
PHYSICAL REVIEW D, VOLUME 60, 056005
Quantum field theory of meson mixing
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Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

~Received 29 January 1999; published 10 August 1999!

We develop a quantum-field-theoretic framework for scalar and pseudoscalar meson mixing and oscillations
in time. The unitary inequivalence of the Fock space of base~unmixed! eigenstates and the physical mixed
eigenstates is proven and shown to lead to a rich condensate structure. This is exploited to develop formulas for
two-flavor boson oscillations in systems of arbitrary boson occupation number. The mixing and oscillation can
be understood in terms of a vacuum condensate which interacts with the bare particles to induce nontrivial
effects. We apply these formulas to analyze the mixing ofh with h8 and comment on theKL KS system. In
addition, we consider the mixing of boson coherent states, which may have future applications in the construc-
tion of meson lasers.@S0556-2821~99!00715-8#

PACS number~s!: 11.15.2q, 11.30.Rd, 12.20.2m
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I. INTRODUCTION

The study of mixing transformations plays an importa
part in particle physics phenomenology@1#. The standard
model incorporates the mixing of fermion fields through t
Kobayashi-Maskawa@2# mixing of three quark flavors, a
generalization of the original Cabibbo@3# mixing matrix be-
tween thed and s quarks. In addition, neutrino mixing an
oscillations are the likely resolution of the famous solar n
trino puzzle@4#. In the boson sector, the mixing ofK0 with
K0 via weak currents provided the first evidence ofCP vio-
lation @5#. The hh8 mixing in the SU~3! flavor group pro-
vides a unique opportunity for testing QCD and the const
ent quark model. Furthermore, the particle mixing relatio
for both the fermion and boson case are believed to be
lated to the condensate structure of the vacuum. The n
trivial nature of the vacuum is expected to hold the answe
many of the most salient questions regarding confinem
and the symmetry-breaking mechanism.

The importance of the fermion mixing transformatio
has recently prompted a fundamental examination of th
from a quantum-field-theoretic perspective@6,7#. To our
knowledge, a similar analysis in the bosonic sector has
yet been undertaken. Moreover, the statistics of bosons
fermions are intrinsically different. Thus, the results for b
son mixing are expected to be quite different from the p
vious analysis of fermions. That is the motivation for t
present work.

We begin in Sec. II with an investigation of the vacuu
structure and the related condensation, using the relation
tween the base eigenstate and the physical mixed eigen
fields as our starting point. The unitary inequivalence of
associated Fock spaces is proven and an explicit formula
the condensation density is derived. In Sec. III, the lad
operators are contructed in the mixed basis. These are
to derive time-dependent oscillation formulas for one-bos
states,n-boson states, and boson-coherent states. We
show how the ladder operators can be generated from
successive similarity transformations. Section IV is devo
studying specific cases in our formalism, such as thehh8
system. Finally, in Sec. V we offer some concluding rema
and explore future possibilities.
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II. THE VACUUM STRUCTURE AND CONDENSATION

We take the mixing of two arbitrary flavors of bosons
be given by

Fa~x!5cosuf1~x!1sinuf2~x!,

Fb~x!52sinuf1~x!1cosuf2~x!, ~1!

where f i ( i 51,2) are solutions to the real Klein-Gordo
equation and are given by

f i~x!5(
k

1

A2VEk,i

@ak,ie
2 ik•x1ak,i

† eik•x#. ~2!

The commutation relations are

@ak,i ,ak8, j
†

#5dkk8d i j ~3!

from which it follows

@f i~x!,ḟ j~y!#5 id~x2y!d i j . ~4!

For calculational simplicity in the following we shall rede
fine ak,i˜ak,ie

2 iEk,i t. It is not difficult to see that the algebr
of the annihilation and creation operators remains intact
that this redefinition does not effect any of the results
obtain.

In order to analyze the condensation density and struc
of the vacuum, we must first determine the relationship
tween the Fock space of base eigenstates and the Fock s
of physical mixed states. To this end we need the unit
generator that rotates base eigenstates into physical e
states:

Fa~x!5G21~u!f1~x!G~u!,

Fb~x!5G21~u!f2~x!G~u!. ~5!

Using the Baker-Hausdorf lemma one can easily verify th

G~u!5expF2 iuE d3x„ḟ1~x!f2~x!2ḟ2~x!f1~x!…G
~6!
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is the generator. The commutation relations allow us to
write this asG(u)5eiSu where

S5(
k

i

2
@g2a21a21g1a21a22

† 2g1a1
†a22g2a1

†a22
† #.

~7!

andg65AE1 /E26AE2 /E1. Here we have suppressed all
the k subscripts on the ladder operators for notational s
plicity and a21 stands fora2k,1 , for example. Similarly we
will use aa for ak,a .

We note that

1,2̂ auf1~x!ub&1,251,2̂ auG~u!Fa~x!G21~u!ub&1,2 ~8!

implies G21(u)ub&1,2PHa,b and u0&a,b5G21(u)u0&1,2.
Here u&1,2PH1,2 and u&a,bPHa,b , whereH1,2 andHa,b are
the Fock space of base~unmixed! eigenstates and the Foc
space of physical mixed eigenstates, respectively. In
form we see that

a,b^0u0&1,250 ~9!

trivially follows. This proves the unitary inequivalence of th
Fock space of base and physical mixed eigenstates eve
the finite volume regime. For fermions, Blasone and Vitie
@6# have found that the respective Fock spaces are unita
inequivalent only in the infinite volume limit. This contra
arises because fermions have a finite number of states
finite volume whereas bosons have an uncountable infinit
states in a finite volume. Thus, to obtain the aggregate
ticle behavior which manifests itself in the vacuum states
is necessary to go to an infinite volume for fermions but
for bosons.

We define the number operator in the natural way,Nk,i

[Ni5ai
†ai . The condensation density of the physic

vacuum is defined asa,b^0uN1u0&a,b . It follows that

a,b^0uN1u0&a,b51,2̂ 0ueiSua1
†e2 iSueiSua1e2 iSuu0&1,2,

~10!

where

eiSua1e2 iSu5a1 cosu2
sinu

2
~g1a21g2a22

† !. ~11!

From these we easily obtain

a,b^0uN1u0&a,b5a,b^0uN2u0&a,b5
g2

2

4
sin2 u. ~12!

Therefore, an admixture of base-eigenstate particles is fo
in the physical vacuum state. As we will see, this conden
tion density becomes manifest in the boson mixing relati
to be derived later. Note that the converse is also true.
base vacuum state contains an admixture of physical ei
state particles and the condensation density, given
1,2̂ 0uNau0&1,25 1,2̂ 0uNbu0&1,2, is the same as above@Eq.
~12!#.
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III. LADDER OPERATORS AND MIXING RELATIONS

The ladder operators in the mixed basis are given fr
Eq. ~5! as

aa5G21~u!a1G~u!, ~13!

assuming equal masses in the two eigenstate representa
or after a simple redefinition of the operators. This leads
the following operators:

aa5a1 cosu1
sinu

2
~g1a21g2a22

† !,

ab5a2 cosu2
sinu

2
~g1a11g2a21

† !. ~14!

The number operatorsNa[aa
†aa and Nb[ab

†ab are easily
constructed from these.

We would like to consider the mixing of one meson sta
which, for arbitrary meson flavora, are given by

ua&5aa
† u0&5cosuu1&1

g1 sinu

2
u2&. ~15!

This gives a normalization factor of

^aua&5cos2 u1
g1

2 sin2 u

4
511Cb , ~16!

whereg1
2 541g2

2 was used andCb is the boson condensa
tion density given in Eq.~12!. The significance of the nor
malization will be commented upon later. From the defi
tions of the number operator and the meson state it is eas
see that

^1uNau1&5cos2 u1
g2

2 sin2 u

4
,

^1uNau2&5
g1 cosu sinu

2
,

^2uNau2&5
~g2

2 1g1
2 !sin2 u

4
. ~17!

From these relations we find

^auNaua&N5cos2 u1
~g1

2 1g2
2 !sin2 u

4
5~11Cb!1Cb ,

~18!

where^auNaua&N5^auNaua&/^aua&. Similarly, we obtain

^auNbua&N5
g2

2 sin2 u

4
5Cb . ~19!

In order to find formulas for the oscillation of flavors in tim
we use the time evolution operator given byU(t)5exp
(2iH1,2t), where H1,2u1&5E1u1&, etc. The calculation
yields
5-2
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QUANTUM FIELD THEORY OF MESON MIXING PHYSICAL REVIEW D60 056005
^a~ t !uNaua~ t !&N5^auNaua&N2
g1

2 cos2 u sin2 u

11Cb
sin2

DEt

2
~20!

and

^a~ t !uNbua~ t !&N5^auNbua&N1
g1

2 cos2 u sin2 u

11Cb
sin2

DEt

2
.

~21!

We observe that the sum of the number of both specie
constant in time, as expected. This suggests the interpret
that the oscillation phenomena results from particle flav
interacting with the nontrivial vacuum condensation.

Unlike fermions, multiple bosons can occupy a sing
quantum state. Thus, we would like to see how particle
vors mix in an identically prepared state ofn scalar or pseu-
doscalar bosons of flavor a defined by un,a&
5(aa

†)n/An! u0&1,2. The calculation is a straightforward gen
eralization of the above methods and the results are

^n,auNaun,a&N5nS cos2 u1
g1

2 sin2 u

4 D 1
g2

2 sin2 u

4

5n~11Cb!1Cb ~22!

and

^n,auNbun,a&N5
g2

2 sin2 u

4
5Cb . ~23!

Here the normalization of states is given by

^n,aun,a&5S cos2 u1
g1

2 sin2 u

4 D n

5~11Cb!n. ~24!

The fact that the states in thea, b basis are not alread
normalized follows from the nontrivial condensation dens
and the unitary inequivalence of the Fock bases. This is
served in Fig. 2, where the total number of particles in
‘‘one’’-particle state is seen to be greater than one. In g
eral, the normalization factor grows exponentially withn.
The preceding equations written in terms ofCb provide a
clear and very interesting physical interpretation of the m
ing. In Eq. ~22! the termCb is simply the static vacuum
condensation, whereas the termn(11Cb) represents a
‘‘renormalized’’ number of particles. Each of then bosons
obtains a particle number slightly larger than one through
nonperturbative attraction of vacuum condensate. Howe
this attraction of vacuum condensate leaves no holes in
pervasive vacuum condensate, as we still have the statiCb
contribution. In a sense, 11Cb just redefines what we mea
by one particle. This is further verified in Eq.~24! where we
have the normalization equal ton factors of 11Cb , which
can be looked at as abstract particle number ‘‘volume’’
Fock space. These results are somewhat different from
naive expectation that puttingn bosons in the nontrivia
vacuum will yield simply a boson particle number ofn
1Cb . The above results are to be contrasted with the c
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for fermions@6# where the authors@Eqs.~4.13!–~4.17!# find,
after translating into our notation,

^aua&512Cf , ^auNaua&N515~12Cf !1Cf ,

and

^auNbua&N5Cf , ~25!

whereCf is the fermionic condensation density and is of t
same form asCb . We see that the particle number in a o
particle state is just one. There is no pervasive vacuum c
densate nor any attracted vacuum condensate, as exp
from the exclusion principle. Thea fermion excludes anya
vacuum condensate, while theb contribution is entirely con-
densate. The exclusion of condensate can also be seen i
normalization. Time evolution introduces oscillations in bo
a and b proportional ton, for both the fermion and boson
case, though for fermionsn51.

Note in Eqs.~22! and ~23! that one species is linearl
dependent onn while the other isn independent. This is very
interesting, since it implies that the ratio of thea species to
the b species grows linearly withn. Thus, states with more
identically prepared mesons have less mixing ‘‘per capita
This is subject to experimental test. The relationship does
hold true when the states are allowed to evolve in time:

^n~ t !,auNaun~ t !,a&N5^n,auNaun,a&N

2
ng1

2 cos2 u sin2 u

11Cb
sin2

DEt

2
,

^n~ t !,auNbun~ t !,a&N5^n,auNbun,a&N

1
ng1

2 cos2 u sin2 u

11Cb
sin2

DEt

2
.

~26!

In the static case, we noted that the mixing is related to
vacuum condensation. Dynamically, the mixed state furt
interacts with the vacuum to produce time-dependent effe
which depend on the number of interacting particles in
mixed state.

We may also consider the mixing of meson coher
states defined by

uC,a&[NeCaa
†
u0&1,2, ~27!

whereC is a complex number and the normalization isN
5exp@2uCu2 /2(11Cb)#. Defining c5cosu and s
5(g1/2)sinu, and using the binomial theorem to expan
(aa

†)n in terms ofa1 anda2 , we find a useful expression fo
the coherent state:

uC,a&5N(
n50

`

(
j 50

n Cncn2 j sj

A~n2 j !! j !
un2 j , j &, ~28!

where un2 j , j & represents the state ofn- j base eigen-
state one particles andj base eigenstate two particles. Usin
this, we quickly obtain the following intermediat
5-3
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MICHAEL BINGER AND CHUENG-RYONG JI PHYSICAL REVIEW D60 056005
results: ^C,auN1uC,a&5uCu2c2, ^C,auN2uC,a&5uCu2s2,
^C,aua22a22

† uC,a&51, ^C,aua1
†a2uC,a&5^C,aua2

†a1uC,a&
5csuCu2. With these one can show that

^C,auNauC,a&5~c21s2!2uCu21
g2

2

g1
2 s2

5S cos2 u1
g1

2

4
sin2 u D 2

uCu21
g2

2

4
sin2 u

5~11Cb!2uCu21Cb ~29!

and

^C,auNbuC,a&5
g2

2

g1
2 s25

g2
2

4
sin2 u5Cb . ~30!

The time-dependent relations are derived in a straightforw
way and are

^C~ t !,auNauC~ t !,a&5S cos2 u1
g1

2

4
sin2 u D 2

uCu21
g2

2

4
sin2 u

2uCu2 cos2 u sin2 ug1
2 sin2

DEt

2

5~11Cb!2uCu21Cb

2uCu2 cos2 u sin2 ug1
2 sin2

DEt

2

^C~ t !,auNbuC~ t !,a&5
g2

2

4
sin2 u

1uCu2 cos2 u sin2 ug1
2 sin2

DEt

2

5Cb1uCu2 cos2 u sin2 ug1
2 sin2

DEt

2
.

~31!

Now we show how each of the ladder operators in E
~14! can be obtained by two similarity transformations. Fi
the base eigenstates are rotated together. Then, throu
Bogoliubov transformation@9#, the particles are mixed with
the antiparticles moving backward in time. We seek ope
tors R andB such that

aa5B1
21R21a1RB1 ,

ab5B2
21R21a2RB2 . ~32!

We obtain

R5expFu(
k

~ak,1
† ak,22ak,2

† ak,1!G ~33!

for both mass eigenstate rotations. For the Bogoliubov tra
formations we need two different operators:
05600
rd

.
t
h a

-

s-

B15expFf(
k

~ak,2
† a2k,2

† 2ak,2a2k,2!G ,

B25expF2f(
k

~ak,1
† a2k,1

† 2ak,1a2k,1!G ,
~34!

where coshf[g1 /2 and sinhf[g2 /2.
One should note that the nontrivial mixing phenomena

possible only if both the mixing angleu is nonzero and the
mass difference between the two mass eigenstates doe
vanish. As shown in Eq.~12!, the condensation density of th
physical vacuum is nonzero only if these two conditio
~uÞ0 andg2Þ0! are satisfied. The operatorsR andB given
by Eqs.~33! and ~34! are associated with these two cond
tions, uÞ0 and g2Þ0, respectively. These conditions a
required in order for the two operators to be different fro
the identity operator. Unless both operators are nontriv
~i.e., different from the identity operator!, one cannot expec
the physically observable mixing phenomena.

IV. APPLICATION TO REAL MESON STATES

To illustrate the results of the previous section we exa
ine thehh8 system. The masses are taken to be 549 and
MeV, respectively, and of course in the particle rest fra
the energies in the above expressions reduce to the ma
The phenomenologically allowed mixing angle (uSU(3))
range of thehh8 system is given between210° and223°
@8#, where the mixing angleuSU(3) is defined by Eq.~36! of
Ref. @9#. This angle represents the breaking of the SU~3!
symmetry, the eigenstates of which are already rota
235.26° fromuū1dd̄ and ss̄ to h5uū1dd̄22ss̄ and h8

5uū1dd̄1ss̄. Thus, our mixing angle is defined byu
5uSU(3)235.26°. Recent analysis of thehh8 mixing angle
using a constituent quark model based on the Fock st
quantized on the light-front can be found in Ref.@10# and the
references therein. The optimal value found foruSU(3) was
;219°, and thusu5254° was used in generating Figs.
and 3. Thehh8 system is interesting because it is nea
maximally mixed. In Fig. 2 we see that atuuu545° the time-
averaged occupation numbers for both particles are eq
and are nearly equal in the range of possibleu values. Figure
1 shows how the flavor oscillations occur on a very sh
time scale, even compared with the lifetimes ofh and h8,
which are 7310219s and 3310221s, respectively. Figure 3
gives the ratio of the quantities plotted in Fig. 1.

The same formulation has been applied to the mixing
the KL KS system, although theCP violation appears to be
too minimal to lead to any appreciable meson mixing obse
ables, unlike the case of theh andh8 system. However, this
issue deserves further investigation.

V. CONCLUSIONS AND DISCUSSIONS

The nontrivial scalar and pseudoscalar meson mixing
fects may be understood by the condensation of corresp
5-4
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FIG. 1. The expectation value of the numb
operator fora5h and b5h8 in a nh51 state.
The solid and dashed curves correspond
^nh(t)uNhunh(t)&N and ^nh(t)uNh8unh(t)&N , re-
spectively, as given by Eq.~25!. The mixing
angle is taken to beu5254°.
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ing flavor states in the vacuum as presented in this wo
Central to this analysis is the interplay between the b
~unmixed! Fock space and the physical Fock space. Th
nontrivial relationship~unitary inequivalence of the vacuum
states! gives rise to the mixing and oscillation phenomen
While a similar quantum-field-theoretic formulation was pr
sented for the fermion mixing@6#, our analysis intrinsically
differs from the fermion case because of the fundame
difference in statistics. As a consequence, we found that
unitary inequivalence of the base flavor states and the ph
cal mass eigenstates holds even in the finite volume reg
in contrast to the case of fermion mixing where the unita
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inequivalence holds only in the infinite volume limit@6#. An
interesting physical interpretation of the results is that an
boson state can be thought of as a sum of the static vac
condensate, a ‘‘renormalized’’ number of bosonsn(1
1Cb), and time evolution effects. We also noted that, f
both the boson and fermion cases, the nontrivial observa
mixing phenomena cannot occur unless there is both a n
zero mixing angle and also a nonzero mass~energy! differ-
ence between the two physically measurable mixed state

As a physical application, we used our formulation
analyze thehh8 system and found that the measured mixi
angle and mass difference betweenh andh8 can be related
-

d

is
FIG. 2. The time-averaged occupation num
ber expectation values for thenh51 state plotted
versusuuu, the mixing angle. The solid and dashe
lines represent the time-averaged values of^Nh&
and ^Nh8&, respectively. The dash-dotted line
the sum of the two.
5-5
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FIG. 3. The ratio of the expectation values
the number operators forh and h8, as given by
Eq. ~25!, for an arbitrarynh state. The valuenh is
unimportant since any value will yield an almo
identical curve, with thenh51 case only being
shifted down slightly, reflecting the relative abun
dance of vacuum condensation.
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to the nontrivial flavor condensation in the vacuum. Ho
ever, more fundamental questions such as the translatio
the condensation in hadronic degrees of freedom to thos
quark and gluon degrees of freedom remains unanswe
The answer to this question depends on the dynamics res
sible for the confinement of quark and gluon degrees of fr
dom and perhaps has to rely on lattice QCD and/or so
phenomenological model that accommodates strongly in
acting QCD. Further investigations along this line are und
way. Also, it would be interesting to look at the mixin
transformations between gauge vector bosons governe
the Weinberg angle in the electroweak theory as well as v
tor mesons such as ther andv. While the statistics are the
e

d

,
,

-
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same as the scalar and pseudoscalar bosons considered
there will be additional spin-dependent interactions wh
complicate the analysis.
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