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Application of Pauli-Villars regularization and discretized light-cone quantization
to a „311…-dimensional model
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We apply Pauli-Villars regularization and discrete light-cone quantization to the nonperturbative solution of
a (311)-dimensional model field theory. The matrix eigenvalue problem is solved for the lowest-mass state
with use of the complex symmetric Lanczos algorithm. This permits the calculation of each Fock-sector wave
function, and from these we obtain values for various quantities, such as average multiplicities and average
momenta of constituents, structure functions, and a form factor slope.@S0556-2821~99!02417-0#
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I. INTRODUCTION

One of the most challenging problems in particle phys
is the computation of the spectrum and physical propertie
bound states in quantum field theory. The main tool pr
ently used for such nonperturbative computations in quan
chromodynamics is lattice gauge theory@1#, which has been
highly successful in determining hadron spectra. Howev
the computation of dynamical properties, such asCP viola-
tion in weak transition matrix elements@2# or the shape of
the distributions measured in deep inelastic scattering, is
ficult using standard lattice methods.

Light-cone Hamiltonian diagonalization methods@4# ap-
pear to provide a number of attractive advantages for solv
nonperturbative problems in quantum field theory, includ
a Minkowski space description, boost invariance,
fermion-doubling, and a consistent Fock state expansion
matched to physical problems in QCD; however, thus
full dynamical solutions based on light-cone Hamiltonian
agonalization have been primarily limited to one-space, o
time models. One promising approach is the transverse
tice which combines light-cone methods in the longitudin
light-cone direction with a spacetime lattice for the tran
verse dimensions@3#.

In recent work @5# we have shown that a model fiel
theory in 311 dimensions can be solved using discrete lig
cone quantization~DLCQ! @6,4#, a light-cone Hamiltonian
diagonalization method, together with Pauli-Villars regu
tion of the ultraviolet@7#. The particular model theory which
we constructed has an exact analytic solution by which
DLCQ results could be checked, for both accuracy and
pidity of convergence. The model was regulated in the ul
violet by a single Pauli-Villars boson, which was included
the DLCQ Fock basis in the same way as the ‘‘physica
particles of the theory. The two bare parameters of the mo
were then determined by fits of observables to chosen val

Here we shall extend this combination of DLCQ a
Pauli-Villars regularization to a more realistic model whi
0556-2821/99/60~5!/054506~9!/$15.00 60 0545
s
of
-

m

r,

if-

g
g

ll
r,
-
e-
t-
l
-

-

-

e
-
-

’
el
s.

mimics many features of a full quantum field theory. Unlik
the analytic model which contained a static source, the lig
cone energies of the particles in the new model have
correct longitudinal and transverse momentum depende
Although an analytic solution of the new model is no long
available, the numerical convergence of the discretized lig
cone solutions is found to be quite rapid, and the structure
the solution for the lowest-mass eigenstate is readily
tained. In particular, we can calculate the light-cone wa
function of each Fock-sector component, and from these
can compute the values for various physical quantities, s
as average multiplicities and average momenta of cons
ents, bosonic and fermionic structure functions, and a fo
factor slope.

A distinct advantage of our approach is that almost
counterterms are generated automatically by the Pa
Villars particles and their imaginary couplings. This can
explicitly checked for consistency in perturbation theory. F
nonperturbative calculations we conjecture that the sa
number of Pauli-Villars fields will be sufficient to regulat
the theory. This does appear to be the case here and in
work reported previously@5#. An alternative procedure ha
been proposed and explored by Wilson, Perry and collab
tors @8#; they use a similarity transformation to generate
fective Hamiltonians perturbatively which can then be diag
nalized in the valence Fock sector.

In our approach one can obtain the full set of Fock-sec
wave functions for the lowest-mass eigenstate. This contr
with other DLCQ calculations in 311 dimensions@9–11#
where the number of particles was severely limited from
outset and effects of higher Fock sectors can only be e
mated. The DLCQ calculation by Wivoda and Hiller@12#,
though untruncated, did not construct counterterms in a w
that can be systematically extended to other theories. In
case, a Tamm-Dancoff truncation@13# in particle number can
be applied, and the impact of the truncation can be stud
and understood.
©1999 The American Physical Society06-1
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Our notation is such that we define light-cone coordina
@14# by

x65x01x3, x'5~x1,x2!. ~1.1!

The time coordinate is taken to bex1. The dot product of
two four-vectors is

p•x5
1

2
~p1x21p1x2!2p'•x' . ~1.2!

Thus the momentum component conjugate tox2 is p1, and
the light-cone energy isp2. We use underbars to identif
light-cone three-vectors, such as

p5~p1,p'!. ~1.3!

For additional details, see Appendix A of Ref.@5# or a re-
view paper@4#.

The model which we study is defined in Sec. II. There
also list and define various quantities which we will compu
from the eigensolution, including structure functions and d
tribution amplitudes, average multiplicities, and average m
menta. The numerical methods, including the DLCQ pro
dure, and the results are discussed in Sec. III. Section
contains some concluding remarks and plans for future w

II. MODEL WITH A DYNAMICAL SOURCE

We shall consider a field-theoretic model where one p
ticle, which we take to be a fermion of massM, acts as a
dynamical source and sink for bosons of massm. The model
is only slightly more complicated than the analytica
soluble model considered in Ref.@5#, the key difference be-
ing that here the fermion has a proper, momentum-depen
light-cone energy. Another difference is that the vertices
not include the momentum ratios which were introduced
@5# to control end-point behavior; the restoration of fermi
dynamics makes such factors unnecessary. The theory is
regulated by a single Pauli-Villars boson with imagina
couplings1 and a massm1. The light-cone Hamiltonian~or
mass-squared operator! HLC5P1P22P'

2 is, in the P'50
frame,

HLC5E dp1d2p'

16p3p1 S M21p'
2

p1/P1
1M08

p1

P1D(
s

bps
† bps

1E dq1d2q'

16p3q1 Fm21q'
2

q1/P1
aq

†aq1
m1

21q'
2

q1/P1
a1q

† a1qG
1gE dp1

1d2p'1

A16p3p1
1 E dp2

1d2p'2

A16p3p2
1 E dq1d2q'

16p3q1

1One could use an Hermitian form and negative metric to imp
ment Pauli-Villars regularization, but the complex symmetric fo
is what is known to work well with the numerical method we ha
chosen.
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bp1s
† bp2s@aq

†d~p12p21q!1aqd~p12p22q!

1 ia1q
† d~p12p21q!1 ia1qd~p12p22q!#, ~2.1!

wherebps
† , aq

† , and a1q
† are creation operators for the fe

mion source, the physical boson, and the Pauli-Villars~PV!
boson, respectively. The operators obey the usual comm
tion relations

$bps ,bp8s8
† %516p3p1d~p2p8!dss8 ,

@aq ,aq8
†

#516p3q1d~q2q8!, ~2.2!

@a1q ,a1q8
†

#516p3q1d~q2q8!.

The M08p1/P1 counterterm is inserted to cancel a logarit
mic dependence on the Pauli-Villars mass which arises fr
the one-loop self-energy integral

g2

16p3 H E
0

p1 dq1

q1

d2q'

M21p'
2

p1/P1
2

M21~p'1q'!2

~p12q1!/P1
2

m21q'
2

q1/P1

2PV termJ ;2
g2

16p2
ln~m1 /m!. ~2.3!

This model Hamiltonian is distantly related to the Yukaw
Hamiltonian@15#, to which one might also eventually appl
the techniques used here.

The bare parametersg and M08 are to be fixed by fitting
physical properties of the lowest massive eigenstate. Th
a dressed fermion state which we write as

Fs5A16p3P1 (
n,n1

E dp1d2p'

A16p3p1
)
i 51

n E dqi
1d2q' i

A16p3qi
1

3)
j 51

n1 E dr j
1d2r' j

A16p3r j
1

dS P2p2(
i

n

qi2(
j

n1

r j D
3f (n,n1)~qi ,r j ;p!

1

An!n1!
bps

† )
i

n

aqi

† )
j

n1

a1r j

† u0&,

~2.4!

and normalize according to

Fs8
†
•Fs516p3P1d~P82P!. ~2.5!

The individual amplitudes must then satisfy

-
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(
n,n1

)
i

n E dqi
1d2q' i )

j

n1 E dr j
1d2r' j

3Uf (n,n1)S qi ,r j ;P2(
i

qi2(
j

r j DU2

51.

~2.6!
n
o
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-
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The eigenvalue problem is

HLCFs5M2Fs . ~2.7!

This is equivalent to the following coupled set of integr
equations for the amplitudes:
FM22
M21p'

2

x
2M08x2(

i

m21q' i
2

yi
2(

j

m1
21r' j

2

zj
Gf (n,n1)~qi ,r j ,p!

5gH An11E dq1d2q'

A16p3q1
f (n11,n1)~qi ,q,r j ,p2q!

1
1

An
(

i

1

A16p3qi
1

f (n21,n1)~q1 , . . . ,qi 21 ,qi 11 , . . . ,qn ,r j ,p1qi !

1 iAn111E dr1d2r'

A16p3r 1
f (n,n111)~qi ,r j ,r ,p2r !

1
i

An1
(

j

1

A16p3r j
1

f (n,n121)~qi ,r 1 , . . . ,r j 21 ,r j 11 , . . . ,r n1
,p1r j !J , ~2.8!
the
o-

bo-
with x5p1/P1, yi5qi
1/P1, andzj5r j

1/P1.
For fixedM, the eigenvalue problem itself is a conditio

on the bare parameters. A convenient choice for the sec
condition is the value of an expectation value involving t
boson fieldf(x); we usê :f2(0):&[Fs

† :f2(0):Fs , which
corresponds to the expectation value for the sum of 2/yi for
physical bosons. For the soluble model in Ref.@5# it was
shown to be closely tied to the couplingg, as can be seen in
Eq. ~3.11! of that paper. Most importantly, it can be com
puted rather quickly from a sum similar to the normalizati
sum

^:f2~0!:&5 (
n51,n150

)
i

n E dqi
1d2q' i

3)
j

n1 E dr j
1d2r' j S (

k51

n
2

qk
1/P1D

3Uf (n,n1)S qi ,r j ;P2(
i

qi2(
j

r j D U2

.

~2.9!

These two conditions are sufficient to fixg andM08 .
With the two parameters of the model now fully dete

mined, we can compute other quantities as predictio
These are all obtained from the primary output, which is
set of wave functionsf (n,n1) for the different Fock sectors
We will compute the slope of the no-flip form factor of th
nd

s.
e

fermion, structure functions for bosons and the fermion,
distribution amplitude for the physical boson, average m
menta, average multiplicities, and a quantity sensitive to
son correlations. The form factor slopeF8(0) is given by@5#

F8~0!5(
n,n1

)
i

n E dqi
1d2q' i )

j

n1 E dr j
1d2r' j

3F S (
i

yi
2

4
¹' i

2 1(
j

zj
2

4
¹' j

2 D
3f (n,n1)S qi ,r j ;P2(

i
qi2(

j
r j D G*

3f (n,n1)S qi ,r j ;P2(
i

qi2(
j

r j D . ~2.10!

A related form,

F̃8~0!52(
n,n1

)
i

n E dqi
1d2q' i )

j

n1 E dr j
1d2r' j

3F(
i
Uyi

2
¹' if

(n,n1)S qi ,r j ;P2(
i

qi2(
j

r j DU2

1(
j
Uzj

2
¹' jf

(n,n1)S qi ,r j ;P2(
i

qi2(
j

r j DU2G ,
~2.11!
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is better computationally. It is obtained from Eq.~2.10! via
integration by parts. If a momentum cutoff is present, th
are surface terms, but these will vanish at infinite cutoff.

The physical boson structure function is defined as

f B~y![(
n,n1

)
i

n E dqi
1d2q' i

3)
j

n1 E dr j
1d2r' j (

i 51

n

d~y2qi
1/P1!

3Uf (n,n1)S qi ,r j ;P2(
i

qi2(
j

r j DU2

. ~2.12!

The fermion and Pauli-Villars structure functionsf F(x) and
f PV(z) are defined analogously. The normalization of eac
such that the integral yields the average multiplicity

^nB&5E
0

1

f B~y!dy, ^nPV&5E
0

1

f PV~z!dz. ~2.13!

The average momentum carried by each type is also give
an integral

^y&5E
0

1

y fB~y!dy, ^z&5E
0

1

z fPV~z!dz. ~2.14!

As a measure of the correlations in the multiple-boson F
sectors, we compute the covariance^y1y2&n>22^y&n>2

2

where

^y1y2&n>25 (
n>2,n1

)
i

n E dqi
1d2q' i

3)
j

n1 E dr j
1d2r' j (

i 1Þ i 2

n qi 1
1

P1

qi 2
1

P1

3Uf (n,n1)S qi ,r j ;P2(
i

qi2(
j

r j D U2

,

~2.15!

and ^y&n>2 is the same aŝy& except that only states with
two or more bosons are included. We also compute the
tribution amplitude@16# given byw(y)[*d2q'f (1,0)(y,q').

III. NUMERICAL METHODS AND RESULTS

A. Discretization and diagonalization

We discretize the coupled integral equations and the
mulas for quantities such as the form factor slope in
standard DLCQ manner@6#. Integrals are approximated b
discrete sums and derivatives by finite differences. Beca
of the Pauli-Villars regulation, the theory is ultraviolet finit
However, in order to have a finite matrix problem, we lim
the range of transverse momentum by imposing a cutoffL2

on each constituent’s invariant mass:
05450
e

is
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mi
21pi'

2

xi
<L2, ~3.1!

wheremi is the physical mass of the constituent.~Later, we
study the largeL limit.! The longitudinal momentum, al
ways being positive, has a natural finite range.

Given the length scalesL andL' , the discrete momentum
values are taken to be

p1
˜

p

L
n, p'˜S p

L'

nx ,
p

L'

nyD , ~3.2!

with n even for bosons and odd for fermions. The differin
values ofn correspond to use of periodic and antiperiod
boundary conditions, respectively, in a light-cone coordin
box:

2L,x2,L, 2L',x,y,L' . ~3.3!

The total longitudinal momentumP1 is used to define an
integer resolution@6# K[(L/p)P1. The positivity of the
longitudinal integersn implies that the number of particles i

TABLE I. Basis sizes for DLCQ calculations with paramete
M25m2, m1

2510m2, and L2550m2. The numbers of physica
states are in parentheses.

K

N' 9 11 13 15 17

5 54 100 95 176 386 140 1 553 576 6 816 39
~28 065! ~66 371! ~232 400! ~1 038 070! ~4 972 065!

6 126 748 536 758 2 907 158 4 935 510
~69 245! ~391 511! ~2 107 688! ~3 013 689!

7 519 325 1 317 392 10 080 748
~276 299! ~1 008 539! ~7 272 134!

8 1 165 832 5 162 002
~687 394! ~4 140 491!

9 2 268 535
~1 437 647!

10 5 850 335
~3 585 752!

TABLE II. Fock sector probabilities* uf (n,n1)u2) i
ndqi) j

n1dr j ,
wheren is the number of physical bosons andn1 the number of
Pauli-Villars bosons. The numerical and physical parameters
K517, N'57, M25m2, m1

2510m2, L2550m2, and ^:f2(0):&
51. The total number of bosonsn1n1 is limited to a maximum of
4. Probabilities smaller than;1025 are not resolved with any ac
curacy.

n\n1 0 1 2 3 4

0 0.8515 0.0115 0.831025 ;10210 ;10216

1 0.1333 0.0005 ;1027 ;10212

2 0.0036 0.431025 ;10210

3 0.331024 ;1028

4 ;1027
6-4
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TABLE III. Extrapolated bare parameters and observables. The physical parameter value
M25m2 for the fermion mass and̂:f2(0):&51.

m1
255m2 m1

2510m2 m1
2520m2

(L/m)2 12.5 25 50 25 50 50 100

g/m 21.4 17.7 16.3 17.8 16.0 16.0 15.5
M08/m

2 1.26 1.10 1.10 1.48 1.4 1.8 1.9

uc0u2 0.82 0.83 0.84 0.85 0.86 0.87 0.87

2100m2F̃8(0) 1.04 0.78 0.66 0.72 0.59 0.59 0.51

^nB& 0.18 0.15 0.14 0.15 0.14 0.13 0.13
^y& 0.077 0.062 0.057 0.062 0.056 0.056 0.053

^y1y2&n>22^y&n>2
2 1.131023 631024 631024 631024 631024 631024 531024

A 9.39 4.21 3.00 4.15 2.77 2.7 2.4
a 1.90 1.50 1.36 1.48 1.31 1.29 1.26
b 2.95 2.54 2.32 2.53 2.26 2.24 2.14
g
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any Fock sector is limited to;K/2. The integersnx andny
range between limits associated with some maximum inte
N' fixed by L' and the cutoffL, such thatN'p/L' is the
largest transverse momentum allowed by the cutoff.

The integral equations and other physical objects are
dependent ofL, a feature of boost invariance in DLCQ. Th
limit L˜` is replaced by the limitK˜`. The momentum-
space continuum limit is reached when bothK and N' be-
come infinite. The momentum-space volume limitL2

˜` is
taken after the continuum limit.

Weighting factors are included in the sums that appro
mate integrals in order to incorporate boundary effects
duced by the invariant-mass cutoff. For a discussion of h
these factors are constructed and used, see Ref.@5#.

Typical basis sizes are given in Table I. The present c
culations, which use a single four-processor node of an I
SP, are limited to;113106 states. The Hamiltonian matri
is extremely sparse, so that the lowest-mass state ca
efficiently extracted with use of the Lanczos algorithm@17#
for complex symmetric matrices@18,5#. The analytic solution
for the soluble model discussed in Ref.@5# is used as an
initial guess for the Lanczos procedure.

Before invoking the Lanczos algorithm, the eigenval
problem is rearranged so that21/g is the eigenvalue. This

FIG. 1. The boson structure functionf B at various numerical
resolutions, with M5m, ^:f2(0):&51, L2550m2, and
m1

2510m2. The solid line is the parametrized fit,Aya(12y)b.
05450
er
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be

allows computation ofg given a fixed value forM and a
guess forM08 . The iterative Brent-Mu¨ller algorithm @19# is
then used to find the value ofM08 that bringŝ :f2(0):& into
agreement with its chosen value.

B. Results

Most of the calculations reported here use the param
values M25m2 and ^:f2(0):&51. These choices corre
spond to a relativistic, weak-coupling regime. Because of
weak coupling, the number of Fock sectors can be trunca
to include no more than four bosons without any discerni
effect, as can be seen from the Fock-sector probabili
listed in Table II; most weak-coupling calculations we
done with this truncation in order to increase the availa
momentum resolution. For comparison, we have also d
some study of other regimes.

Table III shows values of various quantities, extrapola
from longitudinal resolutionsK59 –19 ~or even 21! and
transverse resolutionsN'55 –10 for smallK and N'55–6
or 7 for large K. These include the bare couplingg, the
renormalization parameterM08 , the bare fermion probability
uc0u2, the slope of the form factorF8(0), theaverage mul-
tiplicity ^nB&, and a parametrization of the structure functi
f B(y)5Aya(12y)b ~which is an excellent fit!. Each is
shown as a function of the cutoffL2 and the Pauli-Villars
massm1. The extrapolations were done by fitting to the for

FIG. 2. The one-boson amplitudef (1,0) as a function of longi-
tudinal momentum fractiony and one transverse momentum com
ponentqx in the qy50 plane. The parameter values areK521,
N'57, m1

2510m2, L2525m2, and^:f2(0):&51.
6-5
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BRODSKY, HILLER, AND McCARTOR PHYSICAL REVIEW D60 054506
a1b/K21g/N'
2 ; most quantities are slowly varying wit

respect to resolution. The range of values obtained forF8(0)
corresponds to a dressed-fermion radiusA26F8(0) on the
order of 0.2m21.

The renormalization parameterM08 is the only quantity
strongly dependent on the Pauli-Villars mass. This is to
expected because of its role in the self-energy counterte
One might argue thatF8(0) is also strongly dependent; how
ever, any apparent variation withm1

2 is largely due to differ-
ences in cutoff values and transverse resolution. Altho
F8(0) will ultimately become independent ofL2 andN' , it
is sensitive to these in the ranges where we calculate. T
III also shows that the estimate of( i yi!1 by Głazek and
Perry @20# is justified, in that the expectation value^y& is
found to be small.

A sample boson structure function is plotted in Fig. 1. T
figure also shows how well the formAya(12y)b fits the
numerical results and how insensitivef B is to numerical
resolution, something which was also observed for the mo
considered in Ref.@5#. The transverse and longitudinal d
pendence of a two-body amplitude are shown in Figs. 2
and 4. A particular transverse cross section of the two-b
amplitude is presented in Fig. 5; these results correspon

FIG. 3. The boson-fermion two-body amplitude at zero tra
verse momentum, withK521, N'57, ^:f2(0):&51, L2525m2,
andm1

2510m2. The normalization is arbitrary.

FIG. 4. Cross sections of the boson-fermion two-body amplitu
taken at varying longitudinal momenta and at fixedqy50, with K
521, N'57, ^:f2(0):&51, L2525m2, andm1

2510m2. The peaks
are normalized to be equal atqx50.
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fixed values of the transverse scaleL' and are remarkably
consistent. Figure 6 shows theQ2 dependence of the boso
structure function. A fermion structure function and a Pau
Villars boson structure function are plotted in Figs. 7 and
The parameter values are the same for both. The skewin
the Pauli-Villars particle momentum distributions to hig
longitudinal momentum fractions reflects the heavy mass
the Pauli-Villars bosons.

Other values for the physical parametersM and^:f2(0):&
have also been considered. A summary of extrapolated q
tities is given in Table IV. The associated structure functio
f B(y) are shown in Figs. 9–12. Distribution amplitudes a
displayed in Figs. 13 and 14. For values ofM larger thanm
we have found the formAya(12y)be2cy to allow a notice-
ably better fit to f B(y). For ^:f2(0):&55 the maximum
number of bosons was increased to 5. The numerical res
tions ranged from 9 to 21 forK and from 5 to as much as 1
for N' .

-

e

FIG. 5. A cross section of the boson-fermion two-body amp
tude taken at fixed longitudinal momentum fractiony54/9 and at
fixed qy50, with K59, ^:f2(0):&51, andm1

2510m2. The cutoff
L2 and the transverse resolutionN' are varied to keep the trans
verse scaleL' fixed at one of the following values: 1p/m ~black!,
A2p/m ~gray!, and 2p/m ~white!. Different symbol shapes corre
spond to different values ofN' . The peaks are normalized to b
equal atqx50. The points at zero amplitude mark the transve
range, which is set by the cutoff.

FIG. 6. The boson structure functionf B(y,q') with K521,
N'57, ^:f2(0):&51, L2525m2, andm1

2510m2. The transverse
momentum is varied withqy fixed at zero.
6-6



ur

APPLICATION OF PAULI-VILLARS REGULARIZATION . . . PHYSICAL REVIEW D60 054506
FIG. 7. The fermion structure functionf F with K521, N'55
to 7, ^:f2(0):&51, L2525m2, and m1

2510m2. Each N' value
yields essentially the same result.

FIG. 8. Same as Fig. 7 but for the Pauli-Villars boson struct
function f PV .

TABLE IV. Same as Table III, but for differentM2 or
^:f2(0):& values.

^:f2(0):&51 ^:f2(0):&55

(M /m)2 0.1 5 10 1
(m1 /m)2 10 10 10 10
(L/m)2 50 100 100 50

g/m 15.1 18.1 19.0 44.5
M08/m

2 1.39 1.66 1.60 10.1

uc0u2 0.83 0.89 0.90 0.41

2100m2F̃8(0) 2.0 0.14 0.07 6.7

^nB& 0.16 0.10 0.09 0.62
^y& 0.073 0.032 0.024 0.24

^y1y2&n>22^y&n>2
2 731024 331024 331024 831023

A 1.0333 5.2548 7.5519 9.0847
a 1.0512 1.3191 1.3339 1.0256
b 0.8678 2.5430 1.7151 2.1580
c 0 2.2730 4.9870 0
05450
e

FIG. 9. Same as Fig. 1, but forM250.1m2.

FIG. 10. Same as Fig. 1, but forM255m2 andL5100m2 and a
parametrized fit ofAya(12y)be2cy.

FIG. 11. Same as Fig. 10, but forM2510m2.

FIG. 12. Same as Fig. 1, but for^:f2(0):&55.
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The extent to which the fermion source is dressed by
bosons is directly determined by the mass ratioM /m and the
coupling strength. The latter is tightly correlated with t
chosen observablê:f2(0):&. As the ratioM /m is tuned, the
boson structure functionf B(y) shifts dramatically. A rela-
tively small boson mass shifts the peak inf B(y) to small
boson momentum fractions, as shown in Fig. 11. A la
mass shifts the peak to central values ofy and significantly
raises the constituent density at largey, as illustrated in Fig.
9. An increase in̂ :f2(0):& increases the coupling and in
creases the probability for a large number of constitue
Analogous changes occur for the distribution amplitu
Comparison of Tables III and IV shows that the avera
number ^nB& increases significantly when̂:f2(0):& is
changed from 1 to 5.

IV. CONCLUSION

We have successfully computed the Fock-sector w
functions which fully describe the lowest-mass eigenstate
a field-theoretic model Hamiltonian~2.1! in physical three
space and one time dimensions. From these wave funct
we have extracted several interesting quantities to show
numerical convergence is under control and that Pa
Villars regularization leads to sensible results. The size of
momentum-state basis required is large but manageable

FIG. 13. Comparison of distribution amplitudesw(y)
[*d2q'f (1,0)(y,q'). Various values are considered for the fermi
massM, with ^:f2(0):&51. The values of the numerical param
eters areK519, N'55, L2550m2 ~except for M255m2 and
10m2 whenL25100m2), andm1

2510m2. The lines simply connec
the computed points, to guide the eye, and the absolute norma
tion is arbitrary.
-
al
M

05450
e

e

s.
.
e

e
f

ns
at
i-
e
for

present-day computing machines. Larger bases could be
by expanding to more than one node, although one then p
the price of message-passing overhead.

For the model discussed here there are still interes
calculations which might be done. One could look at exci
states in the one-fermion sector that we have explored
consider other sectors, such as the two-fermion sector.
tension to two flavors, particularly with very differen
masses, should yield some understanding of light syst
with heavy intrinsic constituents, which could have som
relevance for intrinsic charm@21#.

Beyond this model there are, of course, many possib
ties. A solution of Yukawa theory@22#, in a no-pair approxi-
mation or eventually in full, would be the most immedia
nontrivial extension. Applications to quantum electrodyna
ics, to positronium@10# or the electron’s anomalous mome
@11#, in particular, would be quite natural. Direct applicatio
to quantum chromodynamics~QCD! may be problematic;
however, a supersymmetric conformally invariant form
QCD could lend itself to the spirit of the approach, in th
heavy superpartners in a broken supersymmetry should
vide the needed ultraviolet cancellations.
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FIG. 14. Same as Fig. 13 but with the fermion mass fixed
M5m and ^:f2(0):& varied.
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M. Kaluža and H. J. Pirner,ibid. 47, 1620~1993!; H. C. Pauli
and J. Merkel,ibid. 55, 2486~1997!; U. Trittmann and H.-C.
Pauli, hep-th/9704215; hep-th/9705021; U. Trittman
hep-th/9705072; hep-th/9706055.

@11# J. R. Hiller and S. J. Brodsky, Phys. Rev. D59, 016006
~1999!.

@12# J. J. Wivoda and J. R. Hiller, Phys. Rev. D47, 4647~1993!.
@13# I. Tamm, J. Phys.~Moscow! 9, 449 ~1945!; S. M. Dancoff,

Phys. Rev.78, 382 ~1950!.
@14# P. A. M. Dirac, Rev. Mod. Phys.21, 392 ~1949!.
@15# G. McCartor and D. G. Robertson, Z. Phys. C53, 679 ~1992!.
@16# G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157~1980!.
@17# C. Lanczos, J. Res. Natl. Bur. Stand.45, 255 ~1950!; J. H.

Wilkinson, The Algebraic Eigenvalue Problem~Clarendon,
Oxford, 1965!; B. N. Parlett,The Symmetric Eigenvalue Prob
lem ~Prentice-Hall, Englewood Cliffs, NJ, 1980!; J. Cullum
and R. A. Willoughby, J. Comput. Phys.44, 329~1981!; Lanc-
zos Algorithms for Large Symmetric Eigenvalue Computati
~Birkhauser, Boston, 1985!, Vols. I and II; G. H. Golub and C.
F. van Loan,Matrix Computations~Johns Hopkins University
Press, Baltimore, 1983!.

@18# J. Cullum and R. A. Willoughby, inLarge-Scale Eigenvalue
Problems, edited by J. Cullum and R. A. Willoughby, Math
ematical Studies Vol. 127~Elsevier, Amsterdam, 1986!, p.
193.

@19# P. L. DeVries, A First Course in Computational Physic
~Wiley, New York, 1994!, pp. 72–73.

@20# St. D. Głazek and R. J. Perry, Phys. Rev. D45, 3734~1992!.
@21# S. J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. L

93B, 451 ~1980!; R. Vogt and S. J. Brodsky, Nucl. Phys
B438, 261 ~1995!.

@22# For a light-cone bound-state calculation in Yukawa theo
using basis-function methods, see St. Głazek, A. Harindran
S. Pinsky, J. Shigemitsu, and K. Wilson, Phys. Rev. D47,
1599 ~1993!; P. M. Wort, ibid. 47, 608 ~1993!.
6-9


