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Effects of the supersymmetric phases on the neutral Higgs sector
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By using the effective potential approximation and taking into account the dominant top quark and scalar top
quark loops, radiative corrections to the MSSM Higgs potential are computed in the presence of the super-
symmetricCP-violating phases. It is found that the lightest Higgs scalar remains esse@Rlyen as in the
CP-invariant theory whereas the other two scalars are heavy and do not have defngmperties. The
supersymmetri€P-violating phases are shown to modify significantly the decay rates of the scalar to fermion
pairs.[S0556-282199)08113-9

PACS numbe(s): 12.60.Jv, 11.30.Er, 12.60.Fr

[. INTRODUCTION are suppressed by one of the methods metioned above, we
take supersymmetric phases to be unconstrained and investi-
The minimal supersymmetric standard mod®ISSM) gate their effects on the Higgs sector of the MSSM. At the
consists of various soft-supersymmetry-breaking parametetsee level the Higgs sector of the MSSM conserZ&sdue to
as well as the Higgsino mass parametecoming from the the fact that the superpotential is holomorphic in superfields
superpotential. In general, there is mopriori reason for entailing the absence of flavor-changing neutral currents and
taking all these parameters to be real, and thus, Yukawa cogcalar-pseudoscalar mixings. When the supersymmetric
plings, gaugino masses, trilinear Higgs-boson—sfermion cowrhasesp,, and ¢, vanish the Higgs sector conservep at
plings, A, Higgs boson bilinear couplingngz,uB, and u any loop order. In fact, th€P-conserving Higgs sector has
parameter themselves can all be complex. On the other hanbgen analyzed by several authors with the main purpose of
the MSSM Lagrangian has two global symmetries W{(J) evaluating the mass of the lightest Higgs boson which has
(Peccei-Quinn symmetjyand U(1kpo (an R symmetry  the tree-level upper bound ;. It has been found that
under which all fields and parameters are charged. The s#adiative corrections, dominated by top quark and top squark
lection rules for these symmetries limit the combinationsloops, elevate the tree-level bound significari9}. These
of dimensionful parameters that can appear in a physicabne-loop result§9] have been improved by utilizing com-
quantity so that one has, in fact, only three of these phasgdete one-loop on-shell renormalizatifi0], renormalization
as physical[1,2]. Without loss of generality, these three group method$11], diagrammatic methods with leading or-
physical phases can be identified witth) the phase in der QCD correction$12], and two-loop on-shell renormal-
the Cabibbo-Kobayashi-Maskawa matrifcxy, (2) ¢,  ization[13]. However, when the supersymmetric phases are
=Arg(u), and(3) g =Arg(Ay). Thus any physical quan- nonvanishing, as recent studies have shi4, the Higgs
tity F has an explicit dependence on these phases; S€ctor become&P violating through radiative corrections.
= F(Sckms@ur@n.)- As in the CP-conserving case, the radiative corrections will
BT be dominated by the top quark and top squark loops. Below
Qe investigate effects of the supersymmetric phases on the
Higgs boson masses, scalar-pseudoscalar mixings, and decay
O[ﬂ'operties of scalars to fermion pairs. In doing this, we shall
calculate one-loop radiative corrections coming from top
uark and top squark loops in the effective potential approxi-

logical relevance of theggP-violating phases has often been

electric dipole moment§1,3] which require them to be at
mostO(10 %). However, recent studies have shown that it is
possible to suppress neutron and electron dipole momen ation
without requiring thes&.P-violating phases be small by al- This. work is organized as follows. In Sec. Il we compute
lowing the existenqg of _either nonuniversa] soft breaking Pathe one-loop effective potential using top quark and top
r_a\meters at the gn|f|cat|on scdlé], some k'nq of.cancella— squark contributions together with the specification of the
tion among various supersymmetric contributioid, or

h nouah sfermions for the first tw neratisis In particle spectrum and mixings. In Sec. Il we discuss, as an
€avy enougn sfermions for the 1irst two generatigals example, the decay properties of the Higgs scalars to fermion

fact, following the last scenario, it was recently shown thatpairs In Sec. IV we conclude the work

the CP violation in B andK systems can be saturated with ' ' '

¢, and @A, only [7]. Apart from electric dipole moments and

weak decays, these phases play a_crucial role in the creation Il. EFEECTIVE POTENTIAL
of the baryon asymmetry of the universe at the electroweak
phase transitiof8]. The Higgs sector of the MSSM consists of two QU

In this work, assuming that the electric dipole momentsdoubletsH,, H,, with opposite hyperchargeg,=—1, Y,
=+1, and nonvanishing vacuum expectation vahgsv,.
Allowing a finite alignmenté between the two Higgs dou-
*Email address: ddemir@ictp.trieste.it blets, we adopt the following decomposition:
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phasespM,Af. Our main concern will be the investigation of

the masses and mixings of the scalars as a function of the
CP-violating angles. These mixings could B# conserving
(such ash-H mixing in the CP-respecting limit as well as

CP violating as we will discuss below. To evaluate the ra-
diative corrections we follow the effective potential approxi-
mation where the tree-level potenti@) is added to the one-

At the tree level the Higgs sector is described by the scalalbop contributions having the famous Coleman-Weinberg

potential

Vo(Hy,Hp)=m3|H |2+ m3|H,|?+ (m3H,-H,+H.c)
A Ao
+ ?||‘|1|4Jr ?|H2|4+7\12|H1|2|H2|2

+X1gHy Hal?, (2)

with the parameters

2 2
mi=mg +ul? mi=m +[ul?  mi=|uBl,

No= (05— 0D/, Nip=—03/2,
&)

N=No=(g3+02)/4,

where malz andB are the soft-supersymmetry-breaking pa-

rameters. As is seen from Ed8), the tree-level potential is

[9,16] form

3

2

MZ(Hy Hy)
Q2

1
AV= aStrM“(Hl,Hz) log , (6)

where Ste¥;(—1)2*1(2J+1)Tr is the usual supertrace,
and M(H,H,) is the Higgs-field-dependent mass matrix of
particles.AV depends on the renormalization sc@eavhich

is presumably around the weak scale. In evaluatizvgone
includes the contributions of vector bosons, Higg bosons,
and fermions as well as their supersymmetric partners gaugi-
nos, Higgsinos, and sfermions. Among all these particles top
quarks and scalar top quarks give the dominant contributions
[9]. However, for very large tag® values bottom-quark—
bottom-squark and-stau systems can become important. In
addition to these, since the dependence\df on the CP-
violating phases«pmAf originates from only the Higgsino

described by real parameters: thus, the alignment betwedf'rough « dependencdeand sfermion(through w and A

the two doublets can, in fact, be rotated away. Since, in th

minimum, the potential is to have vanishing gradients in al
directions, in particulargVy/de; o= m§ sin#=0, one auto-

matically gets#=0. Those terms of the tree-level potential

(2) quadratic in the components of the Higgs doubldis
give the mass-squared matrix of neutral scalars the diagon
ization of which yields theCP=—1 bosonA°=cospe;
—sin Bg, with massM o= —m3/sinBcosp, and twoC P=

+ 1 bosons which are linear combinationsgof and ¢, with

a mixing anglea. The mixing anglex and the masses of the
CP even scalarf andH are given by[15]

M%o+M2
tan 2o=——— tan 2, (4)
A0 Viz

1
Mﬁ(H):E[MiO+M§_(+)

X \(M4o+M2)?—4M50M2 cog 23], (5)
where tamB=v,/v,, and M3=(g5+g?)(vi+v3)/4 in our
convention. It is readily seen that for t8&=2 one hasp
~al2, M,~Mz, andMy~M,. However, it is known that
radiative corrections elevatd, (bounded byM; at the tree
level) significantly [9] without modifying the mass degen-
eracy betweerH and A when the theory conserveSP.
When, however, theCP-violating MSSM phases are
switched on, the degeneracy betwd¢rand A can be lifted
considerably as discussed|[it4].

We now start computing the radiative corrections to theWe

tree potential2) in the presence of th€P-violating MSSM

dependengemass matrices, these two particle species attain
|@ separate importance. However, if one wishes to include
Higgsino contributions, all particle species must be included
since then the precision of computation rises to the level of
gauge couplings. In the following we neglect the contribu-
atli_ons of gauge couplings and restrict ourselves to moderate
values of tarB so that, to a good approximation, the domi-
nant terms imM\V are given by top-quark—top-squark system.
This approximation is convenient in that it picks up the
phase-sensitive dominant contributionsAty'.

In the (f,_ ,TR) basis the top-squark mass-squared matrix,
neglecting theD-term contributions, takes the form

), (7)
2

where . and A; are complex,MLﬁ are the soft masses
squared of left- and right-handed top squarks, bpds the
top Yukawa coupling. Denoting the eigenvalueshdf by
m;zlz and usingm?=h?|H5|? the one-loop effective potential
takes the form

2
M3 +hZ[H3J?

hy(AFHE* — uHY)

ht(AtHg_ u* Hg*)

M’“:
! MZ+hZ[HYJ?

6 m: 3
V=V m?| log — — =
°" 64m? a:%zz a( Y@ 2)
2
3
- me( log —; — 5) 8

require this effective potential be minimized at
(v1,vo,60) at which it has to have vanishing gradients in all
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directions and the masses of the Higgs scalars must be re@herefore, Eqs(11) and(12) imply one and the same solu-
positive. Gradients of the potential with respect to thetion for 0,
charged components of the Higgs doublets automatically

vanish as there are no charge-breaking effects in the vacuum.

On the other hand, extremization @iwith respect to neutral
components of the Higgs doublets yields

. 1 . 2 2
Mg sin == B |ullAdsinyf(me me), (14

Whereﬁht=3ht2/16ﬂ-2, Y=¢,+¢a, and

&AV)
V[ 2m2+ N V2 + (N 1o+ N 1) V3] +2mav, cosb+2
1[2m3g 11(12 2)2] 3V2 Iy B Xy y+x y
f(x,y)——2+log—4+TXIog; (15
:0, (9) Q y
is a scale-dependent one-loop function. Actually, if one uses
JAv he d iti f the Hi doublets in E¢b, in all
Vo[ 2m24 AoV 3+ (A 1o+ N 1)V 3]+ 2mdv, cosf+ 2| —— the decomposition of the Higgs doublets in E¢b, in a
f9¢2 one-loop formulay gets replaced by+ 6. However, sinced
_ itself is a loop-induced quantity, its appearance together with
=0, (10 v is a two- and higher-loop effect which we neglect. Thus,
JAV when computingAV we dropé from Egs.(1), knowing that
mav, Sing_(_) =0, (11)  Iitisinduced through Ed14). Itis readily seen from Eq(14)
Ie1/, that unlessy vanishesé remains finite. Furthermore, as a

result of the form of the top-squark mass-squared matrix, all
2 ) JAV _ 5 one-loop quantities turn out to depend on the combination
mavy SINO—| —— 0— , (12) ¥Y=¢,+¢a . Of course, had we included Higgsino contribu-

ez
tions there would be terms that depend solely gp, de-

where the subscript “0” implies the substitutiop;=¢,  structing this kind of relation. However, they would be sub-
=¢,=¢,=0 in the corresponding quantity. Equatio(® leading compared to the top quark and top squark
and(10) come as no surprise as they are the counterparts @ontributions discussed here.

the ones occurring in thEP-conserving case. However, with In Eq. (14) and all formulas belown~ denote top-squark
(dAVIde, 2)0#0, Egs.(11) and(12) now imply a nontrivial
solution for sing unlike theCP-conserving case where these
gradients indentically vanish and one automatically obtains

mass-squared eigenvalues evaluated at the minimum of the
goten'ual

vanishing#. After some algebra one can show that , 1, , .
= — ._+ ~+ —_— o
JAV JAV M., Z(M'— M&+2mg+ A7), (16)
— | =tanp|—| . (13
e1lo 99210 where
|
A%: \/(M%_ Mé)2+4mt2(|At|2+ |,U«|2 cot ,3—2|,u| |At|COt,3 COSYy). (17)

As usual, construction of the mass-squared matrix of the Higgs scalars proceeds through the evaluation of

9V )
2= ,  where xjeB={¢1,¢2,¢1,p2} 18
((9)0(9)(; i Xi€ B={b1,02,01,05} (18

Solving ml , from the extremization condition®) and(10), and replacing them iV, one observes that, in the bagisthe
vector{0,0,cos8,—sin 8} corresponds to the Golstone ma@é absorbed by bosons to acquire its mass. Then in the reduced
basisB’' ={®1,®,,sinBe;+CcosBe,} the mass-squared matrix of the Higgs scalars becomes

MIci+Masz+A1  —(MZ+MQ)sgeptA,  TA
M2=| —(MZ+M2)secpt A, MIsi+MAcs+Ay sA |, (19
rA sA M2+ A

wherecz=cosp andsg=sing. The scalar mass-squared matrix involves various parameters whose explicit expressions we
list below. The adimensional parameterands are given by

sinB |A{cosy—|u|cot
N B |Adcosy—|u| ﬁ’ 20
siny |A
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sing
5= Sin 2 m2
¥ |l Adg(m? m? )

|Ad(|A] = | plcot cosy)g(mg ,m? )~ (m; —mg )log
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2
My
2

2
ty

(21)

While r originates mainly from the top-squark left-right mixingshas an additional term depending on the the top squark

mass splitting Iog(lenfl).

The parameters of mass dimension can be expressed as follows:

sin? y |M|2|At|2mt2 2 2

=— m:,ms), (22
"siit g (mf 2% e
2 1
| ul?mi(|Adcosy—|ulcotp)?  ,
M e 9L @
2 1
2
o) IAdcosy—|ulcotg ™, |AJ[(|A]cosy—|ulcotB)?+|Al(|A] —|ulcotB)sint y]
A= =2 | um; > log— - R g(ms ,me ),
(m; —m; ) my (mg —m; ) v
2 1 1 2 1
(24)
LT, 2lA(A~|ul T, AJ(Ad = al %
t, t;  2|A{(|A{|—|ux|cotB cosy) t, |A¢f“(|A—|m|cotB cosy 2 9
Agp=2pBnM¢3 log ——— + s log — 5 S me) ¢, (25)
m (mg,—m?) m; (mg,—m?) o
2 1 1 2 1

where the functiorg(m;2 ,m%) in these expressions reads
1 2

Xy
g(x.y)=f(x,y)—log§. (26)

Therefore, unIikef(rrél,mfzz), g(m%l,mfz) does not have an

explicit dependence on the renormalization sc@ldn fact,
the adimensional parametersand s as well as the mass
parameter$21)—(24) have no explicit dependence @ On

the other hand, the remaining mass param&ﬂé\r in the
scalar mass-squared matfik9) is an explicit function ofQ:

2
~o ms

sin(6—vy)
A" sinB cospB '

siny

(27)

It is the 6, Eq. (13), dependence o3 that makes itQ
dependent. However, the expli€}t dependence of should
cancel with the implicitQ dependence of tgB and m3 to
makeM3 scale independeri8].

According to the decomposition of Higgs doublets in Egs
(1), ¢, and ¢, are of CP=+1 whereas sifB¢;+Cc0sB¢;, is
of CP=—1. As suggested by the form of the scalar mass
squared matriX19) there are mainly two kinds of mixings:
(1) mixing of the scalars with differen€P induced byMZ,
=rA andM2,=sA, and(2) mixing of theCP=+1 scalars

through M%,= — (M3+M3)sscs+A1,. While the former

the CP-violating phases vanish, that ig—0, one getsA
—0, sA—0, andA—0. In this caseCP=+1 andCP=
—1 sectors in Eq(19) decouple and reproduce the particle

spectrum of theCP-conserving limit in whichM 5 becomes
the radiatively corrected pseudoscalar mass &g, ,,be-
come usual the one-loop contributiof®] to the CP=+1
scalar mass-squared matrix. For a proper interpretation of
results of the numerical analysis below it is convenient to
know the relative strengths of theCP-violating and
-conserving mixings. For large tgh Egs.(20) and(21) go
over to

sing [ |A{
siny \ [ul

4(mi+M)

S —
|l A

r~—sinp coty, (28

’

where we assumedMi~Mz=M3>m|A| and |A/
>|u|cotB in the derivation. Equation28) implies that
[r|/s<1. This follows mainly from the dependence of the
top squark mass matris¥) on HS which causes not onlysA |
but also|A;4 and|A,,| to be larger thanA,| and |rA|
through top squark and top-squark—top-quark top splittings.

"‘An immediate consequence of Ed28) is that one eigen-

state of the scalar mass-squared matt® will be of mainly
CP=+1. Thus one expects that among the three mass
eigenstate scalars one will continue to h&#®= +1 with a
smallCP= —1 component while the other two can mix sig-
nificantly depending on the relative strengths of the other
one-loop corrections. This observation can be justified nu-

are induced purely by the nonvanishing supersymmetrienerically by analyzing the relative strengths@®-violating

phases the latter exist in th@P-respecting limit too. When

05500
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01k T J B S == ] radiative corrections through a lar#;| term without caus-
E T E ing too big splittings among tha coefficients in Eqs(22)—

b ] (25) thanks to the relatively smal| term. Dependence on

| the parameteM 4 is as in theCP-invariant theory, namely,

. heavy scalars have masses arothgl

In principle one can diagonalize analytically the scalar
mass-squared matriil9); however, the results will be too
complicated to be suggestive. Instead of using such oblique
expressions we shall fix the notation for diagonalization and
numerically analyze the results. The scalar mass-squared ma-
trix (19) can be diagonalized by a similarity transformation

0.001 E

M123/|M122l and M223/|M122[

0.0001

5 10 15 20 25 30
tan § R-M2-RT=diagMf ,M{ ,M{ ), where R-RT=1,

(30

FIG. 1. Variation of M%y/|M3,| (solid curveé and M34|MZ)|
(dashed curye with tang for M{=Mg=|A|=10Mz, |u|

- _ == o where the mass-eigenstate scalar fields are defined by
=2.5M;, andM,=2M; with y= 7/4. The CP-violating mixings

become important for large tgh H, b,
shows the variation ofMZ2J|MZ%)| (solid curve and Ha | =R b2 : (31
M34/|M3,| (dashed curvewith tang for M;=Mg=|A Hs sin B¢, +CcosB e,

=10My, |u|=2.5M,, andM o= 2M with y=7/4. As the _ .
figure suggests, the larger the fnthe larger theCP- ydependencg of the eIements?_?)ﬁs crucial for determining
violating mixings compared to the mixing between @@  the CP impurity of the mass eigenstate scaléts. In ana-
=+1 components. The increase of these ratios withgtan lyzing R we adopt a convention such that in the limit of

can be understood as follow) B— /2 as tang grows to  Vanishingy we letH,—h, H,—H, andH;—A; that is,H,
higher values, and thusl—(M§+IVIi)sﬁcB| decreases 'S the lightest Higgs boson. We expect the results of the

. " CP-invariant theory to be recovered at ti@P-conserving
gradually;(2) A, is positive for these parametefand even points y=0, m, 27 except for they dependence of various
for higher values of | due to cof3 suppressionand grows Y

. Lode X 'OWS " parameters.
with tang due to logm; /m so thatM 3, decreases with in- Depicted in Fig. 2 is they dependence of thiel; compo-
creasing tam8, and the ratios increase gradually sifdg,  Sition in percent for the parameter set in ER9). From the
and M2, decrease with tai more slowly. left panel we observe that, on the averade has~30% ¢

In Fig. 1 we plot ratios of theCP-violating mixings to ~and~70% ¢, composition. As is noticed immediately from
CP-conserving ones; however, if one plo@P-violating  the figure, theCP=—1 component of, is small, in fact, it
mixings direct]y’ for examp]e in units of (MZ)Z for |/.L| never exceeds 0.02% in the entire rang@l.dFr-Om the rlght
=10M,, y=m/2, andM,=5M,, in absolute magnitude, panel, however, we observe that tiig contribution rises

2 (2 ; -2 ) _ near to the 100% line, and correspondingly, #yecontribu-
gﬁ; (gﬂoﬁ)n S;irtlso,\'\gt(g XA'10,14(; at( taﬁ,%jsgt ?r? e'B ce 2reasrl]J(Ijts tion remains below 2.5%. This result is a consequence of the

. ; B—a/2 limit reminiscent from theCP-invariant theory. In
g;?grrr? (L')S/ :rgeredeiﬁv(\e/Ltgn'ihose bt4] though the computational this large tag limit, the sinB¢;+coB¢e, composition ofH

0 . )
Since the parameter space is t0o wide to cover fully, ir]reaches at most of 0.2% over the entire range.df is clear

the following we restrict ourselves to the following set: th_at both Wlndows_ of the flgure suggests_that the lightest
Higgs boson remains essentiallyCé-even Higgs scalar for

M;=Mg=500 GeV, |A/=1 TevV, the parameter space in EQ9).
In Fig. 3 we show the percentage compositiorHgfas a
|u|=250 GeV, M,=200 GeV (29) function of y for tang=4 (left pane) and tan3= 30 (right

pane). In agreement with the left panel of Fig. 2, for t&n
and varyy over its full range. Each time we consider low- =4 (left pane) H, has~70% ¢; and ~30% ¢, composi-
and high-tarB regimes separately by taking tg@s4 and tion. Unlike H;, however, the sif¢;+cos8¢, composition
30. As targ increasegu/cotB decreases, and this enhancesof H, becomes as large as 1.3%. As expected, this increase
the contribution of the radiative corrections. However, varia-in the CP=—1 component is compensated bl;. A more
tion with tang is not the whole story because even for spectacular side of Fig. 3 arises for largegdright pane} in
cot3~0, A, Ay;, Ay, are proportional tdu||A] so that which H, is seen to gain non-negligibl€P-odd composi-
choice for the latter affects the strength of the radiative cortion. In accordance with the large yafimit described by Eq.
rections. Especially for large t@ntop squark masses weakly (28) there is a strong dependengeThe sum of thep,; and
depend onu/; therefore, these elements of the mass-squaregh, compositions ofH, starts fromy=0 at the 100% line,
matrix become more sensitive to the choice [fof The pa- and the former is diminished rather fast untit /2. Beyond
rameter set29) is a moderate choice in that it enhances thethis point it rises rapidly to the 98% line at=7 where its
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100 T T 7 T T U e — L L

or 1 80l ]
S g
= =

g 6 wf=4 o 2 6f wf=3 A
= =
g g

8 A b 8 4 i

MF E 10k J

0 1 1 | 1 | L 0 — 1 b — | 1t

0 1 2 37 4 5 6 0 1 2 37 4 5 6

FIG. 2. Percentage composition bff; as a function ofy for tang=4 (left pane) and tan3=30 (right pane). Here ¢;, ¢,, and
sin Be,+cosBe, contributions aréR ;4|2 (solid curve, | R 1, (dashed curve and|R 142 (short-dashed curygin percents. Values of the
parameters are given in EqR9).

CP=+1 component completes to 100% in accordance with$, composition of the light Higgs boson is easily under-
the CP conservation. One notes the complementary behaviostandable since the analog of the tree-level Higgs mixing
of the sinBp;+cosB¢, composition which, in particular, im- angle(4) approacheg—n/2~0 for large tam [17]. The re-
plies thatH, is a pure pseudoscalar aroutyer /2. maining component ofl; comes mainly fromp, sinceCP-

Depicted in Fig. 4 is the percentage compositioHgfas  breaking contributions are small for this eigenvalsee Eq.
a function ofy for tang=4 (left pane) and tan3=30 (right  (28)]. On the other hand, compositions Bf, and H; are
pane). In agreement with the left panels of Figs. 2 andH3, determined from large tgh (dominant ¢»; contribution to
is almost a pure pseudoscalar for 8. On the other hand, their CP-even partsas well as the radiative corrections. As
for tanB =230 (right pane) H; is seen to lose it€P purity in  is evident from EQ.(28), in the large tap regime M3
accordance with the right panel of Fig. 3. Thids, except  ~siny cosy and M,3~siny so that(for example the zeroes
for the points discussed above, does not have defldRe of the components oH, follow certain combinations of
characteristics. From Figs. 3 and 4 one concludes that heawlese functional behaviors. The sharp changes ingthand
scalars have non-negligibléP impurity in agreement with  sinB¢;+cos8¢, compositions ofH, and H; at y=0 (for
the results of 14]. large taB) follows from they dependencies d¥l ;3 andM ,3

¢, (solid curve, ¢, (dashed curve and siBe; [see EQ.(28)]. Indeed, variation of the compositions near
+cosBy, (short-dashed curyecompositions of the Higgs =0 behaves roughly as sig2 siny which varies quite fast
field H; shown in Figs. 2—4 need further elaboration. In ac-near the origin.
cordance with Fig. 1CP-violating mixings are small for Until now in Figs. 2—4 we have discussed tG@ prop-
small tarB and one necessarily recovers the results of thesrties of the eigenstates of the scalar mass-squared matrix
CP-invariant theory whereb; and ¢, mix with each other to  equation(19). Now we analyze they dependence of the
form h® and H®, and simBe;+coBe, is nothering but the masses of these scalars for identifying their hierarchy. Figure
pseudoscalah’. Thus, in this limit the mixings are as in the 5 shows they dependence of the scalar masses foran
CP-invariant theory as is evident from the left panels of each=4 (left pane) and tan3= 30 (right pane). It is clear that
figure. For large taf, however, each Higgs field undergoes H; is the lightest scalar in both cases. Moreover, the small
certain variations in its compositions. First of all, dominantgap (at most~20 Ge\) betweenM Hy and My, in the left

100 T T ;i T T ; 100 T T T T

80 b 80
g —//\ g "'
g or 1 FR
£ £ :
= =%
g “or tnf=4 4 g e
N <

01 1 NMF

0 [T T TR T ! P S—
0 1 2 3 4 H 6
0 1 2 37 4 5 6 y

FIG. 3. Percentage composition bf, as a function ofy for tang=4 (left pane) and tan3=30 (right pane). Here ¢,, ¢, and
sin Be,+cosBe, contributions ardR »;|? (solid curve, | R »,? (dashed curje and|R ,4? (short-dashed curyein percents.
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FIG. 4. Percentage composition bif; as a function ofy for tang=4 (left pane) and tan3=30 (right pane). Here ¢;, ¢,, and
sin Be,+cosBe, contributions ardR 5|2 (solid curve, | R 3% (dashed cunje and|R 142 (short-dashed curyein percents.

panel is closed in the right panel wherg andH4 are de-  are distinguishable from the lightest Higgs boson due to both
generate in mass. This behavior occurs also in @&  their masses an@P properties. In the next section we shall
conserving casgl5,9 due to the large value of tah One  discuss decay properties of these Higgs scalars to fermions
more thing about Fig. 5 is that the massedgfandH; are  and investigate the deviations from t@&-conserving limit.
almost completely determined byl ,=2M. For instance,

for Ma=10M, H, and H; weigh approximately 1.

Unlike this strongil , dependence ity andM,, , mixing lIl. EXAMPLE: DECAYS OF HIGGS SCALARS TO

. . . FERMION PAIRS
among the Higgs scalars and lightest Higgs mass depends
mainly on tan3. The y dependence of the masses around The form of the scalar mass-squared matfi®) as well
v=qr (especially in the case of t@s4) differ from those at as the mixing matri¥k shows clearly th&€P violation in the
other CP-conserving points due mainly to the minimization Higgs sector. In general, all parameters of the Higgs sector
of the light top squark magsee Eqs(16) and(17)]. Finally,  turn out to depend on the§&P-violating angles; for instance,
one observes that the light Higgs mass is higher than th&ang, masses of scalars, and top squark masses are explicit
usual constrained MSSM bounfik3] due to the large value functions ofy. In this sense the couplings of the Higgs sca-
of A; and relatively small soft top squark masses which is notars to the MSSM particle spectrum are necessarily modified.
possible to produce through RGE(except, possibly, with Therefore, theCP-violating angley can show up, for ex-
nonuniversal initial conditions ample, in the rates for various collision processes testable at
From Figs. 2—5 one concludes that the lightest Higgs scafuture colliders. As an example, one can consideeéa
lar remains essentially @P= + 1 scalar, and the remaining collider with sufficiently large center-of-mass energy. In
heavy scalars do not possess defil@fe characteristics. In  such a collider one of the main Higgs boson production
this sense, the MSSM is seen to accommodate a {at mechanisms is the Bjorken proceZ$ —ZH;. When the
=+ 1 Higgs boson as in th€P-invariant case. In addition, center-of-mass energy is varied over a range of values in-
the heavy indefinit€€P Higgs scalars of the MSSM not only cluding the masses of the scalars it is expected that the cross
have no correspondent in the standard md8al) but also  section, as a function of the invariant mass flow into khe

2l T I I | | | gl { | I | | T

(1] R . 20

180+ < 180 F J

160 - . 160 k- 3
tanf =30

140 b

140

10t 1 10 7

masses of the scalars (GeV)
masses of the scalars (GeV)

100 F E 100 4

0 1 2 3 4 5 6 0 1 2 3 4 ] 6

FIG. 5. Masses of the scalark as a function ofy for tang=4 (left pane) and tan3=30 (right pane). HereM Hy Mu,, andMH3 are

shown by solid, dashed, and short-dashed curves, respectively. In both pgnislghe lightest scalar whose composition is shown in
Fig. 2.
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TABLE |. Elements of the scalar mixing matrix entering the
Feynman ruleg32)—(34) for tan=4 and y=0. Herei (j) runs
overH; (¢4, $2,sinBe;+cosPp,).

TABLE II. Elements of the scalar mixing matrix entering the
Feynman ruleg32)—(34) for tanB=30 andy=0, with the same
convention in Table I.

[R;i1(0)]? 0.31 0.69 0.0 [Ri1(0)]? 0.02 0.98 0.0
[Ri»(0)]? 0.69 0.31 0.0 [Ri»(0)]? 0.98 0.02 0.0
[Ri3(0)1? 0.0 0.0 1.0 [Ri3(0)1? 0.0 0.0 1.0
branch, should show three distinct peaks situated at the sca- — > Ma o
lar massedv ;.. Needless to say, in th@P-conserving case H;dd:(\2G) COS’B(Ril'H sinBRizys), (33
there would be two peaks instead of three.

We now discuss the couplings of the scalars to fermion _ b M o
pairs in detail. That the scalak$ are devoid of definiteCP Hill:(V2Gg)* @(Riﬁl SinBRizys),  (34)

properties influences their couplings to fermions signifi-
cantly. Rephasing the fermion fields appropriately one cafyhere one observes that each coupling picks up; @iece

always make fermion masses real after which the couplingghowmg itsCP=—1 content. Moreover, as the Feynman
of the scalaH; to u-type quarksg-type quarks, and charged yjes above dictate theys piece is enhanced for large

leptons take the form

- mu .
Hiuu:(ﬁeal’zsmﬁmizﬂcosﬂRism, (32
|
T(Hi—fty#0) (Rig)*(1~4m

tangB (cotB) for u-type quarks @-type quarks and charged
leptong. To have a quantitative understanding of the effects
of iy on the Higgs boson decays to fermion pairs it is conve-
nient to compute the ratio

2IMZ, )32+ aZ(Rig) 21— 4mZIME, ) 2

if

where gq=2(1) and a;=cospB(sinB) for u-type quarks
(d-type quarks and charged leptpn¥he argument “0” of
the quantities in the denominator implies the replacement
=0. It is clear thatl’(H;—ff) consists of phase space fac-
tors pertinent to bottCP=+1 and CP=—1 cases sepa-
rately. According to the conventions we apply, for 1,2
(i=3) only the first(second term survives in the denomi-
nator. TheCP-violating MSSM phasey not only functions

Ry

TT(H=THy=0)  [Rig(0)12L1—4mi/MF, (0)1%+a[ Ryo(0) [ 1— 4mE/ME, (0)]

(39

in creating the additional terms in the Feynman ru@b—

(33) but also affects the couplings and masses themselves.
We now perform a numerical computation Rf; for the

parameter space used up to now. In particular, we concen-

trate on two caseb=b andf=c; that is, we consideb and

¢ quarks in the computation. Such an analysis will be ex-

haustive as it covers the cases listed, H§2)—(34). We

start by listing the quantitieERij(O)]2 necessary for com-

puting R;; in Tables | and Il. Below, when speaking about

12

1

08

06

Ry¢

04

02

0

0

FIG. 6. Ry, (left pane) and R, (right pane] defined in Eq.(34) as a function ofy for tang=4 (solid curve and tan3= 30 (dashed

curve.

055006-8



EFFECTS OF THE SUPERSYMMETRIC PHASES ON THE ...

12 1 1 I | 1 I

| ke====m

08 4

06F -

Ry

04 -

02k 4

0 1 ] 1 ! ! ]
0 1 2 3 4 3 6

PHYSICAL REVIEW6D 055006

1\—/
08 1 b

06 F 1

Roc

Ay ’
L B lA /A

FIG. 7. Ry, (left pane) and R, (right pane) defined in Eq.(34) as a function ofy for tan=4 (solid curvg and tan3= 30 (dashed

curve.

the elements of the mixing matrices for=0 we shall al-
ways refer to these tables.

Figure 6 shows they dependences dR;, and R, for
tanB=4 (solid curve and tarnB=30 (dashed curve Let us
first discussRy, (left pane). As Fig. 2 shows thep; com-
position ofH, starts with 0.31 a=0 (see Table)land falls
to 0.24 at y=. Therefore,R,, falls to 0.24/0.3¥0.77
aroundy=1. On the other hand, for t#+30R;, obtains a
relatively fast variation oRy, with . This behavior olR;,

follows from its ¢, component in the right panel of Fig. 2,

which takes the value of 1.1% around-7. Therefore Ry,
rises to 0.01/0.020.5 aty= as follows from Table II. On

¢, and sifBe;+cosBe, compositions shown in Fig. @ight
pane). It is with the a,sing factor in Eq.(35) that such a
compensation between its oppos@# components occur.
The variation ofR,. follows from the ¢, composition ofH,

in Fig. 3 following the same lines of reasoning used in dis-
cussingRy;, above.

Finally, Fig. 8 shows the variation &5, (left pane) and
Rs. (right pane] with y for tang=4 (solid curve and
tanB=30 (dashed curve For tanB=4, both R;, and R5;
remain around unity because of the fact that there is little
H-A mixing and (R39)%(0)=1. ThatRy, remains flat for
tanB= 30 follows from the interplay between iGP=+1

the other hand, from the right panel of the figure one ob-andCP=—1 components as iR,,. On the other handys,

serves thatR;. remains around its counterpart in tigP-
conserving limit. Using Tables | and Il angl, compositions
in Fig. 2 one can easily infer the behaviorR®f.. In particu-
lar, constancy of the tg#=30 curve follows from the con-
stancy of the¢, composition in Fig. Aright pane).
Depicted in Fig. 7 is the dependence R, (left pane)
and R, (right pane] on y for tang=4 (solid curve and
tanB=230 (dashed curve First concentrating orR,,, one

observes a slow variation witly compared to the lightest

Higgs bosorFig. 6 (left pane)]. The behavior of the tah
=4 curve simply follows from thep; composition ofH, in
Fig. 3 (left pane). However, the flat behavior dR,, for

for tanB=4 follows simply from its vanishingp, and 100%
sinBe;+Cc0sBe, components in Fig. 4left pane). Since the

¢, composition is negligibly small for large tgn(right
panel of Fig. 4, variation of R;. is mainly dictated by its
CP=-1 componentshort-dotted curve in the right panel of
Fig. 4). For exampleR,.=1 at y=1 just due to its 100%
composition in Fig. 4.

__ From the study of the decay rates of the Higgs particles to
bb andcc pairs one concludes that th&P-impurity causes
significant changes compared to t@®-invariant limit. In
particular, one notes the enhancemenRiy near they=0
point, which is one order of magnitude above its value in the

large tarB follows from the complementary behavior of its CP-conserving limit.

08 b

06 h

Rz

04+ b

02f b

R3¢

01k \ V 4

0.1 ! ] L ! ! ]
0

FIG. 8. Ry, (left pane) andR;, (right pane) defined in Eq.(34) as a function ofy for tanB=4 (solid curve and tan3= 30 (dashed

curve.
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IV. CONCLUSION AND DISCUSSIONS (iv) As in theCP-invariant case, there are two heavy sca-

In this work we have studied the possible effects of su-Iars which have(l) definite CP quantum numbers for smal

persymmetricCP-violating phases on the neutral Higgs Sca_tan,B values and2) no definiteCP characteristics for large

lars of the MSSM. We have adopted the effective potentiafan'8 : o
S . L . (v) The strong mixing between the heavy scalars affect
approximation in computing the radiative corrections and

rae aken i sccount nly th cominant o auar s o 7121 e ey e o i s, ¢ st
squark loops. We now itemize the main results of the work 9 P P

(i) Radiative corrections induce an unremovable reIativgUture colliders. Especially the decay rate of the would-be
CP-odd scalar getes enhanced fot §< /2.

phase between the two Higgs doublets. This relative phasé (vi) The supersymmetriCP-violating phases not only

remains nonvanishing as long as the supersymméiRe ) C - .

S - : ; ause the creation dZP-violating mixings but also modify
violating phases are finite, and determines the dynamics e counlinas and masses compared to ones inQRe
the electroweak phase transitipto)]. invariantp cage P

(it) TheCP=_+ 1 andCP=-1 components of _the Higgs In the light of these results one concludes that supersym-
doublets are mixed up due to the mixing terms in the scalar

. ; . metric phases can be useful tools for obtaining manifesta-
mass-squared matrix whid1) are proportional to the rela- tions of supersymmetry through their effects on collision and
tive phase between the two doublets d@d increase with persy y 9

: . decay processes testable in near future colliders.
increasing tais.

(iii) The lightest Higgs scalar remains essenti@R-even
irrespective of the supersymmet@ phases. Therefore, the
MSSM has a lightCP=+1 scalar as in th&€P-respecting It is a pleasure for author to express his gratitude to A.
case which can, however, be distinguished from that of thé/lasiero for highly useful discussions and his careful reading
CP-invariant theory, for example, by its reduced decay rateof the manuscript. The author would like to thank T. M.
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