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Magnetic fields in the early universe in the string approach to MHD

Mattias Christenssdnand Mark Hindmarsh
Centre for Theoretical Physics, University of Sussex, Brighton BN1 9QJ, United Kingdom
(Received 4 May 1999; published 13 August 1999

There is a reformulation of magnetohydrodynamics in which the fundamental dynamical quantities are the
positions and velocities of the lines of magnetic flux in the plasma, which turn out to obey equations of motion
very much like ideal strings. We use this approach to study the evolution of a primordial magnetic field
generated during the radiation-dominated era in the early universe. Causality dictates that the field lines form
a tangled random network, and the string-like equations of motion, plus the assumption of perfect reconnec-
tion, inevitably lead to a self-similar solution for the magnetic field power spectrum. We present the predicted
form of the power spectrum, and discuss insights gained from the string approximation, in particular the
implications for the existence or nonexistence of an inverse casfed856-282(99)01918-9

PACS numbd(s): 95.30.Qd, 98.80.Cq

I. INTRODUCTION them here but refer tpl0] for a brief review.
In this work we will not be concerned with any particular
It has been observed that many galaxies and clusters afiodel for the generation of primordial magnetic fields. In-
galaxies are endowed with a magnetic field with a typicalstead we will focus on the universial problem of how a pri-
strength of order 10° G [1]. The origin of these large scale mordial field, whatever its origin, will develop as the uni-
magnetic fields is unknown. In order for magnetic fields toverse evolved. In order to do this one needs to consider
have this order of magnitude it is widely believed that anmagnetohydrodynamicéMHD) in an expanding universe.
enormous amplification of an initial seed field must haveDoing full numerical relativistic MHD simulations of the
taken place. This amplification is usually explained by dy-physics of the early universe is hard and requires extensive
namo theory which can enhance the magnetic field exponercomputer memory and time.
tially [2]. However, dynamos cannot create a magnetic field, Greater dynamical range can be obtained by resorting to
and so in order for them to act they require a seed. At presemtpproximate methods. The cascade model of Rdfl.is one
it is not clear whether this seed field has its origin from somesuch method, which is thought to reproduce well the flow of
astrophysical mechanism after recombination, during the epenergy between wavenumbers of the full MHD equations, at
och of galaxy formation and afterwards or whether the seethe cost of a severe truncation in the number of degrees of
field is of primordial origin, produced in the very early uni- freedom. It was found if11] that energy was transferred
verse. In the latter scenario it is believed that the primordiafrom small to large scales in an inverse cascade, and that the
magnetic field would have been frozen into the highly con-correlation length of the initially random field increased with
ductive plasma as the universe expanded and cooled. Bevthat looked like a small power dtonforma) time. This is
cause of the high conductivity diffusion would be small andpleasing if one wants to derive the galactic dynamo seed
magnetic flux conserved. If a magnetic field was produced irfield from a primordial process, for general arguments of
the early universe and was present at the time of recombinaausality and energy conservation indicate that such an in-
tion it may have had a significant effect on many astrophysiverse cascade is actually necesgdi.
cal processes including the formation of galaxies and stars. In this work we will be using a string model approach to
There are several ways of obtaining limits on cosmologi-relativistic MHD to study the evolution of cosmic magnetic
cal magnetic fields. Limits have been obtained by Faradafields. The connection between MHD and string dynamics
rotation measurements of intergalactic fielt&4]. Other  have previously been studied by Semefag2] and Olesen
constraints have been obtained through the consideration §13]. Our approach is simular to that of Semerd?2] but
the effects of magnetic fields on primordial nucleosynthesisnore general since we do not assume that there is a con-
[6,5,7] and on the distortion in the microwave backgroundserved particle number density. We take essentially the op-
due to the presence of a cosmological magnetic fig)d]. posite direction of OleserL3], in that we derive string equa-
Even if a primordial magnetic field was too weak to be of tions from MHD and not the other way around.
astrophysical significance, it is still of principal interest to  Once we have reduced the MHD equations to a string
study cosmic magnetic fields today because they can provid@odel, the results can be understood in terms of the coars-
direct and important information about the kind of physicsening dynamics of cosmic string networks4,15. The rate
that must have taken place in the early universe. There hawef increase of the network scale lengthis given by the
been quite a few mechanisms proposed for ways of producharacteristic velocity of waves on the string, in this case the
ing magnetic fields in the early universe. We will not discussAlfvén velocity, which decreases as the magnetic field de-
creases in strength. The string approach indicates that this
decrease in strength is primarily due to reconnection on
*Electronic address: m.christensson@sussex.ac.uk small scales: small flux loops are continually created, trans-
"Electronic address: m.b.hindmarsh@sussex.ac.uk ferring energy away from the network of infinitely long flux
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lines. The transfer of energy from the large-scale field hap- 1
pens in a self-similar manner: the magnetic field power spec- *Fuv=5 €unyF " (7)
trum can be displayed as

|B|?c 77 *P(kE( 7)), (1)  wheree,,,, is the Levi-Cevita symbol. Equatiof) is the
relativistic version of Ohm'’s law where is the conductivity
wherek is wave number ane conformal time. A powerful of the fluid, measured in the fluid rest frame.
scaling argument due to Olesgh6] shows, in the limit of We now repeat the derivation in Subramanian and Barrow
ideal MHD, thaté&ex 72/("*5) where the initial power spec- [20] to show that the evolution equations are conformally
trum behaves as” at low k. Causality dictates that=2 [9]  invariant and the evolution can therefore be transformed
(and notn=0 as one of u$10] and another authdil7] has from the expanding universe to a fla#linkowski) space-
stated. As we violate the ideal condition by allowing recon- time. In so doing we obtain an equivalent set of equations
nection, it is not clear that this is the correct powerrof which are easier to handle. Two metrigs, andaw are said

This scaling law is our main result. We see no sign of & pe conformally related to each Otheai,]fﬁﬂzg , where
true inverse cascade, in the sense that power is not trangy is 4 non-zero differentiable function. a

ferred from small to large scales. If anything, the transfer is 116 flat Robertson-Walker line element has the form
from large to small, and it is only because energy is being

lost faster from small scales that we see an increase in the ds’=dt?—a?(t)dx? 8
scale lengthe.

wheret is the comoving proper time aral(t) is the scale
[l. RELATIVISTIC MHD AND STRINGS factor.
This metric describes a isotropic and homogeneous uni-
erse with zero curvature. The appearence of a hypothetical
rimordial magnetic field of some strength need not violate

In this work we will concentrate on the ideal limit of
MHD. This means that we neglect any viscous effects an
treat matter as a perfect fluid. This is a good approximatio he assumption of isotropy and homogeniety because al-
at suffiqiently large sc_ales. During the.radiation domif‘ate hough the presence of a magnetic field will locally generate
era, which we are mainly concerned with here, the UNIVETSG 1k motions in the fluid, if we look at sufficiently large
was a very good conducti8,19. We therefore consider scales isotropy and homogeniety will be regained. At large

the o—e limit of MHD where magnetic diffusion can be g.jeq the magnetic field, whatever its origin, can be consid-

|gnored and the magnetic field can be_ conS|dere<_j to be froéred as essentially random since the correlation length of the
zen into the plasma and thus conserving magnetic flux.

h ! int for ideal relativisti is th field is bounded from above by not exceeding the causal
The starting point for ideal relativistic MHD is the 14,00 This justifies the use of the Robertson-Walker met-
energy-momentun tensor fic.
UHY” We introduce conformal time defined bydr=a~1dt so

o pg-” that Eq.(8) becomes

T#'=(pc®+p)
L L ds?=a?(7)(dr?—dx?) 9
+ —| FEFYY— —gH'F, F7° 2 5
4l 7 4 7 and hencey,,=g,,=Q%,, with Q=a"*(7).
We note that under conformal transformations the ideal
nergy-momentum tensofT#” transformation asT#”

=a 8T, That this is so can be seen directly from the defi-
nition of the energy-momentum tensor

consisting of the ideal fluid part and electromagnetic part of,
the energy-momentum tensor. Hegrds the fluid pressure,
pc? is the energy density of the fluitll# is the four-velocity
of the fluid satisfying the normalization conditiod”“U
=c? andF*" is the electromagnetic field tensor.

; ; ; 2 d
The evolution equations for the system are given by T*“’=\/: o (\/__gl—matter)- (10)
T# =0 &) 9 7S
The new scaled field¢denoted by tildg obey ordinary
FA%=—9 (4)  energy-momentum conservation. To see this we note that the
ideal energy-momentum tensor is traceldss,T#,=0, pro-
*FAY. =0 (5)  vided the perfect fluid has the equation of statel pc?. For
’ most of the period before decoupling, the early universe was
oF#'U ,=J*—=J"U U* (6)  radiation dominated and one can use the above equation of
state. We have
where Eq(3) expresses covariant energy-momentum conser-
vation, Egs.(4) and (5) are Maxwell's equations witk* THY L =THY T TP+ TR, (19
being the four-current density. In E¢) *F#” is the dual
field tensor defined through the relation Using
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a a
I,=2 (8,00 8,80=0,,8) and 'y, =4—(3)
(12

we get
a a a
TR =TR L+ 2-THO— —fT+4-T+0. (13
' ' a a a
But sinceT=0 then
~ a .~ ~
(a”°TH0),,+6-(a T =(T*" )a °=0. (14

and hence

Ter ,=0. (15)
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b#=*F,,U"lc. (24)

We also define new coordinat&s= (%, o0, ¢,{) such thaty

are coordinate lines of fluid elements aadare coordinate
lines of magnetic flux. Henc&J'#=(cq,0,0,0) andb’#
=(0,8,0,0) satisfyingu’'?=U?=c? andb’2=b?=—B? re-
spectively. Thus we have the metric tensor in the new coor-
dinates

g,,,= diag( 1/9%,—B?1 8%, — hpg)

whereA,B=2,3. The new coordinate vectors are

1) G U Ll
T q (25
ax*  b*
o B @

This means that under conformal transformations our

original variables will transform to a set of new scaled vari-

able satisfying the following relationgi=a"%p, p=a*p,
Ur=a-10#, Jr=a 4Jr, Frr=a 4Frv,
Now consider Maxwell’'s equatiof¥d). SinceF*” is anti-
symmetric the left hand side simplifies to
[ v v o A=A uy
Frv,=Fer T, Fro=a "Frr . (16
So the equation for the scaled fields becomes
~ A7
F’MV’V:?J’“. (17)

For the four-velocity we have
U,=g,,U’=a%g,,(a *U")=aU,. (18)
Hence

oF*U,=oa 3F»U,=a 4(3#+3"0,U%). (19

Since the introduction of these coordinates relies on the
frozen in property of the plasma we will refer to them as
frozen-in coordinates. In the frozen-in coordinate system we
can trace the trajectories of fluid elements by simply varying
the value of our time coordinate and keeping the values of
the other coordinated fixed. Similarly, we can trace the mag-
netic field lines in the frozen-in system by varying the value
of o and keeping the other three coordinates at fixed values.

The analysis of the MHD equations is usually performed
in terms of the magnetic field and velocity distributions.
However, in the description of MHD phenomena, the con-
cept of a magnetic flux tube is often introduced. The reason
is that it is sometimes convenient, and we gain a better
physical insight, if we base the description on this concept
rather on the magnetic field and velocity distributions. A
magnetic flux tube is defined as the voluMenclosed by a
closed surfac& which is everywhere parallel to the ambient
magnetic field vector, and two cross-sectional surface areas
S, andSg at either end. The flux tube therefore consists of a
bundle of magnetic field lines which enter and exit the vol-

So Ohm’s law remains invariant under conformal transfor—ume through the end of surfacg and Sg .

mations if we define the scaled conductivity through

=ga L.

The Cartesian coordinate system, traditionally employed
in MHD does not really lend itself to an analysis of the

So we arrive at the fundamental equations of relativistiomagnetic flux tube behavior. The frozen-in coordinate sys-

MHD,
Te =0 (20)
~ A
Fur ———Jw (21)
! C
*Frr =0 (22)

SEU, =363, Dr1e
(23)

From here on we drop the tilde, on the understanding that we

mean scaled fields.

We will now introduce a new set of coordinates whic
will enable us to write the MHD equations as non-linear

string equations. We define a magnetic four-vechst
through the relation

tem on the other hand, does. The frozen-in coordinates pro-
vide a coordinate system co-moving with a flux tube, and is
therefore the more natural choice for the mathematical analy-
sis of flux tube behavior.

We now consider the equation for magnetic evolution

*FAY,=0. (27)
Since * F*” is antisymmetric the divergence is given by
1

——3,(N-g*F*")=0. 28
= (V=g *F*) (28)

h Using the fact that we can express the dual field tensor as

*Frr=(b*U”—U*b")/c (29

we have
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1 a( b“ U” U* b”)

which gives

ol 1ol 51510

+ ! (bﬂa(\/ BUY) UMo'?(\/ bV))—O
\/_—g :8 v g q v gq Y
(31
But first square bracket is the Lie derivative and so van-
ishes, giving
b# u#
gﬁv(v—gﬁU”)—?&V(v—gqb”)=0- (32)
Thus we have
d,(N—9gpU")=0 (33
and
d,(N—gqb")=0. (34)
Hence in our comoving frame we get
J d
%(\/_Q,BQ): %(B dethag))=0. (39
i _7 B deth =0 36
S=(J=gBa)=--(Bdethye)=0. (3

And so we see that
B dethag)=F(#,0)
whereF(¢,{) is an arbitrary function off,{. We therefore

have tﬁe freedom to choose detf) such thatF(#,{)=B
whereB is a constant and so

hag=5 das

Wl ®|

which means that we can write
B
— g — E .

We now study the equations of motion, starting from the
energy-momentum tensor given in Eg). Using the above
expression, Eq(29), for the dual field tensor and the con-

nection between the field tensor and its dual, &g. we can

write the energy-momentum tensor in the following form:

uryr b B
C2 41 g p %

(37

2
p02+ p+ B—
4w

THY=

From energy-momentum conservation we have
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2 B2/4
T = (pHp; ™Y (BUY+ B(U-2)
(p02+p+82/477) U~ 1
([P )

q b#
—E(b-a)(a)—gwpfo. (38)

HereP is the total pressure from both fluid and electromag-
netic field. Note that the first and the third terms in this

equation vanish. Writing this equation in our comoving ref-
erence frame we find

q Jax*
y o)

J
%(( e 47T>C/3 i
—g”"P ,=0.

1 c?(,Bax")
C4mdo\q do

4 do
(39

Equation(39) is the equation of motion in the frozen-in co-
ordinates. In the frozen-in coordinate system the MHD equa-
tion of motion reduces to a set of non-linear string equations.
The behavior of a magnetic flux tube is therefore formally
analogous to that of a non-linear string. The last term of the
left hand side of Eq(39) take account of inhomogeneifye.
pressure gradientsand it describes the coupling between
neighboring flux tubes whilst moving through a non-uniform
plasma medium.

To summarize, we have shown that the behavior of a
magnetic flux tube is formally analogous to that of a string
and one can therefore model a magnetized plasma as a fluid
composed of strings. We have relied heavily on the argu-
ments of Semenov and Semenov and Berkifb®], with
one improvement: we have dropped their assumption that
there is a conserved particle number density, which is neither
necessary nor generally applicable in the early Universe. Our
derivation is also complementary to that of Ole§&8], who
starts from the relativistic string equations and shows that
they can be interpreted as describing the motion of narrow
flux tubes, providing the total pressure remains constant
across the tube.

IIl. APPROXIMATE STRING EQUATIONS

Exploiting the freedom to change coordinates in they
subspace, we choogesuch thaid=gB and using this in the
equation of motion(39) we have

1 0 cBax“ 1 0
Banly2 dy| Bio

=0,
(40)

g“rpP,

oxXH 41
Jo | B2g?

where we have defined the relativistic Alfveelocity as

cB/V4
VA= I (41)
(pc®+p+B?4m)H2

Rearranging Eq40) we can write it as
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1 9(1 &x“) Pxt 1 9 [cBlax* 1 9B Jx* X-x'=0 (47)
Vadn\Va dn) 952  Banlva)dn Bio do .
—x24+x'2 =1. (48)
41 v c?
+qu2g P.. (42

This is not possible in general for MHD strings, for one can
We now argue that for the particular situation we are inter€asily verify that
ested in, it is justified to neglect the three terms on the right

2
hand side of Eq(42). The third term on the RHS of E42) X' = rv B (49)
can in general not be neglected because in many astrophysi- g2 VaB’
cal situations pressure gradients are important. However, in
the early universe the pressure from the magnetic field 1. 22 (v-B)?
: e 2. 02 Y (v-B)
should be much smaller than the fluid radiation pressure and XX == — (50)
c2 92 v2 c2B2

since the early universe had a very high degree of homog-
eniety it follows that the gradients of the total pressure are _12 L
small. where y=(1-v/c) is the usual relativistic gamma fac-

The second term on the RHS of E@2) does not have tor. However, as long as B=0 in the initial conditions, the

have a definite sign and so if averaged over time it will pefirst constraint is preserved by the evolution. Furthermore,

zero. Dropping this term is equivalent to replaciBgyy its W€ C&n use our remaining coordinate freedom to defibg
root mean square value.
Again using the fact that the fluid radiation pressure in the 0= y?— (51)
early universe was much larger than the pressure from the Va
magnetic field and remembering expressiéb) for the rela-
tivistic Alfvén velocity it is seen that the first term on the in which case we really do reproduce the Nambu-Goto equa-
right side of Eq.(42) is indeed small since the rat®/v, is  tions. We should bear in mind however that we have made
approximatly constant, thus justifying our decision to negleciseveral approximations on the way, which are worth reiter-

it. ating.
We now rescale the time parametgrto 7 through the (1) We have neglected pressure gradients.
relation (2) We have made a kind of mean-field approximation in
replacing the magnetic field by its root mean square value.
i_: ¢ i (43) (3) We have neglected the effect of the time-dependence
an Valm) dn’ of B/v,.

) We have argued that all these approximations are reason-
where we have called attention to the fact that the Alfve able in the context of the early Universe, and find that the
velocity may be time-dependent. Using the above mentioneflambu-Goto equations can be used to approximate a class of
approximations and our new time parametewe are left MHD velocity and magnetic field configurations which sat-
with the following equation of motion: isfy v.-B=0. They may also be a reasonable approximation
to other configurations, provided we understand that the con-

2 2 . . e .
1o°%% o%* -0 (4g) ~ Straints are satisfied in an average sense.

c2 9n®  do?

. ) . IV. ALGORITHM, SIMULATIONS AND RESULTS
We also recall that the four-dimensional orthogonality of the

coordinates, and the coordinate choice enforcegBkyqB, The equation of motior(46) can be evolved using the
supplements this equation with constraints Smith-Vilenkin algorithm[21]. The Smith-Vilenkin algo-
L rithm provides an exact discrete evolution for a string net-
Xox'=0, —x2+x'2 =0, (45) work defined on a face-centered cubic lattice and the evolu-
c2 tion equations are

. L . 1
where dot(prime) denotes derivative with respect to the X( _= _
e n+6,0)==z[X(n,0+ 6)+X(n,0—6)]+Vv(n,0)d
timelike parameter; (o). 2

We note that Eq(44) and constraint45) is of exactly the (52)
same form as the equation for a Nambu-Goto string in 1
Minkowski spacetime expressed in the conformal gauge V(np+6,0)=z[V(n,0+ 6)+V(n,0—05)]
[14,15. With ideal Nambu-Goto strings in Minkowski 2
spacetime one can further tak€=c#, to obtain the system 1
+ —[X(n,0+25)—2x(n,0)

1. 46

—X=X"=0, (46)

c +X(n,0—26)]. (53
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By using a leap-frog method, updating the positions and vetravels at the wave velocity. If such a loop is formed it does
locities at alternate timesteps, the above equations allow usot contribute to the magnetic field, and we do not count it in
to calculate the exact future evolutionfandv from some  the calculation of the total length. It is a well-known feature
appropriately chosen initial conditions. of Nambu-Goto simulations that nearly all the strings end up
Initial string configurations are generated by a method duén this kind of loop[14,15. In the MHD context we should
to Vachaspati and Vilenkif22]. They considered string for- probably not regard these loops as representing magnetic
mation in a globalJ(1)-model. TheU(1)-manifold is dis- field lines at all: the energy is probably being dissipated in a
cretized by allowing the phase to take only three possiblerery small-scale reconnection process. In any case, the fact
values. These values are then placed randomly on the sites thfat loops are generically produced so small underlines the
the cubic lattice. As we go around the face of a cube in reafact that strings are very efficient at transferring power from
space, the phase describes a certain trajectory in the grolgrge to small scales.
space. A string passes through the face of a cube if that We have studied simulations of the evolution of the mag-
trajectory has a non-zero winding number. With this methochetic field on lattices with sizes (13%° and (25)°, using
the string segments join up to form either closed loops ol code originally developed by Sakellariad28], which
else open strings which intersect the boundaries of the cubienplements both the Vachaspati-Vilenkin algorithm for the
lattice. The shape of the strings will be Brownian with stepinitial conditions and the Smith-Vilenkin algorithm for the
size corresponding to the cell size of the lattice. evolution. Periodic boundary conditions were used in all
We have seen how relativistic MHD under the approxi-simulations and the evolution time were restricted to less
mations discussed above can be described in terms of matixan half the box size, since after this time causal influences
netic flux tubes satisfying the Nambu-Goto equations of mohave had time to propagate around the box.
tion. In order to represent the continuous distribution of Having a representation for the magnetic field in real
magnetic flux by a network of string, we gather together aspace we use a three dimensional Fast Fourier Transform
flux @ into ideal Nambu-Goto strings at positioXy(»,o),  algorithm to get a Fourier mode representation. The power
with [13] spectrum for the magnetic fiel®,|> can then be calculated
at every time step by averaging over the amplitudes of all
Fourier modes with a wave number betwe&nand k
+ 2l 6.
Previously it has been shown that networks of cosmic
A few words need to be said about reconnection. In reaktrings, modelled as Nambu-Goto strings in Minkowski
fluids, magnetic flux tubes interact and reconnections takgpacetime tend towords a scaling regif2d]. This means
place when the field lines cross each other. In ideal MHDthat the characteristic length scale of the network grows as
there are no dissipative or viscous effects. Physical reconnee-ct wheret is Minkowski time. The characteristic length
tion between field lines cannot take place without resistivescale for a primordial magnetic field does not grow with
effects and therefore the topology of the magnetic field lineshe horizon. Instead we expect the magnetic field to grow as
is frozen in the fluid and does not change with time. ~c;.
Reconnection, which is a local process, is difficult to de- s interesting to see if the magnetic field power spectra
scribe and the details are not well understood. The efficiencyy, o scaling behavior. In order to investigate this we ex-
of reconnection is not known and neither is how this Proces$ress the power spectrum in terms of a scaling funcon

depends on the local geometry involved, like the relativeyhich is defined through the following expression:
inclination of the flux tubes. To answer this question, one has

to go to numerical solutions of the underlying theory, that is D2P(kE)

MHD. |B(|<,Z)|2=vT

Bi(r,x)chf daw(ﬁ(x—x@a)). (54)

(56)

In order to allow for reconnection to take place in our
simulations we will take a more simple approach to recon-
nection. Our model strings are allowed to reconnect only ifHereV is the volume of the box and its appearance is just a
they pass through the same lattice point. When two stringgormalization convention. This form for the scaling function
meet, they intercommute with a probabiliy and in this  ensures that that the fluctuations obey the scaling law
work we putP=1. Reconnection here takes place instanta-
neously between the discrete evolution time steps. This is 3k
physically reasonable since the reconnection timescale is BZ:f S|By[?x &2 (57
small compared with the evolution of the system. (2m)

We use a simple estimate for the characteristic length
scale¢ which is defined by which is consistent with our picture of a coherent fthxn a

2 region of size¢.

§=VIL, (59 Figure 1 shows the chacteristic length scale of the mag-
whereV is the volume of the lattice and is the total length  netic field versus# for a typical ensemble. The measured
of string in the box, excluding small loops. In the Smith- scaling functionP(k¢) is displayed in Fig. 2. The data was
Vilenkin algorithm it is in fact possible to have a loop of taken from 12 runs on a (25%° lattice, for values ofc
zero spatial extent, occupying just one lattice point, whichbetween 40—60. It is seen that the power spectrum of the
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25 ' T T ' T ' The extra information we need comes from the covariance
of ideal MHD under the scale transformatiptg]

sl | x—lIx, =117, v—=lihy, B—I"B, (59

whereh is arbitrary. One can show that, under this transfor-

mation,
15 b
V7B 2= 13TV 1B, |2 (60)
" If we define a functiom\ (k,7) by
V_l|Bk|2:T(3+h)/(1_h)/\(k,7’), (61)
sl | then we see that under the same transformation
Ak, 1) = A K/, AN =A(k,7), (62)
0 . . . . . . from which we immediately infer that
0 20 40 60 80 100 120 140
Ak, 7)=A (kA=) (63

FIG. 1. Correlation lengtl§ versuscy.
Furthermore, ifB,|? behaves a&" ask—0, we have

magnetic field does reach a scaling regime. This means that |By |2 73+ P+ m/(L-M)yn (64)
the evolution of the network will be self-simular with respect
to c. in that limit. It is often assumed that the large-scale power is

The length scalé appears to grow ag=x, - (c7)P, with MOt affected by small-scale proces@@,lﬂ, in which case
x, constant ang< 1. However, a more careful analy§4] 1=—n—3, and we find the scaling lawglerived by the
reveals thap—1 as the size of the simulation is increased.S@me authols

The scaling amplitude, can be obtained by looking at the £ 7200F8) @ oc Z(17N)/(0+5), (65)
ratio £/ » towards the end of the simulation and it is roughly ) o ] . _
X, =0.2[24]. Thus we can write In the early universe individual particles move with relativ-

istic velocities. However, we expect that the bulk velocity of
o the fluid v to be non-relativistic. Hence
=X, 'C77=X*f va(n)dn. (58)
0: —_——
U®=qc e c, (66)

Unfortunately, we do not yet know how, depends on the )
time parameter; or the conformal time~. The Alfvén veloc- ~ a@nd given Eq(51) we see that, on average,

ity va depends orB, which in turn depends od and ¢ _ <)-(2> v 67)
through Eq.(56). All we can infer from the information at K VA
hand is a consistency relation: §f " and ®« »°, then 3

—st1 Where<5(2> is the mean square string velocity. Simulations

give this to be 0.3624].

V. CONCLUSIONS

We have seen how the relativistic MHD equations, with a
few reasonable assumptions, may be recast as string-like
equations for the motion of the flux lines. This allows us
enormous gains in dynamic range in the simulation of a ran-
] dom magnetic field in the early universe, without being
forced to the ideal limit, for we incorporate diffusivity by
allowing reconnections between the strings.

] The result is that we can understand the evolution of mag-
netic fields in terms of the evolution of a network of strings,
and we find that the power spectrum quickly evolves to a
. self-similar or scale-invariant form, with scale lengthin-
creasing in time. What this power law is we are unable to
say: ideal MHD predictstoc 7/("75) [16,17,29, wheren is
- the low k exponent of the power spectrum, but as we have
30 35 . . . .

departed from ideality by allowing reconnection, we cannot
FIG. 2. Scaling functiorP(k£) versuské. make a prediction. It is interesting to note that a recent non-
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ideal renormalization group calculation also predicts a powethe power spectrum, which betrays the particularly string-
2/(n+5) [26]. like feature of ak™* tail, due to the fact that all the flux is
The increase in scale length comes about by the stringlseld to be concentrated in a narrow tube. Furthermore, the
straightening at the Alfue velocity, while forming very string model may be deficient in its description of helicity,
small loops which can dissipate energy quickly. This is thewhich is known to be extremely important in the develop-
new feature that the string formulation brings to light: stringsment of true inverse cascades,27,28. The helicity is rep-
transfer energy from large to small scales in an extremelyesented by the linking number of the strings, but we are not
efficient manner. Thus, although the scale length increases, dble to incorporate a local contribution induced, for example,
is because power is preferentially lost from small scalespy twisted tubes of flux. It may well be that we are missing
Whether it is fair to call this an inverse cascade is a matter Ogome Very important dynamics here_ We C|ear|y need to
terminology. What is clear is that the dynamics predicted bycheck our results against a non-ideal MHD code, to see if the
the string model of MHD is certainly not of the right kind to predicted self-similar dynamics emerges, and also to find the
produce seeds for the galactic dynamo from magnetic fieldgorrect power law for the scale length. This project is cur-
created in the very early universe. rently in hand.
There are of course many places where this line of argu-
ment is vulnerable. The model makes approximations which
we have tried to highlight. Furthermore, our string simula- ACKNOWLEDGMENTS
tions use special string configurations to make gains in com-
putational efficiency: the strings lie on a cubic lattice to start We are extremely grateful to Mairi Sakellariadou for the
with, and one may be suspicious that this may introduceuse of her Minkowski space string code. We have also ben-
some artifice into the dynamics. However, the propensity okfited from conversations with Axel Brandenburg, Carlo
a string network to scale is firmly believed, so we are confi-Barenghi, Richard Rijnbeek and Vladimir Semenov. M.H. is
dent that the magnetic field power spectrum will also scalesupported by PPARC grant no. GR/L56305. M.C. is sup-
What is probably not well approximated is the actual form ofported by Centrala Studiemalen(CSN).
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