculation for renormalized vacuum average of the squar
a massless scalar quantum field and also, by general co
eration, inferred the structure forTm

n which disagrees with
the Hiscock’s results and manifestly depends on the s
parameterm. This is in agreement with general considerati
by Wald in Ref.@9#. In our paper we obtained the explic
expression for vacuum average value of the ener
momentum tensor for a massless fermionic field in this ma
fold, giving the complete information about this tensor
terms ofA0

0 andB0
0. We also have analyzed the behavior

these functions with the parametera, and the dependence o
T0

0 with the physical distanceR. Finally we want to say tha
our expression for VEV of the energy-momentum tensor
pend on the scale parameterm, in agreement with Ref.@9#,
due to the appearance of a logarithm term, which is a c
sequence of the regularization procedure. This term is
sponsible for the changing in the sign of the vacuum ener
momentum tensor when we vary the physical distanceR.

The explicit expression for the massless left-handed t
component spinor Green function, is obtained in the ba
ground of global monopole spacetime. It is our interest
develop a similar calculation for the massive case and
obtain the vacuum average for the energy-momentum ten
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APPENDIX A

In order to find derivatives ofV1
f in with respect tob we

have to change variablex˜bx because integrand inV1
f in is

divergent at the pointx5b. The second derivative has th
form below:

2r 2
d2V1

f in

db2
5

12b2

b2~12b2!3/2
f ~1!2

1

b2A12b2
f 8~1!

1
1

b2E
b

1 dxx2

Ax22b2
f 9~x!, ~A1!

where
06350
f
t-
-

n
l-
,

of
id-

le

-
i-

f

-

n-
e-
y-

-
-

o
o

or.

o

c
o
-

f ~x!5
1

sh2S arshx

a D 2
a2

x2 1
12a2

3
2

12a4

15

x2

a2 . ~A2!

The last integral may be represented in the following form

1

b2E
b

1 dxx2

Ax22b2
f 9~x!5

A12b2

b2
„f 8~1!2 f ~1!…1E

b

1 dx

Ax22b2

3F f 9~x!2
1

x
f 8~x!1

1

x2 f ~x!G . ~A3!

Taking into account the above expression and puttingb50
we have that

2r 2
d2V1

f in

db2
b50

52 f 8~1!1E
0

1dx

x F f 9~x!2
1

x
f 8~x!1

1

x2 f ~x!G .
~A4!

Integrating by parts the term with second derivative we
rive at the expression

d2V1
f in

db2
b50

5
1

2r 2E
0

1dx

x3 f ~x!. ~A5!

The second derivative ofV2 may be easily found from Eq
~55! and is given by

d2V2

db2
b50

5
1

2r 2E
1

`dx

x3

1

sh2S arshx

a D . ~A6!

Using the above formulas in Eqs.~57! and ~44!, we get the
following expression for̂ T0

0& ren:

8p2^T0
0& ren52

a2

4r 4 H E0

1dx

x3 F 1

sh2S arshx

a D 2
a2

x2

1
12a2

3
2

12a4

15

x2

a2G
1E

1

`dx

x3 F 1

sh2S arshx

a D 2
a2

x2 1
12a2

3 G J
1

tra2

2
ln

mr

a
2

5

8
tra22

1

8
tra2 . ~A7!

Because we have used for renormalization of the Green fu
tion in the Hadamard form~47! the last term has been adde
in order to obey conservation law~38! according to Wald
6-8
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@9#. Integrating two times by parts we arrive at the formu
~58!; the last two terms in Eq.~A7! are cancelled.

APPENDIX B

Here we will analyzeA0
0 component in three domains:a

!1,ua21u!1 anda@1. A0
0 has the form below

A0
052

1

8 H E
0

1dx

x
f 21E

1

`dx

x
f 1J , ~B1!

where

f 15
2ax

~11x2!3/2

chy

sh3y
2

2

11x2 S 1

sh2y
2

3ch2y

sh4y
D 26

a4

x4 ,

f 25 f 12
2

15
~12a4!,y5

1

a
arshx. ~B2!

~1! Casea!1. Here we representA0
0 in the following

form:

A0
052

1

8 H E
0

adx

x
f 31E

a

`dx

x
f 22

2

15
~12a4!E

a

1dx

x J .

~B3!

The first and second integrals are finite in the limita˜0
~after changingx˜ax) and the last integral gives logarithm
term. Putting together we obtain

A0
052

1

60
ln a1C0 , ~B4!
di
he

06350
C05
1

4 H E
0

1dx

x S 1

sh2x
2

3ch2x

sh4x
1

3

x4 1
1

15D
1E

1

`dx

x S 1

sh2x
2

3ch2x

sh4x
1

3

x4D J 50.0104.

~B5!

~2! Caseua21u!1. There is no problem to expandA0
0

near the pointa51 and we get

A0
05C1~12a!,C15

7

900
1

1

15
ln 250.0773. ~B6!

~3! Casea@1. In this case

A0
052C`a4, ~B7!

C`5
1

8 H E
0

1dx

x S 2x

~11x2!3/2

1

arsh3x

1
6

11x2

1

arsh4x
2

6

x4 1
2

15D
1E

1

`dx

x S 2x

~11x2!3/2

1

arsh3x

1
6

11x2

1

arsh4x
2

6

x4D J 50.0173.
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