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We apply Pauli-Villars regularization and discrete light-cone quantization to the nonperturbative solution of
a (3+1)-dimensional model field theory. The matrix eigenvalue problem is solved for the lowest-mass state
with use of the complex symmetric Lanczos algorithm. This permits the calculation of each Fock-sector wave
function, and from these we obtain values for various quantities, such as average multiplicities and average
momenta of constituents, structure functions, and a form factor s|§0&56-282(199)02417-Q

PACS numbgs): 12.38.Lg, 02.60.Nm, 11.10.Gh, 11.15.Tk

I. INTRODUCTION mimics many features of a full quantum field theory. Unlike

the analytic model which contained a static source, the light-

One of the most challenging problems in particle physicscone energies of the particles in the new model have the
is the computation of the spectrum and physical properties aforrect longitudinal and transverse momentum dependence.

bound states in quantum field theory. The main tool presalthough an analytic solution of the new model is no longer
ently used for such nonperturbative computations in quanturavailable, the numerical convergence of the discretized light-
chromodynamics is lattice gauge thegfy, which has been  ¢one solutions is found to be quite rapid, and the structure of
highly successful in determining hadron spectra. Howeverihe solution for the lowest-mass eigenstate is readily ob-
the computation of dynamical properties, suctCa viola-  tgined. In particular, we can calculate the light-cone wave
tion in weak transition matrix element&] or the shape of fnction of each Fock-sector component, and from these we
t_he distr.ibutions measurgad in deep inelastic scattering, is dif(:an compute the values for various physical quantities, such
ficult using standard lattice methods. as average multiplicities and average momenta of constitu-

L|ght-con_e Hamiltonian d|agonallzat|on methogt ap- ._ents, bosonic and fermionic structure functions, and a form
pear to provide a number of attractive advantages for solvmgpalctor slope

nonperturbative problems in quantum field theory, including A distinct advantage of our approach is that almost all

a Minkowski space description, boost invariance, no d callv by the Paull
fermion-doubling, and a consistent Fock state expansion wefiounterterms are generated automatically by the Paull-

matched to physical problems in QCD: however, thus faryllla_r§ particles and their |_magina_ry coupling_s. This can be
full dynamical solutions based on light-cone Hamiltonian di- €XPlicitly checked for consistency in perturbation theory. For
agonalization have been primarily limited to one-space, onebonperturbative calculations we conjecture that the same
time mode's_ One promising approach iS the transverse |atlumber Of Pauli-Villal’S fleldS W|” be SuffiCient to regulate
tice which combines light-cone methods in the longitudinalthe theory. This does appear to be the case here and in the
light-cone direction with a spacetime lattice for the trans-work reported previously5]. An alternative procedure has
verse dimensionf3]. been proposed and explored by Wilson, Perry and collabora-
In recent work[5] we have shown that a model field tors[8]; they use a similarity transformation to generate ef-
theory in 3+ 1 dimensions can be solved using discrete light-fective Hamiltonians perturbatively which can then be diago-
cone quantizatiofDLCQ) [6,4], a light-cone Hamiltonian nalized in the valence Fock sector.
diagonalization method, together with Pauli-Villars regula- In our approach one can obtain the full set of Fock-sector
tion of the ultraviolef 7]. The particular model theory which wave functions for the lowest-mass eigenstate. This contrasts
we constructed has an exact analytic solution by which thevith other DLCQ calculations in 31 dimensiong9-11]
DLCQ results could be checked, for both accuracy and rawhere the number of particles was severely limited from the
pidity of convergence. The model was regulated in the ultraoutset and effects of higher Fock sectors can only be esti-
violet by a single Pauli-Villars boson, which was included in mated. The DLCQ calculation by Wivoda and Hillgt2],
the DLCQ Fock basis in the same way as the “physical” though untruncated, did not construct counterterms in a way
particles of the theory. The two bare parameters of the moddhat can be systematically extended to other theories. In our
were then determined by fits of observables to chosen valuesase, a Tamm-Dancoff truncatipb3] in particle number can
Here we shall extend this combination of DLCQ and be applied, and the impact of the truncation can be studied
Pauli-Villars regularization to a more realistic model which and understood.
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Our notation is such that we define light-cone coordinates . .
[14] by X 2 b by, [agd(pr—pata)+agd(pr—pz—a)

+_ 0 3 —(ywl 2
TG Xm0, 0 +ialgd(pi—pa+a) Hiad(pi—po- @)l (2

The time coordinate is taken to b&. The dot product of

two four-vectors is whereb!,, al, andal, are creation operators for the fer-
1 mion source, the physical boson, and the Pauli-Vill@¥)
X= (b X" +D X ) =D -X. . 1.2 boson, respectively. The operators obey the usual commuta-
p-x=3(p PTX-)=Pix, 2 tion relations

Thus the momentum component conjugatetois p*, and
the light-cone energy ip~ . We use underbars to identify
light-cone three-vectors, such as

p=(p".p.). 1.3

{bps ,b;,a,}z 16m3p* S(P=P") Sy

[aq.aq/]=167°q" 6(q—q"), (2.2

F_or additional details, see Appendix A of R¢&] or a re- [aiq ,alq,]:16773q+5(q_q'),
view paper{4]. - = - -

The model which we study is defined in Sec. Il. There we R o )
also list and define various quantities which we will compute' "€ Mop /P counterterm is inserted to cancel a logarith-
from the eigensolution, including structure functions and disMic dependence on the Pauli-Villars mass which arises from
tribution amplitudes, average multiplicities, and average mothe one-loop self-energy integral
menta. The numerical methods, including the DLCQ proce-
dure, and the results are discussed in Sec. lll. Section IV g2 f’ﬁ dg* d?q,

contains some concluding remarks and plans for future work.

167°¢ Jo q" M?+p? M2+(p,+q)? w’+al
Il. MODEL WITH A DYNAMICAL SOURCE pr/PT  (pT—qN)/PT  qT/PT
We shall consider a field-theoretic model where one par- 92
ticle, which we take to be a fermion of mab4 acts as a —PVterm| ~— T SIN(ua /). 2.3
T

dynamical source and sink for bosons of massSThe model
is only slightly more complicated than the analytically
soluble model considered in Ré¢b], the key difference be-

ing that here the fermion has a proper, momentum-dependeftyis model Hamiltonian is distantly related to the Yukawa

light-cone energy. Another difference is that the vertices d‘HamiItonian[lS], to which one might also eventually apply
not include the momentum ratios which were introduced inye techniques used here.

[5] to control end-point behavior; the restoration of fermion The bare parametegand M}, are to be fixed by fitting

dynamics makes §uch factor's unnecessary. The t,he°f¥ IS Stthsical properties of the lowest massive eigenstate. This is
regulated by a single Pauli-Villars boson with imaginary o jressed fermion state which we write as
couplingg and a mass;. The light-cone Hamiltoniarfor

mass-squared operatdd, = P*P —P2 is, in the P, =0
frame, : . dp*d’p, [ [ dg’d%a;
®,=1673P" >,

nny J \16m%p* i=1 ) 16m°q;"

dp*d?p, [ M2+p? .
- p P pL_‘_M/p_ EbTbg ny +42 n ny
16n%" | pt/pt Opt )T TRTR an )
I e T e
i= r: — = = o=
+qu+d2qL /1/2+qJ2_aTa MEJ’qiaT a J
16m%q* | gqt/pt 32 grpr 1 Ly el T o
X(f)(”'”l)(ch Ny ;p)prU H aqi H a]_rj|0>,
dp; d?p,; dedzplzf dq*d®q, oo

and normalize according to

'One could use an Hermitian form and negative metric to imple-

rT_ — 3p+ r_
ment Pauli-Villars regularization, but the complex symmetric form ®, - ®,=16m"P 6(5 E)' 29
is what is known to work well with the numerical method we have
chosen. The individual amplitudes must then satisfy
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n ny The eigenvalue problem is
r; H quﬁdzqﬂ H drd?r
o Hi D, =MD, . 2.7

2
ofanp-Sa-Sr

This is equivalent to the following coupled set of integral
(2.6 equations for the amplitudes:

M2+ p? w?+q° wi+r
{MZ_ . L_M(,)X_Z v LI_; 1 Ll ¢(nn1)(q“r1'p)
[ Zj

[ w1 [ W PG AT P9
1 1 (n—1,n4)
ND T C YRR S ERPRC UL
|
P dr’ d2 (n,ny+1)
+|\/nl+1f W(f) 1 (q, TP )
i 1 (n,n;—1)
D e T e TP 28
j
|
with x=p*/P*, y;=q,"/P", andz;=r"/P". fermion, structure functions for bosons and the fermion, the

For fixed M, the eigenvalue problem itself is a condition distribution amplitude for the physical boson, average mo-
on the bare parameters. A convenient choice for the secondenta, average multiplicities, and a quantity sensitive to bo-
condition is the value of an expectation value involving theson correlations. The form factor slopé(0) is given by[5]
boson fieldg(x) ; we use(: ¢2(0):)=d! : $?(0):®,, which
corresponds to the expectation value for the sum pf fr 1
physical bosons. For the soluble model in R it was F'(0)= “ H J’dq+d2q“ H dri"d®r
shown to be closely tied to the coupliggas can be seen in '

Eq. (3.1 of th:_;\t paper. Most importantly, it can be_cor_‘n- yI 5 2
puted rather quickly from a sum similar to the normalization X Z VL|+2 V
sum
*
Xd’(n'nl)(Qi TP=2 g2 rj”
<1¢2(0)1>— H deI. d*q.; - 0T
1n1 0 i

ny n 5 ><¢,(n,n1)(9i g ;E—Ei ﬂi_; £]> (2.10

xH dr*dzr“( E pyee )
! Gk A related form,

2

(ﬂi{i:E—Z 4-2 5)

n ny
F©--3 1 [ ao'aa, IT [ arfax,
2.9 iy j

These two conditions are sufficient to fixand M.
With the two parameters of the model now fully deter-

Vi 2
X2 \E'Vmﬁ(”'”ﬁ(ﬂi UL > 5)

mined, we can compute other quantities as predictions. 2
These are all obtained from the primary output, which is the E ]V ™ ”1)(q| T P= E ai— E ri ) }
set of wave functiongy(™"0 for the different Fock sectors.

We will compute the slope of the no-flip form factor of the (2.1)
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is better computationally. It is obtained from E.10 via TABLE I. Basis sizes for DLCQ calculations with parameters
integration by parts. If a momentum cutoff is present, thereM?=pu?, u%=10u2, and A2=5042. The numbers of physical
are surface terms, but these will vanish at infinite cutoff.  states are in parentheses.

The physical boson structure function is defined as

K
n
o= 1 qurdzqh N, 9 11 13 15 17

ny 5 54100 95176 386140 1553576 6816394

ny n (28065 (66371 (232400 (1038070 (4972065
x]] fdrfdzrlj > Sy—q /Pty 6 126748 536758 2907158 4935510

J =1 (69245 (391511 (2107688 (3013689

2 7 519325 1317392 10080748

x| ¢ gj 1 P— 2 Qi_; r,—) (2.12 (276299 (1008539 (7272134

8 1165832 5162002

The fermion and Pauli-Villars structure functiofs(x) and (687394 (414049}

fpy(2) are defined analogously. The normalization of each is9 2268535
such that the integral yields the average multiplicity (1437647
10 5850335
1 1 (3585752
(ng)= fo fe(y)dy, (npy)= fo feu(2)dz. (2.13
i i i mi2+ pizL
The average momentum carried by each type is also given by . <A2 3.1)
i

an integral
1 1 wherem; is the physical mass of the constituefitater, we
<y>:j yfa(y)dy, <z>:f zfpy(z)dz.  (2.14  study the largeA limit.) The longitudinal momentum, al-
0 0 ways being positive, has a natural finite range.
Given the length scaldsandL, , the discrete momentum
As a measure of the correlations in the multiple-boson Fockglues are taken to be
sectors, we compute the covarian¢gy,)n=»—(y)2-,

where T T T
n p*—»tn, p.— :nx,:ny), (3.2
(YiYo)n=2= > 11 f dgd?q, ; with n even for bosons and odd for fermions. The differing
n=2n i values ofn correspond to use of periodic and antiperiodic

boundary conditions, respectively, in a light-cone coordinate

+ o+
¥ o 9, box:

X drd?r —
H J 1] 3l P+ P+ B
—L<x"<L, -—L,<xy<L,. (3.3
2
; The total longitudinal momentur®* is used to define an
integer resolutionN6] K=(L/7)P". The positivity of the
(2.15 longitudinal integers implies that the number of particles in

X

¢(n'n1)<Qi ay iP—Z gi—g D)

and(y),=, is the same agy) except that only states with TABLE Il. Fock sector probabilitiesf|¢<"'”1>|2H{‘dqiﬂ?1drj,

two or more bosons are included. We also compute the diswheren is the number of physical bosons ang the number of
tribution amplitudg 16] given by ¢(y)=fd?q, #*%(y,q,).  Pauli-Villars bosons. The numerical and physical parameters are
K=17, N, =7, M?=pu?, u2=10u% A2?=50u2 and (:¢$?(0):)

=1. The total number of bosomst n is limited to a maximum of

4. Probabilities smaller than 10" ° are not resolved with any ac-

A. Discretization and diagonalization curacy.

I1l. NUMERICAL METHODS AND RESULTS

We discretize the coupled integral equations and the for-
- . Ny 0 1 2 3 4
mulas for quantities such as the form factor slope in the
standard DLCQ manndi6]. Integrals are approximated by 0 0.8515 0.0115 0810° ~10% ~1071¢

discrete sums and derivatives by finite differences. Because 1 0.1333 0.0005 ~1077 ~1012
of the Pauli-Villars regulation, the theory is ultraviolet finite. 2 0.0036 0.X10°% ~1010
However, in order to have a finite matrix problem, we limit 3  03x10%4 ~10°8

the range of transverse momentum by imposing a cutgff 4 ~10°7

on each constituent’s invariant mass:
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TABLE lll. Extrapolated bare parameters and observables. The physical parameter values are
M?2= 2 for the fermion mass an@ ¢2(0):)=1.

ui=5u? pi=10u" ps=20u"
(A )2 12.5 25 50 25 50 50 100
ol 21.4 17.7 16.3 17.8 16.0 16.0 15.5
M/ u? 1.26 1.10 1.10 1.48 1.4 1.8 1.9
[o|? 0.82 0.83 0.84 0.85 0.86 0.87 0.87
—1004%F ' (0) 1.04 0.78 0.66 0.72 0.59 0.59 0.51
(ng) 0.18 0.15 0.14 0.15 0.14 0.13 0.13
{y) 0.077 0.062 0.057 0.062 0.056 0.056 0.053
(Y1Yodn=o—{(y)2, 1.1x10°% 6x10* 6x10* 6x10% 6x10* 6x10* 5x10*
A 9.39 4.21 3.00 4.15 2.77 2.7 2.4
a 1.90 1.50 1.36 1.48 1.31 1.29 1.26
b 2.95 2.54 2.32 2.53 2.26 2.24 2.14

any Fock sector is limited te-K/2. The integers), andn,  allows computation ofy given a fixed value foM and a
range between limits associated with some maximum integeguess forM (. The iterative Brent-Miler algorithm[19] is
N, fixed byL, and the cutoffA, such thatN, #/L, is the  then used to find the value & that brings(: ¢:>(0):) into
largest transverse momentum allowed by the cutoff. agreement with its chosen value.

The integral equations and other physical objects are in-
dependent of, a feature of boost invariance in DLCQ. The
limit L—oo is replaced by the limiK—o. The momentum-
space continuum limit is reached when bé&thand N, be-
come infinite. The momentum-space volume lit— is  values M?=u? and (:$*(0):)=1. These choices corre-
taken after the continuum limit. spond to a relativistic, weak-coupling regime. Because of the

Weighting factors are included in the sums that approxi-weak coupling, the number of Fock sectors can be truncated
mate integrals in order to incorporate boundary effects into include no more than four bosons without any discernible
duced by the invariant-mass cutoff. For a discussion of hovgffect, as can be seen from the Fock-sector probabilities
these factors are constructed and used, see[Ref. listed in Table IlI; most weak-coupling calculations were

Typical basis sizes are given in Table I. The present caldone with this truncation in order to increase the available
culations, which use a single four-processor node of an IBMMomentum resolution. For comparison, we have also done

B. Results
Most of the calculations reported here use the parameter

SP, are limited to~11x 10° states. The Hamiltonian matrix
is extremely sparse, so that the lowest-mass state can
efficiently extracted with use of the Lanczos algorithh]
for complex symmetric matricd4.8,5]. The analytic solution
for the soluble model discussed in R¢g] is used as an
initial guess for the Lanczos procedure.

some study of other regimes.

be Table 11l shows values of various quantities, extrapolated
from longitudinal resolutiondK=9-19 (or even 2} and
transverse resolutiond; =5-10 for smallK andN, =5-6

or 7 for largeK. These include the bare couplirgy the
renormalization parametéd, the bare fermion probability

Before invoking the Lanczos algorithm, the eigenvalue| |2, the slope of the form factdf’(0), theaverage mul-

problem is rearranged so thatl/g is the eigenvalue. This

0.30
0.25 |
0.20 -

% 0.15 |
0.10 -
0.05 -

0.00 - ; ,
0.4 0.6 0.8
y

0.2

0.0 1.0

FIG. 1. The boson structure functidiz at various numerical
resolutions, with M=gu, (:¢%(0):)=1, A2=50u2, and
w2=10u?. The solid line is the parametrized fiy(1—y)".

tiplicity (ng), and a parametrization of the structure function
fa(y)=Ay3(1—y)® (which is an excellent fit Each is
shown as a function of the cutoff? and the Pauli-Villars
massu. The extrapolations were done by fitting to the form

FIG. 2. The one-boson amplitudgs®>® as a function of longi-
tudinal momentum fractioy and one transverse momentum com-
ponentq, in the q,=0 plane. The parameter values dfe=21,
N, =7, u3=10u? A?=25u2, and(: $?(0):)=1.
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1.2 1.2

1.0 1 o ® o

0)

0.8 1

0.6 1

o"y,q,
[ ]

0.4 -

0.2 1
.

0.0

0.0 0.2 0.4 0.6 0.8 1.0
y

FIG. 3. The boson-fermion two-body amplitude at zero trans-  F|G. 5. A cross section of the boson-fermion two-body ampli-
verse momentum, witk =21, N, =7, (:¢%(0):)=1, A>=254%,  yde taken at fixed longitudinal momentum fractips 4/9 and at
and u$=10u The normalization is arbitrary. fixed g,=0, with K=9, (:¢?(0):)=1, andu?=10u2. The cutoff
A? and the transverse resolutidh, are varied to keep the trans-
verse scalé, fixed at one of the following values:#/u (black),
V27! (gray), and 2m/w (white). Different symbol shapes corre-
spond to different values dfl, . The peaks are normalized to be
equal atq,=0. The points at zero amplitude mark the transverse
range, which is set by the cutoff.

a+ BIK?+ yIN? ; most quantities are slowly varying with
respect to resolution. The range of values obtainedrf¢0)
corresponds to a dressed-fermion radi(is6F'(0) on the
order of 0.2u L.

The renormalization parametéd; is the only quantity

strongly dependent on the Pauli-Villars mass. This is t0 bgj,aq values of the transverse scale and are remarkably
expect_ed because of its rc_)Ie in the self-energy counterterm,cistent. Figure 6 shows ti@? dependence of the boson
One might argue that’ (0) is also strongly dependent; how- gcqyre function. A fermion structure function and a Pauli-
ever, any apparent variation wijh; is largely due to differ- vjjars boson structure function are plotted in Figs. 7 and 8.
ences in cutoff values and transverse resolution. Althoughrhe parameter values are the same for both. The skewing of
F'(0) will ultimately become independent 8 andN, , it the Pauli-villars particle momentum distributions to high
is sensitive to these in the ranges where we calculate. Tablgngitudinal momentum fractions reflects the heavy mass of
[l also shows that the estimate afjy;<1 by Gtazek and the pauli-Villars bosons.

Perry[20] is justified, in that the expectation valdg) is Other values for the physical parametbtsnd(: ¢>(0):)
found to be small. o o have also been considered. A summary of extrapolated quan-
~ A sample boson structure function is plotted in Fig. 1. Thetities is given in Table IV. The associated structure functions

figure also shows how well the fory*(1—y)® fits the  f_(y) are shown in Figs. 9—12. Distribution amplitudes are
numerical results and how insensitifg is to numerical gisplayed in Figs. 13 and 14. For valuesMflarger thanu
resolution, something which was also observed for the modgle have found the forndy?(1—y)Pe <Y to allow a notice-
considered in Ref[5]. The transverse and longitudinal de- ably better fit tofg(y). For (:¢%(0):)=5 the maximum
pendence of a two-body amplitude are shown in Figs. 2, $iymber of bosons was increased to 5. The numerical resolu-
and 4. A particular transverse cross section of the two-bodyjons ranged from 9 to 21 fd€ and from 5 to as much as 10
amplitude is presented in Fig. 5; these results correspond i@\, .

1.2

o y=2/21
v y=4/21
1.0 1 e} m y=6/21
—_ O y=8/21
o
i_ 0.8 | § 6 4 y=1021
=g O y=12/21
X ® y-14/21
o 0.6 1 v y=1621
2= B B my=18/21
g 04 & y=20/21
< ] 8
0.2 1 - v
o ® 8
0.0 00— 00000

4 3 2 1 0 1 2 3 4
g /u

FIG. 4. Cross sections of the boson-fermion two-body amplitude

taken at varying longitudinal momenta and at fixagg=0, with K FIG. 6. The boson structure functiofy(y,q,) with K=21,
=21,N, =7, (:¢?(0):)=1, A®>=2542, andu3=10u> The peaks N, =7, (:¢%(0):)=1, A2=25u?, and u5=10u?. The transverse
are normalized to be equal @f=0. momentum is varied witly, fixed at zero.
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1.0 i 0.30
0.8 ; 0.25
0.20
061 =
:_T{ N 0.15 1
041 0.10 |
e " % e
0.2 1 . ] 0.05 1
. ]
0.0 +o—2. . : . 0.00 : : : :
X y
FIG. 7. The fermion structure functiofr with K=21, N, =5 FIG. 9. Same as Fig. 1, but fon*=0.1u?.
to 7, (:$%(0):)=1, A?=254?, and u2=10u?. EachN, value
yields essentially the same result. 0.25
0.20 1
. 0.15 4
=
“_CD
0.025 0.10 1
0.020 1 . 0.05 -
.
= 0.015 L 0.00 , . :
= 0.0 0.2 0.4 0.6 0.8 1.0
= 0.010 1 s y
[ ]
0.005 FIG. 10. Same as Fig. 1, but f?=5u2 andA =100x2 and a
arametrized fit oAy?(1—y) e~ .
0.000 =—e—a—=—= - - P y(i-y)
0.0 0.2 0.4 0.6 0.8 1.0 0.25
z
. S 0.20
FIG. 8. Same as Fig. 7 but for the Pauli-Villars boson structure
function fpy,. 015
=
o
0.10 1
TABLE IV. Same as Table Ill, but for differentM? or 0.05
(:¢?(0):) values. 0.00

0.0 0.2 0.4 0.6 0.8 1.0

(:¢%(0):)=1 (:¢%(0):)=5 y
(M/w)? 0.1 5 10 1 _ , )
(Al p)? 50 100 100 50 15
g/ u 15.1 18.1 19.0 445 o
M/ u? 1.39 1.66 1.60 10.1 R
1.0 $
[ 0|2 0.83 0.89 0.90 0.41 =
—100u%F'(0) 2.0 0.14 0.07 6.7 N s Kors
(ng) 0.16 0.10 0.09 0.62 0.5 s K
{y) 0.073 0.032  0.024 0.24 v K19
(Y1Yodn=2—(y)2_, 7X107% 3x10°4 3x10* 8x10°
A 1.0333  5.2548  7.5519 9.0847 0.0 : : : : .
a 1.0512  1.3191 1.3339 1.0256 00 02 04 06 08 1.0
b 0.8678 2.5430 1.7151 2.1580 y
c 0 2.2730  4.9870 0

FIG. 12. Same as Fig. 1, but fér¢?(0):)=5.
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1.0 2.0
° M2=H2
v M52
" ME=10p° 02
0.8 2_ 2 ® (0=l
& M=0.1y 15 | v <0%(0)>=5
0.6 1
= = ]
2 e 1.0
0.4 1
0.5 1
0.2 |
0.0 " " " " ] 0.0 " " " " 4
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
y y
FIG. 13. Comparison of distribution amplitudes(y) FIG. 14. Same as Fig. 13 but with the fermion mass fixed at

=[d%q, #9(y,q,). Various values are considered for the fermion M=y and(: $3(0):) varied.
massM, with (:$%(0):)=1. The values of the numerical param-
eters areK=19, N, =5, A>=50u” (except forM?=5u* and  present-day computing machines. Larger bases could be used
10u® whenA?=100u?), andui=10u?. The lines simply connect by expanding to more than one node, although one then pays
the computed points, to guide the eye, and the absolute normalizgne price of message-passing overhead.
tion is arbitrary. For the model discussed here there are still interesting
calculations which might be done. One could look at excited
The extent to which the fermion source is dressed by th&tates in the one-fermion sector that we have explored, or
bosons is directly determined by the mass riqu and the ~ consider other sectors, such as the two-fermion sector. Ex-
coupling strength. The latter is tightly correlated with thetension to two flavors, particularly with very different
chosen observable ¢2(0):). As the ratioM/ . is tuned, the masses, should yield some understanding of light systems
boson structure functiomB(y) shifts dramatica”y_ A rela- with heavy intrinsic constituents, which could have some
tively small boson mass shifts the peak fig(y) to small ~ relevance for intrinsic charr21].
boson momentum fractions, as shown in Fig. 11. A large Beyond this model there are, of course, many possibili-
mass shifts the peak to central valuesyaind significantly ~ ties. A solution of Yukawa theor}22], in a no-pair approxi-
raises the constituent density at langeas illustrated in Fig. mation or eventually in full, would be the most immediate
9. An increase in: ¢%(0):) increases the coupling and in- _nontr|V|aI extension. Applications to quantum electrodynam-
creases the probability for a large number of constituentsCS, to positroniunj10] or the electron’s anomalous moment
Analogous changes occur for the distribution amplitude[11], in particular, would be quite natural. Direct application
Comparison of Tables Il and IV shows that the averagel® quantum chromodynamic®QCD) may be problematic;

number (ng) increases significantly whex: $2(0):) is ~ however, a supersymmetric conformally invariant form of
changed from 1 to 5. QCD could lend itself to the spirit of the approach, in that

heavy superpartners in a broken supersymmetry should pro-
IV. CONCLUSION vide the needed ultraviolet cancellations.

We have successfully computed the Fock-sector wave
functions which fully describe the lowest-mass eigenstate of
a field-theoretic model Hamiltonia(®2.1) in physical three This work was supported in part by the Minnesota Super-
space and one time dimensions. From these wave functiormmputer Institute through grants of computing time and by
we have extracted several interesting quantities to show thaihe Department of Energy, contracts DE-AC03-76SF00515
numerical convergence is under control and that Pauli{S.J.B), DE-FG02-98ER41087(J.R.H), and DE-FGO3-
Villars regularization leads to sensible results. The size of th@5ER40908G.M.). The hospitality of the Aspen Center for
momentum-state basis required is large but manageable f&hysics is also appreciated.
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