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Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state
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For processes with gauge bosons in the final state we show how to continuously connect with a single
Born-improved amplitude the resonant region, where resummation effects are important, with the asymptotic
region far away from the resonance, where the amplitude must reduce to its tree-level form. While doing so all
known field-theoretical constraints are respected, most notably gauge invariance, unitarity and the equivalence
theorem. The calculations presented are based on the prkf_cesBZ, mediated by a possibly resonant Higgs
boson; this process captures all the essential features, and can serve as a prototype for a variety of similar
calculations. By virtue of massive cancellations the resulting closed expressions for the differential and total
cross sections are particularly compd&0556-282(199)08213-2

PACS numbds): 11.10.Jj

. INTRODUCTION (W pair-production, whereas large numbers \8f bosons are

) ) ) expected to be produced at the CERN Large Hadron Collider
The physics of unstable particles in generi) and the  (LHc). In addition, muon colliders are scheduled to operate
computation of resonant transition amplitudes in particularyg Higgs factories for intermediate energies of about 500

[2] has attracted significant attention in recent years, becau%eev, and copious amounts of Higgs bosons through resonant
it is both phenomenologically relevant and theoretically chal-

lenging. The main theoretical difficulty arises from the facts-channel production are expecté®].
9 . . iven the importan f Born-improv mpli n
that in the context of non-Abelian gauge theories the stan- Given the importance of Bo proved amplitudes, one

dard Breit-Wigner resummation used for regulating physicafnUSt study their properties further. One open question in this

. ) . . .~ —context is how to connect smoothly resonant with asymptotic
amplitudes near resonances is at odds with gauge invariancé

S . régions. On physical grounds one expects that far from the
Egs"tua}:::]y grc])?nt-ri]ri e%%;ﬁlgxiitzgg;éﬁ gggf;i;ﬁ?g%;hz reresonance the Born-improved amplitude must behave exactly

; 9 pro PIEL 9 PU€,s its tree-level counterpart; in fact, a self-consistent resum-
faithfully the underlying dynamics.

A solution to this probiem has been accomplished at th mation formalism should have this property built in, i.e. far

one-loop leve[4,5] by resorting to the reorganization of per- rom resonance one should recover the correct high energy

. : X . behavior without having to re-expand the Born-improved
turbation theory implemented by the pinch technides) amplitude perturbatively. Recovering the correct asymptotic

[6.7. The resummation formalism based on the latter ehavior is particularly tricky however when the final par-
method satisfies a set of crucial physical requirements, an? P Y y : nal par-
. : : . icles are gauge bosons. In order to accomplish this, in addi-
provides a self-consistent framework for dealing with reso-. h | . idth. th :
nant transition amplitudes. The main thrust of this diagram-tlon to the correct one- o_opunnmg width, the appropriate
matic method is to ex Ioitl the properties built into ph sicalone_|00p vertex corrections must be supplemented; these
amolitudes in order topconstrué)t o?f-shell Green’s fﬁnﬁtionsvertex corrections and the width must be related by a crucial
witr?the following propertiesti) they are independent of the tree-level Ward identity. In practice this WI ensures that
gauge-fixing pa?apmetin(ji) they sz)a/tisfy naivz(ghost-free massive cancellations which take place at tree-level will still
tree-level Ward identities(WI's) instead of the usual go through after the Born-amplitude has been “dressed,

Slavnov-Taylor identities(iii ) they display physical thresh- The need for preserving tree-level Ward identities when
olds only[4]: (iv) they satisfy individually the optical and dealing with gauge bosons in the final state has been empha-

equivalence theorenid, 8,5 (v) they are analytic functions sized from various points of view in the recent literature. As
9 - . A y are . was pointed out first if13] in the context of the process
of the kinematic variablegyi) the effective two-point func-

tions constructed are universgprocess-independenf9], 49’ —!vy, maintaining the electromagnetic gauge invari-
Dyson-resummablg4,10], and do not shift the position of ance as_somated Wltf_l the ou@go!ng p_hoton ne_cessnates such a
the gauge-independent complex pplel1]. WI relating the runningfermionic) width coming from_th(_a
From the phenomenological point of view the upshot of W Self-energy and th&VWy vertex containing a fermionic
the above framework is to construct Born-improved ammi_tpangle. The phenom(_anolpglcal implications of this observa-
tudes in which all relevant physical information has beerfion were further studied ih14], where the complete set of
encoded. This in turn is useful for the detailed study of thef@rmionic corrections was taken into accotnthe non-
physical properties of particles, most importantly the correcfAbelian case has been addressed4h using the PT; the
extraction of their masses, widths, and line shapes. The pre-
cise measurement of the mass and the width oMhgauge
boson for example is of fundamental physical importance. At in the fermionic case both the gauge-fixing parameter indepen-
presentW bosons are produced at the Fermilab Tevatrordence of the result and the preservation of the WI are automatic,
(singleW production) and at the CERN e~ collider LEP2  because these corrections are Abelian-like.
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non-trivial point in this context is to construct one-loop run- ., Z,(k)

ning widths and one-loop three-boson vertices which are in- Afg) 4 f % ! &
dependent of the gauge-fixing parameter, and at the sam >§©§<§£L€Z+fi’ﬂ Jf(pl—ko {f(pl—iw)
time satisfy tree-level WA. Finally, as was shown if5] - by 7 A
these WI are crucial for satisfying the equivalence theoren /)
before and after resummation. However, to date it has no
been demonstrated explicitlyi) how the need for maintain-
ing the tree-level WI manifests itself at the level of the cross-
section, for both Abelian(fermionic) and non-Abelian
(bosonig corrections(ii) what is the precise field-theoretical

mechanism which restores the correct high-energy behavianhum amour:t of Iff:rzss'q% negiessary n ordert_to regulate
as we will see in detail, the WI by itself is neither a necessar)} e resonant amplitude. The rédispersive corrections can

nor a sufficient condition for recovering the correct also be included in a systematic way, but this task is beyond
asymptotic behavior, and must be combined with additionaFhe scope of the present work.
requirements(iii) whether the PT algorithm has all afore-
mentioned necessary requirements built in it. Il. THE DIFFERENTIAL AND TOTAL CROSS SECTIONS

In this paper we will address the issues listed above. In
particular, we will show with detailed analytic calculations |
that the Born-improved amplitudes constructed by means o
the PT resummation algorithm not only encodes correctly th
effects on and around the resonant but also far from it. T
study the above points we will calculate tfresonantHiggs

boson contributions to the process—ZZ. The motivation

Z,(ks)
(a) (b) ()

FIG. 1. The Born-improved amplitude for the procd$s-ZZ.

In this section we present closed expressions for the tree-
vel differential and total cross sections for the process

(p)f(p2)—2Z(ky)Z(k,) and study their behavior in the
imit where the center-of-mass energy is much larger than
any other mass scale. The purpose is twof¢idwe show
that if the cancellations of the PT are implemented before the
calculation the resulting expressions are rather compagt;

for turning to this _particul_ar process Is three-folql. First, from based on these closed expressions we can easily establish the
the theoretical point of view this process contains all NeCeSp . havior of the cross section far from resonance

sary features, without additional technical complications; for The tree-level transition amplitudg,, for the process
§12%

example, unlike theff—W"W~ it does not contain any vy : ) .
non-resonantnon-Higgs boson relat¢dackground due to F(Po)T(po) = Z(k1)Z(k) IS the sum of ars-, at-, and au

an s-channely andZ. Second, the Higgs boson self-energy g_hannerté:looeng[lisglt;orgi:\ll%.nlt)),ydenoted OYTs uvs Tt s @NA

and vertex receives contributions from loops containing fer-" 4+’ '

mions, scalars, and gauge bosons. Therefore this process can — HFT. HZZ

serve as a prototype for studying the relevant issues. Third, Ty =V(P2) Lo U(p1)Ao(s)Toys

the resonant proces$— ZZ may be intrinsically interesting

for muon colliders, if the standard model Higgs boson turns T IV(D )FZf? 1 FZf?u(p )

out to be heavier thanN,. Therefore, the exact closed v TREEOY g —m,

expressions for the Born-improved amplitude presented here

may be useful for studying various properties of this process o _ 1 _

in detail. Ti =V (PTG} —————T5, u(py). (2.2
The paper is organized as follows: In Sec. Il we derive p1—ko—my

closed expressions for the differential and total cross sections 5 5
away from the resonance, and establish their high energy Here, s=(pi1+pz)°=(k;+k;)* is the center-of-mass
behavior. In Sec. Ill we calculate the same cross sectionsnergy  squared, I'§7r=(iguMz/c,)g,,,  Io"
where we now account for resonant effects; in particular we— _jq m./(2M,,) and F(Z)Lf: —igu/(2¢y) 7, [TH1—vs)
derive closed expressions for an arbitrary running width and ) )
an arbitrary form of thédZZ vertex compatible with Lorentz  —2Q1Syl, With ¢, =y1-s,=My/Mz, are the tree-level
invariance andC P symmetry. We then analyze in detail the HZZ, Hff andZff couplings, respectivelyQs is the elec-
mechanism which enforces the correct high energy behavidric charge of the fermiori, and T; its z-component of the
of the Born-improved amplitude when the PT width and ver-weak isospin. Away from the resonance the propagator for
tex are used. In Sec. IV we show how the mechanism of théhe Higgs boson is given by the usual tree-level expression
previous section can be realized explicitly in the PT contextA(s)=(s—M2) . For on shellZ bosons, i.e.ki=k3
In Sec. V we present our conclusions. Finally, various usefukm2 | the vertexl“glfyz satisfies the following WI:
formulas are presented in an Appendix. Throughout this
work we only consider the absorptiggnaginary contribu- igyM,
tions to the width and the vertex; they constitute the mini- k’fk;F&fVZ:T[AO Ys)+(ME-2M9)], (2.2

w

which, as we will see, controls the high energy behavior of
2In the context of the background field methfib] or the axial  the tree-level amplitude.
gaugeq 16] only the latter property is guaranteed. The Mandelstam variablegsandu are given by
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t=(ky—Pp1)?=(p2—kp)?= — §(B2+ BF—22zx)s,

u=(k;— kp)?=—3(B2+ Bf+22%)s,

(2.3

P2)2=(p1—

wherex=cos@ is the center-of-mass scattering angle, and
JIVE

4mf
s Bi=\1-—5 =8B

1- .
(2.9

The squared matrix elemeht|? averaged over initial
and final polarization states is given by

— 1 _ kb koK

M|?=— T, ul| g“* — v

MP=7 2, DT ](g M2 M2
X[uT!, o], (2.9

and the unpolarized differential cross section for leptons in

the initial staté reads

PHYSICAL REVIEW @& 056001

g
I= v<p2>r””u<pl>Ao<s>( Ny Z)(M2 2M2),
7 GOff_ — GO,
Ti=v(p)lg F u(py),
p1—Ki—m
— Off 0
To=v(p)T§ ”—FG Tu(py), (2.9
p1—K,—m
where FGOf?z—gW(mf/MW)T;yS is the coupling of the

neutral Goldstone bosd® to the fermions. Then, by adding
both parts of Eq(2.7) we see that th&p terms cancel on the
right-hand sidgRHS) and we are left exactly with what one
expects from thégeneralizegl equivalence theoreifb].

After carrying out the above cancellations, a straightfor-
ward calculation shows that the differential cross section

}EZ> (

do T
[Msst Mg,

dx |64

+Mgy+M+M+Myd, (2.10
dO' 1 ﬁz
X 327 B, S| 2. (2.6 wherea,=g2/(4m), and
. . - ss— =sAj mfﬁfflv
For the actual calculation it is convenient to wrjté1|? as
the sum of six sub-amplitudes distinguished by their depen- 2g
dence on the three Mandelstam varialde andu. In car- Mg= > AomZ[f,B7—f4zX],
rying out this decomposition we follow the method ex- (t—mgf)
plained in detail in[8]; in particular, we carry out
analytically a large number of cancellations between terms B A2l g2 f
originating from the longitudinal piece&“k /M2 and MS“_(u_mfZ) oMil T2+ T52x],
kyks'/M2 appearing on the left-hand side of E8.5). These
cancellations are carried out systematically by resorting to 1 &2
the PT reorganization of the amplitude, i.e. we use the tree- ~ Mu=3 —[f42 x?—fszx+fe],
level Ward identity obeyed by the amplitude in order to ex- (t—mp)?
tracts-channel-like pieces frohandu graphs, which cancel )
against analogous contributions coming from the usual M _} S A NI
s-channel graph. Specifically, we start from the following w5 (u—mf)z[ aZX+ 152X+ fe],
elementary WI satisfied by the two sub-amplitudes:
ki'kyTs u=Tst+ 75 L s* [f,22x2+ fg] (2.1
2 Suv s P —_— Z s .
g T2 uemp-my
KT ot Tup) =MATHT) =T, (27
ith
" s ME M
f1=12—8—2+4—2+—4, (2.12
iy HEf, gw Z\ . -1 Mz s M3z
To=v(p2)l'g u(p1)Ag(s) Ag(s), (2.9
and f,=3—4a;—
z
m
3II the initial fermions are quarks we must multiply by a factor f;=1+4a;— —+ W(MﬁﬁrZM%),
of 5. z z
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1 mf 1 mf

fa=— 2a$+3af+§ —5 s(4artl)—5 2,

z z
2 ) 9
fs=—|8af—4a;+ 5|,
2

1 i
fo= 2a$+3af+§ Bi+— 8af2—28af+E

2 2

1 m; mZM 2
EM—§(4af+l)— 2

2 (48a2—56a,+3)

2m{
~ (1627 16a,+3) +
s

f m?(l da)+ o
=—(1—4a —
7 M% f M4Z

2

2
m? ,
fg= ?(16af—56af—3)+

1
2| 2a%+3a,+ 5)

m? amf
W(4af 1)—?(16af—16af—1)
z

4
mg

(16a2+56af+1)——+
MZ

2m;"|v|2 am¢

sM2’

where we have defined; = (T!—2Q;s2)2.
The total cross section is given by

ol

where the statistical factor 1/2! is due to the two identi¢al

1
o= —

2!

do

ax (2.13

bosons in the final state. After carrying out the angular inte-

grationo is given by

7 (17;8)( )(

where

Bz

B; ) ( ) [Osst o5t Oyt ot oyt oy,

(2.19

—_ 2.-22
Oss— ZSAOmfIBfflv

2 Vo2
Ost= Ogy= —8AM; f3_Z(IBff2+yf3) ,

Ott=Ouu=™

4 2
TZZ[Z fatyfs+fe]

2
+8f4_ E(f5+ 2yf4)V,

PHYSICAL REVIEW D60 056001

2
o= Z/[Z(Z_ 2y)f7+(y*f7+ fg) V],
and

: (2.19

1 2
~5(1+B)),

and we have used thatm?=
=(s2)(y—zX).

The following comments are now in order:

(i) By virtue of the extensive cancellations described at
the beginning of this section, the resulting expressions for
the differential and total cross sections are particularly com-
pact.

(i) For m;=0 the differential and total cross sections
given above reduce to the expressions given in(Bdp) and
Eq. (3.7) of [17], respectively.

(iii ) Notice that all sub-amplitude§ given in Eq.(2.12
behave at most as constants for lagyerhis is a generic
feature of the PT reorganization of the amplitude, as was
demonstrated first i8] for the case okte =W W

(iv) It is straightforward to verify that in the limig> u?,
wherepu is any of the particle masses in the processniﬁs,.

M2, M3, andM?, we have thatf,=f;=3%f,, fs=0, f,
=—fg andf,=—fg. In that limit we obtain

#
S 1

(s/2)(y+zx) and u— mf

O

Osst OstT Ogy=

oyt ouut ou=8|f4lIn(s/mH)+- - -, (2.16
where the ellipsis denote terms which are at most constants.
Consequently, for largethe total cross section is thfgani-
festly positive quantity

2
™ w

2
16/| ¢*

1 2
= |f4]In(S/ME). (2.17

We see that, as is expected on physical grounds, the
asymptotic behavior of the cross section is determined by the
“genuine” t-and u-channel terms, i.e. theand u-channel
terms remaining after the cancellations of the longitudinal
polarization momenta has been carried out.

(v) The expression foo is identical to the imaginary
(absorptive part of the gauge-invariant set of one-loop self-
energy-like graphs involving two virtué bosons(together
with the corresponding Goldstone bosons and ghadts
rived in [5], given also in Sec. IV of the present paper.

Ill. THE BORN-IMPROVED AMPLITUDE

In this section we will recompute the amplitude for the
process (p1) f(p2)—Z(kq)Z(k,) using a generic parametri-
zation for the width of the Higgs boson, and for th&Z
vertex. This calculation will show quantitatively how the
high energy behavior of the amplitude is altered if the pa-
rametrization of the width and the vertex is kept arbitrary,

056001-4



ASYMPTOTIC PROPERTIES OF BORN-IMPROVED . ..

and the precise role of the WI will be analyzed. In addition it

will be shown that if the PT width and vertex are used, theﬁ(q_)»f

correct high energy behavior will emerge.

In the vicinity of the Higgs boson resonance, i.e. for
~MZ, the amplitudeZs ,, given in Eq.(2.1) diverges, and
must be regulated by introducing a width in the Higgs boson
propagator. In particular we must replace the tree-levgl
by aA of the form

=[s—MZ+iImIl(s)]?, (3.2

where I1(s) is the (appropriately defingdone-loop self-
energy of the Higgs boson. For the purposes of this work it is
convenient to introduce the dimensionless quaritifg) as
follows:

JmlII(s)=sL(s). (3.2

The correct one-loop expressions for the various decay char
nels contributing tdm II(s) have been derived if6] and

are also reported in the next section. However for the pur-
poses of this calculatioh will be treated as an arbitrary
parameter. Similarly, the most general tensorial decomposi-
tion of the HZZ vertex, where the two on-shell are as-
sumed to be contracted with their corresponding polarization
vectors, reads

igywMz qﬂq

GhZ%(a,p.k)= (1+A(9))g9,,+B(s) =~

W

=Ipsi+1e2 (3.3

i

()
G*,G°

oo
\

21/ (kZ)

’
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wt H
P 2N
- - -{I
\\»,l
w- H
(b1) (b2)
c:!: W:I:
Pty
- 4 ‘ - w*
’o.’_a'
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(b4) (c1)
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- S - verH
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A A
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FIG. 2. Diagrams contributing to the one-loop verigf”.

2

where

Notice that in general th€ P-violating form-factor propor-
tional to ewpokpk" may appear in Eq3.3), but it vanishes
at one-loop in the standard modelhe explicit one-loop

expressiongsee Fig. 2 for A andB are also computable by gnd

means of the PT, and will be presented in the next section,
but for the purposes of this section they too will be treated as
arbitrary quantities.

Next we calculate the differential and total cross sections
using the above modified propagator and vertex. The new
differential cross section is obtained from E&.11) after
replacmgMSS, Mg andMg, by the the modified amplitudes

Mcs, Mg, andMy,, respectively, given by

“There are also contributions originating from the one-loop mix-
ing between the Higgs boson and tAéoson. Such contributions
have been treated correctly within the PT framework18,19. It
is easy to verify from the expressions given in E@). of the first
reference if19] that all such mixing contributions are non-resonant
in the entire range of the relevant phase space.
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Mgs= S|A|2mf2:8%’f1 )

st™ |A|2mf[f2:8f 3ZX]
(t—m
282 2~2rF 2., %
su= - |A["m{[T,87+ T3zX], (3.4
(u—mg)
|AIP=[(s—M§)2+s2L2] Y, (3.5
. 2 s
f1=f1+—4(L—R)2—4W[R(A+B)+AL]
Z A
+4(3A%2+ B2+ 2AB),
A 2 S
f=f (1—— +BL+(3—4a)AL— —LR,
MZ
MZ 2
2 H
fa=f (1—— +(1+4af)LR+2—AL
S |\/|Z
> ||R mfZ(R L) (3.9
M2 M2 '
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with Iy .?o(kl) Zwr H y
), . , A
1 < 7 - N ->-(\ ,K\
R=A+ EB' (3.7 hf .-G'o(kz) Zw oo
@ (b) ()
Similarly, the total cross section is given from E@®.14) Ghe e f_ffj L zZ,w* =
after replacingoss, o and o, by os, o, andoy,, re- BN A -~ YHG*
spectively, given by o6 eyt ZwF
N @ (e) 6
Oss=28|A[°miBiT,, HJZ/_,.- G- GEH _,
[l v .
o o A
o= 0sy= —8S|AIPmy| f5— - (B7To 4y o) | (39 o 2 o
(8 (h) ()
Clearly, only the purelys-channel contributions together Go;f, -
with the interference terms are modified, while the “genu- T e
ine” t- andu- channel contributiongbox-like termg remain o
unaffected. G)

It is now obvious from Eq(3.6) that one cannot recover
the correct high energy behavior of the amplitude for generic FIG. 3. Diagrams contributing to the one-loop verfé#¢°c’.
values of the functiong, A, andB. For example, even if we
choose the., A, andB such that asymptotically=R, if the ~ We are now in position to study explicitly how the correct
individual L, A, andB grow sulfficiently fast withs the re-  high energy behavior of the Born-improved amplitude is en-
sulting amplitude has the wrong largdimit. Reversing the forced. First of all, by virtue of the first property listed
situation,in generaleven if the individualL, A, andB are  ahove, i.e. because the individual A, andB grow mildly
assumed not to grow faster than constants, unless we als@th s, we only need to show that= R asymptotically. To
have thal. —R, the resulting total cross section will behave see how this comes about, we start with the parametrization
asymptotically at least as a constant, instead of the correcf 1+|zz given in Eq (3.3 and act withk“k? on both sides:

behavior given in Eq(2.17).°
Let us now turn to the, A andB derived within the PP. in the limit S>MZ’ we obtain

Using the PT5] one can reorganize the one-loBpnatrix in ig M, .

such a way as to define Higgs boson and Goldstone boson k’l‘kgf/'jfz= o SR (3.10
self-energieslI(qg?) andHGOGO(qZ) respectively, antHzz v

and HGYG? vertices, FHZZ and THc%° respectively, en- On the other hand, putting th&s on shell in Eq.(3.9) and
dowed with all the |mpl6rtant properties listed in the Intro- using the form oﬂ'[HH(s) given in Eq.(3.1), we have that
duction. In particular(i) asymptotically_ goes to a constant,

whereasA andB grow logarithmically(this has been estab- k’fk;l:l'jfz—
lished in[5] and is also studied in detail in the next sec}ion

ng

0 - 0~0
[L s+2118°¢°(M2)]— M2rHe’e’,

(i) they are related by the following tree-level Wi (3.1
_ Setting
KAk THZZ 4 M2THE60 = 'gwM2
1728wy z 2c [HGGO_ gW ZA
w r D( S), (3.12

X [11(g?) +118°°(k2) . . :
we obtain after equating the left-hand sides of 8310 and

+1187°(K2)1. 3.9 Ea.31Y

ﬁ—£=§[2HG°G°(M§)—M§6(3)]. (3.13
5A physically relevant counter-example is the case whiereB
=0 andL = constk, which will be studied at the end of this section. Thus, the role of the WI is to supply this last relation; how-
®In what follows we will use “hats” to indicate all such quanti- ever, no additional information about the high energy behav-
ties. ior of either side of Eq(3.13 is provided.
"To see that Eq(3.9) has indeed the same form as its tree-level  The next important step is to establish that the terms in-
counterpart notice that fo,fHZZ IHZZ 11(g?)—(q?—M2),  side the parenthesis on the left-hand side of Bdl3 grow

O/.w ’ . . .
[FHG%GO_, FHG g, M M2/2c,,, andTTS°C°(M2)—M2 one re- at most logarithmically for large values afindeed, to begin

covers the WI of Eq(2.2). with, f[GOGO(ME) is a constant, independent ef On the
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other hand,lﬁ(s) has a non-trivial dependence snusing theless recovered; in the second case the WI is satisfied, but

the diagrams of Fig. 3, together with the Feynman ruIesFhe h'gg e?ert%y behawo;] IS d|stortedt. T?e fgtsr: (_axamp(lje.cotrr;
given in[20]® and Eq.(A6) in the Appendix, one can verify responds 1o the case where a constant wi IS used In the

Born-improved amplitude, i.e. the Higgs boson width has the

that form Jmll=Z,c; 0(s—4Mi2), where the coefficients; are
f)(s)~ In(s/p?)+ - -, (3.14 constants, independent sf their exact expressions may be
obtained from Eq(4.1) by settings=Mﬁ. In addition we
and thus, from Eq(3.13 make the simplest assumption for the vertex, nanfetyB
o =0; clearly, such an assumption violates the WI given in Eq.
R—L=0+0(stIn(s/u?)). (3.19  (2.2. For large values o§ we than have thabmlIl==,c;

_ _ . i =c. In that case we have that=c/s and the corresponding
As mentioned before, this last relation is crucial for re- . P o
expressions for thé,, f,, andfs reduce to

covering the correct asymptotic behavior for the amplitude.
Indeed, in the limits> w2, settingL=R in Eq. (3.13 yields

f=f ¢ f f@ Mﬂ
. . =Tt y T=T0 11— —,
fy=—8—(1+R)+---, Mz s
A
Mg\ ¢ m?
R s . : _Hy 2 T
fZZ_W(l‘I‘Rz)‘l‘"', f3—f3(1 S>+M§ s (31&

So, in the limit of larges we recover the correct asymptotic

fa=-— W(lJ“ R%)+ . (316 relation for thef,;, and therefore for the entire cross section.
Of course, the use of a constant width is known to be prob-
Thus, as happens in the non-resonant case of the previol%m_atic _for other reasons, for example the fact fchat it leads to
sectionf.=f.— 7. and therefore a violation of the optical theorerf23] (for details see the
277878l second paper d#]).
Fot Gt Foy=O(s~Hn(s/ p2)). (3.17) _ '_I'he second case pertains to the unita_ry gatige £—
limit of the renormalizableér, gauges In this gauge the WI

We are now in a position to fully appreciate the role of theof Eq. (3.9) is satisfied by the conventional two and three
WI. Even though asymptoticalll goes to a constant, point functior.\s,. befqre resorting_to the PT algoritthgd];
whereasA andB grow logarithmically(a fact which, without however, their imaginary parts display a strong dependence

additional information, would make us infer that the high on s. For example the running width corresponding Eg) two
: . . . virtual W bosons in the unitary gauge is given bynll

energy behavior of the amplitude would be distoytddli- " 2IM2Y)(S2— A4S M2+ 12M 4 d so for larges we

cate cancellations make the crucial quantlty(R) energeti- (G7/Muy)(s S Mw w), and so, for larges w

2/\ 2 - starti
cally suppressed. Thus, cancellations taking place on the lefiave that.~(g/My,)s, which leads to a gross distortion of
hand side of Eq.(3.13, whose study would necessitate the high energy behavior of the Born-improved amplitude.

explicit knowledge ofl, A and B, are directly encoded in

the D appearing on the right-hand side. IV. EXPLICIT REALIZATION IN THE PINCH
The conclusion of this analysis is that by virtue of the TECHNIQUE FRAMEWORK

one-loop Ward identitiesand the good individual high-

enerav behavior of the PT one-loop Green’s functions the In this section we will show explicitly that the PT self-
9y . P L . energies and vertices satisfy the required relations at high
tree-level and Born-improved amplitudes coincide suffi-

ciently far away from the resonance region. energies. In particular we will prove the validity of Eq.

We end this section by studying the behavior of the Born—(g'13 without resorting to the W1 of Eqt3.9) as we did in

. : X . the previous section, but instead by showing directly that, for
improved amplitude for two different choices for the param- i P ) i ;

etersA, B andL; these choices are not just arbitrary math-2Symptotic values o, L=R. This calculation constitutes a
ematical examples, but have instead a rather well-knowion-trivial test of the entire construction; for practical pur-
field-theoretical origin. In the first case the WI is violated but POSeS it is essential, given the fact that the Green's functions

the correct high energy behavior of the amplitude is nonel€lated to the unphysical Goldstone bosons, while they are
crucial for realising the WI of Eq(3.9), do not explicitly

appear in the actual computation of the cross section. Indeed,

he onl ntities which rin EG.6) are theA, B
8Here we are using the well-known fg@1] that at one-loop the the ? y quantities ch appea @.6) are theA, B,

~ ~ ~0~0
PT effective Green’s functions coincide with the conventional@andL, but not theD of Eq. (3.12) nor thell1® ¢,

(gauge-fixing-parameter-depende@teen’s functions of the back- We next proceed with the explicit calculation. The partial
ground field method, for the special valgg= 1. This correspon- running widths for the Higgs boson have been first calculated
dence does not persist beyond one 1629). at one-loop in5]; they are given by
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4 2 2
~ ay, My w W 2 LA 2ay M W—(W\M
= —+ ——— — = — ——
ImII ) (S) 16 MZ 1+4— a 4Mﬁ(25 3My) iA1= - M4 By
X BwO(s— AM?2 W)
LA ay 3 MH
iA b2y = —B{",
Mﬁ § § ) (027 16m 2 2,
:iml'[(zz)(s) 2 1+4——4—>-(2s—-3M32)
Mk H 5
M3 M
X B20(s—4M3), iAo Sw i W | gww
Bz 2 A3 =~ Tgr | | 17 +2 2M§ 1) B
~ N Gw mF2: 3 2 2 2
JmH(FF)(S)_NF?M_ZSﬂFH(S_4mF)v +1 My Mz 522
" 2lwg, 2w %)
W W
R M2
IM 414)(S) = 5 —2 BrO(s—4M?Z). (4.1)
A= — M4

In the above formula we denote lythe various fermionic
flavors appearing inside the quantum loops, ikE.
e{e,u,7u,d,c,s,t,b}. Np=1 for leptons, and\N=3 for
quarks. In the case of a heavy Higgs boson the channels
which dominate numerically are th& W, ZZ andtt . From

the above expressions we can extract the dimensionless
quantitiesL WW, (2 [(FF) and L(HM according to the
definition of Eq.(3.2); in the limit of larges they will be
simply the coefficients multiplying in the expressions given
on the right-hand side of Ed@4.1).

The absorptive form factors andB of theHZ Z one-loop
vertex are obtained from the graphs shown in Fig. 2, using
the Feynman rules d20], and can be expressed in terms of
the standard Passarino-Veltman one-loop integrag as
given in[26]. For on shell externaZ bosons the arguments
of the C functions appearing in the calculation

N 2a, MY, — _
Ay == G TACH"+ (s—2m) Cf™™),
z

aWM\ZN_

iAoy +iA g =— — —sCY,

7T|\/|§
4

M2 _
ZHZ
2 C6 )]-
W

2M2,CEVWW

PN Ay
A= 24

iA(CS): IA(CG): 0,

are C(MZ,MZ,s,;m?.m?,mf), where m;, m; are the a
masses of the partlcles inside the triangle, 'A(c7) 2(M3 +2MW)C(WW‘M
(iji) e {(FFF),(WWW,(ZHZ),(HZH)}. We will use the 8
shorthand notation where the first thieemmon arguments )
will be suppressed, and the remaining three masses will be » My <(HZH)
. +3M37—-Cy
denoted as a superscript, |é:(MZ,MZ smI ,m m) M\ZN
=), Similarly, for theB, functions we use the shorthand
notationBy(s,m; ,m;)=B{" . Finally, a “bar” over B, and ) 2/
C indicates that only their absorptive part has been consid- iAo Sw 2M——1 %+2 clwww
ered. The individual diagrams yi€ld " 4|\ “Mm2 2 24
2 2 2
1/ M M
A= N,:8 1 ag[spa(CY T +2C ) +| —+2—— |CEHD
M 2\Mi M,
M2
8071+ 5 [(82+ 2600 + 3 Migman|
2 M3
+2sp2Cl P — c(ziFF)]}, (4.2) \é
PN N day, My
IA(C9)+ |A(clO): - T W (Z\QVW\M
z

9The closed expression for the PT absorptive form factoend

B have been presented first[if], but here we correct several mis-  The individual contributions to thd form factor are
prints. given by
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2
Hw m—;s ag[3CFFP +4cFP
MW

|B(a)=_N|:E

_ 1
—4CFP+ S [CEFP - 4T,

Ié(bl)zlé(bZ):Ié(bS):Ié(b4):|B(C4):|é(C7)
:0'

B 4ay Miy CIWWW 5 (WWW
IB(Cl):_TSW[chz +2C23
z

+C,

2a, M7—
B R __Tmw WIS (www
|B(02)+|B(C3)— p SM§C11 f

iBes)+iB Aw

| | = — — —

(c5) (c6) 2
2 M2

2(2My—M3)CHWW

4
Z ~(ZHZ
_ _Zc(lz )

w
2
IVIW

MZ

. Ay
IB(CS): — —§|

4 !

2 2
M
My

X (™™ +Chg™™)

MZ M2
—2+2—2
MW MW

+ =

. (E(ZHZ)+6(2§HZ))

12

2
T
D e+ o)

w

3M
2 M

A N 4ay, MCV ~(Ww ~(WW
1B(co)+1B(c10)= —— s— [CIHMW+chyW.
VA

4.3
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as one may easily verify using the formulas presented in the
Appendix. Thus we arrive at the following limits for the

variousR:

2 2
REFA N, 2 e gter 0w T8 ey

87 M2, ° 8 M2,

ROvww_, - Swgiww_, W p ww,
2 2

@, M2 ay M3
@(ZHZ)_)__W_ZZ§E)ZZ)_>__W_ZZ:|:(ZZ),
4 MZ, 4 M2,

R(MHZH)_, 0= L(HH), (4.6

This is the announced result. We notice that all necessary
cancellations which lead to the desired result take place
channel by channel, as one would expect on physical
grounds. It is also important to emphasize that the explicit

expressions for thé, A andB derived in this section allow
for a detailed study of the amplitude for the entire rangs, of
and not only asymptotically, as we have done here.

V. CONCLUSIONS

In this paper we have we shown that within the PT resum-
mation formalism the resonant and asymptotic regions of
processes with gauge bosons in the final state can be de-
scribed correctly and connected to each other smoothly by
means of a single Born-improved amplitude. In particular,

using the resonant proce$$—ZZ as a reference process,
we have studied in detail the mechanism which enforces the
correct high-energy behavior of the Born-improved ampli-
tude, and we have shown how this mechanism is in fact
automatically (but non-trivially) realized in the PT frame-
work. This provides an additional self-consistency check for
the resummation formalism based on the PT.

An important by-product of this analysis is that explicit
closed expression for the differential and total cross sections
of the procesd$ f—ZZ have been computed, both at the tree
level and in the Born-improved approximation. For the latter
case the generic form of the amplitude for arbitrary self-

In deriving the above results we have also used the idensnergy and vertex corrections has been reported, as well as

tity

o+ Y+ S =o. 44

From the Eq.(4.2) and Eg.(4.3) we may collect the total
contribution of each separate channeAtandB, which will
be denoted byAll) and B(1"); using the definition in Eq.
(3.7) we may then construct the correspondR¢"). In or-

the specific corrections obtained from the PT effective

Green’s function. Of course, iMy>2M; the channelf f
—W*"W~ will be also relevant; however, the analysis pre-
sented in this paper may be carried out straightforwardly to
the latter process, with the additional technical complications
of computing theZ and v mediated background.

In the present work we have only treated the case where
the (two) gauge bosons appeared in the final state. The above

der to determine their asymptotic behavior, we must use thatonsiderations may be generalized to the case where both

in the limit of larges

S j — . 1.
S~ - B, W B, - B,

3

N

(4.9

incoming and outgoing particles are gauge bosons. The
W-fusion sub-proces8VW—ZZ for example has been re-
cently studied for the case of off-shélW’s [27]; it was
shown how the tree-level PT rearrangement of the process
qg—qqZZ restores the good high energy behavior of the
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my Bo(g2m2m?) = w0(q2—4m?) 5. (A2)

The imaginary parts o€, in the general case are given by
(Fig. 4b

— T
Co= 0(a— (M +mg) A~ %(aF, M5, M3)

(@) ma *
L —mj
XIn| =——|+c.p., (A3)
pp — M

with

. 1
pi =M+ ms——5[(ai+ M3~ M3)(qi+m5—m3)
1

(b) ST +\M%(g2,M3,MHN\(qZ,m3,m3)], (A4)

FIG. 4. The absorptive parts of the three-point function. and the abbreviation c.p. means cyclic permutation with re-
spect to 1, 2, 3.

aforementioned sub-process, thus solving a long-standing For the particular channels appearing in our calculations
problem[28]. Based on the analysis presented here one exye have
pects that the results established 2] will persists after the
one-loop PT corrections necessary for regulating the T 1
W-fusion amplitude near the Higgs boson resonance have CgWWV\b:__
been included. 2 SBz

Given the explicit results for the proce$s—ZZ pre-
sented in this paper one could carry out a detailed study of —(FFF)_zi
the standard model Higgs boson line shape, obtained from O 25sB,
the above process. Such a study could be of potential interest
in the context of a muon-collider, for example, but is beyond

6(s—4M3)In

1+ﬁ%—2Bzﬂw)
1+ B5+2B28w/

6(s—4m2)In

1+p2— 2ﬂzﬁF)
1+ B5+2B2B¢)

2
the scope of the present paper. EgHZH):Zia(s—4Mﬁ)In 1+Bh—2B2Bn |
2 sp; 1+ B4+ 28284
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APPENDIX: ABSORPTIVE PARTS OF THE B, AND C clin= — T 9(3—4'\4?)}'”(5/'\/'?)- (AB)
FUNCTIONS 2 S

In this appendix we list some formulas which are usefulginally, using the formulas df26], the exact expressions for
when computing the absorptivénaginary parts of theBy  the remainingC functions are given by
andC functions.

For the imaginary part of th8, function we have(Fig. - 1 -
43) Cgl;FF):_Z(MgchFF)_ggFF)),
SBz

— 1

BO(qz’mi’mg):_zwe[qz_(ml"'mz)z])\llz(qz,mi,mg), ~(FFR)_ 1 4/ap2 2 2,012 2

a Cis 233—34([2'\/|z(|\/|z—4mp)+23MZ(MZ+3mF)
z

(A1)
where\(x,y,z) =(x—y—2)?—4yz. In the cases studied in —s2(M2+m?)]CFP
this paper we have always;=m,=m, and the above for-
mula reduces to +(2M7-3sMz+5%)BF D),

056001-10



ASYMPTOTIC PROPERTIES OF BORN-IMPROVED . ..

_ 1 1 1 _
(FFF):_ 2012 "4 (FFF)
cy, SB%([ZmFMZ >M7 2sm§ C§
1 2 |R(FF)
+ ZS_EMZ Bg , (A7)
1 _
Cly "= —5 (MZCE™ —BG"™),
z
CHWW=—— ([(2M3(M3—4M3) +2sMZ(M3
s°B;
+3M32)—s?(M2+M2)]CivWW
+[2M%—3sM2+s21BMVW),
WW\M: 2M2M2_ M4_ESM2 C(WWV\)
24 5,8% z'"V'WwW 2 Z 2 W 0
1 1
+ ZS—§M§ ggww)), (A8)

~(ZHZ
C(lZ = —

z
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_ 1
C%HZ):@([ZMﬁMﬁ(Mﬁ—4M§)+25Mﬁ(5M§
z

—M7) - 2s?MZ1CEHA
+(s=M2)(s—4MZ+2M7)BY?),

_ 1 1 1
C(ZiHZ)=S—2(Ma 2M§—EM|2_|—§S

z

EBZHZ)

1 5 5 1
+§MH_MZ+ZS

37023) : (A9)

— 1 —
Cha™= gz (AM2-MR)CE=-BY™),
z

=(HZH) _
Sy -

+— (2MIME(ME—4M3)
s°B7
+2s(2M2MZ+3M3—M},)
+s%(M§—3M2) ]t
+(s—M2)(s—2m3)B{H),
1

Mﬁ—ismg

N[ =

. 2M2M2 - cHz)

— 1
S
sBz

1 2
+ ZS_ EMH 0 (A10)
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