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Caustic ring singularity

P. Sikivie
Department of Physics, University of Florida, Gainesville, Florida 32611

~Received 17 February 1999; published 2 August 1999!

I investigate the caustics produced by the fall of collisionless dark matter in and out of a galaxy in the limit
of negligible velocity dispersion. The outer caustics are spherical shells enveloping the galaxy. The inner
caustics are rings. These are located near where the particles with the most angular momentum are at their
distance of closest approach to the galactic center. The surface of a caustic ring is a closed tube whose cross
section is aD24 catastrophe. It has three cusps amongst which exists a discreteZ3 symmetry. A detailed
analysis is given in the limit where the flow of particles is axially and reflection symmetric and where the
transverse dimensions of the ring are small compared to the ring radius. Five parameters describe the caustic
in that limit. The relations between these parameters and the initial velocity distribution of the particles are
derived. The structure of the caustic ring is used to predict the shape of the bump produced in a galactic
rotation curve by a caustic ring lying in the galactic plane.@S0556-2821~99!05916-0#

PACS number~s!: 95.35.1d, 98.35.Gi, 98.62.Ck
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I. INTRODUCTION

There are compelling reasons to believe that the dark m
ter of the universe is constituted, at least in part, by n
baryonic collisionless particles with low primordial veloci
dispersion@1#. Such particles are called cold dark matt
The leading candidates are axions and weakly interac
massive particles~WIMPs!. Before the onset of galaxy for
mation but after the timeteq of equality between matter an
radiation, the velocity dispersion of the cold dark matter c
didates is very small, of order dva(t);3
310217(1025 eV/ma)(t0 /t)2/3 for axions and dvW(t)
;10211(GeV/mW)1/2(t0 /t)2/3 for WIMPs, wheret0 is the
present age of the universe andma andmW are respectively
the masses of the axion and the WIMP. The above estim
of the primordial velocity dispersions,dva anddW , are very
crude but our point is only that in the context of this pap
and of galaxy formation in general,dva anddvw are entirely
negligible. Massive neutrinos, on the other hand, have
mordial velocity dispersion dvn(t).5.331024(eV/
mn)(t0 /t)2/3 which is comparable to the virial velocity in
galaxies and is therefore non-negligible in the context
galaxy formation@2#. For this reason, massive neutrinos a
called ‘‘hot dark matter.’’

Before the onset of galaxy formation, the collisionle
dark matter particles lie on a thin 3-dimensional~3D! sheet
in 6D phase-space. The thickness of this sheet is the prim
dial velocity dispersiondv. If each of the aforementione
species of collisionless particles is present, the phase-s
sheet has three layers, a very thin layer of axions, a med
layer of WIMPs and a thick layer of neutrinos. The phas
space sheet is located on the 3D hypersurface of po
(rW,vW ): vW 5H(t)rW1DvW (rW,t) whereH(t)52/3t is the Hubble
expansion rate andDvW (rW,t) is the peculiar velocity field.
Figure 1 shows a 2D section of 6D phase-space along
(z,ż) plane. The wiggly line is the intersection of the 3
sheet on which the particles lie in phase-space with the p
of the figure. The thickness of the line is the velocity disp
sion dv, whereas the amplitude of the wiggles in the line
0556-2821/99/60~6!/063501~16!/$15.00 60 0635
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the peculiar velocityDv. If there were no peculiar velocities
the line would be straight sinceż5H(t)z in that case.

The peculiar velocities are associated with density per
bations and grow by gravitational instability asDv;t2/3. On
the other hand the primordial velocity dispersion decrea
on average asdv;t22/3, consistently with Liouville’s theo-
rem. When a large overdensity enters the non-linear regi
the particles in the vicinity of the overdensity fall back on
it. This implies that the phase-space sheet ‘‘winds up’’
clockwise fashion wherever an overdensity grows in the n
linear regime. One such overdensity is shown in Fig. 1. B
fore density perturbations enter the non-linear regime, th
is only one value of velocity, i.e. one single flow, at a typic
location in physical space, because the phase-space
covers physical space only once. On the other hand, in

FIG. 1. The wiggly line is the intersection of the (z,ż) plane
with the 3D sheet on which the collisionless dark matter partic
lie in phase space. The thickness of the line is the primordial

locity dispersion. The amplitude of the wiggles in theż direction is
the velocity dispersion associated with density perturbations. Wh
an overdensity grows in the non-linear regime, the line winds up
clockwise fashion. One such overdensity is shown.
©1999 The American Physical Society01-1
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P. SIKIVIE PHYSICAL REVIEW D 60 063501
an overdensity in the non-linear regime, the phase-sp
sheet covers physical space multiple times implying t
there are several, but always an odd number of, flows at s
locations in physical space.

At the boundary between two regions one of which han
flows and the othern12 flows, the physical space density
very large because the phase-space sheet has a fold the
the fold, the phase-space sheet is tangent to velocity s
and hence, in the limit of zero velocity dispersion (dv50),
the density diverges since it is the integral of the phase-sp
density over velocity space. The structure associated w
such a phase-space fold is called a ‘‘caustic.’’ It is easy
show ~see Sec. II! that, in the limit of zero velocity disper
sion, the density diverges asd;1/As when the caustic is
approached from the side withn12 flows, wheres is the
distance to the caustic. If the velocity dispersion is small
non-zero, the divergence is cut off so that the density is
longer infinite at the caustic but merely very large.

In discussing this type of phenomenon, it is useful
adopt a parametrization of the phase-space sheet in the
of zero velocity dispersion, by giving each particle
3-parameter labelaW 5(a1 ,a2 ,a3). The phase-space she
location at timet is specified by the mapaW ˜xW (aW ,t) wherexW

is the position in physical space of particleaW at time t. The
velocity of particleaW is vW 5(]xW /]t)(aW ,t). The density di-
verges wherever the mapaW ˜xW is singular, i.e. where the
JacobianD[det(]xW /]aW ) vanishes. Thus caustics are asso
ated with zeros ofD. SinceD50 is one condition on three
parameters, caustics are generically two dimensional
faces.

Zel’dovich @3# emphasized the importance of caustics
large scale structure formation, suggesting the name ‘‘p
cakes’’ for them. The reason why galaxies tend to lie
surfaces@4#, such as ‘‘the Great Wall,’’ is undoubtedly tha
the 3D sheet on which the dark matter particles and bary
lie in phase-space acquires folds on very large scales,
ducing caustics appropriately called ‘‘Zel’dovich pancakes

Tremaine@5# recently used the techniques of Catastrop
Theory @6# to catalogue the caustics which may occur
observations of structure formation.

We saw above that where a localized overdensity is gr
ing in the non-linear regime, the line which is at the inte
section of the phase-space sheet with the (z,ż) plane winds
up in clockwise fashion. The onset of this process is illu
trated in Fig. 1. Of course, the picture is qualitatively t
same in the (x,ẋ) and (y,ẏ) planes. In this view, the proces
of galactic halo formation is the winding up of the phas
space sheet of collisionless dark matter particles. When
galactic center is approached from any direction, the lo
number of flows increases. First, there is one flow, then th
flows, then five, seven . . . . Thenumber of flows at our lo-
cation in the Milky Way galaxy has been estimated to be
order 100@7#. The boundary between the region with o
~three, five, . . .! and the region with three~five, seven, . . .!
flows is the location of a caustic which is topologically
sphere surrounding the galaxy. When these caustic sph
are approached from the inside the density diverges ad
06350
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;1/As in the zero velocity dispersion limit. I call thes
spheres ‘‘outer’’ caustics to distinguish them from the ‘‘in
ner’’ caustics which are the main topic of this paper.

To see inner caustics, let us first discuss the case w
the overdensity is spherically symmetric and all the da
matter particles carry zero angular momentum with resp
to the center. All particles move on radial orbits then. As
result the galactic center is a caustic point where the den
associated with each flow in and out of the galaxy diverg
asd;1/r 2 in the limit of zero velocity dispersion, wherer is
the radial coordinate. We remarked earlier that a causti
generically a surface. Thus we find a causticpoint only be-
cause we are assuming spherical symmetry and purely ra
orbits. If these assumptions are relaxed, the caustic at
galactic center will spread over some sizea. The notion of
caustic point is nonetheless useful provideda is small
enough. Indeed, forr @a the density will still behave asd
;1/r 2 and the phase-space structure will be qualitatively
same as fora50.

The question arises what is the inner caustic in the
sence of spherical symmetry and in the presence of ang
momentum. Tkachev, Wang, and I found@8,9# that the inner
caustic is a ring, i.e. a closed line. The density diverges
d;1/s in the zero velocity dispersion limit wheres is the
distance to the line@9#. However, as remarked earlier, a cau
tic is generically a surface. So a caustic line must again b
special degenerate case. Indeed, we will see below th
caustic ring is more precisely a closed tube with a spe
structure. Nonetheless, when the transverse dimensi
called p and q below, are small compared to the radius
curvaturea of the tube,d;1/s for a@s@p,q. Hence, it
makes sense to think of the caustic ring first as a closed
and then, on closer inspection, as a closed tube.

The next question is what is the structure of the tube.
find below that its transverse cross section is a closed
with three cusps, one of which points away from the galac
center~see Figs. 5 and 6!. In the language of Catastroph
Theory such a singularity is called aD24 catastrophe@6#. It
has a triality~i.e. aZ3 invariance! which is reminiscent of the
triality of the Lie groupD4, also called SO~8!.

The existence of caustic rings of dark matter results fr
only two assumptions~see Sec. III for a derivation!:

~1! the existence of collisionless dark matter
~2! that the velocity dispersion of the infalling dark matt

is much less, by a factor ten say, than the rotation velocity
the galaxy.

Only the second assumption requires elaboration. We no
earlier that velocity dispersion smoothes out caustics. T
question is when is the velocity dispersion so large as
smooth caustic rings over distance scales of order the
radiusa, thus making the notion of caustic ring meaningle
In Ref. @9# this critical velocity dispersion was estimated
be 30 km/s51024 for the caustic rings in our own galaxy
whose rotation velocity is 220 km/s. 1024 is much less than
theprimordial velocity dispersiondv of the cold dark matter
candidates. However the velocity dispersionDv associated
with density perturbations also smoothes caustics in co
grained observations. From the point of view of an obser
1-2
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CAUSTIC RING SINGULARITY PHYSICAL REVIEW D60 063501
with infinite resolution, the effect ofDv on a caustic surface
is to make it bumpy. However, to an observer with po
spatial resolution, this is the same as smoothing the surf
So the question is whether the velocity dispersionDv of cold
dark matter particles associated with density perturbati
falling onto our galaxy is less than 30 km/s. The answe
yes with high probability since the infalling dark matter pa
ticles are not associated with any observed inhomogenei
whereas the velocity dispersion of observed dwarf galaxie
still only of order 10 km/s. If the infalling dark matter ha
velocity dispersion as large as say 20 km/s, it would have
be in clumps whose mass/size ratio is 4 times larger than
of dwarf galaxies. But if that were the case, why did the
clumps fail to become luminous?

I have interpreted@9# the appearance of bumps in th
rotation curves of NGC3198 and of our own galaxy as due
caustic rings of dark matter. That interpretation makes us
an additional assumption, namely that the infall of dark m
ter particles is self-similar@10,11,8#. This additional assump
tion is not used in this paper. The goal is to clearly dist
guish those conclusions which follow exclusively from t
two assumptions listed above from those conclusions wh
require the extra assumption of self-similarity. We are ho
ever motivated by the possiblility that caustic rings may
observed as bumps in rotation curves and we derive
shape that such a bump should ideally have. Gravitatio
lensing by caustic rings@12# is another technique by whic
these structures may be observed.

One might ask whether caustic rings can be seen
N-body simulations of galaxy formation. Zel’dovich pan
cakes are seen@13#. However, caustic rings would require fa
greater resolution than presently available, at least in a
simulation of our own halo. Indeed, the largest ring in o
galaxy has been estimated to have radius of order 40 kpc@9#.
It occurs in a flow that extends to the Galaxy’s current tu
around radius, of order 2 Mpc. To resolve this first ring, t
spatial resolution would have to be of order 10 kpc
smaller. Hence a minimum of 23@1/(10 kpc)3#(4p/
3)(2 Mpc)3.73107 particles would be required to see th
caustic ring in a simulation of this one flow. However, t
number of flows at 40 kpc in our halo is of order 10@8#. So
it appears that several times 108 particles are necessary in
3D simulation of our halo. This is a strict minimum becau
it only addresses the kinematic requirement of resolving
halo in phase space, assuming moreover that the particle
approximately uniformly distributed on the phase-spa
sheets. There is a further dynamical requirement that 2-b
collisions do not artificially ‘‘fuzz up’’ the phase-spac
sheets. Indeed 2-body collisions are entirely negligible in
flow of cold dark matter particles such as axions or WIMP
As a result, Liouville’s theorem is strictly obeyed. On th
other hand, 2-body collisions are present in N-body simu
tions and thus Liouville’s theorem is violated. As a result t
velocity dispersion is artificially increased in the simulation
This may occur to such an extent that the caustics are wa
away even if several 108 particles are used. The best bet
see a caustic ring would obviously be in a 2D simulation
an axially symmetric flow.
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This paper is organized as follows. In Sec. II, we give
general discussion of caustic surfaces and caustic li
Caustic lines are a degenerate case whereas caustic su
are generic. We distinguish two types of caustic line wh
we call attachedand isolated. The former are attached t
caustic surfaces whereas the latter are not. Caustic rings
of the isolated type. In Sec. III, we discuss the caustics a
sociated with the infall of collisionless dark matter particl
onto a galaxy. We focus most of our attention on the inn
caustic rings. We show that the presence of these rings
lows only from the two assumptions listed above. We fi
that the ring is a tube. Inside the tube are four flows wher
outside the tube are two flows.~In addition there is an odd
number of flows which are not associated with the cau
ring.! In Sec. IV, we give a detailed analysis of the caus
ring under the additional assumptions that the flow is axia
and reflection symmetric and that the transverse dimens
of the ring,p andq, are small compared to the ring radiusa.
In Sec. IV A, we show that under these assumptions the fl
near the ring is described in terms of five parameters:a, b,
t0 , u ands. In Sec. IV B, we relate these parameters to t
velocity distribution of the infalling dark matter particles. I
Sec. IV C, we give a qualitative description of the flow
particles on distance scales of order the ring radiusa. In Sec.
V, the results of Sec. IV are used to derive the shape of
bump a caustic ring causes in a galactic rotation curve if
ring lies in the galactic plane and the rotation curve is m
sured in the galactic plane. Section VI summarizes the c
clusions.

II. CAUSTICS IN GENERAL

Consider a flow of collisionless particles with zero~or
negligible! velocity dispersion. Being collisionless, the pa
ticles obey Liouville’s theorem. Since they have negligib
velocity dispersion, the particles lie on a time-dependent
sheet in 6D phase-space. The flow is completely specified

giving the spatial coordinatesxW (aW ,t) of the particle labeled

aW at timet, for all aW andt. The 3-parameter labelaW is chosen

arbitrarily. Let aW j (xW ,t), with j 51 . . .n, be the solutions of

xW5xW (aW ,t). n is the number of distinct flows atxW and t. The
total number of particles is

N5E d3a
d3N

da1da2da3
~aW !

5E d3x(
j 51

n
d3N

da1da2da3
„aW j~xW ,t !…

1

UdetS ]xW

]aW
D U

aW j (x
W ,t)

.

~2.1!

The density of particles in physical space is thus
1-3
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P. SIKIVIE PHYSICAL REVIEW D 60 063501
d~xW ,t !5(
j 51

n
d3N

da1da2da3
„aW j~xW ,t !…

1

uD~aW ,t !uaW j (x
W ,t)

,

~2.2!

where

D~aW ,t ![detS ]xW

]aW
D . ~2.3!

The formula for the density is, of course, reparametrizat
invariant. Caustics occur whereverD50, i.e. where the map
aW ˜xW is singular. At the caustic the density diverges. T
divergence is cut off if the velocity dispersion is finite.

Generically the zeros ofD are simple, i.e. the matrix
]xW /]aW has a single vanishing eigenvalue. The condition t
one eigenvalue vanishes imposes one constraint on the
parametersaW . Hence a caustic is generically a 2D surface
physical space.

A. Generic surface caustics

Consider a generic surface caustic at a fixed timet. We
may reparametrize the flow near the caustic,aW ˜bW

5bW (aW ,t), such that the caustic surface is atb350. Also, in
a neighborhood of a point on the surface, choose Carte
coordinates such thatẑ is perpendicular to the surfac
whereasx̂ and ŷ are parallel. We have then

D5
]z

]b3
detS ]~x,y!

]~b1 ,b2! D ~2.4!

near that point. The 2-dimensional matrix](x,y)/](b1 ,b2)
is non-singular. SinceD50 at b350, we have

z5z01Bb3
2 ~2.5!

for small b3. We may orient theẑ-axis in such a way tha
B.0. Then

D52AB~z2z0!detS ]~x,y!

]~b1 ,b2! D for z.z0 . ~2.6!

Hence, near a caustic surface located atz5z0, the density
diverges as 1/Az2z0 on one side of the surface.

Figure 2~a! shows a 2D cut of phase-space along the (z,ż)
plane. The particles lie on a line which is at the intersect
of the phase-space sheet with the (z,ż) plane. The labelb3
gives the position of the particles along the line. In the e
ample of the figure, there are two caustic surfaces, onez
5z1 and the other atz5z2. The two dimensions (x and y)
into which the caustic extends as a surface are not sho
The densityd(z), shown in Fig. 2~b!, diverges as 1/Az2z1

for z˜z1 with z.z1 and as 1/Az22z for z˜z2 with z,z2.
For z1,z,z2 there are three flows (n53) whereas forz
,z1 and z.z2 there is only one flow (n51). The phase-
space sheet ‘‘folds back’’ atz5z1 and z5z2. That is why
the mapb˜z is singular at these locations.
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B. Line caustics

Next, consider places whereD has a double zero, i.e
where ]xW /]aW has vanishing eigenvalues for two differe
eigenvectors. The condition that two eigenvalues vanish
fines a line. This line is the location of a more singular ki
of caustic which we call ‘‘line caustic.’’

In a small neighborhood of a line caustic let us repara
etrize the flow (aW ˜bW ) such thatb15b250 defines the line
in the new coordinates. Also, choose Cartesian coordin
such thatẑ is parallel to the line andx̂ andŷ are perpendicu-
lar to it. In this neighborhood we have

D5
]z

]b3
detS ]~x,y!

]~b1 ,b2! D ~2.7!

with ]z/]b3Þ0. At b15b250, the matrix
](x,y)/](b1 ,b2) vanishes since it is 232 and has vanishing
eigenvalues for two different eigenvectors. Thus for smallb1
andb2,

x5x01
1

2
X11b1

21X12b1b21
1

2
X22b2

210~b3!

y5y01
1

2
Y11b1

21Y12b1b21
1

2
Y22b2

210~b3!.

~2.8!

FIG. 2. A generic surface caustic in phase space~a! and in
physical space~b!. The two dimensions (x and y) into which the
caustic extends as a surface are not shown. The physical s
densityd diverges at those locations (z1 andz2) where the phase-
space sheet folds back.
1-4
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CAUSTIC RING SINGULARITY PHYSICAL REVIEW D60 063501
Linear combinationsx2x01g(y2y0) are complete square
provided

g2~Y11Y222Y12
2 !1g~Y11X221X11Y2222X12Y12!

1X11X222X12
2 50, ~2.9!

which has two solutions:

g65
1

2~Y11Y222Y12
2 !

$2Y11X222X11Y2212X12Y12

6@~Y11X221X11Y2222X12Y12!
224~Y11Y222Y12

2 !

3~X11X222X12
2 !#1/2%. ~2.10!

If the denominatorY11Y222Y12
2 50, one should interchang

the role of x and y. If Y11Y222Y12
2 50 and X11X222X12

2

50, x2x0 and y2y0 are complete squares to begin wit
Note that Img6 may differ from zero and thatg25g1* in
this case. We have

x6[x2x01g6~y2y0!5
1

2
X6~b11h6b2!2 ~2.11!

with

X65X111g6Y11 ~2.12!

and

h65
X121g6Y12

X111g6Y11
. ~2.13!

In terms of these new quantities

D2[detS ]~x,y!

]~b1 ,b2! D52AX1X2x1x2

h12h2

g12g2
.

~2.14!

There are two cases to consider, depending on whe
Im g6Þ0 or Img650.

If Im g6Þ0, let g6[g16 ig2 , X6[X16 iX2 , x6[x1
6 ix2 and h6[h16 ih2 . g1 ,g2 ,X1 ,X2 ,x1 ,x2 ,h1 and h2
are real. We have

D252
h2

g2
AX1

21X2
2@„x2x01g1~y2y0!…21g2

2~y2y0!2#1/2.

~2.15!

D2Þ0 everywhere except at (x,y)5(x0 ,y0). The densityd
;1/s with

s[A„x2x01g1~y2y0!…21g2
2~y2y0!2. ~2.16!

An illustrative example of a Img6Þ0 line caustic is

x5x01X
1

2
~b1

22b2
2!, y5y01Yb1b2 ~2.17!
06350
er

for which D52AY2(x2x0)21X2(y2y0)2. We call a
Im g6Þ0 line caustic ‘‘isolated’’ because it is not attache
to any surface caustic. Ring caustics associated with the
fall of collisionless dark matter onto a galaxy are line cau
tics of the isolated type. They will be discussed in detail
Secs. III and IV.

If Im g650, thenx6 , X6 and h6 are real. From Eq.
~2.11! and Eq.~2.14! we see thatD has simple zeros along
two surfaces,x150 andx250, and a double zero on th
line where these two surfaces meet. Thus the Img650 line
caustic is ‘‘attached’’ to two generic surface caustics. T
following is an illustrative example:

x5x01
1

2
Xb1

2 , y5y01
1

2
Yb2

2 . ~2.18!

In this caseD52AXY(x2x0)(y2y0), and hence the den
sity d;u(x2x0)u(y2y0)/A(x2x0)(y2y0) for X,Y.0.
We have no use for the ‘‘attached’’ type of line caustic
this paper.

III. CAUSTIC RINGS

In this section we give a general discussion of the cau
rings that are associated with the infall of collisionless da
matter onto a galaxy. No symmetry is assumed. We do
sume that the velocity dispersion of the dark matter partic
is small compared to the rotation velocity of the galaxy. W
set the velocity dispersion equal to zero and derive the e
tence of caustics. A small velocity dispersion provides a c
off, so that the density at the caustic does not become infi
but merely very large.

Figure 3 shows successive time frames of a set of co
sionless particles falling through a galaxy. The partic
move purely under the effect of gravity. In Fig. 3~a!, the
particles are at first ‘‘turnaround,’’ i.e. they are about to fa
onto the galaxy for the first time in their history. They a
located on a closed 2D surface surrounding the galaxy
physical space, called the ‘‘turnaround sphere.’’ Figure
shows the intersection of this sphere with the plane of
figure, as it evolves in time. For the sake of definiteness i
assumed that the particles carry net angular momen
about the vertical axis. Qualitatively speaking, the tu
around sphere is spinning about the vertical. The partic
near the top~bottom! of the sphere in frame a carry little
angular momentum and end up near the bottom~top! of the
sphere in frame f after falling through the galaxy. The p
ticles near the equator carry the most angular moment
They form a ring whose radius decreases in time down
some minimum value, reached near frame d, and then
creases again. Generally the radius of the sphere at se
turnaround is smaller than at first turnaround because
galaxy has grown by infall in the meantime. After seco
turnaround the sphere falls back in and repeats the s
qualitative sequence till third turnaround, and so on.

There is a generic surface caustic associated with themth
turnaround wherem52,3,4, . . . . These caustics are locate
near where the particles of a given outflow reach their ma
mum radius before falling back in. To see this, parametr
1-5
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the flow at a given timet by xW (a,b,t0 ;t) wheret0 is the time
the particle was at last turnaround anda,b—for example,
spherical coordinates—tell us where the particle was on
turnaround sphere at that time. We define:xW0[]xW /]t0 , xW1

[]xW /]a, xW2[]xW /]b, andxẆ[]xW /]t. In terms of these

D5xW0
•~xW13xW2!. ~3.1!

Since the discussion is for a fixed timet, let us not show the
t dependence explicitly further. Let us assume thatxW (a,b,t0)
is near particles at theirmth turnaround withm52,3,4 . . .
The spheres$xW (a,b,t08):;a,b% with t08 considerably larger
or considerably smaller thant0 are inside the spher

$xW (a,b,t0):;a,b%. This implies that for alla,b there is a
t0(a,b) such thatxW0

„a,b,t0(a,b)… is parallel to the sphere

$xW (a8,b8,t0(a,b):;a8,b8%, and hence whereD50. There-
fore the sphere$xW„a,b,t0(a,b)…:;a,b% is the location of a
generic surface caustic. Theseoutercaustics were mentione
in the introduction as the boundaries between the reg
with n flows and those with n12 flows where n
51,3,5 . . . . We do not discuss them further in this pap
Our focus is upon theinner caustics which, as we will soon
see, have the shape of rings~closed tubes! and which are
located near where the particles with the most angular
mentum in a given inflow reach their distance of closest
proach to the galactic center before moving back out of
galaxy.

To see inner caustic rings, let us return to the sphere
Fig. 3. During each infall-outfall sequence, the sphere tu
itself inside out. Indeed, a particle which is part of the flo

FIG. 3. Infall of a turnaround sphere. The closed lines are at
intersections of the sphere with the plane of the figure at six s
cessive times. The sphere has net angular momentum abou
vertical axis. It crosses itself between frames~b! and ~c!. After
frame ~e! the sphere has completed the process of turning it
inside out. The cusps in frames~d! and~e! are at the intersection o
a caustic ring with the plane of the figure.
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and is just inside the sphere in frame b of Fig. 3 is outside
sphere in frame e, and vice versa. There is therefore a rin
points in space-time which are inside the sphere last.
intersection of this space-time ring with the plane of the fi
ure is at two space-time points, one located at the cus
frame d, the other at the cusp in frame e. Since there
continuous flow of spheres falling in and out, the ring ju
defined is a persistent feature in space. We now show th
is the location of a caustic.

Figure 4 shows the infall sphere in a neighborhood
space and time where it is completing the process of turn
itself inside out. We choose Cartesian coordinates such thŷ

is parallel to the ring at that point;x̂ andẑ are as shown. We
parametrize the flow in a small neighborhood of the ring
aW 5(a,b,t0) such that]x/]b5]z/]b50. As before,t0 la-
bels successive infall spheres and may be taken to be
time of their last turnaround. Thus

D5
]y

]b S ]x

]a

]z

]t0
2

]x

]t0

]z

]a D . ~3.2!

Figure 4~a! shows an infall sphere just before it reaches
ring. The line is the intersection of the infall sphere with t
plane of the figure.a labels points along the line. We hav
]z/]a50 at points A and B because the line is parallel
the x̂-axis at these points. Similarly,]x/]a50 at point C.
Figure 4~b! shows an infall sphere at the moment it reach
the ring. Points A, B and C in Fig. 4~a! have moved to point

e
c-
the

lf
FIG. 4. An infall sphere near where and when it completes

process of turning itself inside out. The lines are at the intersect
of the sphere with the plane of the figure at two successive tim
corresponding to frames~c! and~d! in Fig. 3.a labels points along
the line.]z/]a50 at points A and B.]x/]a50 at point C. Points
A, B and C move to point E, which is thus the location of a caus
sinceD50 there.
1-6
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CAUSTIC RING SINGULARITY PHYSICAL REVIEW D60 063501
E in Fig. 4~b!. Hence]z/]a5]x/]a50 and thereforeD
50 at point E, which is thus the location of a caustic.

In general,D only has a simple zero at E, which mea
that E is the location of asurfacecaustic. We show below
that the complete inner caustic surface is a closed tube.
a point on this tube. In the limit where the transverse sizp
of the tube goes to zero, both]z/]a5]x/]a50 and
]x/]t05]z/]t050 at E.D then has a double zero at E. I
that limit the tube caustic becomes anisolated line caustic
where the density diverges as 1/s. Whenp is finite but small,
the densityd(s);1/s for s@p but has a more complicate
behavior fors;p.

Let us show that the inner caustic must have the topol
of a tube, starting with the case of Fig. 3 and generaliz
from there. In Fig. 3~b!, xW0 ~not shown explicitly! is every-
where pointing outward of the infall sphere because la
infall spheres are outside this one. In Fig. 3~f!, xW0 is pointing
inside because later infall spheres are inside this one.
implies that during the infallxW0 either vanishes at som
space-time points or becomes parallel to the sphere. S
D50 at such points, they are the location of caustics. Si
D is a continuous function ofaW , the caustic must lie on a
closed surface. Now, if we follow the motion of points whic
are near the top~bottom! of the sphere in Fig. 3~b! and end
up near the bottom~top! in Fig. 3~e!, xW0 always points up
~down!. xW0 does not vanish and is not parallel to the sphere
any time between these two frames for these points. T
implies that there are no inner caustics within some cylin
extending from top to bottom in the spatial volume und
consideration in Fig. 3. On the other hand, for the points n
the equator in Fig. 3,xW0 is pointing outward during infall and
is pointing inward during outfall. Thus if we track a poin
near the equator, at some timexW0 either vanishes or is para
lel to the sphere. The points where this happens lie o
closed surface which is outside the previously defined cy
der but wraps around it. That surface must therefore b
tube. The tube is located near the equator, where the part
with the most angular momentum are at their distance
closest approach.

Consider now the most general angular momentum dis
bution on the turnaround sphere. The angular momentum
continuous two-dimensional vector field on the sphere. I
well known that such a vector field must have~at least! two
zeros. If we track the particles in the neighborhood of th
angular momentum zeros, we find that theirxW0 does not van-
ish and is not parallel to the sphere at any time during
infall-outfall sequence. Therefore the inner caustic appe
only in the flow of particles which are some distance aw
from both zeros. Since that set of particles has the topol
of a closed ribbon, and the previously defined caustic r
~the set of points E which are in the turnaround sphere l!
goes around this closed ribbon once, the inner caustic m
be a closed surface with one handle, i.e. a closed tube. N
that the closed tube may self-intersect and may have a c
plicated shape. However, if the angular momentum is do
nated by a smooth component which carries net angular
mentum, as was assumed in Fig. 3, then the tube resemb
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circle. If there is no angular momentum at all, the tube
duces to a point at the galactic center. As was mentione
the Introduction, the galactic center is a point caustic in t
case, where the density behaves asd(r );1/r 2.

Figure 5 shows simultaneous~samet) infall spheres near
the caustic corresponding to five different initial times:t01
.t02.•••.t05. The five numbered dots show the positio
xW (a,t0k),k51 . . . 5, forsome fixeda and the five different
initial times. Following the dots gives one a qualitative pi
ture of the flow in time. Thet01 sphere is falling in but has
not yet crossed itself, as in frame b of Fig. 3. Thet02 sphere
has crossed itself but has not yet completed the proces
turning itself inside out, as in frame c of Fig. 3. Thet03
sphere is just completing the process of turning itself ins
out, as in frame d of Fig. 3. The cusp at point E is t
location of a caustic for the reason given earlier. LetaE be
the value ofa at E. ThusxW (aE ,t03) is the position of E. In
the example of the figure, the particles at the cusp are m

ing to the left. Thus at (aE ,t03), xẆ is pointing to the left
whereasxW0 is pointing to the right of thet03 infall sphere. For
smaller initial times, such ast05, xW0 is pointing to the left of
the infall sphere. Lett04 be the initial time and F be the poin
wherexW0(aE ,t0) crosses thet0 sphere. In view of Eq.~3.1!,

FIG. 5. Qualitative description of the flow near a caustic rin
The solid lines are at the intersection of five simultaneous in
spheres corresponding to different initial timest05,t04,•••,t01.

The five numbered points are atxW (a,t0k),k51 . . . 5, for some
value of a. Points E and F are defined in the text. The clos
dashed line is at the intersection of the caustic tube with the p
of the figure. There are four flows inside the dashed line wher
outside there are two. The galactic center is to the left of the fig
1-7
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P. SIKIVIE PHYSICAL REVIEW D 60 063501
F is the location of a caustic as well. Consider any po
which is far from both E and F. At such a point there are t
flows because the sphere passes such a point twice, on
the way in and once on the way out. Consider also a p
located between E and F. At such a point there are four flo
because the sphere passes by four times: at fixedt, twice for
initial time t0 betweent02 and t03, once betweent03 and t04
and once betweent04 and t05. There is therefore a finite
compact region in the plane of Fig. 5 inside of which the
are four flows and outside of which there are two flows. T
boundary of this region, shown as a closed dashed line w
three cusps, is the location of the tube caustic. The reaso
the three cusps will be given in the next section.

In the limit where the tube shrinks to a line,D has a
double zero on the line. Indeed E and F coincide in that lim
xW0 is parallel to the ring at E becausexW0 is parallel to the
infall sphere at F which coincides with E and the infa
sphere has a cusp at E. Equation~3.2! shows thatD has a
double zero then which means that the ring is a line caus
It is of the isolated type since it is not attached to any surf
caustics.

In the example of the figure, the initial timet03 of E is
after the initial timet04 of F. The opposite is equally pos
sible. Indeed the time reverse of the sequence of Fig.
also a possible sequence and it has the times of E and of
the opposite order. On the other hand, the density is invar
under time reversal of the flow. This shows that point F
always closer to the galactic center than point E. Note a
that if the flow is time reversal invariant~i.e. if the outfall
sequence is the time reverse of the infall sequence!, the tube
caustic collapses to a line caustic becauset045t03 and hence
E and F coincide.

If the successive spheres all fall in exactly the same w
the caustic ring is stationary. In general, however, the tra
tories of successive spheres change with timet, albeit slowly.
As a result the caustic ring moves about. However, whe
or not it moves, the caustic ring is perfectly sharp in the lim
of zero velocity dispersion.

IV. THE AXIALLY SYMMETRIC CASE

We assume in this section that the flow of dark matter
and out of the galaxy is axially symmetric aboutẑ and sym-
metric under reflectionz˜2z. We also assume that th
transverse dimensions, calledp and q below, of the ring
caustic are small compared to the ring radiusa. As before,
we assume that the dark matter particles are collisionless
we neglect their velocity dispersion. We use the followi
parametrization of the flow. LetR(t0) be the turnaround ra
dius in thez50 plane at timet0. Then letxW (u0 ,w0 ,t0 ;t) be
the position at timet of the particle that was at the location o
polar coordinates (u0 ,w0) on the sphere of radiusR(t0) at
time t0. The density is given by Eqs.~2.2!, ~2.3! with aW
5(u0 ,w0 ,t0) and n52(4) outside~inside! the closed tube
caustic described in a general fashion in the previous sec

However, since we assume axial symmetry the motion
in effect two-dimensional. Letr(a,t0 ;t) and z(a,t0 ;t) be
the cylindrical coordinates at timet of the ring of particles
06350
t

on
nt
s

e
th
for

t.

c.
e

is
in
nt
s
o

y,
c-

er
t

n

nd

n.
is

which start with azimutal angleu05p/22a at initial time
t0. One readily shows, repeating for the axially symmet
case the steps which led to Eqs.~2.2!, ~2.3!, that the density
is given by

d~r,z,t !5
1

2pr (
j 51

n
d2N

dadt0
~a,t0!

1

uD2~a,t0!uU
(a,t0)5(a,t0) j

~4.1!

where

D2~a,t0![detS ]~r,z!

]~a,t0! D ~4.2!

and (a,t0) j , with j 51 . . .n, are the solutions ofr
5r(a,t0 ;t), z5z(a,t0 ;t). Under a reparametrization of th
flow (a,t0)˜@a8(a,t0), t08(a,t0)], the determinant trans
forms according to

D2~a,t0!5D28~a8,t08!detS ]~a8,t08!

]~a,t0!
D . ~4.3!

In particular,

D2~a,t0!5D28~a8,t08! ~4.4!

for an a-dependent time shift:a85a, t085t01Dt0(a).

A. Flow at the caustic

General characteristics of the flow near the caustic
described in Sec. III. Figure 5 constitutes a summary. In
reflection symmetric case, points E and F havez50 anda
50. Let us reparametrize the flowa˜a, t0˜t5t0
1Dt0(a) such thatz(a,t50)50 for all a. We expandr
andz in powers ofa andt keeping terms up to second ord
only. Since we assume the reflection symmetry:z˜2z, r
˜r, a˜2a, andt˜t, we have

z51bat ~4.5!

r5r02ct1
1

2
ut22

1

2
sa2, ~4.6!

whereb,r0 ,c,u ands are constants.r0 is ther-coordinate of
point E. We may rewrite Eq.~4.6! as

r5a1
1

2
u~t2t0!22

1

2
sa2, ~4.7!

wheret05c/u anda5r02 1
2 c2/u. a is ther-coordinate of

point F. The parametersb, u ands are positive.b is positive
because the flow is from top to bottom~bottom to top! for
particles witha.0(a,0). u is positive because the pa
ticles witha50 are accelerated outward by the angular m
mentum barrier.s is positive because att50, the particles
with aÞ0 are atr,r0 . t0 can either be positive or nega
tive. a is always smaller thanr0, i.e. point F is always close
to the galactic center than point E, as noted earlier.

The determinant is
1-8
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CAUSTIC RING SINGULARITY PHYSICAL REVIEW D60 063501
D2~a,t!52b@ut~t2t0!1sa2#. ~4.8!

It vanishes for

a56Au

s
t~t02t! ~4.9!

with 0,t,t0 if t0.0, and2t0,t,0 if t0,0. Substitut-
ing Eq. ~4.9! into Eqs.~4.5! and ~4.7!, we find a parametric
(t5parameter) representation of the surface of the t
caustic:

r5a1
1

2
u~t2t0!~2t2t0!

z56bAu

s
t3~t02t!. ~4.10!

Figure 6 shows a cross section of the tube. Its dimension
the r̂ and ẑ directions arep5 1

2 ut0
2 and q5(A27/4)(b/

Aus)p, respectively. The caustic has three cusps. It is sho
below that the appearance of the three cusps is not spec
the assumed axial and reflection symmetries nor to the
that we expanded only to second order in Eqs.~4.5! and
~4.6!.

First let us note that the caustic has aZ3 symmetry after
an appropriate rescaling. Define the rescaled parameters

T5
t

t0
, A5As

u

1

t0
a, ~4.11!

and the rescaled and shifted~in the r̂ direction! coordinates

Z5
2

b
As

u

1

t0
2 z, X5

2

ut0
2 ~r2a!2

1

4
. ~4.12!

In terms of these, Eqs.~4.5! and ~4.7! become

Z52AT, X5~T21!22A22
1

4
. ~4.13!

These relations are invariant under the discrete transfor
tion

Z852
1

2
Z1A3

2
X, X852A3

2
Z2

1

2
X

T852
1

2
T1A3

2
A13/4,

A852A3

2
T2

1

2
A1A3/4, ~4.14!

whose cube is the identity. In the X-Z plane, the transform
tion is a rotation by 120°. It transforms the 3 cusps of t
caustic into one another. Hereafter, let us call the shap
Fig. 6 a ‘‘tricusp.’’ In the language of Catastrophe Theo
@6#, the tricusp is aD24 catastrophe.
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The apparent reason for the two cusps which are not
the r̂-axis in Fig. 6 is thatdr/dt anddz/dt both vanish for
t53/4t0. It might be thought that the simultaneous vanis
ing of dr/dt and dz/dt is an accident peculiar to our as
sumptions of symmetry and/or our limiting the expansion
r andz to terms of second order ina andt. But this is not
the case. Indeed, consider the equation for the location
generic caustic in 2 dimensions:

D2~a,t!5
]r

]a

]z

]t
2

]r

]t

]z

]a
50. ~4.15!

It defines a(t) such that @r(t)5r(a(t),t),z(t)
5z(a(t),t)# is a parametric representation of the caus
location. Whereverr(t) has an extremum,z(t) may be ex-
pected to have an extremum as well since

dr

dt
5

]r

]a

da

dt
1

]r

]t
50 ~4.16!

and Eq.~4.15! imply

dz

dt
5

]z

]a

da

dt
1

]z

]t
50 ~4.17!

if da/dt is finite. The cusp at point E may appear to have
different origin. Its apparent reason is thatz;6t3/2 neart
50 which is at the boundary of the range oft. However, this
circumstance is an artifact of the parametrization used.
deed, we saw that the three cusps are transformed into
another by aZ3 symmetry. As a corollary, the cusp on th
r̂-axis can be given the same parametrization as the o
two. In conclusion, the appearance of three cusps in the c
section of a ring caustic is not an accidental consequenc
our simplifying assumptions. Without those assumptions,

FIG. 6. Cross section of a caustic ring in the case of axial a
reflection symmetry, andp,q!a.
1-9
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P. SIKIVIE PHYSICAL REVIEW D 60 063501
cross-section does not have the exact shape of Fig. 6 b
still has three cusps, at least for small deviations from
description given above.

Inside~outside! the tricusp, there are four~two! flows. For
example, if we restrict ourselves to thez50 plane, thena
50 or t50. If a50, thenr5a1 1

2 u(t2t0)2.a. If t50,
then r5a1 1

2 ut0
22 1

2 sa2,r0. Thus for z50 and r.a,
there are 2 flows:

a50, t5t06A2

u
~r2a!, ~4.18!

for which

]z

]t
50,

]r

]t
56A2u~r2a!. ~4.19!

We may call these the ‘‘in and out’’ flows. Forz50 andr
,r0, there are 2 other flows:

t50, a56A2

s
~r02r!, ~4.20!

for which

]z

]t
56bA2

s
~r02r!,

]r

]t
52ut0 . ~4.21!

We may call these the ‘‘up and down’’ flows. Therefore,
the z50 plane, there are four flows~in, out, up and down!
for a,r,r0, whereas there are two flows~up and down! for
r,a, and two flows~in and out! for r.r0.

Away from the cusps, the caustic is a generic surfa
caustic, as described in Sec. II A. Thus, if one approaches
boundary of the tricusp from the inside and away from a
of the cusps, the density increases asd;1/As wheres is the
distance to the boundary. If the boundary is approached f
the outside, away from any of the cusps, then the den
remains finite until the boundary is reached. For example,
z50 andr2a˜01 , D2.7bt0A2u(r2a) for the in and
out flows, and hence the density associated with these fl
increases as 1/Ar2a.

Near the cusps, the behavior depends upon the direc
of approach. Forz50 andr2r0˜02 , D2.22b(r02r)
for the up and down flows and henced;1/(r02r). For z
50 andr2r0˜01 , the density remains finite. Forr5r0

and z˜06 , uD2u.3(u2bt0
2suzu2/2)1/3 for one of the flows

and henced;1/uzu2/3.
The tube caustic collapses to a line caustic in the li

t0˜0 with b/Aus fixed. In this limit, p,q50,

D252b~ut21sa2!522Ab2~r2a!21usz2,
~4.22!

and hence the density

d~r,z!5
1

2pr

d2N

dadt0

1

Ab2~r2a!21usz2
. ~4.23!
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Whenp andq are finite but much smaller thana, Eq. ~4.23!
is approximately valid forp,q!s!a since the terms of or-
der t0 in Eqs.~4.5!, ~4.7! and~4.8! are small in this regime.

B. Relations between the caustic ring parameters and the
initial velocity distribution of the dark matter particles

We saw in Sec. IV A that the flow near the caustic
parametrized by the quantitiesb, a, u, s andt0. In this sec-
tion we relate these quantities to the velocity distribution
the dark matter particles neara50 at the initial timet0. We
assume that the gravitational potential of the galaxy
spherically symmetric, so that the angular momentum
each particle is conserved. As before, we assumep,q!a.
Thus the particles participating in the flow at the caustic ha
uau!1. Also the time scale over which the particles cross
caustic is short in that limit, which implies that their veloci
is nearly constant while they do so.

As before,R(t0) is the turnaround radius of the particle
in the equatorial plane (a50) at time t0. Thus the radial
velocity of the particles ata50, t5t0, and r 5R(t0), van-
ishes. Consider the velocity distribution of the particles
the sphere of radiusR(t0) at time t0 neara50:

vW ~u0 ,w0 ,t0![ŵ0v i~a!1 r̂ 0v r~a!2 û0v'~a!

5ŵ0Fv i~0!1
1

2
v i9~0!a210~a4!G

1 r̂ 0F1

2
v r9~0!a210~a4!G

1 û0@2av'8 ~0!10~a3!#, ~4.24!

assuming axial and reflection symmetry.r̂ 0 , ŵ0 and û0 are
the unit vectors in spherical coordinates at location (u0 ,w0)
on the sphere. The dependence ofv i(a),v'(a) and v r(a)
upon t0 is not shown explicitly but is understood. By defin
tion v'8 (0)5(dv' /da)(0), v i9(0)5(d2v i /da2)(0), and so

FIG. 7. Trajectory of a dark matter particle falling onto a galax

vW 0 is the velocity at the initial timet0 . r m is the distance of closes
approach to the galactic center.
1-10
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on. We need only discuss the motion of the particles initia
at w05p/2 since the motion of particles with differing va
ues ofw0 are trivially related by axial symmetry. The pa
ticle which is initially atw05p/2, u05p/22a has angular
momentum

lW~a!5Rr̂03vW S p

2
2a,

p

2
,t0D[ l ~a! l̂ ~a! ~4.25!

whereR[R(t0) and

l ~a!5RAv i
2~a!1v'

2 ~a!, ~4.26!

and
te

p

in
.e

06350
y l̂ ~a!5cosf~a!~cosa ẑ2sina ŷ!1sinf~a!x̂,
~4.27!

with

f~a!5tan21S v'~a!

v i~a! D . ~4.28!

Let (x8,y8) be Cartesian coordinates in the plane of the or
of that particle, with origin at the galactic center. Th
(x8,y8,z8) coordinates are related to the (x,y,z) coordinates
by a rotation of anglea about thex̂-axis followed by a
rotation of anglef(a) about theŷ8-axis:
S x8

y8

z8
D 5S cosf~a! sina sin f~a! 2cosa sinf~a!

0 cosa sina

sinf~a! 2sina cosf~a! cosa cosf~a!
D S x

y

z
D . ~4.29!
In the (x8,y8) coordinates, the particle starts atrW05Rŷ8 with
initial velocity vW 0(a)52@ l (a)/R# x̂81v r(a) ŷ8. See Fig. 7.
At the moment of its closest approach to the galactic cen
the particle moves with approximately constant velocity:

x8~a,t0 ;t !52r mcosd1V~ t2tm!sind

y8~a,t0 ;t !52r msind2V~ t2tm!cosd

z8~a,t0 ;t !50, ~4.30!

where r m and tm are the distance and time of closest a
proach, V is the magnitude of velocity then, andd is defined
in Fig. 7. The quantitiesr m , tm , V andd depend ona and
t0. On the time scale over which the particles cross the r
caustic, the flow is very nearly time-independent, i
xW (a,t0 ;t)5xW (a,t2t0). Hence, we replacet2tm by t0,m
2t0 in Eqs. ~4.30! where t0,m(a) is the initial time of the
particles which are at their closest approach at timet. The
flow at fixed t is then given as a function ofa and t0 by

x8~a,t0!52r m~a!cosd~a!1V~a!sind~a!„t0,m~a!2t0…

y8~a,t0!52r m~a!sind~a!2V~a!cosd~a!„t0,m~a!2t0…
r,

-

g
.

z8~a,t0!50. ~4.31!

In Eqs. ~4.31! and henceforth, thet-dependence of
x8,y8,r m ,d,V and t0,m is not explicitly shown.

Using Eqs.~4.29! and ~4.31!, we have

z~a,t0!5r m~a!@cosa sinf~a!cosd~a!2sina sind~a!#

1V~a!„t02t0,m~a!…@cosa sinf~a!sind~a!

1sina cosd~a!#. ~4.32!

As in Sec. IV A, we reparametrize the flowt0˜t[t0
2t0(a) such thatz(a,t)50 at t50 for all a. Thus

z~a,t!5V~a!t@cosa sinf(a)sind(a)1sina cosd(a)].

~4.33!

The time shiftt0(a) is given by

V~a!~t0~a!2t0,m~a!!@cosa sinf~a!sind~a!

1sin a cosd~a!#1r m~a!@cosa sinf~a!cosd~a!

2sina sind~a!#50. ~4.34!

Combining Eqs.~4.29!, ~4.31! and ~4.34!, we have
x~a,t!52cosf sind Vt2r mcosfFcosd2sind
cosa sinf cosd2sina sind

cosa sinf sind1sina cosdG
y~a,t!52Vt~sina sinf sind2cosa cosd!2r m

3Fsina sinf cosd1cosa sind2~sina sinf sind2cosa cosd!
cosa sinf cosd2sina sind

cosa sinf sind1sina cosdG ~4.35!
1-11
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with V5V(a), f5f(a), r m5r m(a) andd5d(a).
We now compare Eqs.~4.33! and ~4.35! with Eqs. ~4.5!

and~4.7! to extractb, a, u, t0 ands. f(a) is an odd function
of a whereasr m(a), V(a) andd(a) are even. Thus

f~a!5f8~0!a1
1

6
f-~0!a310~a5!, ~4.36!

r m~a!5r m~0!1
1

2
r m9 ~0!a210~a4!,

~4.37!

and so on. Comparing Eqs.~4.5! and ~4.33!, we have

b5V~0!„cosd~0!1f8~0!sind~0!…. ~4.38!

We may rewrite Eqs.~4.35! as

x~a,t!5x0~a!1x1~a!t

y~a,t!5y0~a!1y1~a!t, ~4.39!

with the appropriate definitions ofx0(a),x1(a),y0(a), and
y1(a). Therefore

r~a,t!25x~a,t!21y~a,t!2

5x0~a!21y0~a!2

12„x0~a!x1~a!1y0~a!y1~a!…t1„x1~a!2

1y1~a!2
…t2, ~4.40!

which is to be compared with the square of Eq.~4.7!:

r~a,t!25a21ua~t2t0!22saa210~t3,t0
3 ,a2t!.

~4.41!

For a50 this yields

a21uat0
25x0

2~0!1y0
2~0!

2uat05x0~0!x1~0!1y0~0!y1~0!

ua5x1
2~0!1y1

2~0!. ~4.42!

From Eqs.~4.35! and ~4.39!, we have

x0~0!52r m~0!

3Fcosd~0!2sind~0!
f8~0!cosd~0!2sind~0!

f8~0!sind~0!1cosd~0!
G

x1~0!52V~0!sind~0!

y0~0!52r m~0!

3Fsind~0!1cosd~0!
f8~0!cosd~0!2sind~0!

f8~0!sind~0!1cosd~0!
G

y1~0!5V~0!cosd~0!. ~4.43!
06350
Hence

a5r m~0!

u5
V~0!2

r m~0!

t05
r m~0!

V~0!

f8~0!cosd~0!2sind~0!

f8~0!sind~0!1cosd~0!
. ~4.44!

Comparing Eqs.~4.40! and ~4.41! for aÞ0, we have

2sa5„x0~0!x09~0!1y0~0!y09~0!…. ~4.45!

A somewhat lengthy calculation yields

s52
r m9 ~0!„11f8~0!2

…

@f8~0!sind~0!1cosd~0!#2

2r m~0!
f8~0!cosd~0!2sind~0!

@f8~0!sind~0!1cosd~0!#3 H 2
2

3
f8~0!

1
1

3
„f-~0!2f8~0!3

…2„11f8~0!2
…d9~0!J . ~4.46!

Our derivation of the caustic parameters assumes thatp and
q5(A27/4)(b/Aus)p are much smaller thana. Using Eqs.
~4.44!, we have

p5
1

2
aS f8~0!cosd~0!2sind~0!

f8~0!sind~0!1cosd~0!
D 2

. ~4.47!

Thus the treatment requires thatf8(0) andd(0), or atleast
the combinationf8(0)cosd(0)2sind(0), be small com-
pared to one.

Equations~4.38!, ~4.44! and ~4.46! express the caustic
parameters in terms of the values off(a), r m(a), V(a) and
d(a) and their first few derivatives ata50. f(a) is given
in terms of the initial velocity distribution by Eq.~4.28!.
Moreover, angular momentum conservation implies

r m~a!5
l ~a!

V~a!
~4.48!

with l (a) given by Eq.~4.26!. Thus, to achieve our goal o
determining the caustic parameters in terms of the initial
locity distribution, it remains to expressV(a) and d(a) in
terms ofv r(a), v i(a) andv'(a).

This last step can only be carried out if we adopt a mo
for the galactic gravitational potentialU(r ,t) in which the
particles fall. To illustrate the process, let us adopt the tim
independent potential:

U~r !5v rot
2 lnS R

r D ~4.49!

which yields~perfectly! flat rotation curves with rotation ve
locity v rot . Since particle energy is conserved for this pote
tial, we have
1-12



e
r-

n

-

he
rd
tia
-

lid

r

ow
by
ly

stic

r-

e

CAUSTIC RING SINGULARITY PHYSICAL REVIEW D60 063501
V~a!5F2v rot
2 lnS R

a D1v r
2~a!1v i

2~a!1v'
2 ~a!G1/2

.

~4.50!

The angled5d( l ,v r) was determined numerically for th
potentialU(r ) by solving the equations of motion of a pa
ticle falling from the initial positionrW05Rŷ8 with initial
velocity vW 05(2 l /R) x̂81v r ŷ8; see Fig. 7. Table I givesd as
a function of j 5 l /Rv rot andn5v r /v rot .

A simple velocity distribution is that corresponding to a
initially rigidly rotating turnaround sphere:v'(a)50,
v r(a)50 andv i(a)5v i(0)cosa. Let us explore what hap
pens in this case. Sincef(a)50, we have

p5
1

2
a tan2d~0!

q5
A27

4
p

cos2d~0!

A2
r m9 ~0!

r m~0!
2tand~0!d9~0!

.

~4.51!

Typical values in fits of the infall model@11,8,9# to observed
properties of our galaxy arej ;0.25 anda; jR/A2 ln(R/a)
;0.1R. Table I shows thatd is slowly varying and of order
0.5 then. Forf8(0)50, this impliesp;0.15a. For small
j ,V.v rotA2 ln(R/a) is approximatelya-independent. For
the above special velocity distribution, we have thenr m(a)
5r m(0)cosa and henceq.(A27/4)p cos2d(0);p.

C. Flow some distance away from the caustic

In this section, we give a qualitative description of t
flow associated with a caustic ring on distance scales of o
a, the ring radius. To this effect, we choose the special ini
velocity distribution corresponding to an initially rigidly ro
tating turnaround sphere: v r(a)5v'(a)50, v i(a)
5v i(0)cosa. Also we neglect thea-dependence ofV and
setd50. Table I shows that the latter approximation is va
only for j !1, i.e.a!R. We also take the velocityVW of each
particle to be constant while it travels distances of ordea.

TABLE I. Values ofd as a function ofj andn.

n˜ 20.2 20.1 0.0 10.1 10.2
j↓
0.05 0.28 0.29 0.29 0.30 0.30
0.10 0.34 0.36 0.37 0.38 0.38
0.15 0.38 0.40 0.42 0.43 0.44
0.20 0.41 0.44 0.46 0.48 0.49
0.25 0.43 0.46 0.49 0.52 0.54
0.30 0.45 0.48 0.52 0.55 0.58
0.35 0.46 0.50 0.54 0.58 0.62
0.40 0.46 0.51 0.56 0.61 0.65
0.45 0.46 0.52 0.58 0.63 0.68
0.50 0.46 0.53 0.59 0.66 0.72
06350
er
l

These crude approximations yield a description of the fl
which is topologically correct and which can be derived
simple analytical methods, but which is likely to agree on
qualitatively with actual flows. In particular, sincef(a) and
d(a) are set equal to zero, the tricusp structure of the cau
is shrunk to a point.

For the assumed velocity distribution,

l ~a!5 l maxcosa ~4.52!

with l max5Rv i(0). Since we neglect thea-dependence ofV,

r m~a!5a cosa ~4.53!

with a5 l max/V. Since we setf(a)50 andd(a)50, Eqs.
~4.33! and ~4.35! become

x~a,t!52a cosa

y~a,t!5Vt cosa

z~a,t!5Vt sina. ~4.54!

From Eqs.~4.54!, one obtains

rD2~a,t!52V cosa~a2sin2a1V2t2!

52V cosaA~r 22a2!214a2z2. ~4.55!

Inserting this into Eq.~4.1! and usingdV52p cosada, we
have

d~r,z!5
2

V

d2N

dVdt0

1

A~r 22a2!214a2z2
~4.56!

whered2N/dVdt0 is the rate at which the dark matter pa
ticles fall in per unit solid angle.

The velocity fields can also be derived. One finds

vz52
]z

]t
52V sina

57
V

a
A1

2
„a22r 21A~r 22a2!214a2z2

…

vr5
21

2r

]r2

]t
52

V2t cos2a

r

57sgn~z!
V

2a2r
A1

2
„r 22a21A~r 22a2!214a2z2

…

3„r 21a22A~r 22a2!214a2z2
…

vw51AV22vz
22vr

2, ~4.57!

where the7 signs are for the down and up flows. In th
galactic plane (z50) we have
1-13
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vz57VA12
r 2

a2 for r ,a

50 for r .a

vr50 for r ,a

56VA12
a2

r 2 for r .a

vw5V
r

a
for r ,a

5V
a

r
for r .a. ~4.58!

V. GRAVITATIONAL EFFECTS OF CAUSTICS

The gravitational force per unit mass caused by the p
ticles in a zero-velocity dispersion flowxW (aW ,t) is

FW ~xW ,t !5GmE d3x8
d~xW8,t !

uxW82xW u3
~xW82xW !

5GmE d3a
d3N

da1da2da3
~aW !

xW~aW ,t !2xW

uxW~aW ,t !2xW u3

~5.1!

where m is the mass of each particle. We are particula
interested in the effect of caustic rings on galactic rotat
curves. Since caustic rings migrate only on cosmolog
time scales@9#, which are much longer than gas dynam
time scales, it is reasonable to expect the gas in the gala
plane to have relaxed to orbits consistent with the dark m
ter distribution in the caustics.

If the gas or other material in the galactic plane at rad
r moves on a circular orbit with velocityv(r ), then

v2~r !

r
5F~r ! ~5.2!

is the inward gravitational force per unit mass at radiusr. Let
us assume that a circular ring caustic lies in the gala
plane at radiusa. In the spirit of perturbation theory, le
v(r )5v rot1v1(r ) and F(r )5F0(r )1F1(r ), where F1(r )
is the inward force per unit mass due to the caustic andv1(r )
is the perturbation the caustic causes in the rotation curv
the matter in the caustic were smoothly distributed, the ro
tion curve would be flat with valuev rot . At zeroth order,
F0(r )5v rot

2 /r . At first order,

F1~r !5
2

r
v rotv1~r !. ~5.3!

Let us assume thatp,q,ur 2au!a where p and q are the
transverse dimensions of the caustic ring. In that limit
may, when calculatingF1(r ), neglect the curvature of th
06350
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ring and pretend that it is a straight tube. After integrati
over the length of the tube, we have

F1~r !.2GmE drE dz
d~r,z!

~r 2r!21z2 ~r 2r!. ~5.4!

Using Eq. ~4.1!, changing variables (r,z)˜(a,t0),
neglecting the (a,t0) dependence of dM/dVdt0
5@m/2p cos(a)#(dN/dadt0) over the size of the caustic
and approximatingr(a,t0) by a in the Jacobian factor, we
obtain

F1~r !.
2G

a

dM

dVdt0
E dadt0

r 2r~a,t0!

„r 2r~a,t0!…21z2~a,t0!
.

~5.5!

Reference @9# indicates how to extract the prefacto
dM/dVdt0 from the self-similar infall model. Here we focu
on the profile ofv1(r ) implied by the structure of causti
rings. The functionsr(a,t0) andz(a,t0) are given by Eqs.
~4.5! and ~4.7! respectively~replacet by t0). One finds

v1~r !.
4pG

v rotb

dM

dVdt0
I S z,

r 2a

p D ~5.6!

wherez5su/b2 and

I ~z,X![
1

2pE dAdT
X2~T21!21zA2

@X2~T21!21zA2#214A2T2 .

~5.7!

Figure 8 showsI (z,X) as a function ofX for z51.0. For
X,0(r ,a) andX.1(r .a1p), I (z,X) is constant. For 0
,X,1 ~inside the tricusp!, I (z,X) rises by an amoun
DI (z). DI 51 for z51. Figure 9 showsDI as a function of
z. In the limit where the tricusp collapses to a point (p
˜0), there is a discontinuity inv1(r ) at the caustic ring
radius:

FIG. 8. Plot of the functionI (z,X) for z51.0.
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Dv1.
4pG

v rotb

dM

dVdt0
DI ~z!. ~5.8!

The profile shown in Fig. 8 should be added to a descend
rotation curve so that the total rotation curve, with the eff
of the caustic ring included, remains flat on average. Fig
10 gives a qualitative description.

VI. CONCLUSIONS

We discussed the appearance of caustics in the flow
collisionless particles with negligible velocity dispersio
Caustics are locations in physical space where the den
diverges in the limit of zero velocity dispersion. This ha
pens wherever the 3D sheet on which the particles lie in
phase-space folds back. The generic caustic is a surfac
the boundary between two regions in physical space, on
which hasn flows and the othern12 flows. The density
diverges as 1/As, wheres is the distance to the surface, o
the side withn12 flows. We discussed line caustics as we
These are a degenerate case where the density diverg
1/s where s is the distance to the line. We divided lin
caustics into two types: ‘‘attached’’ (Img650) and ‘‘iso-
lated’’ (Im g6Þ0). In the latter the density is finite every
where except on the line, whereas in the former the line i
the intersection of two surface caustics.

We discussed the fall of collisionless dark matter w
negligible velocity dispersion in and out of a galaxy. Tw
types of caustic form: outer caustics which are spherical
faces surrounding the galaxy and inner caustics which
rings. The caustic rings are located near where the parti

FIG. 9. Plot of theDI (z) as a function ofz.
-
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with the most angular momentum are at their closest
proach to the galactic center. The surface of the ring i
closed tube whose cross section is a closed line which
three cusps one of which points away from the galactic c
ter. The tube is the location of a generic surface caus
Inside the tube there are four flows whereas outside there
two flows. In the limit where the transverse dimensions
the tube vanish the ring is a closed line caustic of the isola
variety.

We analyzed the ring caustic in detail in the case of ax
symmetry about theẑ-axis, of reflection symmetryz˜2z,
and where the transverse dimensions,p andq, of the tube are
much smaller than the ring radiusa. The caustic is then
described by 5 parameters:a, u, s, t0 and b. The precise
shape of a transverse section of the ring in this limit is sho
in Fig. 6. The 5 parameters were determined in terms of
initial velocity distribution of the infalling dark matter par
ticles assuming the gravitational potential of the galaxy to
spherically symmetric. Also, a qualitative description w
given of the flow of dark matter particles on length scales
ordera.

Finally we discussed the gravitational effects of caus
rings, in particular the perturbation in a galactic rotati
curve caused by a ring lying in the galactic plane. Figures
9, and 10 describe the shape and size of the bump implie
the tricusp structure of the caustic ring.
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FIG. 10. Qualitative description of the effect of a caustic ri
upon a galactic rotation curve if the caustic ring lies in the galac
plane. The horizontal dotted line represents the flat rotation curv
the matter in the caustic ring is smoothly distributed. The desce
ing dashed line is the rotation curve after the matter in the cau
ring has been removed. The solid line is the rotation curve in
presence of the caustic ring. It is the sum of the dashed curve
the profile of Fig. 8.
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