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Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state
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Theory Division, CERN, CH-1211 Geneva 23, Switzerland
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For processes with gauge bosons in the final state we show how to continuously connect with a single
Born-improved amplitude the resonant region, where resummation effects are important, with the asymptotic
region far away from the resonance, where the amplitude must reduce to its tree-level form. While doing so all
known field-theoretical constraints are respected, most notably gauge invariance, unitarity and the equivalence

theorem. The calculations presented are based on the processf f̄˜ZZ, mediated by a possibly resonant Higgs
boson; this process captures all the essential features, and can serve as a prototype for a variety of similar
calculations. By virtue of massive cancellations the resulting closed expressions for the differential and total
cross sections are particularly compact.@S0556-2821~99!08213-2#

PACS number~s!: 11.10.Jj
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I. INTRODUCTION

The physics of unstable particles in general@1# and the
computation of resonant transition amplitudes in particu
@2# has attracted significant attention in recent years, beca
it is both phenomenologically relevant and theoretically ch
lenging. The main theoretical difficulty arises from the fa
that in the context of non-Abelian gauge theories the st
dard Breit-Wigner resummation used for regulating physi
amplitudes near resonances is at odds with gauge invaria
unitarity, and the equivalence theorem@3#. Consequently, the
resulting Born-improved amplitudes in general fail to captu
faithfully the underlying dynamics.

A solution to this problem has been accomplished at
one-loop level@4,5# by resorting to the reorganization of pe
turbation theory implemented by the pinch technique~PT!
@6,7#. The resummation formalism based on the lat
method satisfies a set of crucial physical requirements,
provides a self-consistent framework for dealing with re
nant transition amplitudes. The main thrust of this diagra
matic method is to exploit the properties built into physic
amplitudes in order to construct off-shell Green’s functio
with the following properties:~i! they are independent of th
gauge-fixing parameter;~ii ! they satisfy naive~ghost-free!
tree-level Ward identities~WI’s! instead of the usua
Slavnov-Taylor identities;~iii ! they display physical thresh
olds only @4#; ~iv! they satisfy individually the optical and
equivalence theorems@4,8,5#; ~v! they are analytic functions
of the kinematic variables;~vi! the effective two-point func-
tions constructed are universal~process-independent! @9#,
Dyson-resummable@4,10#, and do not shift the position o
the gauge-independent complex pole@4,11#.

From the phenomenological point of view the upshot
the above framework is to construct Born-improved amp
tudes in which all relevant physical information has be
encoded. This in turn is useful for the detailed study of
physical properties of particles, most importantly the corr
extraction of their masses, widths, and line shapes. The
cise measurement of the mass and the width of theW gauge
boson for example is of fundamental physical importance
presentW bosons are produced at the Fermilab Tevat
~singleW production! and at the CERNe1e2 collider LEP2
0556-2821/99/60~5!/056001~12!/$15.00 60 0560
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(W pair-production!, whereas large numbers ofW bosons are
expected to be produced at the CERN Large Hadron Coll
~LHC!. In addition, muon colliders are scheduled to oper
as Higgs factories for intermediate energies of about 5
GeV, and copious amounts of Higgs bosons through reso
s-channel production are expected@12#.

Given the importance of Born-improved amplitudes, o
must study their properties further. One open question in
context is how to connect smoothly resonant with asympto
regions. On physical grounds one expects that far from
resonance the Born-improved amplitude must behave exa
as its tree-level counterpart; in fact, a self-consistent res
mation formalism should have this property built in, i.e. f
from resonance one should recover the correct high ene
behavior without having to re-expand the Born-improv
amplitude perturbatively. Recovering the correct asympto
behavior is particularly tricky however when the final pa
ticles are gauge bosons. In order to accomplish this, in a
tion to the correct one-loop~running! width, the appropriate
one-loop vertex corrections must be supplemented; th
vertex corrections and the width must be related by a cru
tree-level Ward identity. In practice this WI ensures th
massive cancellations which take place at tree-level will s
go through after the Born-amplitude has been ‘‘dressed.’

The need for preserving tree-level Ward identities wh
dealing with gauge bosons in the final state has been em
sized from various points of view in the recent literature.
was pointed out first in@13# in the context of the proces
qq̄8˜ lng, maintaining the electromagnetic gauge inva
ance associated with the outgoing photon necessitates su
WI relating the running~fermionic! width coming from the
W self-energy and theWWg vertex containing a fermionic
triangle. The phenomenological implications of this obser
tion were further studied in@14#, where the complete set o
fermionic corrections was taken into account.1 The non-
Abelian case has been addressed in@4# using the PT; the

1In the fermionic case both the gauge-fixing parameter indep
dence of the result and the preservation of the WI are autom
because these corrections are Abelian-like.
©1999 The American Physical Society01-1
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non-trivial point in this context is to construct one-loop ru
ning widths and one-loop three-boson vertices which are
dependent of the gauge-fixing parameter, and at the s
time satisfy tree-level WI.2 Finally, as was shown in@5#
these WI are crucial for satisfying the equivalence theor
before and after resummation. However, to date it has
been demonstrated explicitly~ i! how the need for maintain
ing the tree-level WI manifests itself at the level of the cro
section, for both Abelian~fermionic! and non-Abelian
~bosonic! corrections,~ii ! what is the precise field-theoretica
mechanism which restores the correct high-energy beha
as we will see in detail, the WI by itself is neither a necess
nor a sufficient condition for recovering the corre
asymptotic behavior, and must be combined with additio
requirements,~iii ! whether the PT algorithm has all afore
mentioned necessary requirements built in it.

In this paper we will address the issues listed above
particular, we will show with detailed analytic calculation
that the Born-improved amplitudes constructed by mean
the PT resummation algorithm not only encodes correctly
effects on and around the resonant but also far from it.
study the above points we will calculate the~resonant! Higgs
boson contributions to the processf f̄˜ZZ. The motivation
for turning to this particular process is three-fold. First, fro
the theoretical point of view this process contains all nec
sary features, without additional technical complications;
example, unlike thef f̄˜W1W2 it does not contain any
non-resonant~non-Higgs boson related! background due to
an s-channelg andZ. Second, the Higgs boson self-ener
and vertex receives contributions from loops containing f
mions, scalars, and gauge bosons. Therefore this proces
serve as a prototype for studying the relevant issues. Th
the resonant processf f̄˜ZZ may be intrinsically interesting
for muon colliders, if the standard model Higgs boson tu
out to be heavier than 2MZ . Therefore, the exact close
expressions for the Born-improved amplitude presented h
may be useful for studying various properties of this proc
in detail.

The paper is organized as follows: In Sec. II we der
closed expressions for the differential and total cross sect
away from the resonance, and establish their high ene
behavior. In Sec. III we calculate the same cross sect
where we now account for resonant effects; in particular
derive closed expressions for an arbitrary running width a
an arbitrary form of theHZZ vertex compatible with Lorentz
invariance andCP symmetry. We then analyze in detail th
mechanism which enforces the correct high energy beha
of the Born-improved amplitude when the PT width and v
tex are used. In Sec. IV we show how the mechanism of
previous section can be realized explicitly in the PT conte
In Sec. V we present our conclusions. Finally, various use
formulas are presented in an Appendix. Throughout t
work we only consider the absorptive~imaginary! contribu-
tions to the width and the vertex; they constitute the mi

2In the context of the background field method@15# or the axial
gauges@16# only the latter property is guaranteed.
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mum amount of ‘‘dressing’’ necessary in order to regula
the resonant amplitude. The real~dispersive! corrections can
also be included in a systematic way, but this task is bey
the scope of the present work.

II. THE DIFFERENTIAL AND TOTAL CROSS SECTIONS

In this section we present closed expressions for the t
level differential and total cross sections for the proce
f (p1) f̄ (p2)˜Z(k1)Z(k2) and study their behavior in the
limit where the center-of-mass energy is much larger th
any other mass scale. The purpose is twofold:~i! we show
that if the cancellations of the PT are implemented before
calculation the resulting expressions are rather compact;~ii !
based on these closed expressions we can easily establis
behavior of the cross section far from resonance.

The tree-level transition amplitudeTmn for the process
f (p1) f̄ (p2)˜Z(k1)Z(k2) is the sum of ans-, a t-, and au-
channel contribution~Fig. 1!, denoted byTs mn , Tt mn , and
Tu mn , respectively, given by

Ts mn5 v̄~p2!G0
H f f̄u~p1!D0~s!G0mn

HZZ,

Tt mn5 v̄~p2!G0n
Z f f̄ 1

p” 12k” 12mf

G0m
Z f f̄u~p1!,

Tu mn5 v̄~p2!G0m
Z f f̄ 1

p” 12k” 22mf

G0n
Z f f̄ u~p1!. ~2.1!

Here, s5(p11p2)25(k11k2)2 is the center-of-mass

energy squared, G0mn
HZZ5( igwMZ /cw)gmn , G0

H f f̄

52 igwmf /(2MW) and G0m
Z f f̄52 igw /(2cw) gm @Tz

f(12g5)

22Qfsw
2 ], with cw5A12sw

2 5MW /MZ , are the tree-level

HZZ, H f f̄ andZ f f̄ couplings, respectively,Qf is the elec-
tric charge of the fermionf, andTz

f its z-component of the
weak isospin. Away from the resonance the propagator
the Higgs boson is given by the usual tree-level express
D0(s)5(s2MH

2 )21. For on shell Z bosons, i.e.,k1
25k2

2

5MZ
2 , the vertexG0mn

HZZ satisfies the following WI:

k1
mk2

nG0mn
HZZ5

igwMZ

2cw
@D0

21~s!1~MH
2 22MZ

2!#, ~2.2!

which, as we will see, controls the high energy behavior
the tree-level amplitude.

The Mandelstam variablest andu are given by

FIG. 1. The Born-improved amplitude for the processf f̄˜ZZ.
1-2
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t5~k12p1!25~p22k2!252 1
4 ~bZ

21b f
222zx!s,

u5~k12p2!25~p12k2!252 1
4 ~bZ

21b f
212zx!s,

~2.3!

wherex[cosu is the center-of-mass scattering angle, an

bZ5A12
4MZ

2

s
, b f5A12

4mf
2

s
, z5bZb f .

~2.4!

The squared matrix elementuMu 2̄ averaged over initial
and final polarization states is given by

uMu25
1

4 (
s1 ,s2

@ ȳTmnu#S gmm82
k1

mk1
m8

MZ
2 D S gnn82

k2
nk2

n8

MZ
2 D

3@ ūTm8n8
† y#, ~2.5!

and the unpolarized differential cross section for leptons
the initial state3 reads

ds

dx
5

1

32p

bZ

b f

1

s
uMu2. ~2.6!

For the actual calculation it is convenient to writeuMu 2̄ as
the sum of six sub-amplitudes distinguished by their dep
dence on the three Mandelstam variabless, t, andu. In car-
rying out this decomposition we follow the method e
plained in detail in @8#; in particular, we carry out
analytically a large number of cancellations between te

originating from the longitudinal piecesk1
mk1

m8/MZ
2 and

k2
nk2

n8/MZ
2 appearing on the left-hand side of Eq.~2.5!. These

cancellations are carried out systematically by resorting
the PT reorganization of the amplitude, i.e. we use the tr
level Ward identity obeyed by the amplitude in order to e
tracts-channel-like pieces fromt andu graphs, which cance
against analogous contributions coming from the us
s-channel graph. Specifically, we start from the followin
elementary WI satisfied by the two sub-amplitudes:

k1
mk2

nTs mn5Ts1TP ,

k1
mk2

n~Tt mn1Tu mn!5MZ
2~Tt1Tu!2TP , ~2.7!

with

TP5 v̄~p2!G0
H f f̄u~p1!D0~s!S igwMZ

2cw
DD0

21~s!, ~2.8!

and

3If the initial fermions are quarks we must multiply by a fact
of 1

3 .
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Ts5 v̄~p2!G0
H f f̄u~p1!D0~s!S igwMZ

2cw
D ~MH

2 22MZ
2!,

Tt5 v̄~p2!G0
G0f f̄ 1

p” 12k” 12mf

G0
G0f f̄u~p1!,

Tu5 v̄~p2!G0
G0f f̄ 1

p” 12k” 22mf

G0
G0f f̄u~p1!, ~2.9!

where GG0f f̄52gw(mf /MW)Tz
fg5 is the coupling of the

neutral Goldstone bosonG0 to the fermions. Then, by addin
both parts of Eq.~2.7! we see that theTP terms cancel on the
right-hand side~RHS! and we are left exactly with what on
expects from the~generalized! equivalence theorem@5#.

After carrying out the above cancellations, a straightf
ward calculation shows that the differential cross sect
reads

ds

dx
5S p

64D S aw
2

cw
4 D S bZ

b f
D S 1

sD @Mss1Mst

1Msu1Mtt1Muu1Mut#, ~2.10!

whereaw5gw
2 /(4p), and

Mss5sD0
2mf

2b f
2f 1 ,

Mst5
2s

~ t2mf
2!

D0mf
2@ f 2b f

22 f 3zx#,

Msu5
2s

~u2mf
2!

D0mf
2@ f 2b f

21 f 3zx#,

Mtt5
1

2

s2

~ t2mf
2!2

@ f 4z2x22 f 5zx1 f 6#,

Muu5
1

2

s2

~u2mf
2!2

@ f 4z2x21 f 5zx1 f 6#,

Mut5
1

2

s2

~u2mf
2!~ t2mf

2!
@ f 7z2x21 f 8#, ~2.11!

with

f 151228
s

MZ
2

14
MH

2

MZ
2

1
MH

4

MZ
4

, ~2.12!

f 25324af2
s

MZ
2

,

f 35114af2
s

MZ
2

1
mf

2

MZ
4 ~MH

2 12MZ
2!,
1-3
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f 452S 2af
213af1

1

8D2
1

2

mf
2

MZ
2 ~4af11!2

1

2

mf
4

MZ
4

,

f 55
mf

2

s S 8af
224af1

9

2D ,

f 65S 2af
213af1

1

8DbZ
21

mf
2

s S 8af
2228af1

5

2D
1

1

2

mf
2

MZ
2 ~4af11!2

mf
2MZ

2

s2
~48af

2256af13!

2
2mf

4

s2
~16af

2216af13!1
1

2

mf
4

MZ
4

2
2mf

4

MZ
2s

,

f 75
mf

2

MZ
2 ~124af !1

mf
4

MZ
4

,

f 85
mf

2

s
~16af

2256af23!1
16MZ

2

s S 2af
213af1

1

8D
1

mf
2

MZ
2 ~4af21!2

4mf
4

s2
~16af

2216af21!

2
2mf

2MZ
2

s2
~16af

2156af11!2
mf

4

MZ
4

1
4mf

4

sMZ
2

,

where we have definedaf5(Tz
f22Qfsw

2 )2.
The total cross section is given by

s5
1

2!E21

1

dxS ds

dxD , ~2.13!

where the statistical factor 1/2! is due to the two identicaZ
bosons in the final state. After carrying out the angular in
grations is given by

s5S p

128D S aw
2

cw
4 D S bZ

b f
D S 1

sD @sss1sst1ssu1s tt1suu1sut#,

~2.14!

where

sss52sD0
2mf

2b f
2f 1 ,

sst5ssu528D0mf
2F f 32

V

2z
~b f

2f 21y f3!G ,
s tt5suu5

4

y22z2
@z2f 41y f51 f 6#

18 f 42
2

z
~ f 512y f4!V,
05600
-

sut5
2

zy
@z~z22y! f 71~y2f 71 f 8!V#,

and

y52
1

2
~11bZ

2!, V5 lnUy1z

y2zU, ~2.15!

and we have used thatt2mf
25(s/2)(y1zx) and u2mf

2

5(s/2)(y2zx).
The following comments are now in order:
~i! By virtue of the extensive cancellations described

the beginning of this section, the resulting expressions
the differential and total cross sections are particularly co
pact.

~ii ! For mf50 the differential and total cross section
given above reduce to the expressions given in Eq.~3.5! and
Eq. ~3.7! of @17#, respectively.

~iii ! Notice that all sub-amplitudesf i given in Eq.~2.12!
behave at most as constants for larges. This is a generic
feature of the PT reorganization of the amplitude, as w
demonstrated first in@8# for the case ofe1e2

˜W1W2.
~iv! It is straightforward to verify that in the limits@m2,

wherem is any of the particle masses in the process, i.e.mf
2 ,

Mz
2 , MW

2 , and MH
2 , we have thatf 25 f 35 1

8 f 1 , f 550, f 4

52 f 6 and f 752 f 8. In that limit we obtain

sss1sst1ssu5OS m2

s D ,

s tt1suu1sut58u f 4u ln~s/mf
2!1•••, ~2.16!

where the ellipsis denote terms which are at most consta
Consequently, for larges the total cross section is the~mani-
festly positive! quantity

s5S p

16D S aw
2

cw
4 D S 1

sD u f 4u ln~s/mf
2!. ~2.17!

We see that, as is expected on physical grounds,
asymptotic behavior of the cross section is determined by
‘‘genuine’’ t-and u-channel terms, i.e. thet-and u-channel
terms remaining after the cancellations of the longitudi
polarization momenta has been carried out.

~v! The expression forsss is identical to the imaginary
~absorptive! part of the gauge-invariant set of one-loop se
energy-like graphs involving two virtualZ bosons~together
with the corresponding Goldstone bosons and ghosts! de-
rived in @5#, given also in Sec. IV of the present paper.

III. THE BORN-IMPROVED AMPLITUDE

In this section we will recompute the amplitude for th
processf (p1) f̄ (p2)˜Z(k1)Z(k2) using a generic parametri
zation for the width of the Higgs boson, and for theHZZ
vertex. This calculation will show quantitatively how th
high energy behavior of the amplitude is altered if the p
rametrization of the width and the vertex is kept arbitra
1-4
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and the precise role of the WI will be analyzed. In addition
will be shown that if the PT width and vertex are used, t
correct high energy behavior will emerge.

In the vicinity of the Higgs boson resonance, i.e. fors
;MH

2 , the amplitudeTs mn given in Eq.~2.1! diverges, and
must be regulated by introducing a width in the Higgs bos
propagator. In particular we must replace the tree-levelD0
by a D of the form

D5@s2MH
2 1 iImP~s!#21, ~3.1!

where P(s) is the ~appropriately defined! one-loop self-
energy of the Higgs boson. For the purposes of this work
convenient to introduce the dimensionless quantityL(s) as
follows:

ImP~s!5sL~s!. ~3.2!

The correct one-loop expressions for the various decay c
nels contributing toIm P(s) have been derived in@5# and
are also reported in the next section. However for the p
poses of this calculationL will be treated as an arbitrar
parameter. Similarly, the most general tensorial decomp
tion of the HZZ vertex, where the two on-shellZ are as-
sumed to be contracted with their corresponding polariza
vectors, reads

Gmn
HZZ~q,p,k!5

igwMZ

cw
F „11A~s!…gmn1B~s!

qmqn

q2 G
5G0mn

HZZ1Ĝmn
HZZ . ~3.3!

Notice that in general theCP-violating form-factor propor-
tional to emnrsk1

rk2
s may appear in Eq.~3.3!, but it vanishes

at one-loop in the standard model.4 The explicit one-loop
expressions~see Fig. 2! for A andB are also computable b
means of the PT, and will be presented in the next sect
but for the purposes of this section they too will be treated
arbitrary quantities.

Next we calculate the differential and total cross sectio
using the above modified propagator and vertex. The n
differential cross section is obtained from Eq.~2.11! after
replacingMss, Mst andMsu by the the modified amplitude
M̂ ss, M̂ st , andM̂su , respectively, given by

4There are also contributions originating from the one-loop m
ing between the Higgs boson and theZ boson. Such contributions
have been treated correctly within the PT framework in@18,19#. It
is easy to verify from the expressions given in Eq.~6! of the first
reference in@19# that all such mixing contributions are non-resona
in the entire range of the relevant phase space.
05600
t
e
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n,
s

s
w

M̂ss5suDu2mf
2b f

2 f̂ 1 ,

M̂ st5
2s2

~ t2mf
2!

uDu2mf
2@ f̂ 2b f

22 f̂ 3zx#,

M̂ su5
2s2

~u2mf
2!

uDu2mf
2@ f̂ 2b f

21 f̂ 3zx#, ~3.4!

where

uDu25@~s2MH
2 !21s2L2#21, ~3.5!

and

f̂ 15 f 11
s2

MZ
4 ~L2R!224

s

MZ
2 @R~A1B!1AL#

14~3A21B212AB!,

f̂ 25 f 2S 12
MH

2

s D 1BL1~324af !AL2
s

MZ
2

LR,

f̂ 35 f 3S 12
MH

2

s D 1~114af !LR12
mf

2

MZ
2

AL

2
s

MZ
2

LS R2
mf

2

MZ
2 ~R2L !D , ~3.6!

-

t

FIG. 2. Diagrams contributing to the one-loop vertexĜmn
HZZ .
1-5
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with

R[A1
1

2
B. ~3.7!

Similarly, the total cross section is given from Eq.~2.14!
after replacingsss, sst and ssu by ŝss, ŝst , and ŝsu , re-
spectively, given by

ŝss52suDu2mf
2b f

2 f̂ 1 ,

ŝst5ŝsu528suDu2mf
2F f̂ 32

V

2z
~b f

2 f̂ 21y f̂3!G . ~3.8!

Clearly, only the purelys-channel contributions togethe
with the interference terms are modified, while the ‘‘gen
ine’’ t- andu- channel contributions~box-like terms! remain
unaffected.

It is now obvious from Eq.~3.6! that one cannot recove
the correct high energy behavior of the amplitude for gene
values of the functionsL, A, andB. For example, even if we
choose theL, A, andB such that asymptoticallyL5R, if the
individual L, A, and B grow sufficiently fast withs the re-
sulting amplitude has the wrong large-s limit. Reversing the
situation, in generaleven if the individualL, A, and B are
assumed not to grow faster than constants, unless we
have thatL˜R, the resulting total cross section will behav
asymptotically at least as a constant, instead of the cor
behavior given in Eq.~2.17!.5

Let us now turn to theL, A andB derived within the PT.6

Using the PT@5# one can reorganize the one-loopS-matrix in
such a way as to define Higgs boson and Goldstone bo

self-energies,P̂(q2) andP̂G0G0
(q2), respectively, andHZZ

and HG0G0 vertices, Ĝmn
HZZ and ĜHG0G0

, respectively, en-
dowed with all the important properties listed in the Intr
duction. In particular,~i! asymptoticallyL̂ goes to a constant
whereasÂ and B̂ grow logarithmically~this has been estab
lished in@5# and is also studied in detail in the next sectio!,
~ii ! they are related by the following tree-level WI7

k1
mk2

nĜmn
HZZ1MZ

2ĜHG0G0
5

igwMZ

2cw

3@P̂~q2!1P̂G0G0
~k1

2!

1P̂G0G0
~k2

2!#. ~3.9!

5A physically relevant counter-example is the case whereA5B
50 andL5const/s, which will be studied at the end of this sectio

6In what follows we will use ‘‘hats’’ to indicate all such quant
ties.

7To see that Eq.~3.9! has indeed the same form as its tree-le

counterpart notice that forĜmn
HZZ

˜Ĝ0mn
HZZ , P̂(q2)˜(q22MH

2 ),

ĜHG0G0
˜G0

HG0G0
5 igwMZMH

2 /2cw , andP̂G0G0
(MZ

2)˜MZ
2 one re-

covers the WI of Eq.~2.2!.
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We are now in position to study explicitly how the corre
high energy behavior of the Born-improved amplitude is e
forced. First of all, by virtue of the first property liste
above, i.e. because the individualL̂, Â, and B̂ grow mildly
with s, we only need to show thatL5R asymptotically. To
see how this comes about, we start with the parametriza

of Ĝmn
HZZ given in Eq.~3.3! and act withk1

mk2
n on both sides;

in the limit s@MZ
2 , we obtain

k1
mk2

nĜmn
HZZ5

igwMZ

2cw
sR̂. ~3.10!

On the other hand, putting theZ’s on shell in Eq.~3.9! and

using the form ofP̂HH(s) given in Eq.~3.1!, we have that

k1
mk2

nĜmn
HZZ5

igwMZ

2cw
@ L̂s12P̂G0G0

~MZ
2!#2MZ

2ĜHG0G0
.

~3.11!

Setting

ĜHG0G0
5

igwMZ

2cw
D̂~s!, ~3.12!

we obtain after equating the left-hand sides of Eq.~3.10! and
Eq. ~3.11!

R̂2L̂5
1

s
@2P̂G0G0

~MZ
2!2MZ

2D̂~s!#. ~3.13!

Thus, the role of the WI is to supply this last relation; how
ever, no additional information about the high energy beh
ior of either side of Eq.~3.13! is provided.

The next important step is to establish that the terms
side the parenthesis on the left-hand side of Eq.~3.13! grow
at most logarithmically for large values ofs. Indeed, to begin

with, P̂G0G0
(MZ

2) is a constant, independent ofs. On the

l

FIG. 3. Diagrams contributing to the one-loop vertexĜHG0G0
.

1-6
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other hand,D̂(s) has a non-trivial dependence ons; using
the diagrams of Fig. 3, together with the Feynman ru
given in @20#8 and Eq.~A6! in the Appendix, one can verify
that

D̂~s!; ln~s/m2!1•••, ~3.14!

and thus, from Eq.~3.13!

R̂2L̂501O„s21ln~s/m2!…. ~3.15!

As mentioned before, this last relation is crucial for r
covering the correct asymptotic behavior for the amplitu
Indeed, in the limits@m2, settingL5R in Eq. ~3.13! yields

f̂ 1528
s

MZ
2 ~11R̂2!1•••,

f̂ 252
s

MZ
2 ~11R̂2!1•••,

f̂ 352
s

MZ
2 ~11R̂2!1•••. ~3.16!

Thus, as happens in the non-resonant case of the prev
section f̂ 25 f̂ 35 1

8 f̂ 1 and therefore

ŝss1ŝst1ŝsu5O„s21ln~s/m2!…. ~3.17!

We are now in a position to fully appreciate the role of t
WI. Even though asymptoticallyL̂ goes to a constant
whereasÂ andB̂ grow logarithmically~a fact which, without
additional information, would make us infer that the hig
energy behavior of the amplitude would be distorted! deli-
cate cancellations make the crucial quantity (L2R) energeti-
cally suppressed. Thus, cancellations taking place on the
hand side of Eq.~3.13!, whose study would necessita
explicit knowledge ofL̂, Â and B̂, are directly encoded in
the D̂ appearing on the right-hand side.

The conclusion of this analysis is that by virtue of t
one-loop Ward identitiesand the good individual high-
energy behavior of the PT one-loop Green’s functions
tree-level and Born-improved amplitudes coincide su
ciently far away from the resonance region.

We end this section by studying the behavior of the Bo
improved amplitude for two different choices for the para
etersA, B and L; these choices are not just arbitrary ma
ematical examples, but have instead a rather well-kno
field-theoretical origin. In the first case the WI is violated b
the correct high energy behavior of the amplitude is no

8Here we are using the well-known fact@21# that at one-loop the
PT effective Green’s functions coincide with the convention
~gauge-fixing-parameter-dependent! Green’s functions of the back
ground field method, for the special valuejQ51. This correspon-
dence does not persist beyond one loop@22#.
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theless recovered; in the second case the WI is satisfied
the high energy behavior is distorted. The first example c
responds to the case where a constant width is used in
Born-improved amplitude, i.e. the Higgs boson width has
form ImP5( iciu(s24Mi

2), where the coefficientsci are
constants, independent ofs; their exact expressions may b
obtained from Eq.~4.1! by settings5MH

2 . In addition we
make the simplest assumption for the vertex, namelyA5B
50; clearly, such an assumption violates the WI given in E
~2.2!. For large values ofs we than have thatImP5( ici
[c. In that case we have thatL5c/s and the corresponding
expressions for thef̂ 1 , f̂ 2, and f̂ 3 reduce to

f̂ 15 f 11
c2

MZ
4

, f̂ 25 f 2S 12
MH

2

s D ,

f̂ 35 f 3S 12
MH

2

s D 1
c2

MZ
4

mf
2

s
. ~3.18!

So, in the limit of larges we recover the correct asymptot
relation for thef̂ i , and therefore for the entire cross sectio
Of course, the use of a constant width is known to be pr
lematic for other reasons, for example the fact that it lead
a violation of the optical theorem@23# ~for details see the
second paper of@4#!.

The second case pertains to the unitary gauge~the j˜`
limit of the renormalizableRj gauges!. In this gauge the WI
of Eq. ~3.9! is satisfied by the conventional two and thr
point functions, before resorting to the PT algorithm@24#;
however, their imaginary parts display a strong depende
on s. For example the running width corresponding to tw
virtual W bosons in the unitary gauge is given byImP (`)

;(g2/MW
2 )(s224sMW

2 112MW
4 ), and so, for larges we

have thatL;(g2/MW
2 )s, which leads to a gross distortion o

the high energy behavior of the Born-improved amplitude

IV. EXPLICIT REALIZATION IN THE PINCH
TECHNIQUE FRAMEWORK

In this section we will show explicitly that the PT sel
energies and vertices satisfy the required relations at h
energies. In particular we will prove the validity of Eq
~3.13! without resorting to the WI of Eq.~3.9! as we did in
the previous section, but instead by showing directly that,
asymptotic values ofs, L̂5R̂. This calculation constitutes a
non-trivial test of the entire construction; for practical pu
poses it is essential, given the fact that the Green’s functi
related to the unphysical Goldstone bosons, while they
crucial for realising the WI of Eq.~3.9!, do not explicitly
appear in the actual computation of the cross section. Ind
the only quantities which appear in Eq.~3.6! are theÂ, B̂,

and L̂, but not theD̂ of Eq. ~3.12! nor theP̂G0G0
.

We next proceed with the explicit calculation. The part
running widths for the Higgs boson have been first calcula
at one-loop in@5#; they are given by

l

1-7
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ImP̂ (WW)~s!5
aw

16

MH
4

MW
2 F114

MW
2

MH
2

24
MW

2

MH
4 ~2s23MW

2 !G
3bWu~s24MW

2 !,

ImP̂ (ZZ)~s!5
aw

32

MH
4

MW
2 F114

MZ
2

MH
2

24
MZ

2

MH
4 ~2s23MZ

2!G
3bZu~s24MZ

2!,

ImP̂ (FF)~s!5NF

aw

8

mF
2

MW
2

sbF
3u~s24mF

2 !,

ImP̂ (HH)~s!5
9aw

32

MH
4

MW
2

bHu~s24MH
2 !. ~4.1!

In the above formula we denote byF the various fermionic
flavors appearing inside the quantum loops, i.e.F
P$e,m,t,u,d,c,s,t,b%. NF51 for leptons, andNF53 for
quarks. In the case of a heavy Higgs boson the chan
which dominate numerically are theWW, ZZ and tt . From
the above expressions we can extract the dimension
quantitiesL̂ (WW), L̂ (ZZ), L̂ (FF), and L̂ (HH), according to the
definition of Eq. ~3.2!; in the limit of large s they will be
simply the coefficients multiplyings in the expressions given
on the right-hand side of Eq.~4.1!.

The absorptive form factorsÂ andB̂ of theHZZ one-loop
vertex are obtained from the graphs shown in Fig. 2, us
the Feynman rules of@20#, and can be expressed in terms
the standard Passarino-Veltman one-loop integrals@25# as
given in @26#. For on shell externalZ bosons the argument
of the C functions appearing in the calculatio
are C(MZ

2 ,MZ
2 ,s,mi

2 ,mj
2 ,mi

2), where mi , mj are the
masses of the particles inside the triang
( i j i )P$(FFF),(WWW),(ZHZ),(HZH)%. We will use the
shorthand notation where the first three~common! arguments
will be suppressed, and the remaining three masses wi
denoted as a superscript, i.e.C(MZ

2 ,MZ
2 ,s,mi

2 ,mj
2 ,mi

2)
[C( i j i ). Similarly, for theB0 functions we use the shorthan
notationB0(s,mi ,mi)[B0

( i i ) . Finally, a ‘‘bar’’ over B0 and
C indicates that only their absorptive part has been con
ered. The individual diagrams yield9

iÂ (a)5NF

aw

8p

mt
2

MW
2 H aF@sbZ

2~C̄0
(FFF)12C̄11

(FFF)!

28C̄24
(FFF)#1

1

4
@s~bZ

212bF
2 !C̄0

(FFF)

12sbZ
2C̄11

(FFF)28C̄24
(FFF)#J , ~4.2!

9The closed expression for the PT absorptive form factorsÂ and

B̂ have been presented first in@5#, but here we correct several mis
prints.
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iÂ (b1)52
2aw

p

MW
4

MZ
4
B̄0

(WW) ,

iÂ (b2)52
aw

16p

3

2

MH
2

MW
2

B̄0
(HH) ,

iÂ (b3)52
aw

16p F S MH
2

MW
2

12D S 2
MW

2

MZ
2

21D 2

B̄0
(WW)

1
1

2 S MH
2

MW
2

12
MZ

2

MW
2 D B̄0

(ZZ)G ,

iÂ (b4)5
aw

p

MW
4

MZ
4
B̄0

(WW) ,

iÂ (c1)5
2aw

p

MW
4

MZ
4 @4C̄24

(WWW)1~s22MZ
2!C̄0

(WWW)#,

iÂ (c2)1 iÂ (c3)52
aw

p

MW
2

MZ
2

sC̄0
(WWW) ,

iÂ (c4)5
aw

4p F2MW
2 C̄0

(WWW)1
MZ

4

MW
2

C̄0
(ZHZ)G ,

iÂ (c5)5 iÂ (c6)50,

iÂ (c7)5
aw

8p F2~MH
2 12MW

2 !C̄0
(WWW)

13MZ
2

MH
2

MW
2

C̄0
(HZH)G ,

iÂ (c8)5
aw

4p F S 2
MW

2

MZ
2

21D 2S MH
2

MW
2

12D C̄24
(WWW)

1
1

2 S MH
2

MW
2

12
MZ

2

MW
2 D C̄24

(ZHZ)

1
3

2

MH
2

MW
2

C̄24
(HZH)G ,

iÂ (c9)1 iÂ (c10)52
4aw

p

MW
4

MZ
4
C̄24

(WWW) .

The individual contributions to theB form factor are
given by
1-8
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iB̂ (a)52NF

aw

4p

mF
2

MW
2

sH aF@3C̄0
(FFF)14C̄11

(FFF)

24C̄23
(FFF)#1

1

4
@C̄0

(FFF)24C̄23
(FFF)#J ,

iB̂ (b1)5 iB̂ (b2)5 iB̂ (b3)5 iB̂ (b4)5 iB̂ (c4)5 iB̂ (c7)

50,

iB̂ (c1)52
4aw

p
s

MW
4

MZ
4 @2C̄12

(WWW)12C̄23
(WWW)

1C̄0
(WWW)#,

iB̂ (c2)1 iB̂ (c3)52
2aw

p
s

MW
2

MZ
2

C̄11
(WWW) ,

iB̂ (c5)1 iB̂ (c6)52
aw

2p

s

MZ
2 F2~2MW

2 2MZ
2!C̄12

(WWW)

2
MZ

4

MW
2

C̄12
(ZHZ)G ,

iB̂ (c8)52
aw

4p
sF S 2

MW
2

MZ
2

21D 2S MH
2

MW
2

12D
3~C̄12

(WWW)1C̄23
(WWW)!

1
1

2 S MH
2

MW
2

12
MZ

2

MW
2 D ~C̄12

(ZHZ)1C̄23
(ZHZ)!

1
3

2

MH
2

MW
2 ~C̄12

(HZH)1C̄23
(HZH)!G ,

iB̂ (c9)1 iB̂ (c10)5
4aw

p
s

MW
4

MZ
4 @C̄12

(WWW)1C̄23
(WWW)#.

~4.3!

In deriving the above results we have also used the id
tity

C̄0
( i j i )1C̄11

( i j i )1C̄12
( i j i )50. ~4.4!

From the Eq.~4.2! and Eq.~4.3! we may collect the tota
contribution of each separate channel toÂ andB̂, which will
be denoted byÂ( i j i ) and B̂( i j i ); using the definition in Eq.
~3.7! we may then construct the correspondingR̂( i j i ). In or-
der to determine their asymptotic behavior, we must use
in the limit of larges

C̄11
( i j i )

˜2
1

s
B̄0

( i i ) , C̄23
( i j i )

˜

1

s
B̄0

( i i ) , C̄24
( i j i )

˜

1

4
B̄0

( i i ) ,

~4.5!
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as one may easily verify using the formulas presented in
Appendix. Thus we arrive at the following limits for th
variousR̂:

R̂(FFF)
˜NF

aw

8p

mF
2

MW
2

B̄0
(FF)

˜

aw

8

mF
2

MW
2

5L̂ (FF),

R̂(WWW)
˜2

aw

2p
B̄0

(WW)
˜2

aw

2
5L̂ (WW),

R̂(ZHZ)
˜2

aw

4p

MZ
2

MW
2

B̄0
(ZZ)

˜2
aw

4

MZ
2

MW
2

5L̂ (ZZ),

R̂(HZH)
˜05L̂ (HH). ~4.6!

This is the announced result. We notice that all necess
cancellations which lead to the desired result take pl
channel by channel, as one would expect on phys
grounds. It is also important to emphasize that the expl
expressions for theL̂, Â andB̂ derived in this section allow
for a detailed study of the amplitude for the entire range os,
and not only asymptotically, as we have done here.

V. CONCLUSIONS

In this paper we have we shown that within the PT resu
mation formalism the resonant and asymptotic regions
processes with gauge bosons in the final state can be
scribed correctly and connected to each other smoothly
means of a single Born-improved amplitude. In particul
using the resonant processf f̄˜ZZ as a reference proces
we have studied in detail the mechanism which enforces
correct high-energy behavior of the Born-improved amp
tude, and we have shown how this mechanism is in f
automatically~but non-trivially! realized in the PT frame-
work. This provides an additional self-consistency check
the resummation formalism based on the PT.

An important by-product of this analysis is that explic
closed expression for the differential and total cross secti
of the processf f̄˜ZZ have been computed, both at the tr
level and in the Born-improved approximation. For the lat
case the generic form of the amplitude for arbitrary se
energy and vertex corrections has been reported, as we
the specific corrections obtained from the PT effect
Green’s function. Of course, ifMH.2MZ the channelf f̄
˜W1W2 will be also relevant; however, the analysis pr
sented in this paper may be carried out straightforwardly
the latter process, with the additional technical complicatio
of computing theZ andg mediated background.

In the present work we have only treated the case wh
the~two! gauge bosons appeared in the final state. The ab
considerations may be generalized to the case where
incoming and outgoing particles are gauge bosons.
W-fusion sub-processWW̃ ZZ for example has been re
cently studied for the case of off-shellW’s @27#; it was
shown how the tree-level PT rearrangement of the proc
qq˜qqZZ restores the good high energy behavior of t
1-9
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aforementioned sub-process, thus solving a long-stan
problem@28#. Based on the analysis presented here one
pects that the results established in@27# will persists after the
one-loop PT corrections necessary for regulating
W-fusion amplitude near the Higgs boson resonance h
been included.

Given the explicit results for the processf f̄˜ZZ pre-
sented in this paper one could carry out a detailed stud
the standard model Higgs boson line shape, obtained f
the above process. Such a study could be of potential inte
in the context of a muon-collider, for example, but is beyo
the scope of the present paper.
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APPENDIX: ABSORPTIVE PARTS OF THE B0 AND C
FUNCTIONS

In this appendix we list some formulas which are use
when computing the absorptive~imaginary! parts of theB0
andC functions.

For the imaginary part of theB0 function we have~Fig.
4a!

B̄0~q2,m1
2 ,m2

2!5
1

q2
pu@q22~m11m2!2#l1/2~q2,m1

2 ,m2
2!,

~A1!

wherel(x,y,z)5(x2y2z)224yz. In the cases studied in
this paper we have alwaysm15m25m, and the above for-
mula reduces to

FIG. 4. The absorptive parts of the three-point function.
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B̄0~q2,m2,m2!5pu~q224m2!b. ~A2!

The imaginary parts ofC0 in the general case are given b
~Fig. 4b!

C̄05
p

2
u„q1

22~m21m3!2
…l21/2~q1

2 ,M2
2 ,M3

2!

3 lnF r1
22m1

2

r1
12m1

2G1c.p., ~A3!

with

r1
65M2

21m3
22

1

2q1
2 @~q1

21M2
22M3

2!~q1
21m3

22m2
2!

6l1/2~q1
2 ,M2

2 ,M3
2!l1/2~q1

2 ,m2
2 ,m3

2!#, ~A4!

and the abbreviation c.p. means cyclic permutation with
spect to 1, 2, 3.

For the particular channels appearing in our calculatio
we have

C̄0
(WWW)5

p

2

1

sbZ
u~s24MW

2 !lnS 11bZ
222bZbW

11bZ
212bZbW

D ,

C̄0
(FFF)5

p

2

1

sbZ
u~s24mF

2 !lnS 11bZ
222bZbF

11bZ
212bZbF

D ,

C̄0
(HZH)5

p

2

1

sbZ
u~s24MH

2 !lnS 11bH
2 22bZbH

11bH
2 12bZbH

D ,

C̄0
(ZHZ)5

p

2

1

sbZ
u~s24MZ

2!lnS 12bH
2

114bZ
22bH

2 D .

~A5!

For larges the above formulas reduce to

C̄0
( i j i )52

p

2
u~s24Mi

2!
1

s
ln~s/Mi

2!. ~A6!

Finally, using the formulas of@26#, the exact expressions fo
the remainingC functions are given by

C̄12
(FFF)5

1

sbZ
2 ~MZ

2C̄0
(FFF)2B̄0

(FF)!,

C̄23
(FFF)5

1

s3bZ
4
„@2MZ

4~MZ
224mF

2 !12sMZ
2~MZ

213mF
2 !

2s2~MZ
21mF

2 !#C̄0
(FFF)

1~2MZ
423sMZ

21s2!B̄0
(FF)

…,
1-10
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C̄24
(FFF)5

1

sbZ
2 S F2mF

2MZ
22

1

2
MZ

42
1

2
smF

2 GC̄0
(FFF)

1F1

4
s2

1

2
MZ

2G B̄0
(FF)D , ~A7!

C̄12
(WWW)5

1

sbZ
2 ~MZ

2C̄0
(WWW)2B̄0

(WW)!,

C̄23
(WWW)5

1

s3bZ
4
„@2MZ

4~MZ
224MW

2 !12sMZ
2~MZ

2

13MW
2 !2s2~MZ

21MW
2 !#C̄0

(WWW)

1@2MZ
423sMZ

21s2#B̄0
(WW)

…,

C̄24
(WWW)5

1

sbZ
2 S F2MZ

2MW
2 2

1

2
MZ

42
1

2
sMW

2 GC̄0
(WWW)

1F1

4
s2

1

2
MZ

2G B̄0
(WW)D , ~A8!

C̄12
(ZHZ)5

1

sbZ
2 ~MH

2 C0
(ZHZ)2B̄0

(ZZ)!,
.

D

05600
C̄23
(ZHZ)5

1

s3bZ
4
„@2MZ

2MH
2 ~MH

2 24MZ
2!12sMH

2 ~5MZ
2

2MH
2 !22s2MH

2 #C̄0
(ZHZ)

1~s2MZ
2!~s24MZ

212MH
2 !B̄0

(ZZ)
…,

C̄24
(ZHZ)5

1

sbZ
2 S MH

2 F2MZ
22
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