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Caustic ring singularity
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| investigate the caustics produced by the fall of collisionless dark matter in and out of a galaxy in the limit
of negligible velocity dispersion. The outer caustics are spherical shells enveloping the galaxy. The inner
caustics are rings. These are located near where the particles with the most angular momentum are at their
distance of closest approach to the galactic center. The surface of a caustic ring is a closed tube whose cross
section is aD _, catastrophe. It has three cusps amongst which exists a disg&yetgmmetry. A detailed
analysis is given in the limit where the flow of particles is axially and reflection symmetric and where the
transverse dimensions of the ring are small compared to the ring radius. Five parameters describe the caustic
in that limit. The relations between these parameters and the initial velocity distribution of the particles are
derived. The structure of the caustic ring is used to predict the shape of the bump produced in a galactic
rotation curve by a caustic ring lying in the galactic plai®0556-282(199)05916-0

PACS numbg(s): 95.35:+d, 98.35.Gi, 98.62.Ck

I. INTRODUCTION the peculiar velocityAv. If there were no peculiar velocities,

the line would be straight since=H(t)z in that case.

There are compelling reasons to believe that the dark mat- The peculiar velocities are associated with density pertur-
ter of the universe is constituted, at least in part, by nonpations and grow by gravitational instability Av ~t%3, On
baryonic collisionless particles with low primordial velocity the other hand the primordial velocity dispersion decreases
dispersion[1]. Such particles are called cold dark matter.on average agv~t~? consistently with Liouville’s theo-
The leading candidates are axions and weakly interactingem. When a large overdensity enters the non-linear regime,
massive particle$WIMPs). Before the onset of galaxy for- the particles in the vicinity of the overdensity fall back onto
mation but after the timé,, of equality between matter and it. This implies that the phase-space sheet “winds up” in

radiation, the velocity dispersion of the cold dark matter canclockwise fashion wherever an overdensity grows in the non-
didates is very small, of order Sv,(t)~3 linear regime. One such overdensity is shown in Fig. 1. Be-

X10717(1075 eV/m,)(to/t)2® for axions and dvy(t)  fore density perturbations enter the non-linear regime, there
~10"(GeVimy) Y4ty /t)?? for WIMPs, wheret, is the IS on!y one value_ of velocity, i.e. one single flow, at a typical
present age of the universe amtj andm,y are respectively location in phy3|cal space, because the phase-space_ s_heet
the masses of the axion and the WIMP. The above estimat&®Vers physical space only once. On the other hand, inside
of the primordial velocity dispersiongy, and éy,, are very .
crude but our point is only that in the context of this paper, z
and of galaxy formation in generalyv, and év,, are entirely
negligible. Massive neutrinos, on the other hand, have pri-
mordial  velocity  dispersion v ,(t)=5.3x10 *(eV/
m,) (to/t)?® which is comparable to the virial velocity in
galaxies and is therefore non-negligible in the context of
galaxy formation2]. For this reason, massive neutrinos are
called “hot dark matter.”

Before the onset of galaxy formation, the collisionless
dark matter particles lie on a thin 3-dimensior@D) sheet
in 6D phase-space. The thickness of this sheet is the primor-
dial velocity dispersionsv. If each of the aforementioned
species of collisionless particles is present, the phase-space
sheet has three layers, a very thin layer of axions, a medium
layer of WIMPs and a thick layer of neutrinos. The phase-
space sheet is located on the 3D hypersurface of points

(r,v): v=H(Or+Av(r.t) whereH(t)=2/3t is the Hubble FIG. 1. The wiggly line is the intersection of the, ) plane

expansion rate andv(r,t) is the peculiar velocity field. it the 3D sheet on which the collisionless dark matter particles
Figure 1 shows a 2D section of 6D phase-space along thg in phase space. The thickness of the line is the primordial ve-
(z,2) plane. The wiggly line is the intersection of the 3D |ocity dispersion. The amplitude of the wiggles in theirection is
sheet on which the particles lie in phase-space with the plange velocity dispersion associated with density perturbations. Where
of the figure. The thickness of the line is the velocity disper-an overdensity grows in the non-linear regime, the line winds up in
sion 8v, whereas the amplitude of the wiggles in the line isclockwise fashion. One such overdensity is shown.
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an overdensity in the non-linear regime, the phase-spacel/\/o in the zero velocity dispersion limit. | call these
sheet covers physical space multiple times implying thaspheres “outer” caustics to distinguish them from the “in-
there are several, but always an odd number of, flows at suaher” caustics which are the main topic of this paper.
locations in physical space. To see inner caustics, let us first discuss the case where
At the boundary between two regions one of which has the overdensity is spherically symmetric and all the dark

flows and the othen+ 2 flows, the physical space density is matter particles carry zero angular momentum with respect
very large because the phase-space sheet has a fold there.t@tthe center. All particles move on radial orbits then. As a
the fold, the phase-space sheet is tangent to velocity Spa(ggsult .the galgctlc center is a caustic point where the.densny
and hence, in the limit of zero velocity dispersiofv(=0), assomat%d_ with each flow in and out of the galaxy diverges
the density diverges since it is the integral of the phase-spac®d~1/r* in the limit of zero velocity dispersion, wheres
density over velocity space. The structure associated witHe rqdlal coordinate. We remarked earlier .t.hat a caustic is
such a phase-space fold is called a “caustic.” It is easy togenerlcally a surface_. Thus we find a caugtiint only be- .
show (see Sec. )Ithat, in the limit of zero velocity disper- cause we are assuming §pher|cal symmetry and p““?'y radial

. . . .~ orbits. If these assumptions are relaxed, the caustic at the
sion, the density dlverges a&l/\/; when the Cal.JSt'C IS galactic center will spread over some s&eThe notion of
approached from the side with+2 flows, whereo is the

! . Lo g caustic point is nonetheless useful providadis small
distance to the caustic. If the velocity dispersion is small butenough Indeed, for>a the density will still behave ad
non-zero, the divergence is cut off so that the density is n ' f

(0] 2 . e
L ; ~1/r< and the phase-space structure will be qualitatively the
longer infinite at the caustic but merely very large. b P q y

. . ; N m fomn=0.
In discussing this type of phenomenon, it is useful toSa e as fon=0

adobt a parametrization of the phase-space sheet in the limi The question arises what is the inner caustic in the ab-
ptap etrizatl , phase-sp n Ml nce of spherical symmetry and in the presence of angular
of zero velocity dispersion, by giving each particle a

- momentum. Tkachev, Wang, and | fouf&i9] that the inner
3-parameter labetv=(ay,a;,a3). The phase-space sheet caustic is a ring, i.e. a closed line. The density diverges as
location at timet is specified by the map— X(«a,t) wherex d~1/o in the zero velocity dispersion limit where is the
is the position in physical space of particleat timet. The  distance to the ling9]. However, as remarked earlier, a caus-
velocity of particle& is \7=(a§/at)(c§,t). The density di- tic |s_gener|cally a surface. So a caustic I[ne must again be a
S . . special degenerate case. Indeed, we will see below that a
verges wherever ﬁtheﬁma@—m is singular, i.e. where the caustic ring is more precisely a closed tube with a special
JacobiarD =det(dx/da) vanishes. Thus caustics are assocCi-strycture. Nonetheless, when the transverse dimensions,
ated with zeros oD. SinceD=0 is one condition on three cajled p and q below, are small compared to the radius of
parameters, caustics are generically two dimensional sugyryaturea of the tube,d~ 1/o for a> o> p,g. Hence, it
faces. makes sense to think of the caustic ring first as a closed line
Zel'dovich [3] emphasized the importance of caustics ingnd then, on closer inspection, as a closed tube.
large scale structure formation, suggesting the name “pan- The next question is what is the structure of the tube. We
cakes” for them. The reason why galaxies tend to lie onfing below that its transverse cross section is a closed line
surfaceq 4], such as “the Great Wall,” is undoubtedly that \yith three cusps, one of which points away from the galactic
the 3D sheet on which the dark matter particles and baryongenter (see Figs. 5 and)6In the language of Catastrophe
lie in phase-space acquires folds on very large scales, P'Theory such a singularity is called_, catastrophg6]. It
ducing caustics appropriately called “Zel'dovich pancakes.” has a triality(i.e. aZ; invariance which is reminiscent of the
Tremaing[5] recently used the techniques of Catastrophqria|ity of the Lie groupD,, also called S(®).
Theory [6] to catalogue the caustics which may occur in  The existence of caustic rings of dark matter results from
observations of structure formation. o only two assumptiongsee Sec. Ill for a derivation
We saw above that where a localized overdensity is grow- (1) the existence of collisionless dark matter
ing in the non-linear regime, the line which is at the inter- () that the velocity dispersion of the infalling dark matter
section of the phase-space sheet with the)(plane winds is much less, by a factor ten say, than the rotation velocity of
up in clockwise fashion. The onset of this process is illus-the galaxy.
trated in Fig. 1. Of course, the picture is qualitatively the
same in the X,x) and ,y) planes. In this view, the process Only the second assumption requires elaboration. We noted
of galactic halo formation is the winding up of the phase-earlier that velocity dispersion smoothes out caustics. The
space sheet of collisionless dark matter particles. When thguestion is when is the velocity dispersion so large as to
galactic center is approached from any direction, the locamooth caustic rings over distance scales of order the ring
number of flows increases. First, there is one flow, then threeadiusa, thus making the notion of caustic ring meaningless.
flows, then five, seve. .. . Thenumber of flows at our lo- In Ref.[9] this critical velocity dispersion was estimated to
cation in the Milky Way galaxy has been estimated to be ofoe 30 km/s=10# for the caustic rings in our own galaxy,
order 100[7]. The boundary between the region with onewhose rotation velocity is 220 km/s. 1fis much less than
(three, five, ..) and the region with threéive, seven, ...  theprimordial velocity dispersiorsv of the cold dark matter
flows is the location of a caustic which is topologically a candidates. However the velocity dispersidm associated
sphere surrounding the galaxy. When these caustic spheresth density perturbations also smoothes caustics in coarse
are approached from the inside the density divergesl as grained observations. From the point of view of an observer
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with infinite resolution, the effect akv on a caustic surface This paper is organized as follows. In Sec. Il, we give a
is to make it bumpy. However, to an observer with poorgeneral discussion of caustic surfaces and caustic lines.
spatial resolution, this is the same as smoothing the surfac€austic lines are a degenerate case whereas caustic surfaces
So the question is whether the velocity disperstonof cold  are generic. We distinguish two types of caustic line which
dark matter particles associated with density perturbationge call attachedand isolated The former are attached to
falling onto our galaxy is less than 30 km/s. The answer iscaustic surfaces whereas the latter are not. Caustic rings are
yes with high probability since the infalling dark matter par- of the isolatedtype. In Sec. lll, we discuss the caustics as-
ticles are not associated with any observed inhomogeneitiespciated with the infall of collisionless dark matter particles
whereas the velocity dispersion of observed dwarf galaxies isnto a galaxy. We focus most of our attention on the inner
still only of order 10 km/s. If the infalling dark matter had caustic rings. We show that the presence of these rings fol-
velocity dispersion as large as say 20 km/s, it would have tdows only from the two assumptions listed above. We find
be in clumps whose mass/size ratio is 4 times larger than thdlat the ring is a tube. Inside the tube are four flows whereas
of dwarf galaxies. But if that were the case, why did theseoutside the tube are two flowén addition there is an odd
clumps fail to become luminous? number of flows which are not associated with the caustic
| have interpreted 9] the appearance of bumps in the ring.) In Sec. IV, we give a detailed analysis of the caustic
rotation curves of NGC3198 and of our own galaxy as due taing under the additional assumptions that the flow is axially
caustic rings of dark matter. That interpretation makes use adnd reflection symmetric and that the transverse dimensions
an additional assumption, namely that the infall of dark mat-of the ring,p andq, are small compared to the ring radias
ter particles is self-similarl0,11,8. This additional assump- In Sec. IV A, we show that under these assumptions the flow
tion is not used in this paper. The goal is to clearly distin-near the ring is described in terms of five parametayd,
guish those conclusions which follow exclusively from the 75, u ands. In Sec. IV B, we relate these parameters to the
two assumptions listed above from those conclusions whichkelocity distribution of the infalling dark matter particles. In
require the extra assumption of self-similarity. We are how-Sec. IV C, we give a qualitative description of the flow of
ever motivated by the possiblility that caustic rings may beparticles on distance scales of order the ring radiua Sec.
observed as bumps in rotation curves and we derive th¥, the results of Sec. IV are used to derive the shape of the
shape that such a bump should ideally have. Gravitationddump a caustic ring causes in a galactic rotation curve if the
lensing by caustic ringEl2] is another technique by which ring lies in the galactic plane and the rotation curve is mea-
these structures may be observed. sured in the galactic plane. Section VI summarizes the con-
One might ask whether caustic rings can be seen imlusions.
N-body simulations of galaxy formation. Zel'dovich pan-
cakes are sedri3]. However, caustic rings would require far

greater resolution than presently available, at least in a 3D Il. CAUSTICS IN GENERAL
simulation of our own halo. Indeed, the largest ring in our _ o . _
galaxy has been estimated to have radius of order 40%pc ~ Consider a flow of collisionless particles with zefor

It occurs in a flow that extends to the Galaxy’s current turn-negligible) velocity dispersion. Being collisionless, the par-
around radius, of order 2 Mpc. To resolve this first ring, theticles obey Liouville’s theorem. Since they have negligible
spatial resolution would have to be of order 10 kpc orvelocity dispersion, the particles lie on a time-dependent 3D
smaller. Hence a minimum of 2[1/(10 kpc)®](4w/  sheetin 6D phase-space. The flow is completely specified by

3)(2 Mpc)*=7x10" particles would be required to see the giving the spatial coordmateda t) of the particle labeled

caustic ring in a simulation of this one flow. However, the -
number of flows at 40 kpc in our halo is of order [, So a at timet, for all @ andt. The 3- parameter label is chosen

it appears that several times®larticles are necessary in a arbitrarily. Let a;(x,t), with j=1....n, be the solutions of
3D simulation of our halo. This is a strict minimum becausex= x(a t). nis the number of dlstlnct flows at andt. The
it only addresses the kinematic requirement of resolving théotal number of particles is

halo in phase space, assuming moreover that the particles are
approximately uniformly distributed on the phase-space
sheets. There is a further dynamical requirement that 2-body d®N R
collisions do not artificially “fuzz up” the phase-space _J d? da

sheets. Indeed 2-body collisions are entirely negligible in the !

flow of cold dark matter particles such as axions or WIMPSs. 3N ..
As a result, Liouville’s theorem is strictly obeyed. On the =J d3X_ W(QJ(XI))
other hand, 2-body collisions are present in N-body simula- j=1 B faxtias

tions and thus Liouville’s theorem is violated. As a result the

velocity dispersion is artificially increased in the simulations.

This may occur to such an extent that the caustics are washed (2.1
away even if several foparticles are used. The best bet to

see a caustic ring would obviously be in a 2D simulation of

an axially symmetric flow. The density of particles in physical space is thus

dazdag(
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n

3
d()z,t)z 2 d—N

=1 da’lda’zda3 (aj(x

1t))—)—1
D)5, 2
(2.2

where /

R X
D(a,t)Edm( —J. (2.3

Ja

The formula for the density is, of course, reparametrization
invariant. Caustics occur wherevier=0, i.e. where the map
a—X is singular. At the caustic the density diverges. The
divergence is cut off if the velocity dispersion is finite.

Generically the zeros ob are simple, i.e. the matrix
oxlda has a single vanishing eigenvalue. The condition that ~ b) : d
one eigenvalue vanishes imposes one constraint on the three
parametersx;. Hence a caustic is generically a 2D surface in
physical space.

\ N.

A. Generic surface caustics

Consider a generic surface caustic at a fixed timé/e -
may reparametrize the flow near the CaustizEz,—>[§ :
= B(a,t), such that the caustic surface is@=0. Also, in z, z,
a neighborhood of a point on the surface, choose Cartesian

coordinates such thaz is perpendicular to the surface  FIG. 2. A generic surface caustic in phase spé@eand in

whereasc andgl are parallel. We have then physical spacéb). The two dimensionsx andy) into which the
caustic extends as a surface are not shown. The physical space

0z ( A(X,Y) densityd diverges at those locationg,(andz,) where the phase-
D= —del ————— (2.4  space sheet folds back.
B3\ (B1.B2) P
near that point. The 2-dimensional matekx,y)/d(B1,85) B. Line caustics
is non-singular. Sinc® =0 at 8;=0, we have Next, consider places wher@ has a double zero, i.e.
) where dx/da has vanishing eigenvalues for two different
Z=2,+ B3 2.9 eigenvectors. The condition that two eigenvalues vanish de-

] ~ fines a line. This line is the location of a more singular kind
for small B;. We may orient thez-axis in such a way that of caustic which we call “line caustic.”

B>0. Then In a small neighborhood of a line caustic let us reparam-
A(%,y) etrize the flow 6—>B) such thatB,;= B8,=0 defines the line
D=2yB(z— zo)de(m for z>z,. (2.6) in the new coordinates. Also, choose Cartesian coordinates
1:P2

such thatz is parallel to the line and andy are perpendicu-
lar to it. In this neighborhood we have

Hence, near a caustic surface locatedzatzy, the density
diverges as 4/z—z, on one side of the surface. 97 a(x,y)
Figure Za) shows a 2D cut of phase-space along the)( D= 9Bs e( m) (2.7

plane. The particles lie on a line which is at the intersection
of the phase-space sheet with thezj plane. The labeB;  with  dz/9B;#0. At B,;=pB,=0, the matrix
gives the position of the particles along the line. In the ex-9(x,y)/d(B1,8,) vanishes since it is 2 2 and has vanishing
ample of the figure, there are two caustic surfaces, ore at eigenvalues for two different eigenvectors. Thus for sraall
=z, and the other az=2z,. The two dimensionsx andy) and 3,,
into which the caustic extends as a surface are not shown. L L
The densityd(z), shown in Fig. 2b), diverges as 4/z—z; _ 2 2 3

X=Xo+ 5 X187+ X + 5X565+0
for z—z, with z>z; and as 1{z,— z for z—z, with z<z,. 0" 2 1Pt Xaahfe 2 282 0(B°)
For z,<z<z, there are three flowsnE3) whereas forz
<z, and z>z, there is only one flowrf=1). The phase- o, 1, » 3
space sheet “folds back” at=z;, and z=z,. That is why Y=Yot 5 YuB1HY1aB1Bot 35 Y285+ 0(5%).

the mapB—z is singular at these locations. (2.9
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Linear combinationx—xy+ y(y—Yyg) are complete squares
provided

Y2 (Y11Y 20— Y5 + Y(Y 11Xo0+ X11Y 20— 2X 1Y 1)
+ X11X22— XiZZ O, (29)
which has two solutions:
1

{1 Y 12X X11Y 00+ 2X15Y 15
2(Y11Yo— Y3))

F[(Y1:Xo2+ X11Y 20— 2X15Y12) 2= 4(Y11Y 20— Y1)

X (X1 X0~ X5 13 (2.10

If the denominatoryY;,Y 5~ Yfzzo, one should interchange
the role of x andy. If Y;;Yp— Y2,=0 and X;;Xp— X2,
=0, X—Xo andy—y, are complete squares to begin with.
Note that Im+y. may differ from zero and thay =17 in
this case. We have

1
X=X—=Xo+ y+(Y—=Yo)= Ext(ﬁl"' Wtﬂz)z (2.1

with
Xe=Xpty+Yi1 (2.12
and
Xipty«Y1o
Ne=y T v - (2.13
Xt y=Y1
In terms of these new quantities
D =de(ﬁ(x—’y)> =2 /X, X_X.X 7N
2 d(B1.B2) TR oyl
(2.19

There are two cases to consider,
Imy.#0 or Imy.=0.

If Imy.#0, let yo=y iy, Xa=X{F£iX,, Xe=X;
*ix; and pe=mEin,. y1,72.X1,X2,X1,X2, 71 and 7,
are real. We have

72
D,= Zz\/xﬁ' X3[ (X—Xo+ Y1(Y—Y0)+ ¥5(y— Vo) ?1H2
(2.15

D,#0 everywhere except ak{y)=(Xq,Yo). The densityd
~1/o with

o=V (x—Xo+ ¥ (Y= Yo) 2+ ¥5(Y—Yo)2.  (2.18

An illustrative example of a Iy, #0 line caustic is

1
X=X+ X5(Bi=B3), y=Yo+YBiB, (2.17)

PHYSICAL REVIEW D60 063501

for which D=2Y?(x—xg)>+X?(y—Yyo)°. We call a

Im y.#0 line caustic “isolated” because it is not attached
to any surface caustic. Ring caustics associated with the in-
fall of collisionless dark matter onto a galaxy are line caus-
tics of the isolated type. They will be discussed in detail in
Secs. lll and IV.

If Imy.=0, thenx., X. and ». are real. From Eq.
(2.11) and Eq.(2.14 we see thaD has simple zeros along
two surfacesx, =0 andx_=0, and a double zero on the
line where these two surfaces meet. Thus theylns0 line
caustic is “attached” to two generic surface caustics. The
following is an illustrative example:

1 1
x=Xo+t 5XBi, Y=Yot5YB;. (218

In this caseD=2XY(x—Xg)(Y—Yo), and hence the den-
sity d~ 0(x—Xg) 0(Y —Yo)/ V(X—Xo)(Y—Y,) for X,Y>O.
We have no use for the “attached” type of line caustic in
this paper.

Ill. CAUSTIC RINGS

In this section we give a general discussion of the caustic
rings that are associated with the infall of collisionless dark
matter onto a galaxy. No symmetry is assumed. We do as-
sume that the velocity dispersion of the dark matter particles
is small compared to the rotation velocity of the galaxy. We
set the velocity dispersion equal to zero and derive the exis-
tence of caustics. A small velocity dispersion provides a cut-
off, so that the density at the caustic does not become infinite
but merely very large.

Figure 3 shows successive time frames of a set of colli-
sionless particles falling through a galaxy. The particles
move purely under the effect of gravity. In Fig(aB the
particles are at first “turnaround,” i.e. they are about to fall
onto the galaxy for the first time in their history. They are
located on a closed 2D surface surrounding the galaxy in
physical space, called the “turnaround sphere.” Figure 3
shows the intersection of this sphere with the plane of the

depending on whethgfy re as it evolves in time. For the sake of definiteness it is

assumed that the particles carry net angular momentum
about the vertical axis. Qualitatively speaking, the turn-
around sphere is spinning about the vertical. The particles
near the top(bottom) of the sphere in frame a carry little
angular momentum and end up near the botttop) of the
sphere in frame f after falling through the galaxy. The par-
ticles near the equator carry the most angular momentum.
They form a ring whose radius decreases in time down to
some minimum value, reached near frame d, and then in-
creases again. Generally the radius of the sphere at second
turnaround is smaller than at first turnaround because the
galaxy has grown by infall in the meantime. After second
turnaround the sphere falls back in and repeats the same
qualitative sequence till third turnaround, and so on.

There is a generic surface caustic associated withmiine
turnaround wheren=2,3,4 . .. . These caustics are located
near where the particles of a given outflow reach their maxi-
mum radius before falling back in. To see this, parametrize
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a) b a)

D :

c) d) B

b)

b))
FIG. 3. Infall of a turnaround sphere. The closed lines are at the
intersections of the sphere with the plane of the figure at six suc- RS
cessive times. The sphere has net angular momentum about the
vertical axis. It crosses itself between fram@s and (c). After FIG. 4. An infall sphere near where and when it completes the
frame (e) the sphere has completed the process of turning itselprocess of turning itself inside out. The lines are at the intersections
inside out. The cusps in framéd) and(e) are at the intersection of of the sphere with the plane of the figure at two successive times,

a caustic ring with the plane of the figure. corresponding to frameg) and(d) in Fig. 3. « labels points along
the line.dz/da=0 at points A and Box/da=0 at point C. Points

the flow at a given time by )Z(a B,to;t) wheret, is the time A, B and C move to point E, which is thus the location of a caustic
the particle was at last turnaround an¢gB—for example, sinceD=0 there.

spherical coordinates—tell us where the particle was onthe =~ = = , . . .
turnaround sohere at that time. We definB= ax/dt- x and is just inside the sphere in frame b of Fig. 3 is outside the
P : o o sphere in frame e, and vice versa. There is therefore a ring of

e)

=gxlda, x*=ax/9p, andx=ax/at. In terms of these points in space-time which are inside the sphere last. The
intersection of this space-time ring with the plane of the fig-
D=x% (x!x x?). (3.1 ure is at two space-time points, one located at the cusp in

frame d, the other at the cusp in frame e. Since there is a
Since the discussion is for a fixed tirhdet us not show the continuous flow of spheres falling in and out, the ring just

t dependence explicitly further. Let us assume H{at, 3, t,) Qef;]ne(lj IS a persflstent fe?ﬂ“fe in space. We now show that it
is near particles at themth turnaround withm=2,3,4 . .. Is the location of a caustic.

h h - . ith t iderably | Figure 4 shows the infall sphere in a neighborhood of
The spheregx(a,B,ty):Va, B} with to considerably larger 50 and time where it is completing the process of turning
or considerably smaller tharn, are inside the sphere

- _ o i itself inside out. We choose Cartesian coordinates suclythat
{X(a’ﬂ’tO)'va"B};oTh'S implies th_at for all, 5 there s a is parallel to the ring at that poin; andz are as shown. We
to(@,B) such thax’(a, B,to(a,B)) is parallel to the sphere 3 rametrize the flow in a small neighborhood of the ring by
{x(a’,B" to(a,B):Va’,B'}, and hence whe®=0. There-  7_ (, gt} such thatix/d8=dz/d8=0. As beforet, la-
fore the sphergx(a,8,to(a,B)):V a,B} is the location of a  bels successive infall spheres and may be taken to be the
generic surface caustic. Theseter caustics were mentioned time of their last turnaround. Thus
in the introduction as the boundaries between the regions
with n flows and those withn+2 flows where n ay
=1,3,5... . We do not discuss them further in this paper. ==
Our focus is upon th@nner caustics which, as we will soon P
see, have the shape of ringdosed tubesand which are ) ) )
located near where the particles with the most angular moEigure 4a) shows an infall sphere just before it reaches the
mentum in a given inflow reach their distance of closest ap!ting. The line is the intersection of the infall sphere with the
proach to the galactic center before moving back out of thelane of the figurea labels points along the line. We have
galaxy. dzlda=0 at points A and B because the line is parallel to

To see inner caustic rings, let us return to the sphere athe x-axis at these points. Similarlyix/da=0 at point C.
Fig. 3. During each infall-outfall sequence, the sphere turngigure 4b) shows an infall sphere at the moment it reaches
itself inside out. Indeed, a particle which is part of the flow the ring. Points A, B and C in Fig.(d) have moved to point

Ja ato ato Ja (32)

IX dz X az)
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E in Fig. 4b). Hencedz/da= dx/da=0 and thereforeD
=0 at point E, which is thus the location of a caustic.

In general,D only has a simple zero at E, which means
that E is the location of asurfacecaustic. We show below
that the complete inner caustic surface is a closed tube. E is
a point on this tube. In the limit where the transverse gize
of the tube goes to zero, bothz/da=dx/da=0 and
Ixldtg= 9zl dty=0 at E.D then has a double zero at E. In
that limit the tube caustic becomes @olatedline caustic
where the density diverges asrlMWhenp is finite but small,
the densityd(o) ~ 1/o for o> p but has a more complicated
behavior foro~p.

Let us show that the inner caustic must have the topology
of a tube, starting with the case of Fig. 3 and generalizing

from there. In Fig. &), x° (not shown explicitly is every-
where pointing outward of the infall sphere because later

infall spheres are outside this one. In Figf)Sio is pointing
inside because later infall spheres are inside this one. This

implies that during the infallx® either vanishes at some
space-time points or becomes parallel to the sphere. Since
D=0 at such points, they are the location of caustics. Since

D is a continuous function of, the caustic must lie on a
closed surface. Now, if we follow the motion of points which
are near the togbottom of the sphere in Fig. ®) and end

up near the bottongtop) in Fig. 3(e), x° always points up FIG. 5. Qualitative description of the flow near a caustic ring.
(down). x? does not vanish and is not parallel to the sphere afhe solid lines are at the intersection of five simultaneous infall
any time between these two frames for these points. Thigpheres corresponding to different initial timgg<to,<- - - <toy.
implies that there are no inner caustics within some cylindeiThe five numbered points are a{a,tq),k=1...5, for some
extending from top to bottom in the spatial volume undervalue of a. Points E and F are defined in the text. The closed
consideration in Fig. 3. On the other hand, for the points nea#lashed line is at the intersection of the caustic tube with the plane

R I o A of the figure. There are four flows inside the dashed line whereas
;{gep(e;?nlf[ierl:gri:]r:/vilr% ?ur:ﬁg;)%lzggﬁ O#r?ﬁ :rg \c,iv'“g”t]r%(l:rllf?i” ;Qicri]t outside there are two. The galactic center is to the left of the figure.

near the equator, at some tim® either vanishes or is paral- )
lel to the sphere. The points where this happens lie on gircle. If there_ is no angular r_nomentum at all, the tL_Jbe re-
closed surface which is outside the previously defined cylinduces to a point at the galactic center. As was mentioned in
der but wraps around it. That surface must therefore be the Introduction, the g_alactlc center is a point caustic in that
tube. The tube is located near the equator, where the particlé§se, where the density behavesds) ~1/r2.
with the most angular momentum are at their distance of Figure 5 shows simultaneoisamet) infall spheres near
closest approach. the caustic corresponding to five different initial timeg;
Consider now the most general angular momentum distri= toz> - - - >tos. The five numbered dots show the positions
bution on the turnaround sphere. The angular momentum isx& «,tqy), k=1 .. .5, forsome fixeda and the five different
continuous two-dimensional vector field on the sphere. It idnitial times. Following the dots gives one a qualitative pic-
well known that such a vector field must hafat least two  ture of the flow in time. The, sphere is falling in but has
zeros. If we track the particles in the neighborhood of thesaot yet crossed itself, as in frame b of Fig. 3. Ttggesphere

angular momentum zeros, we find that thdirdoes not van- has crossed itself but has not yet completed the process of
ish and is not parallel to the sphere at any time during théurning itself inside out, as in frame c of Fig. 3. Thg
infall-outfall sequence. Therefore the inner caustic appearsphere is just completing the process of turning itself inside
only in the flow of particles which are some distance awayout, as in frame d of Fig. 3. The cusp at point E is the
from both zeros. Since that set of particles has the topologipcation of a caustic for the reason given earlier. bgtbe

of a closed ribbon, and the previously defined caustic ringhe value ofa at E. Thusx(ag,tqs) is the position of E. In

(the set of points E which are in the turnaround spherg lasthe example of the figure, the particles at the cusp are mov-
goes around this closed ribbon once, the inner caustic mu > e

be a closed surface with one handle, i.e. a closed tube. Notﬁég o th»% _Ieft. _Thus aWE't.O?’)' X Is pointing to the left
that the closed tube may self-intersect and may have a conf!Neréas<” is pointing to the right of théyg infall sphere. For
plicated shape. However, if the angular momentum is domismaller initial times, such ags, x° is pointing to the left of
nated by a smooth component which carries net angular mdhe infall sphere. Lety, be the initial time and F be the point
mentum, as was assumed in Fig. 3, then the tube resemblesverex®( o ,to) crosses the, sphere. In view of Eq(3.1),
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F is the location of a caustic as well. Consider any pointwhich start with azimutal anglé,= 7/2— « at initial time

which is far from both E and F. At such a point there are twot,. One readily shows, repeating for the axially symmetric

flows because the sphere passes such a point twice, once case the steps which led to Eg2.2), (2.3), that the density

the way in and once on the way out. Consider also a poinis given by

located between E and F. At such a point there are four flows

because the sphere passes by four times: at fix@dce for 1 & d®N 1

initial time t, betweenty, andtys, once betweety; andto, d(p.2,t)= 2mp &4 m(“’to)m

and once betweely, andtys. There is therefore a finite (anto) =(ato);

compact region in the plane of Fig. 5 inside of which there (4.1

are four flows and outside of which there are two flows. Theyhere

boundary of this region, shown as a closed dashed line with

three cusps, is the location of the tube caustic. The reason for a(p,z)

the three cusps will be given in the next section. D2(a1t0)5d9< e to))
In the limit where the tube shrinks to a lin® has a ’

double zero on the line. Indeed E and F coincide in that limitand («,t;);, with j=1...n, are the solutions ofp

x° is parallel to the ring at E becaus® is parallel to the =p(a,to:t), z=2(a,to;t). Under a reparametrization of the

infall sphere at F which coincides with E and the infall flow (a,tg)—[a’(a.to), to(a,te)], the determinant trans-

sphere has a cusp at E. Equati@?2 shows thatD has a forms according to

double zero then which means that the ring is a line caustic.

4.2

It is of the isolated type since it is not attached to any surface NI g (' tp)
caustics. Dala,t)) =Da(a’,tg)de Naty) | 4.3
In the example of the figure, the initial ting; of E is )
after the initial timet,, of F. The opposite is equally pos- N particular,
sible. Indeed the time reverse of the sequence of Fig. 5 is L
D2(a't0) = Dz(a ltO) (44)

also a possible sequence and it has the times of E and of F in
the opposite order. On the other hand, the density is invariar}
under time reversal of the flow. This shows that point F is
always closer to the galactic center than point E. Note also

E)r an a-dependent time shifix’ = a, tg=to+Aty(a).

that if the flow is time reversal invariart.e. if the outfall A. Flow at the caustic

sequence is the time reverse of the infall sequgrtbe tube General characteristics of the flow near the caustic are
caustic collapses to a line caustic becalyse to; and hence  described in Sec. IlI. Figure 5 constitutes a summary. In the
E and F coincide. reflection symmetric case, points E and F have0 anda

If the successive spheres all fall in exactly the same way=0. Let us reparametrize the flove—a, to—7=t,
the caustic ring is stationary. In general, however, the trajec+ Aty(a) such thatz(a,7=0)=0 for all «. We expandp
tories of successive spheres change with tinabeit slowly.  andzin powers ofe and  keeping terms up to second order

As a result the caustic ring moves about. However, whethepnly. Since we assume the reflection symmetys —z, p
or not it moves, the caustic ring is perfectly sharp in the limit_, , o — o, andr— r, we have

of zero velocity dispersion.

z=+bar (4.5
IV. THE AXIALLY SYMMETRIC CASE 1 1
o _ ) p=po—CT+ sUT’— =sa?, (4.6)
We assume in this section that the flow of dark matter in 2 2

and out of the galaxy is axially symmetric abauand sym-
metric under reflectiorz— —z. We also assume that the
transverse dimensions, callggdand q below, of the ring
caustic are small compared to the ring radausAs before, 1 1

we assume that the dark matter particles are collisionless and p=a+ EU(T_ T0)2— ESaz, 4.7
we neglect their velocity dispersion. We use the following

parametrization of the flow. LeR(to) be the turnaround ra- , hare 7o=c/u anda=po— Lc?u. a is the p-coordinate of

dius in thez=0 plane at timeo. Then letx(6y,¢o,to;t) be  point F. The parametets u ands are positiveb is positive
the position at time of the particle that was at the location of pecause the flow is from top to bottofhottom to top for
polar coordinates p,¢o) on the sphere of radiuB(to) at  particles witha>0(«<0). u is positive because the par-
time ty,. The density is given by Egg2.2), (2.3) with «  ticles witha=0 are accelerated outward by the angular mo-
=(6y,¢0,tp) andn=2(4) outside(inside the closed tube mentum barriers is positive because at=0, the particles
caustic described in a general fashion in the previous sectiomwith «#0 are atp<<p,. 79 can either be positive or nega-
However, since we assume axial symmetry the motion igive. a is always smaller thap, i.e. point F is always closer
in effect two-dimensional. Lep(a,tg;t) and z(a,ty;t) be  to the galactic center than point E, as noted earlier.
the cylindrical coordinates at timeof the ring of particles The determinant is

whereb, pg,C,u ands are constants is thep-coordinate of
point E. We may rewrite Eq4.6) as
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Dy(a,7)=—blur(7— TO)+Sa2]. (4.8 z
It vanishes for

u
a==* gT(TO— 7) (4.9

with 0<7<7g if 7>0, and— 7,<7<0 if 77<<0. Substitut-

ing Eq. (4.9 into Egs.(4.5 and(4.7), we find a parametric q
(7=parameter) representation of the surface of the tube p-a
caustic:

1
p=a+ EU(T— T0) (27— 79)

u
Z=ib\/g7’3(7'0—7). (4.10

Figure 6 shows a cross section of the tube. Its dimensions in
the p and z directions arep=3iur? and q=(y27/4)(®/
Jus)p, respectively. The caustic has three cusps. It is showp,q
below that the appearance of the three cusps is not special to

the assumed axial and reflection symmetries nor to the fact

) The apparent reason for the two cusps which are not on
that ded only t d ord E d A . .
(4é6)_we expanded only to second order in E¢s5 an the p-axis in Fig. 6 is thatp/dr anddz/d both vanish for

7=3/47,. It might be thought that the simultaneous vanish-

ing of dp/d7 anddz/dr is an accident peculiar to our as-

sumptions of symmetry and/or our limiting the expansion of
r s1 p andz to terms of second order ia and 7. But this is not

T=—, A=\/——a«¢, (4.11 the case. Indeed, consider the equation for the location of a
7o U0 generic caustic in 2 dimensions:

FIG. 6. Cross section of a caustic ring in the case of axial and
ection symmetry, ang,g<<a.

First let us note that the caustic hagasymmetry after
an appropriate rescaling. Define the rescaled parameters

and the rescaled and shifté€id thef; direction coordinates

b _&paz (9p¢92_0 41
Zfl 5 1 ala,)=———————=0. (4.19
Z=-\/-—=2, X=—%(p—a)—-. (412
b 2 2 4 ,
470 U7o It defines a(r) such that [p()=p(a(r),7),z(7)
In terms of these, Eq¢4.5) and (4.7) become =z(a(7),7)] is a parametric representation of the caustic
location. Wherevep(r) has an extremunz(r) may be ex-
1 pected to have an extremum as well since
Z=2AT, X=(T-1)2-A?- 7 (4.13
dp _dp da dp B
These relations are invariant under the discrete transforma- dr da dr E‘O (4.16
tion
and Eq.(4.15 impl
Z'= 1Z+\FX X' = \FZ 1X sy
-2 2™ B 2 2 dz_&zda+(9z_0 i1
dr dadr ar (.19
T=-3Tt \[ﬁA+3/4’ if de/d7 is finite. The cusp at point E may appear to have a

different origin. Its apparent reason is ttmat + 7°/2

) 3 1 =0 which is at the boundary of the rangeofHowever, this
Al=-— ET_ §A+ V314, (4.14 circumstance is an artifact of the parametrization used. In-
deed, we saw that the three cusps are transformed into one

whose cube is the identity. In the X-Z plane, the transformafjmOther by aZ; symmetry. As a corollary, the cusp on the

tion is a rotation by 120°. It transforms the 3 cusps of thep-axis can be given the same parametrization as the other
caustic into one another. Hereafter, let us call the shape dfvo. In conclusion, the appearance of three cusps in the cross
Fig. 6 a “tricusp.” In the language of Catastrophe Theory section of a ring caustic is not an accidental consequence of
[6], the tricusp is & _, catastrophe. our simplifying assumptions. Without those assumptions, the

nearrt
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cross-section does not have the exact shape of Fig. 6 but\Whenp andq are finite but much smaller tham Eq. (4.23
still has three cusps, at least for small deviations from théds approximately valid fop,g<o<a since the terms of or-

description given above.

Inside(outside the tricusp, there are fouitwo) flows. For
example, if we restrict ourselves to tlze=0 plane, thernx
=0 or 7=0. If =0, thenp=a+ ju(r— rp)>>a. If =0,
then p=a+ 3urs— 3sa®<py. Thus for z=0 and p>a,
there are 2 flows:

2
a=0, 7=71% G(p—a),

0z Jd
—0, P—+ 2u(p-a).

Jr ' ot

(4.18

for which

(4.19

We may call these the “in and out” flows. F@=0 andp
<po, there are 2 other flows:

2
=0, a==1/S(po=p),
&Z_+b /2 ap
97 g(Po—P% —37—_1“'0-

(4.20

for which

(4.21

We may call these the “up and down” flows. Therefore, in

the z=0 plane, there are four flow@n, out, up and down
for a<p<pg, whereas there are two flowsp and dowpfor
p<a, and two flows(in and ou} for p>p,.

der 7o in Egs.(4.5), (4.7) and(4.8) are small in this regime.

B. Relations between the caustic ring parameters and the
initial velocity distribution of the dark matter particles

We saw in Sec. IV A that the flow near the caustic is
parametrized by the quantitiés a, u, s and 7. In this sec-
tion we relate these quantities to the velocity distribution of
the dark matter particles near=0 at the initial timet,. We
assume that the gravitational potential of the galaxy is
spherically symmetric, so that the angular momentum of
each particle is conserved. As before, we assymte<a.
Thus the particles participating in the flow at the caustic have
|| <1. Also the time scale over which the particles cross the
caustic is short in that limit, which implies that their velocity
is nearly constant while they do so.

As before,R(ty) is the turnaround radius of the particles
in the equatorial planeaq=0) at timet,. Thus the radial
velocity of the particles atv=0, t=t,, andr =R(ty), van-
ishes. Consider the velocity distribution of the particles on
the sphere of radiuR(ty) at timety neara=0:

v( 90,<Po,to)5<AP0VH(CY)+F0Vr(01)_ Bov, (@)

1
v)(0)+ EV""(O)az-i- 0(a*)

)

+ro

1
Ev’r’(O)az—i— 0(a®)

+0o[ — av ! (0)+0(a®)], (4.24

Away from the cusps, the caustic is a generic surface

caustic, as described in Sec. Il A. Thus, if one approaches the
boundary of the tricusp from the inside and away from any,

of the cusps, the density increasesiasl/\/o wherec is the

distance to the boundary. If the boundary is approached fror[]
the outside, away from any of the cusps, then the densit
remains finite until the boundary is reached. For example, f

z=0 andp—a—0,, D,=FbrgyJ2u(p—a) for the in and

out flows, and hence the density associated with these flows

increases as {p—a.

Near the cusps, the behavior depends upon the direction

of approach. Foz=0 andp—py—0_, Dy=—2b(pg—p)
for the up and down flows and hende-1/(py,—p). Forz
=0 andp—po—0, , the density remains finite. Fgr=pq
andz—0. , |D,|=3(u?b73s|z|?/2)'? for one of the flows
and henced~ 1//z| %3,

The tube caustic collapses to a line caustic in the limit

7o—0 with b/\/us fixed. In this limit, p,q=0,

D,=—b(ur?+sa?)=—-2\b%(p—a)?+us?Z,
(4.22

and hence the density

1 d4N 1

2mp dadty \Jb2(p—a)?+usZ

d(p,z)= (4.23

assuming axial and reflection symmetry. ¢, and 6, are
he unit vectors in spherical coordinates at locatiép, ()
on the sphere. The dependencevgfa),v, (a) andv,(a)
pont, is not shown explicitly but is understood. By defini-

)ﬁon v[ (0)=(dv, /da)(0), v[(0)=(d?v;/da?)(0), and so

R

FIG. 7. Trajectory of a dark matter particle falling onto a galaxy.

\70 is the velocity at the initial timey. r, is the distance of closest
approach to the galactic center.
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on. We need only discuss the motion of the particles initially 1(a)=cos¢(a)(cosaz—sinay)+sind(a)X,

at o= /2 since the motion of particles with differing val- (4.27)
ues of ¢, are trivially related by axial symmetry. The par-

ticle which is initially atpg= 7/2, 6= w/2— « has angular  with

momentum

d(a)=tan !

(4.28

VL(Q))

[(@)=RryXv V(@)

o o ~
E—Q,E,IO>E|(Q’)|(CE) (4.25)

Let (x’,y’) be Cartesian coordinates in the plane of the orbit

whereR=R(to) and of that particle, with origin at the galactic center. The

"y',z' dinates are related to the,y¥,z) coordinates
—RWA @) +v2(a) _ (x,y’,z") coor D
(@) =Ryvj(a)+vi(a), (4.29 by a rotation of anglen about thex-axis followed by a
and rotation of angleg(a) about they’-axis:
|

x’ cosp(a) sinasin ¢(a) —cosasing(a) X

y' | = 0 cosa sina yl. (4.29

z' sing(a) —sSinacos¢(a) COSa COSH(a) z

|

In the (x",y’) coordinates, the particle startsF@t: Ry with Z'(a,tg)=0. (4.31

initial velocity vo(a)=—[I(a)/R]x’ +v,(a)y’. See Fig. 7.
At the moment of its closest approach to the galactic cente
the particle moves with approximately constant velocity:

Egs. (4.3) and henceforth, thet-dependence of
rx’,y’,rm,é,v andtg, is not explicitly shown.
Using Egs.(4.29 and (4.31), we have

X' (a,to;t) = —rpCoss+V(t—ty)siné Z(a,ty)=r(a)[cosa sind(a)cosd(a)—sina sind(a)]

V' (a,tp;t)=—r,sind—V(t—t,)coss +V(a)(to—tom(a))[cosa sind(a)sind(a)
Z'(a,tg;t)=0, (4.30 +sina cosé(a)]. (4.32

wherer,, andt,, are the distance and time of closest ap-AS in Sec. IVA, we reparametrize the flow—7r=t,
proach, V is the magnitude of velocity then, afids defined ~ — 7o(@) such thatz(a,7)=0 at7=0 for all a. Thus

in Fig. 7. The quantitiesy,, t,,, V and 6 depend one and 74, 7)=V/(a) 7 cosa sin ¢(a)sin {a)+sina cosda)].

to- On the time scale over which the particles cross the ring

caustic, the flow is very nearly time-independent, i.e. (4.33
X(a,to;t)=X(e@,t—ty). Hence, we replacé—ty, by to,  The time shiftry(a) is given by

—tp in EQs. (4.30 wherety () is the initial time of the . )

particles which are at their closest approach at ttm&he V(a)(7o(a)—tom(a))[cosa sing(a)sin&(a)

flow at fixedt is then given as a function af andt, by +5in @ c0S8( )]+ @)[ COSa Sin () cosS( )
X' (a,tg)=—rm(a)cosd(a)+V(a)sind(a)(tom(a) —to) —sina sind(a)]=0. (4.34

y'(a,tg)=—rn(a)sind(a) —V(a)coss(a)(tom(a)—tp) Combining Egs(4.29, (4.31) and(4.34), we have

COSa Sin¢ cosd—sina sind
COSa Sin ¢ sin 8+ sina cosd

X(a,7)=—C0S¢ SinSV7—r,C0S¢h| COS6—SIind

y(a,7)=—V7(Sina sin¢ sin —cosa c0sd) — I,

COSa Sin¢ cosdé—sina sind
COSa Sin ¢ sin 5+ sina cosd

X|sina sing cosé+ cosa sind— (Sina Sin ¢ Sin — coSa COSH)

(4.395
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with V=V(a), ¢=¢(a), rm=rm(a) and = 48(«).

We now compare Eqg4.33 and (4.35 with Egs. (4.5
and(4.7) to extractb, a, u, 7o ands. ¢(«) is an odd function
of @ whereas ,(a), V(a) and §(«) are even. Thus

1
dla)= ¢’(0)a+g¢’”(0)a3+ 0(a), (4.36
1
Fm(@)=rm(0)+ E|r;;(0)a2+0(a4),
(4.37
and so on. Comparing Eg&t.5) and(4.33, we have
b=V(0)(coss(0)+ ¢'(0)sins(0)). (4.38
We may rewrite Eqs(4.35 as
X(a,7)=Xo( @) +Xq(a)T
y(avT) :yO( a)+yl(a)7-1 (439)

with the appropriate definitions ofy(a),X1(«@),yo(«), and
y1(a@). Therefore

p(a,7)2=x(a,7)2+y(a,7')2

=Xo(a)?+Yyo(a)?
+2(Xo(@)X1(@) +Yo(a)yi(a)) 7+ (X (a)?
+yi(a)?)7?, (4.40

which is to be compared with the square of E4}.7):

p(a,T)2=a2+ va(7— TO)Z—SaaZ-i- 0(7'3,7'8,&2 ).

(4.41
For «=0 this yields
a?+uars=x5(0)+y3(0)
—uary=Xo(0)X1(0) +Yo(0)y1(0)
ua=x3(0)+y%(0). (4.42

From Egs.(4.35 and(4.39, we have
Xo(0)=~rmn(0)

@' (0)coss(0)—sins(0)
¢'(0)sins(0)+coss(0)

X

co0ss(0)—sins(0)

X1(0)=—V(0)sin5(0)

Yo(0)=—rn(0)
¢’ (0)coss(0)—sins(0)
¢’ (0)sin8(0) +coss(0)

X|sind(0)+cosd(0)

y1(0)=V(0)coss(0). (4.43

PHYSICAL REVIEW D 60 063501
Hence
a=r.,(0)

~ V(0)?
~ Tm(0)

u

_I'm(0) ¢'(0)coss(0)—sins(0)
~ V(0) ¢'(0)sin&(0)+coss(0)

(4.44

70

Comparing Egs(4.40 and(4.4)) for «#0, we have
—sa=(Xo(0)x(0) +Yo(0)y(0)). (4.49
A somewhat lengthy calculation yields

B rm(0)(1+ ¢’ (0)?)
[¢'(0)sin&(0)+coss(0)]?

1 (0) ¢'(0)coss(0)—sins(0) ( 2

[4'(0)sin&(0)+coss(0)]3 —34'0
1
+§(¢”’<0>—¢’<0>3>—<1+¢'<0>2>(5W<o>). (4.46

Our derivation of the caustic parameters assumesptiaaid
q=(1/27/4)(b/Jus)p are much smaller thaa. Using Egs.
(4.44), we have

1 ¢'(0)coss(0)—sin5(0)

2
=324 ¢’(0)sin5(0)+cos§(0)) - @47

Thus the treatment requires that(0) and&(0), or atleast
the combination¢’(0)coss(0)—sins(0), be small com-
pared to one.

Equations(4.38), (4.44) and (4.46) express the caustic
parameters in terms of the valuesg@f«), r(«), V(«) and
8(a) and their first few derivatives at=0. ¢(a) is given
in terms of the initial velocity distribution by Eq4.28.
Moreover, angular momentum conservation implies

Mm(a)= @

via) (4.48

with 1(a) given by Eq.(4.26). Thus, to achieve our goal of
determining the caustic parameters in terms of the initial ve-
locity distribution, it remains to expresg(«) and §(«) in
terms ofv (), v|(e) andv, (a).

This last step can only be carried out if we adopt a model
for the galactic gravitational potenti&l(r,t) in which the
particles fall. To illustrate the process, let us adopt the time-
independent potential:

) R
U(r):Vrot In T (4.49
which yields(perfectly flat rotation curves with rotation ve-
locity v, . Since particle energy is conserved for this poten-
tial, we have
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TABLE |. Values of § as a function of and ». These crude approximations yield a description of the flow
which is topologically correct and which can be derived by

v— —-0.2 -0.1 0.0 +0.1 +0.2 simple analytical methods, but which is likely to agree only
il qualitatively with actual flows. In particular, sine& «) and
0.05 0.28 0.29 0.29 0.30 0.30  §(«) are set equal to zero, the tricusp structure of the caustic
0.10 0.34 0.36 0.37 0.38 0.38 is shrunk to a point.
0.15 0.38 0.40 0.42 0.43 0.44 For the assumed velocity distribution,
0.20 0.41 0.44 0.46 0.48 0.49
0.25 0.43 046  0.49 0.52 0.54 (@) =Imaxcosa (4.52
0.30 0.45 0.48 0.52 0.55 0.58 . .
0.35 0.46 0.50 0.54 0.58 0.62 Withlna=Rv(0). Since we neglect the-dependence of,
0.40 0.46 0.51 0.56 0.61 0.65
0.45 0.46 052 058 0.63 0.68 Fm(@)=acose (4.53
0.50 0.46 0.53 0.59 0.66 0.72

with a=1,,4/V. Since we setp(a)=0 and 5(«)=0, Egs.
(4.33 and (4.35 become

112
V(a)=|2vZIn 2 +vi(a)+vi(a)+vi(a)| . x(a,7)=—acosa
4.5
(450 y(a,7)=VT1CoSa
The angleé=45(l,v,) was determined numerically for the
potentialU(r) by solving the equations of motion of a par- Z(a,7)=V7sina. (4.54

ticle falling from the initial positionfo= RS/’ with initial
velocity vo=(—/R)X’ +v,y'; see Fig. 7. Table | give§ as  From Egs.(4.54, one obtains
a function ofj=1/Rv,,; andv=v, /v, .

A simple velocity distribution is that corresponding to an pDy(a,m)=—V cosa(a’sinfa+V?7?)
initially rigidly rotating turnaround spherev,(a)=0, _ 7 55
V(a)=0 andv|(a)=v|(0)cosa. Let us explore what hap- =-Vcosay(r’-a%)*+4a’z’.  (4.59
pens in this case. Sinagg(«)=0, we have

Inserting this into Eq(4.1) and usingdQ) =27 cosada, we

1 have
p=-atarf5(0)
2
dp.2) 2 dN 1 (4.56
Z)= = .
V27 cog5(0) PETV ddt, (17 a?)2+ 42222
q= p = .
4 \/_ rm(0) — tans(0)8"(0) whered?N/dQdt, is the rate at which the dark matter par-
rm(0) ticles fall in per unit solid angle.
(4.5)) The velocity fields can also be derived. One finds
Typical values in fits of the infall mod¢lL1,8,9 to observed 0z _
properties of our galaxy arg~0.25 anda~jR/+2 In(R/a) Vem T T —Vsina

~0.1R. Table | shows thab is slowly varying and of order
0.5 then. For¢’(0)=0, this impliesp~0.15. For small
i, V=v,qV2 In(R/a@) is approximately «-independent. For
the above special velocity distribution, we have thgjia)
=r,(0)cosa and hencey=(/27/4)p cof5(0)~p. —1 9p? V27 coa

VvV /1
15\/§(az—r2+ J(r?—a?)?+4a°7?)

Y —
P 2p dr
C. Flow some distance away from the caustic P P

In this section, we give a qualitative description of the
flow associated with a caustic ring on distance scales of order
a, the ring radius. To this effect, we choose the special initial

\ 1
=¥ sgnz) 25 \/E(rz—a2+ J(r?—a?)?+4a’7?)

velocity distribution corresponding to an initially rigidly ro- X(r*+a’=\(r*-a®’+4a’z")
tating turnaround sphere:v (a)=v,(a)=0, v|(a)
=v|(0)cosa. Also we neglect thex-dependence oY and Vo= \/Vz—vi—vi, (4.57)

seté=0. Table | shows that the latter approximation is valid

only for j<1, i.e.a<R. We also take the velocity of each where theT signs are for the down and up flows. In the
particle to be constant while it travels distances of oraer galactic plane £Z=0) we have
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r? 1(1,X)

- +0.5

a

=*Vy\/1l-— for r>a

r 1
1.0 X
v,=V—- for r<a
a
:VF for r>a. (4.58
— 1 -0.5
V. GRAVITATIONAL EFFECTS OF CAUSTICS

The gravitational force per unit mass caused by the par- FIG. 8. Plot of the functiori (¢, X) for {=1.0.

ticles in a zero-velocity dispersion flow(a,t) is . L . . :
y disp Wat) ring and pretend that it is a straight tube. After integrating

d(x',t) over the length of the tube, we have
F(x,t)=GmJ A =<2 (X' —X)
X" —X| d(p,2)
Fi(r)=2Gm| dp | dz——3——=(r—p). (5.9
3 > - - (r—p)+z
3 d°N - X(a,t)—X
=Gm| d°«a () == = : . .
da;da,dag Ix(a,t)—x|? Using Eg. (4.1, changing variables p(z)—(a,ty),
neglecting the §,t;) dependence of dM/dQdt,
(5.1 =[m/2mcos(e)](dN/dadt,) over the size of the caustic,
and approximating(a,ty) by a in the Jacobian factor, we

wherem is the mass of each particle. We are particularly ;

. . o . . 2 obtain
interested in the effect of caustic rings on galactic rotation

curves. Since caustic rings migrate only on cosmological 26 dM r—platy)
time scaleq9], which are much longer than gas dynamic Fl(r):__f dadt, planto .
time scales, it is reasonable to expect the gas in the galactic a dQdt (r—pla,to))?+2%(a,ty)
plane to have relaxed to orbits consistent with the dark mat-

ter distribution in the caustics. (5.9

If the gas or .other mat_eria! in the galactic plane at radiuxeference [9] indicates how to extract the prefactor
r moves on a circular orbit with velocity(r), then dM/dQdt, from the self-similar infall model. Here we focus
on the profile ofv,(r) implied by the structure of caustic
=F(r) (5.2) rings. The functiong(a,ty) andz(«,ty) are given by Egs.
r (4.5 and(4.7) respectively(replacer by ty). One finds

is the inward gravitational force per unit mass at radiuset 47G dM ( r—a
, (5.6

us assume that a circular ring caustic lies in the galactic va(r)= b dQdt 1 ¢
plane at radiusa. In the spirit of perturbation theory, let Vrot 0 P
V(1) =Vior+va(r) and F(r)=Fo(r)+Fy(r), whereFi(r)  wheres=suwb? and
is the inward force per unit mass due to the caustic\ard)

is the perturbation the caustic causes in the rotation curve. If X—(T—1)%2+ (A2

the matter in the caustic were smoothly distributed, the rota- (£, X)= ﬁf dAdT[X_(T_ 1)2+ (AZ]2+ 4APTZ
tion curve would be flat with value,,;. At zeroth order, (5.7)
Fo(r)=vZ,/r. At first order,

Figure 8 showd (¢,X) as a function ofX for {=1.0. For

X<0(r<a) andX>1(r>a+p), I(£,X) is constant. For O
<X<1 (inside the tricusp 1({,X) rises by an amount
Al(Z). Al=1 for {=1. Figure 9 showal as a function of
Let us assume thap,q,|r—al|<a wherep and g are the ¢. In the limit where the tricusp collapses to a poirg (
transverse dimensions of the caustic ring. In that limit we—0), there is a discontinuity iv,(r) at the caustic ring
may, when calculatind=(r), neglect the curvature of the radius:

2
Fa(r)= T Viova(r). (5.3
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AIG)

1.0
FIG. 10. Qualitative description of the effect of a caustic ring

upon a galactic rotation curve if the caustic ring lies in the galactic
plane. The horizontal dotted line represents the flat rotation curve if
the matter in the caustic ring is smoothly distributed. The descend-
1 . ing dashed line is the rotation curve after the matter in the caustic
0.0 o —————————— ring has been removed. The solid line is the rotation curve in the

Y 5 10 ¢ presence of the caustic ring. It is the sum of the dashed curve and
’ the profile of Fig. 8.

FIG. 9. Plot of theal(¢) as a function ot with the most angular momentum are at their closest ap-

47G  dM proach to the galactic center. The surface of the ring is a
vlzL —AI(Q). (5.9 closed tube whose cross section is a closed line which has
Vioth dQdty three cusps one of which points away from the galactic cen-

) o _ ter. The tube is the location of a generic surface caustic.
The profile shown in Fig. 8 should be added to a descending,qjge the tube there are four flows whereas outside there are
rotation curve so that the total rotation curve, with the effecttWO flows. In the limit where the transverse dimensions of

of the caustic ring included, remains flat on average. Figurgne tyhe vanish the ring is a closed line caustic of the isolated

10 gives a qualitative description. variety.
We analyzed the ring caustic in detail in the case of axial
VI. CONCLUSIONS symmetry about th&-axis, of reflection symmetrg— —z,

and where the transverse dimensigmandgq, of the tube are
much smaller than the ring radils The caustic is then
escribed by 5 parameters; u, s, ty andb. The precise

We discussed the appearance of caustics in the flow
collisionless particles with negligible velocity dispersion.

Caustics are locations in physical space where the densi . R
phy P hape of a transverse section of the ring in this limit is shown

diverges in the limit of zero velocity dispersion. This hap->" "7 . .
pens wherever the 3D sheet on which the particles lie in 60" Fig. 6. The 5 parameters were determined in terms of the

phase-space folds back. The generic caustic is a surface |g£'tial velocit_y distribution O.f the infaIIing dark matter par-
the boundary between two regions in physical space, one &cles assuming the gravnanonal pote_nt|§1l of the g.a"’?‘xy to be
which hasn flows and the othen+2 flows. The density spherically symmetric. Also, a qualitative description was

diverges as 4/, wheres is the distance to the surface, on given of the flow of dark matter particles on length scales of

: ) . : . ordera.
the side withn+ 2 flows. We discussed line caustics as well. Finally we discussed the gravitational effects of caustic

These are a degenerate case where the density diverges as . O . .
1o where o is the distance to the line. We divided line ri”hgs, in particular the perturbation in a galactic rotation

o . Y curve caused by a ring lying in the galactic plane. Figures 8,
caustics into two types: “attached” (Im.=0) and “iso- ; ; L=
lated” (Im y. #0). In the latter the density is finite every- 9, and 10 describe the shape and size of the bump implied by

. . 7 the tricusp structure of the caustic ring.
where except on the line, whereas in the former the line is att P 9

the intersection of two surface caustics.
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