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Magnetic fields in the early universe in the string approach to MHD

Mattias Christensson* and Mark Hindmarsh†

Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QJ, United Kingdom
~Received 4 May 1999; published 13 August 1999!

There is a reformulation of magnetohydrodynamics in which the fundamental dynamical quantities are the
positions and velocities of the lines of magnetic flux in the plasma, which turn out to obey equations of motion
very much like ideal strings. We use this approach to study the evolution of a primordial magnetic field
generated during the radiation-dominated era in the early universe. Causality dictates that the field lines form
a tangled random network, and the string-like equations of motion, plus the assumption of perfect reconnec-
tion, inevitably lead to a self-similar solution for the magnetic field power spectrum. We present the predicted
form of the power spectrum, and discuss insights gained from the string approximation, in particular the
implications for the existence or nonexistence of an inverse cascade.@S0556-2821~99!01918-9#

PACS number~s!: 95.30.Qd, 98.80.Cq
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I. INTRODUCTION

It has been observed that many galaxies and cluster
galaxies are endowed with a magnetic field with a typi
strength of order 1026 G @1#. The origin of these large scal
magnetic fields is unknown. In order for magnetic fields
have this order of magnitude it is widely believed that
enormous amplification of an initial seed field must ha
taken place. This amplification is usually explained by d
namo theory which can enhance the magnetic field expon
tially @2#. However, dynamos cannot create a magnetic fie
and so in order for them to act they require a seed. At pre
it is not clear whether this seed field has its origin from so
astrophysical mechanism after recombination, during the
och of galaxy formation and afterwards or whether the s
field is of primordial origin, produced in the very early un
verse. In the latter scenario it is believed that the primord
magnetic field would have been frozen into the highly co
ductive plasma as the universe expanded and cooled.
cause of the high conductivity diffusion would be small a
magnetic flux conserved. If a magnetic field was produced
the early universe and was present at the time of recomb
tion it may have had a significant effect on many astrophy
cal processes including the formation of galaxies and sta

There are several ways of obtaining limits on cosmolo
cal magnetic fields. Limits have been obtained by Fara
rotation measurements of intergalactic fields@3,4#. Other
constraints have been obtained through the consideratio
the effects of magnetic fields on primordial nucleosynthe
@6,5,7# and on the distortion in the microwave backgrou
due to the presence of a cosmological magnetic field@8,9#.

Even if a primordial magnetic field was too weak to be
astrophysical significance, it is still of principal interest
study cosmic magnetic fields today because they can pro
direct and important information about the kind of phys
that must have taken place in the early universe. There h
been quite a few mechanisms proposed for ways of prod
ing magnetic fields in the early universe. We will not discu
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them here but refer to@10# for a brief review.
In this work we will not be concerned with any particula

model for the generation of primordial magnetic fields. I
stead we will focus on the universial problem of how a p
mordial field, whatever its origin, will develop as the un
verse evolved. In order to do this one needs to cons
magnetohydrodynamics~MHD! in an expanding universe
Doing full numerical relativistic MHD simulations of the
physics of the early universe is hard and requires exten
computer memory and time.

Greater dynamical range can be obtained by resorting
approximate methods. The cascade model of Ref.@11# is one
such method, which is thought to reproduce well the flow
energy between wavenumbers of the full MHD equations
the cost of a severe truncation in the number of degree
freedom. It was found in@11# that energy was transferre
from small to large scales in an inverse cascade, and tha
correlation length of the initially random field increased wi
what looked like a small power of~conformal! time. This is
pleasing if one wants to derive the galactic dynamo s
field from a primordial process, for general arguments
causality and energy conservation indicate that such an
verse cascade is actually necessary@10#.

In this work we will be using a string model approach
relativistic MHD to study the evolution of cosmic magnet
fields. The connection between MHD and string dynam
have previously been studied by Semenov@12# and Olesen
@13#. Our approach is simular to that of Semenov@12# but
more general since we do not assume that there is a
served particle number density. We take essentially the
posite direction of Olesen@13#, in that we derive string equa
tions from MHD and not the other way around.

Once we have reduced the MHD equations to a str
model, the results can be understood in terms of the co
ening dynamics of cosmic string networks@14,15#. The rate
of increase of the network scale lengthj is given by the
characteristic velocity of waves on the string, in this case
Alfvén velocity, which decreases as the magnetic field
creases in strength. The string approach indicates that
decrease in strength is primarily due to reconnection
small scales: small flux loops are continually created, tra
ferring energy away from the network of infinitely long flu
©1999 The American Physical Society01-1
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lines. The transfer of energy from the large-scale field h
pens in a self-similar manner: the magnetic field power sp
trum can be displayed as

uBku2}t2aP„kj~t!…, ~1!

wherek is wave number andt conformal time. A powerful
scaling argument due to Olesen@16# shows, in the limit of
ideal MHD, thatj}t2/(n15), where the initial power spec
trum behaves askn at low k. Causality dictates thatn>2 @9#
~and notn>0 as one of us@10# and another author@17# has
stated!. As we violate the ideal condition by allowing recon
nection, it is not clear that this is the correct power oft.

This scaling law is our main result. We see no sign o
true inverse cascade, in the sense that power is not tr
ferred from small to large scales. If anything, the transfe
from large to small, and it is only because energy is be
lost faster from small scales that we see an increase in
scale lengthj.

II. RELATIVISTIC MHD AND STRINGS

In this work we will concentrate on the ideal limit o
MHD. This means that we neglect any viscous effects a
treat matter as a perfect fluid. This is a good approximat
at sufficiently large scales. During the radiation domina
era, which we are mainly concerned with here, the unive
was a very good conductor@18,19#. We therefore conside
the s˜` limit of MHD where magnetic diffusion can be
ignored and the magnetic field can be considered to be
zen into the plasma and thus conserving magnetic flux.

The starting point for ideal relativistic MHD is th
energy-momentun tensor

Tmn5~rc21p!
UmUn

c2
2pgmn

1
1

4p S Fm
gFng2

1

4
gmnFgdFgdD ~2!

consisting of the ideal fluid part and electromagnetic par
the energy-momentum tensor. Herep is the fluid pressure
rc2 is the energy density of the fluid,Um is the four-velocity
of the fluid satisfying the normalization conditionUmUm
5c2 andFmn is the electromagnetic field tensor.

The evolution equations for the system are given by

Tmn
;n50 ~3!

Fmn
;n5

4p

c
Jm ~4!

* Fmn
;n50 ~5!

sFmnUn5Jm2JnUnUm ~6!

where Eq.~3! expresses covariant energy-momentum con
vation, Eqs.~4! and ~5! are Maxwell’s equations withJm

being the four-current density. In Eq.~5! * Fmn is the dual
field tensor defined through the relation
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* Fmn5
1

2
emngrFmn ~7!

whereemngr is the Levi-Cevita symbol. Equation~6! is the
relativistic version of Ohm’s law wheres is the conductivity
of the fluid, measured in the fluid rest frame.

We now repeat the derivation in Subramanian and Barr
@20# to show that the evolution equations are conforma
invariant and the evolution can therefore be transform
from the expanding universe to a flat~Minkowski! space-
time. In so doing we obtain an equivalent set of equatio
which are easier to handle. Two metricsgmn andg̃mn are said
to be conformally related to each other ifg̃mn5V2gmn where
V is a non-zero differentiable function.

The flat Robertson-Walker line element has the form

ds25dt22a2~ t !dx2 ~8!

where t is the comoving proper time anda(t) is the scale
factor.

This metric describes a isotropic and homogeneous
verse with zero curvature. The appearence of a hypothe
primordial magnetic field of some strength need not viol
the assumption of isotropy and homogeniety because
though the presence of a magnetic field will locally gener
bulk motions in the fluid, if we look at sufficiently large
scales isotropy and homogeniety will be regained. At la
scales the magnetic field, whatever its origin, can be con
ered as essentially random since the correlation length of
field is bounded from above by not exceeding the cau
horizon. This justifies the use of the Robertson-Walker m
ric.

We introduce conformal timet defined bydt5a21dt so
that Eq.~8! becomes

ds25a2~t!~dt22dx2! ~9!

and hencehmn5g̃mn5V2gmn with V5a21(t).
We note that under conformal transformations the id

energy-momentum tensorTmn transformation as Tmn

5a26T̃mn. That this is so can be seen directly from the de
nition of the energy-momentum tensor

Tmn5
2

A2g

]

]gmn
~A2gLmatter!. ~10!

The new scaled fields~denoted by tilde! obey ordinary
energy-momentum conservation. To see this we note tha
ideal energy-momentum tensor is traceless,T[Tm

m50, pro-
vided the perfect fluid has the equation of statep5 1

3 rc2. For
most of the period before decoupling, the early universe w
radiation dominated and one can use the above equatio
state. We have

Tmn
;n5Tmn

,n1Gnr
m Tnr1Gsn

n Tsm. ~11!

Using
1-2
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Gsr
m 5

ȧ

a
~ds

mdr
01dr

mds
02gsrd0

m! and Gsr
m 54

ȧ

a
~ds

m!

~12!

we get

Tmn
;n5Tmn

,n12
ȧ

a
Tm02

ȧ

a
d0

mT14
ȧ

a
Tm0. ~13!

But sinceT50 then

~a26T̃m0! ,n16
ȧ

a
~a26T̃m0!5~ T̃mn

,n!a2650. ~14!

and hence

T̃mn
,n50. ~15!

This means that under conformal transformations
original variables will transform to a set of new scaled va
able satisfying the following relations:r5a24r̃, p5a24p̃,

Um5a21Ũm, Jm5a24J̃m, Fmn5a24F̃mn.
Now consider Maxwell’s equation~4!. SinceFmn is anti-

symmetric the left hand side simplifies to

Fmn
;r5Fmn

,r1Gsn
n Fms5a24F̃mn

,r . ~16!

So the equation for the scaled fields becomes

F̃mn
,n5

4p

c
J̃m. ~17!

For the four-velocity we have

Un5gnrUr5a2g̃nr~a21Ũr!5aŨn . ~18!

Hence

sFmnUn5sa23F̃mnŨn5a24~ J̃m1 J̃nŨnŨm!. ~19!

So Ohm’s law remains invariant under conformal transf
mations if we define the scaled conductivity throughs

5s̃a21.
So we arrive at the fundamental equations of relativis

MHD,

T̃mn
,n50 ~20!

F̃mn
,n5

4p

c
J̃m ~21!

* F̃mn
,n50 ~22!

s̃F̃mnUn5 J̃m2 J̃nŨnŨm/c2.
~23!

From here on we drop the tilde, on the understanding tha
mean scaled fields.

We will now introduce a new set of coordinates whi
will enable us to write the MHD equations as non-line
string equations. We define a magnetic four-vectorbm

through the relation
06300
r
-

-

c

e

r

bm5 * FmnUn/c. ~24!

We also define new coordinatesx85(h,s,c,z) such thath
are coordinate lines of fluid elements ands are coordinate
lines of magnetic flux. HenceU8m5(cq,0,0,0) andb8m

5(0,b,0,0) satisfyingU825U25c2 andb825b252B2 re-
spectively. Thus we have the metric tensor in the new co
dinates

gmn8 5diag~1/q2,2B2/b2,2hAB!

whereA,B52,3. The new coordinate vectors are

]xm

]h
5

Um

q
~25!

]xm

]s
5

bm

b
. ~26!

Since the introduction of these coordinates relies on
frozen in property of the plasma we will refer to them
frozen-in coordinates. In the frozen-in coordinate system
can trace the trajectories of fluid elements by simply vary
the value of our time coordinateh and keeping the values o
the other coordinated fixed. Similarly, we can trace the m
netic field lines in the frozen-in system by varying the val
of s and keeping the other three coordinates at fixed valu

The analysis of the MHD equations is usually perform
in terms of the magnetic field and velocity distribution
However, in the description of MHD phenomena, the co
cept of a magnetic flux tube is often introduced. The rea
is that it is sometimes convenient, and we gain a be
physical insight, if we base the description on this conc
rather on the magnetic field and velocity distributions.
magnetic flux tube is defined as the volumeV enclosed by a
closed surfaceS which is everywhere parallel to the ambie
magnetic field vector, and two cross-sectional surface a
SA andSB at either end. The flux tube therefore consists o
bundle of magnetic field lines which enter and exit the v
ume through the end of surfacesSA andSB .

The Cartesian coordinate system, traditionally employ
in MHD does not really lend itself to an analysis of th
magnetic flux tube behavior. The frozen-in coordinate s
tem on the other hand, does. The frozen-in coordinates
vide a coordinate system co-moving with a flux tube, and
therefore the more natural choice for the mathematical an
sis of flux tube behavior.

We now consider the equation for magnetic evolution

* Fmn
;n50. ~27!

Since * Fmn is antisymmetric the divergence is given by

1

A2g
]n~A2g * Fmn!50. ~28!

Using the fact that we can express the dual field tensor

* Fmn5~bmUn2Umbn!/c ~29!

we have
1-3
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1

A2g
]nXA2gqbS bm

b

Un

q
2

Um

q

bn

b D C50 ~30!

which gives

qbXS Un

q D ]nS bm

b D2S bn

b D ]nS Um

q D C
1

1

A2g
S bm

b
]n~A2gbUn!2

Um

q
]n~A2gqbn! D50.

~31!

But first square bracket is the Lie derivative and so v
ishes, giving

bm

b
]n~A2gbUn!2

Um

q
]n~A2gqbn!50. ~32!

Thus we have

]n~A2gbUn!50 ~33!

and

]n~A2gqbn!50. ~34!

Hence in our comoving frame we get

]

]h
~A2gbq!5

]

]h
„B det~hAB!…50. ~35!

]

]s
~A2gbq!5

]

]s
„B det~hAB!…50. ~36!

And so we see that

B det~hAB!5F~c,z!

whereF(c,z) is an arbitrary function ofc,z. We therefore

have the freedom to choose det(hAB) such thatF(c,z)5B̄

whereB̄ is a constant and so

hAB5
B̄

B
dAB

which means that we can write

A2g5
B̄

bq
.

We now study the equations of motion, starting from t
energy-momentum tensor given in Eq.~2!. Using the above
expression, Eq.~29!, for the dual field tensor and the con
nection between the field tensor and its dual, Eq.~7!, we can
write the energy-momentum tensor in the following form:

Tmn5S rc21p1
B2

4p DUmUn

c2
2

bmbn

4p
2gmnS p1

B2

8p D .

~37!

From energy-momentum conservation we have
06300
-

Tmn
,n5

~rc21p1B2/4p!

b

Um

c
]n~bUn!1b~U•]!

3S ~rc21p1B2/4p!

b

Um

c D2
1

4pq
]n~qbn!

2
q

4p
~b•]!S bm

q D2gmnP,n50. ~38!

HereP is the total pressure from both fluid and electroma
netic field. Note that the first and the third terms in th
equation vanish. Writing this equation in our comoving re
erence frame we find

bqF ]

]h
XS rc21p1

B2

4p D q

cb

]xm

]h
C2 1

4p

]

]s S b

q

]xm

]s D G
2gmnP,n50. ~39!

Equation~39! is the equation of motion in the frozen-in co
ordinates. In the frozen-in coordinate system the MHD eq
tion of motion reduces to a set of non-linear string equatio
The behavior of a magnetic flux tube is therefore forma
analogous to that of a non-linear string. The last term of
left hand side of Eq.~39! take account of inhomogeneity~i.e.
pressure gradients! and it describes the coupling betwee
neighboring flux tubes whilst moving through a non-unifor
plasma medium.

To summarize, we have shown that the behavior o
magnetic flux tube is formally analogous to that of a stri
and one can therefore model a magnetized plasma as a
composed of strings. We have relied heavily on the ar
ments of Semenov and Semenov and Berkinov@12#, with
one improvement: we have dropped their assumption
there is a conserved particle number density, which is nei
necessary nor generally applicable in the early Universe.
derivation is also complementary to that of Olesen@13#, who
starts from the relativistic string equations and shows t
they can be interpreted as describing the motion of nar
flux tubes, providing the total pressure remains const
across the tube.

III. APPROXIMATE STRING EQUATIONS

Exploiting the freedom to change coordinates in thes,h
subspace, we chooseb such thatb5qB and using this in the
equation of motion~39! we have

1

B

]

]h S c B

vA
2

]xm

]h D 2
1

B

]

]s S B
]xm

]s D2
4p

B2q2
gmnP,n50,

~40!

where we have defined the relativistic Alfve´n velocity as

vA5
c B/A4p

~rc21p1B2/4p!1/2
. ~41!

Rearranging Eq.~40! we can write it as
1-4
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1

vA

]

]h S 1

vA

]xm

]h D2
]2xm

]s2
52

1

B

]

]h S c B

vA
D ]xm

]h
1

1

B

]B

]s

]xm

]s

1
4p

B2q2
gmnP,n . ~42!

We now argue that for the particular situation we are int
ested in, it is justified to neglect the three terms on the ri
hand side of Eq.~42!. The third term on the RHS of Eq.~42!
can in general not be neglected because in many astrop
cal situations pressure gradients are important. Howeve
the early universe the pressure from the magnetic fi
should be much smaller than the fluid radiation pressure
since the early universe had a very high degree of hom
eniety it follows that the gradients of the total pressure
small.

The second term on the RHS of Eq.~42! does not have
have a definite sign and so if averaged over time it will
zero. Dropping this term is equivalent to replacingB by its
root mean square value.

Again using the fact that the fluid radiation pressure in
early universe was much larger than the pressure from
magnetic field and remembering expression~41! for the rela-
tivistic Alfvén velocity it is seen that the first term on th
right side of Eq.~42! is indeed small since the ratioB/vA is
approximatly constant, thus justifying our decision to negl
it.

We now rescale the time parameterh to h̄ through the
relation

]

]h̄
5

c

vA~h!

]

]h
, ~43!

where we have called attention to the fact that the Alfv´n
velocity may be time-dependent. Using the above mentio
approximations and our new time parameterh̄ we are left
with the following equation of motion:

1

c2

]2xm

]h̄2
2

]2xm

]s2
50. ~44!

We also recall that the four-dimensional orthogonality of t
coordinates, and the coordinate choice enforced byb5qB,
supplements this equation with constraints

ẋ•x850,
1

c2
ẋ21x82 50, ~45!

where dot ~prime! denotes derivative with respect to th
timelike parameterh̄ (s).

We note that Eq.~44! and constraint~45! is of exactly the
same form as the equation for a Nambu-Goto string
Minkowski spacetime expressed in the conformal gau
@14,15#. With ideal Nambu-Goto strings in Minkowsk
spacetime one can further takex05ch̄, to obtain the system

1

c2
ẍ2x950, ~46!
06300
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ẋ•x850 ~47!

1

c2
ẋ21x82 51. ~48!

This is not possible in general for MHD strings, for one c
easily verify that

ẋ•x85c
g2

q2

v•B

vAB
, ~49!

1

c2
ẋ21x82 5

g2

q2 S v2

vA
2

1
~v•B!2

c2B2 D ~50!

whereg5(12v/c)21/2 is the usual relativistic gamma fac
tor. However, as long asv•B50 in the initial conditions, the
first constraint is preserved by the evolution. Furthermo
we can use our remaining coordinate freedom to defineq by

q25g2
v2

vA
2

, ~51!

in which case we really do reproduce the Nambu-Goto eq
tions. We should bear in mind however that we have ma
several approximations on the way, which are worth reit
ating.

~1! We have neglected pressure gradients.
~2! We have made a kind of mean-field approximation

replacing the magnetic field by its root mean square valu
~3! We have neglected the effect of the time-depende

of B/vA .
We have argued that all these approximations are rea

able in the context of the early Universe, and find that
Nambu-Goto equations can be used to approximate a cla
MHD velocity and magnetic field configurations which sa
isfy v•B50. They may also be a reasonable approximat
to other configurations, provided we understand that the c
straints are satisfied in an average sense.

IV. ALGORITHM, SIMULATIONS AND RESULTS

The equation of motion~46! can be evolved using the
Smith-Vilenkin algorithm @21#. The Smith-Vilenkin algo-
rithm provides an exact discrete evolution for a string n
work defined on a face-centered cubic lattice and the ev
tion equations are

x~h1d,s!5
1

2
@x~h,s1d!1x~h,s2d!#1v~h,s!d

~52!

v~h1d,s!5
1

2
@v~h,s1d!1v~h,s2d!#

1
1

4d
@x~h,s12d!22x~h,s!

1x~h,s22d!#. ~53!
1-5
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By using a leap-frog method, updating the positions and
locities at alternate timesteps, the above equations allow
to calculate the exact future evolution ofx andv from some
appropriately chosen initial conditions.

Initial string configurations are generated by a method
to Vachaspati and Vilenkin@22#. They considered string for
mation in a globalU(1)-model. TheU(1)-manifold is dis-
cretized by allowing the phase to take only three poss
values. These values are then placed randomly on the sit
the cubic lattice. As we go around the face of a cube in r
space, the phase describes a certain trajectory in the g
space. A string passes through the face of a cube if
trajectory has a non-zero winding number. With this meth
the string segments join up to form either closed loops
else open strings which intersect the boundaries of the c
lattice. The shape of the strings will be Brownian with st
size corresponding to the cell size of the lattice.

We have seen how relativistic MHD under the appro
mations discussed above can be described in terms of m
netic flux tubes satisfying the Nambu-Goto equations of m
tion. In order to represent the continuous distribution
magnetic flux by a network of string, we gather togethe
flux F into ideal Nambu-Goto strings at positionsXi(h̄,s),
with @13#

Bi~t,x!5FE ds
]Xi~ h̄,s!

]s
d3
„x2X~ h̄,s!…. ~54!

A few words need to be said about reconnection. In r
fluids, magnetic flux tubes interact and reconnections t
place when the field lines cross each other. In ideal MH
there are no dissipative or viscous effects. Physical recon
tion between field lines cannot take place without resist
effects and therefore the topology of the magnetic field lin
is frozen in the fluid and does not change with time.

Reconnection, which is a local process, is difficult to d
scribe and the details are not well understood. The efficie
of reconnection is not known and neither is how this proc
depends on the local geometry involved, like the relat
inclination of the flux tubes. To answer this question, one
to go to numerical solutions of the underlying theory, tha
MHD.

In order to allow for reconnection to take place in o
simulations we will take a more simple approach to rec
nection. Our model strings are allowed to reconnect onl
they pass through the same lattice point. When two stri
meet, they intercommute with a probabilityP and in this
work we putP51. Reconnection here takes place instan
neously between the discrete evolution time steps. Thi
physically reasonable since the reconnection timescal
small compared with the evolution of the system.

We use a simple estimate for the characteristic len
scalej which is defined by

j25V/L, ~55!

whereV is the volume of the lattice andL is the total length
of string in the box, excluding small loops. In the Smit
Vilenkin algorithm it is in fact possible to have a loop o
zero spatial extent, occupying just one lattice point, wh
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travels at the wave velocity. If such a loop is formed it do
not contribute to the magnetic field, and we do not count i
the calculation of the total length. It is a well-known featu
of Nambu-Goto simulations that nearly all the strings end
in this kind of loop@14,15#. In the MHD context we should
probably not regard these loops as representing magn
field lines at all: the energy is probably being dissipated i
very small-scale reconnection process. In any case, the
that loops are generically produced so small underlines
fact that strings are very efficient at transferring power fro
large to small scales.

We have studied simulations of the evolution of the ma
netic field on lattices with sizes (128d)3 and (256d)3, using
a code originally developed by Sakellariadou@23#, which
implements both the Vachaspati-Vilenkin algorithm for t
initial conditions and the Smith-Vilenkin algorithm for th
evolution. Periodic boundary conditions were used in
simulations and the evolution time were restricted to le
than half the box size, since after this time causal influen
have had time to propagate around the box.

Having a representation for the magnetic field in re
space we use a three dimensional Fast Fourier Transf
algorithm to get a Fourier mode representation. The po
spectrum for the magnetic fielduBku2 can then be calculated
at every time step by averaging over the amplitudes of
Fourier modes with a wave number betweenk and k
12p/d.

Previously it has been shown that networks of cosm
strings, modelled as Nambu-Goto strings in Minkows
spacetime tend towords a scaling regime@24#. This means
that the characteristic length scale of the network grows
;ct where t is Minkowski time. The characteristic lengt
scale for a primordial magnetic fieldj does not grow with
the horizon. Instead we expect the magnetic field to grow
;ch̄.

It is interesting to see if the magnetic field power spec
show scaling behavior. In order to investigate this we e
press the power spectrum in terms of a scaling functionP
which is defined through the following expression:

uB~k,h̄ !u25V
F2P~kj!

j
. ~56!

HereV is the volume of the box and its appearance is jus
normalization convention. This form for the scaling functio
ensures that that the fluctuations obey the scaling law

B25E d3k

~2p!3
uBku2}j24F2 ~57!

which is consistent with our picture of a coherent fluxF in a
region of sizej.

Figure 1 shows the chacteristic length scale of the m
netic field versusch̄ for a typical ensemble. The measure
scaling functionP(kj) is displayed in Fig. 2. The data wa
taken from 12 runs on a (256d)3 lattice, for values ofch̄
between 40–60. It is seen that the power spectrum of
1-6
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magnetic field does reach a scaling regime. This means
the evolution of the network will be self-simular with respe
to ch̄.

The length scalej appears to grow asj5x* •(ch̄)p, with
x* constant andp,1. However, a more careful analysis@24#
reveals thatp˜1 as the size of the simulation is increase
The scaling amplitudex* can be obtained by looking at th
ratio j/h̄ towards the end of the simulation and it is rough
x* .0.2 @24#. Thus we can write

j5x* •ch̄5x* E vA~h!dh. ~58!

Unfortunately, we do not yet know howvA depends on the
time parameterh or the conformal timet. The Alfvén veloc-
ity vA depends onB, which in turn depends onF and j
through Eq.~56!. All we can infer from the information a
hand is a consistency relation: ifj}h r andF}hs, then 3r
5s11.

FIG. 1. Correlation lengthj versusch̄.

FIG. 2. Scaling functionP(kj) versuskj.
06300
at
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The extra information we need comes from the covaria
of ideal MHD under the scale transformation@16#

x˜ lx, t˜ l 12ht, v˜ l hv, B˜ l hB, ~59!

whereh is arbitrary. One can show that, under this transf
mation,

V21uBku2
˜ l 31hV21uBku2. ~60!

If we define a functionL(k,t) by

V21uBku25t (31h)/(12h)L~k,t!, ~61!

then we see that under the same transformation

L~k,t!˜L~k/ l ,t l 12h!5L~k,t!, ~62!

from which we immediately infer that

L~k,t!5L~kt1/(12h)!. ~63!

Furthermore, ifuBku2 behaves askn ask˜0, we have

uBku2}t (31h1n)/(12h)kn ~64!

in that limit. It is often assumed that the large-scale powe
not affected by small-scale processes@16,17#, in which case
h52n23, and we find the scaling laws~derived by the
same authors!

j}t2/(n15), F}t (12n)/(n15). ~65!

In the early universe individual particles move with relati
istic velocities. However, we expect that the bulk velocity
the fluid v to be non-relativistic. Hence

U05qc
]t

]h
.c, ~66!

and given Eq.~51! we see that, on average,

h5A^ẋ2&t/vA , ~67!

where ^ẋ2& is the mean square string velocity. Simulatio
give this to be 0.36@24#.

V. CONCLUSIONS

We have seen how the relativistic MHD equations, with
few reasonable assumptions, may be recast as string
equations for the motion of the flux lines. This allows
enormous gains in dynamic range in the simulation of a r
dom magnetic field in the early universe, without bei
forced to the ideal limit, for we incorporate diffusivity b
allowing reconnections between the strings.

The result is that we can understand the evolution of m
netic fields in terms of the evolution of a network of string
and we find that the power spectrum quickly evolves to
self-similar or scale-invariant form, with scale lengthj in-
creasing in time. What this power law is we are unable
say: ideal MHD predictsj}t2/(n15) @16,17,25#, wheren is
the low k exponent of the power spectrum, but as we ha
departed from ideality by allowing reconnection, we cann
make a prediction. It is interesting to note that a recent n
1-7
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ideal renormalization group calculation also predicts a po
2/(n15) @26#.

The increase in scale length comes about by the str
straightening at the Alfve´n velocity, while forming very
small loops which can dissipate energy quickly. This is
new feature that the string formulation brings to light: strin
transfer energy from large to small scales in an extrem
efficient manner. Thus, although the scale length increase
is because power is preferentially lost from small sca
Whether it is fair to call this an inverse cascade is a matte
terminology. What is clear is that the dynamics predicted
the string model of MHD is certainly not of the right kind t
produce seeds for the galactic dynamo from magnetic fie
created in the very early universe.

There are of course many places where this line of ar
ment is vulnerable. The model makes approximations wh
we have tried to highlight. Furthermore, our string simu
tions use special string configurations to make gains in c
putational efficiency: the strings lie on a cubic lattice to st
with, and one may be suspicious that this may introdu
some artifice into the dynamics. However, the propensity
a string network to scale is firmly believed, so we are con
dent that the magnetic field power spectrum will also sca
What is probably not well approximated is the actual form
v.

ys
.

.P
a
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the power spectrum, which betrays the particularly strin
like feature of ak21 tail, due to the fact that all the flux is
held to be concentrated in a narrow tube. Furthermore,
string model may be deficient in its description of helicit
which is known to be extremely important in the develo
ment of true inverse cascades@25,27,28#. The helicity is rep-
resented by the linking number of the strings, but we are
able to incorporate a local contribution induced, for examp
by twisted tubes of flux. It may well be that we are missi
some very important dynamics here. We clearly need
check our results against a non-ideal MHD code, to see if
predicted self-similar dynamics emerges, and also to find
correct power law for the scale length. This project is c
rently in hand.
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