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Quantum field theory of meson mixing
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We develop a quantum-field-theoretic framework for scalar and pseudoscalar meson mixing and oscillations
in time. The unitary inequivalence of the Fock space of Hasenixed eigenstates and the physical mixed
eigenstates is proven and shown to lead to a rich condensate structure. This is exploited to develop formulas for
two-flavor boson oscillations in systems of arbitrary boson occupation number. The mixing and oscillation can
be understood in terms of a vacuum condensate which interacts with the bare particles to induce nontrivial
effects. We apply these formulas to analyze the mixingyafith »" and comment on th&, Kg system. In
addition, we consider the mixing of boson coherent states, which may have future applications in the construc-
tion of meson lasergS0556-282(199)00715-9

PACS numbsds): 11.15~q, 11.30.Rd, 12.26:m

I. INTRODUCTION II. THE VACUUM STRUCTURE AND CONDENSATION

We take the mixing of two arbitrary flavors of bosons to

The study of mixing transformations plays an important, given by

part in particle physics phenomenology]. The standard

model incorporates the mixing of fermion fields through the @ (X) =COSHch,(X)+SinOeho(X),
Kobayashi-Maskawd?2] mixing of three quark flavors, a
generalization of the original Cabiblj8] mixing matrix be- D 5(X) = —sinGep1(X) +COSHP,(X), D

tween thed ands quarks. In addition, neutrino mixing and

oscillations are the likely resolution of the famous solar neuwhere ¢; (i=1,2) are solutions to the real Klein-Gordon
trino puzzle[4]. In the boson sector, the mixing & with equation and are given by
K% via weak currents provided the first evidenceG# vio-

lation [5]. The %’ mixing in the SU3) flavor group pro- b=

vides a unique opportunity for testing QCD and the constitu- ! K \/TEKI
ent quark model. Furthermore, the particle mixing relations ’
for both the fermion and boson case are believed to be reFhe commutation relations are
lated to the condensate structure of the vacuum. The non-

[ay e X+ al,ieik'x]- (2

trivial nature of the vacuum is expected to hold the answer to [, !al"j] = Ok 6ij (3
many of the most salient questions regarding confinement o
and the symmetry-breaking mechanism. from which it follows
The importance of the fermion mixing transformations . )
has recently prompted a fundamental examination of them [$i(X), i (y)]=18(x=y) & . (4)

from a quantum-field-theoretic perspectiy6,7]. To our . S .
knowledge, a similar analysis in the bosonic sector has nqIfor calculational simplicity in the following we shall rede-

yet been undertaken. Moreover, the statistics of bosons an eakv‘_’ak’.‘e_.iEk’it' Itis not difficult to see that the algebra
fermions are intrinsically different. Thus, the results for bo-° the annihilation and creation operators remains intact and

son mixing are expected to be quite different from the pre_that this redefinition does not effect any of the results we

vious analysis of fermions. That is the motivation for theObtam' . .
present work. In order to analyze the condensation density and structure

We begin in Sec. Il with an investigation of the vacuum ?/]:/(;2?1 ;’ﬁ:u[:%r?k \éveag'aug]f E;S;ed;teénm;{;etgzrzgl?rt]'gr::sohéﬁ :?eéce
structure and the related condensation, using the relation bé- b g P

tween the base eigenstate and the physical mixed eigensta% physical mixed states. To this end we need the unitary

fields as our starting point. The unitary inequivalence of thegenerator that rotates base eigenstates into physical eigen-

associated Fock spaces is proven and an explicit formula forates:

the condensation density is derived. In Sec. lll, the ladder D, (x)=G1(8) 1 (x)G(6)
operators are contructed in the mixed basis. These are used “ ’
to derive time-dependent oscillation formulas for one-boson @B(X):G—l( 0) do(X)G(0). (5)

states,n-boson states, and boson-coherent states. We also

show how the ladder operators can be generated from twosing the Baker-Hausdorf lemma one can easily verify that
successive similarity transformations. Section 1V is devoted

studying specific cases in our formalism, such as #hg B n 30" -

system. Finally, in Sec. V we offer some concluding remarks G(O)=exp —i0 | d*x(¢1(X) p2(X) = h2(X) $1(x))

and explore future possibilities. (6)
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is the generator. The commutation relations allow us to re- lll. LADDER OPERATORS AND MIXING RELATIONS

; ; — iSO
write this asG(0)=e™" where The ladder operators in the mixed basis are given from

i Eq. (5) as
S= ; 5[7’—&1—132+ y.a_jal,—y,aja,—y_ajal,].

)

a,=G Y 0)a,G(0), (13

assuming equal masses in the two eigenstate representations,
andy. =\E, /E,* JE,/E,. Here we have suppressed all of Or after a simple redefinition of the operators. This leads to
the k subscripts on the ladder operators for notational simthe following operators:
plicity anda_; stands fora_y ;, for example. Similarly we sing

will use a,, for ay . A — . cosot ot v gt
We note that =& — (vs8ty-asy),

148]$1(x)|b)1 =1 Aa|G(O) D (X)G1(6)|b)1, (8) a,=a, COSG—SITM()qal-Fy,ail). (14)
implies G™'(6)|b)1,e H, 5 and [0), ;=G 1(6)[0)1,.
Herel); ,e Hi,and|), se H, g, WhereH;,and’H, z are  The number operatomazalaa and Nﬂzazaﬁ are easily
the Fock space of bagenmixed eigenstates and the Fock constructed from these.
space of physical mixed eigenstates, respectively. In this We would like to consider the mixing of one meson states
form we see that which, for arbitrary meson flava#, are given by

v, sing

0[/0),,=0 9
«5(0(0)12 ©) |ay=al|0)=cosh|1)+ 5
trivially follows. This proves the unitary inequivalence of the
Fock space of base and physical mixed eigenstates even Trhis gives a normalization factor of
the finite volume regime. For fermions, Blasone and Vitiello
[6] have found that the respective Fock spaces are unitarily
inequivalent only in the infinite volume limit. This contrast
arises because fermions have a finite number of states in a
finite volume whereas bosons have an uncountable infinity ofvhere yi =4+ yz_ was used an€; is the boson condensa-
states in a finite volume. Thus, to obtain the aggregate pation density given in Eq(12). The significance of the nor-
ticle behavior which manifests itself in the vacuum states, itmalization will be commented upon later. From the defini-
iS necessary to go to an infinite volume for fermions but nottions of the number operator and the meson state it is easy to

12). (15)

2

P
(a|a)=cog o+ vis

0

for bosons. see that
We define the number operator in the natural widy; ,
ENi=aiTai. The condensation density of the physical y2 sif 6

(1|N,]1)=co 6+

vacuum is defined ag 5(0|N4|0),, 4. It follows that 4
«.5(0|N1|0), s=1 £0|e'S?ale S%!S%a 67157 0), ,, _ y, cosfsing
(10 (1INg[2)= ——F—,
where 2 2\ i
(v* +y%)sir? 0
| (2N J2)= 7. 17
iSO, ~—iS6 sing t
e~ e >’=a; cosf— T(y+a2+ v-al,). (1))
From these relations we find
From these we easily obtain (Y2 +¥%)sir? 6
, (a|Na|a)N=CO§0++=(1+Cb)+Cb,
Y- .
aB<O|N1|O>aB:a/3<0|N2|0>aﬁ:TS|nz 0. (12) (18)

where(a|N,|a)y=(a|N,|a)/{a|a). Similarly, we obtain
Therefore, an admixture of base-eigenstate particles is found 5
in the physical vacuum state. As we will see, this condensa- Y2 sir? 6
tion density becomes manifest in the boson mixing relations <“|NB|Q>N:T: b
to be derived later. Note that the converse is also true. The
base vacuum state contains an admixture of physical eigemn order to find formulas for the oscillation of flavors in time
state particles and the condensation density, given bwe use the time evolution operator given hi(t)=exp
1.40[N,|0)1 ,= 1 {O[N4|0)1 5, is the same as abod&q.  (—iH;,t), where H;jJ1)=E;|1), etc. The calculation
(12)]. yields

(19
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y% cog fsit§ _ AEt for fermions[6] where the authorgEgs.(4.13—(4.17)] find,

(a(t)|N,|a(t))y=(a|Na|a)y— Si after translating into our notation,
1+C, 2
(20 (ala)=1-C;, (alN,a)y=1=(1-Cp+Cy,
and and
2 .
Y5 cogdsit 0 . AEt a|Ngla)y=Cs, 25
(@(OINgla(®)y=(alNgla)y+ =g ——siP—— (a[Ngla)n=C; (25

(21) whereC; is the fermionic condensation density and is of the
same form a$,. We see that the particle number in a one
We observe that the sum of the number of both species iparticle state is just one. There is no pervasive vacuum con-
constant in time, as expected. This suggests the interpretatigtensate nor any attracted vacuum condensate, as expected
that the oscillation phenomena results from particle flavordrom the exclusion principle. The fermion excludes any
interacting with the nontrivial vacuum condensation. vacuum condensate, while tiecontribution is entirely con-
Unlike fermions, multiple bosons can occupy a singledensate. The exclusion of condensate can also be seen in the
guantum state. Thus, we would like to see how particle flanhormalization. Time evolution introduces oscillations in both
vors mix in an identically prepared state mbcalar or pseu- « and 8 proportional ton, for both the fermion and boson
doscalar bosons of flavore defined by |n,a) case, though for fermions= 1.
=(al)"yn!|0), ,. The calculation is a straightforward gen-  Note in Egs.(22) and (23) that one species is linearly

eralization of the above methods and the results are dependent on while the other is1independent. This is very
interesting, since it implies that the ratio of thespecies to
Y2 sirt 6\ 2 st the B species grows linearly with. Thus, states with more
(n,a|NyIn,a)y=n| cos 6+ 4 a identically prepared mesons have less mixing “per capita.”
This is subject to experimental test. The relationship does not
=n(1+C,+Cy, (22 hold true when the states are allowed to evolve in time:
and (n(t),@|Ny[n(t), a)n=(n,a[N,|n,a)y
22 sir? 9 _nyz+ cog 6 sir? asi AEt
<n!a|Nﬁ|nva>N:T:Cb- (23) 1+Cy 2
Here the normalization of states is given by (n(t),@|Ngn(t),@)n=(n,a|Ngln,a)y
2 .
J2 sir2 g|" ) +ny+cos°-05|n208i AEt.
(n,a|n,a)= c0526+T =(1+Cp)". (29 1+Cy 2
(26)

The fact that the states in the, 8 basis are not already

normalized follows from the nontrivial condensation density!n the static case, we noted that the mixing is related to the
and the unitary inequivalence of the Fock bases. This is ob/acuum condensation. Dynamically, the mixed state further
served in Fig. 2, where the total number of particles in alnteracts with the vacuum to produce time-dependent effects
“one”-particle state is seen to be greater than one. In genWhich depend on the number of interacting particles in the
eral, the normalization factor grows exponentially with ~ mixed state. _ o

The preceding equations written in terms @f provide a We may also consider the mixing of meson coherent
clear and very interesting physical interpretation of the mix-states defined by

ing. In Eq. (22) the termC,, is simply the static vacuum T

condensation, whereas the term(1+C,) represents a |C,a>ENeca“|0>1,2y 27
“renormalized” number of particles. Each of thebosons ) T
obtains a particle number slightly larger than one through it&here ¢ s a complex number and the normalization\$
nonperturbative attraction of vacuum condensate. However, eXH—|C|*/2(1+Cy)].  Defining c=cosf and s

this attraction of vacuum condensate leaves no holes in the §r7n+_/2)5'n0' and using the binomial theorem to expand
pervasive vacuum condensate, as we still have the ggtic ()" in terms ofa, anda,, we find a useful expression for
contribution. In a sense,4C,, just redefines what we mean the coherent state:

by one patrticle. This is further verified in E@QR4) where we s h i

have the normalization equal tofactors of 1+C,, which Ca)y=NS S C'c’’s In—i.i) 29)

can be looked at as abstract particle number “volume” in ' A=0 =0 \/(n—])!j! e

Fock space. These results are somewhat different from the

naive expectation that putting bosons in the nontrivial where |[n—j,j) represents the state aof-j base eigen-
vacuum will yield simply a boson particle number of state one particles arjdbase eigenstate two particles. Using
+C,. The above results are to be contrasted with the casthis, we quickly obtain the following intermediate
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results: (TC,a|N1|C,a>=|C|202, (C,a|N,|C,a)=|C|?s?,
(C,ala_jra’,|C,ay=1, (C alala,|C,a)=(C ala)a,|C a)
=cg|C|2. With these one can show that

2

(C,a|N,|C, @)= (c2+82)?C|?+ %32
+

2 2 2
=(cos2 6+ %sin2 6) |C|2+ );1—_sin2 0

=(1+Cp)?C*+Cy (29
and
v,
(C,a|Ng|C,a)= 7—2+52=Tsinz 6=Cy,. (30)

PHYSICAL REVIEW D60 056005

By=exp ¢Ek (al,zaik,z_ ak,zak,z)}.

Bo=exp —d’; (afa’y - ak,la—k,l)}i

(34)

where coshkp=vy, /2 and sinhp=y_/2.

One should note that the nontrivial mixing phenomena are
possible only if both the mixing anglé is nonzero and the
mass difference between the two mass eigenstates does not
vanish. As shown in Eq12), the condensation density of the
physical vacuum is nonzero only if these two conditions
(6#0 andy_+#0) are satisfied. The operatdRandB given
by Egs.(33) and (34) are associated with these two condi-

The time-dependent relations are derived in a straightforwar§ons, 6#0 and y_+0, respectively. These conditions are

way and are

2 2 2
(C(t),a|N|C(t), @)= ( cog 0+ %sin2 0) |C|?+ %sin2 0

AEt
—|C|? cog gsir? 9y2 sinzT

=(1+Cp)?C|?*+Cy

AEt
—|C|? cog osir? 0y2 sinzT

2
(C(1),a|NglC(t),a)= %sin2 6

AEt
+]C|? cog gsir? 6y2 sinzT

AEt
=Cp+|C|?co g sir? y2 sinzT.

(31)

required in order for the two operators to be different from
the identity operator. Unless both operators are nontrivial
(i.e., different from the identity operatgrone cannot expect
the physically observable mixing phenomena.

IV. APPLICATION TO REAL MESON STATES

To illustrate the results of the previous section we exam-
ine thenn' system. The masses are taken to be 549 and 958
MeV, respectively, and of course in the particle rest frame
the energies in the above expressions reduce to the masses.
The phenomenologically allowed mixing angléds(ys))
range of thepn' system is given between10° and—23°
(8], where the mixing anglésys) is defined by Eq(36) of
Ref. [9]. This angle represents the breaking of the(3U
symmetry, the eigenstates of which are already rotated
—35.26° fromuu+dd andssto »=uu+dd—2ssand 7’
=uu+dd+ss Thus, our mixing angle is defined by
= fsy(3)— 35.26°. Recent analysis of then’ mixing angle
using a constituent quark model based on the Fock states
guantized on the light-front can be found in Ref0] and the
references therein. The optimal value found #y,3) was
~—19° and thus#= —54° was used in generating Figs. 1

Now we show how each of the ladder operators in Eqand 3. Then#n' system is interesting because it is nearly
(14) can be obtained by two similarity transformations. Firstmaximally mixed. In Fig. 2 we see that [a| = 45° the time-
the base eigenstates are rotated together. Then, throughageraged occupation numbers for both particles are equal,
Bogoliubov transformatiofi9], the particles are mixed with and are nearly equal in the range of possiblalues. Figure
the antiparticles moving backward in time. We seek operai shows how the flavor oscillations occur on a very short

tors R andB such that
a,=B; 'R 'a;RB,
ag=B; 'R 'a,RB;. (32

We obtain

R= eXF{ 9§k: (al,lak,z_ al,zak,l) (33

time scale, even compared with the lifetimes=spfand 7',
which are 710 °s and 3< 10 ?!s, respectively. Figure 3
gives the ratio of the quantities plotted in Fig. 1.

The same formulation has been applied to the mixing of
the K Kg system, although th€P violation appears to be
too minimal to lead to any appreciable meson mixing observ-
ables, unlike the case of thgand ' system. However, this
issue deserves further investigation.

V. CONCLUSIONS AND DISCUSSIONS

for both mass eigenstate rotations. For the Bogoliubov trans- The nontrivial scalar and pseudoscalar meson mixing ef-

formations we need two different operators:

fects may be understood by the condensation of correspond-
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ing flavor states in the vacuum as presented in this workinequivalence holds only in the infinite volume linh@]. An
Central to this analysis is the interplay between the baseteresting physical interpretation of the results is thatnan
(unmixed Fock space and the physical Fock space. Theiboson state can be thought of as a sum of the static vacuum
nontrivial relationshipunitary inequivalence of the vacuum condensate, a “renormalized” number of bosomgl
state$ gives rise to the mixing and oscillation phenomena.+C.), and time evolution effects. We also noted that, for
While a similar quantum-field-theoretic formulation was pre-both the boson and fermion cases, the nontrivial observable
sented for the fermion mixing6], our analysis intrinsically mixing phenomena cannot occur unless there is both a non-
differs from the fermion case because of the fundamentatero mixing angle and also a nonzero méssergy differ-
difference in statistics. As a consequence, we found that thence between the two physically measurable mixed states.
unitary inequivalence of the base flavor states and the physi- As a physical application, we used our formulation to
cal mass eigenstates holds even in the finite volume regim@analyze thepn' system and found that the measured mixing
in contrast to the case of fermion mixing where the unitaryangle and mass difference betwegmand »’ can be related

FIG. 2. The time-averaged occupation num-
ber expectation values for timg,= 1 state plotted
versug 6], the mixing angle. The solid and dashed
lines represent the time-averaged valuegNf)
and(N, ), respectively. The dash-dotted line is
the sum of the two.

{N) Time Averaged

0.2} E

30 35 40 45 50 55 60 65 70
10l
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FIG. 3. The ratio of the expectation values of
the number operators fay and »’, as given by
Eq.(25), for an arbitraryn,, state. The valua,, is
unimportant since any value will yield an almost
identical curve, with then, =1 case only being
3r 7 shifted down slightly, reflecting the relative abun-
dance of vacuum condensation.

<N“/Zi(N“>

0 5 10 15 20 25 30 35 40
1(1072%)

to the nontrivial flavor condensation in the vacuum. How-same as the scalar and pseudoscalar bosons considered here,
ever, more fundamental questions such as the translation dfere will be additional spin-dependent interactions which
the condensation in hadronic degrees of freedom to those isomplicate the analysis.

quark and gluon degrees of freedom remains unanswered.

The answer to this question depends on the dynamics respon-
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