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Loop representations of the quark determinant in lattice QCD
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The modeling of the ultraviolet contributions to the quark determinant in lattice QCD in terms of a small
number of Wilson loops is examined. Complete Dirac spectra are obtained for sizable ensembles of SU~3!
gauge fields atb55.7 on 64, 84 and 104 lattices allowing for the first time a detailed study of the volume
dependence of the effective loop action generating the quark determinant. The connection to the hopping
parameter expansion is examined in the heavy quark limit. We compare the efficiency and accuracy of various
methods—specifically, Lanczos versus stochastic approaches—for extracting the quark determinant on an
ensemble of configurations.@S0556-2821~99!06515-7#

PACS number~s!: 12.38.Gc
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I. INTRODUCTION

In a recent paper@1# we introduced a method for perform
ing an unquenched Monte Carlo simulation in lattice QCD
which the infrared and ultraviolet modes of the quark fie
are treated separately. The low eigenvalues~typically up to a
cutoff somewhat aboveLQCD) are exactly and explicitly cal-
culated and included as a truncated quark determinant in
update Boltzmann measure. The remaining UV modes
included approximately by modeling the high end of t
spectrum with an effective loop action involving only sma
Wilson loops. It was found that on small lattices~specifi-
cally, 64 lattices atb55.7) the accuracy of such a loop fit t
the high end of the determinant was remarkably good—
x2 per degree of freedom of a fit with loops of up to 6 lin
to the logarithm of the quark determinant, including
modes above 340 MeV was 0.23, while the typical excurs
of the log determinant between uncorrelated configurati
was on the order of 20. Of course, one expects that the
curacy of such a fit will decrease with increasing volum
and it is not clear that this approach will remain practic
once lattices of physically useful size are reached. As
illustration, we note that recent studies of electromagn
effects in lattice QCD@2# found that the finite volume effect
from even the long-range electromagnetic effects were c
trollable on 123324 lattices atb55.9. A 103320 lattice at
b55.7 has almost twice the physical volume, while the l
tice discretization effects can presumably be substantially
duced by using clover improvement. Our aim in this pape
therefore to study the accuracy of effective loop action r
resentations to infrared truncated quark determinants
various size lattices atb55.7. We shall show that reason
ably accurate representations of the UV contribution to
quark determinant in terms of a small number of Wils
loops are indeed possible on such physically useful lattic
To the extent that a small residual error in the loop repres
tation of the ultraviolet part of the quark determinant contr
utes primarily to an overall rescaling of dimensional quan
ties such as ground-state hadron masses~which are
dominated by quarks with a limited range of offshellne!
such a representation should be perfectly adequate for
0556-2821/99/60~5!/054505~7!/$15.00 60 0545
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namical spectrum calculations on moderately sized lattic
Past studies of loop representations of the quark dete

nant@3,4# ~which typically focused on thecompletedetermi-
nant, less accurately described by small loops! have been
hampered by the difficulty of obtaining exact values for t
quark determinant for a sufficiently large sample of indep
dent gauge configurations. Stochastic methods@5,6# can be
applied to fairly large lattices but with limited accurac
whereas the direct Lanczos approach@8# loses steam for lat-
tices larger than about 124. In this paper we have employe
the Lanczos approach to obtain complete exact Wilson-D
spectra for sizeable ensembles of 64, 84 and 104 lattices,
allowing us to study in detail the volume dependence~Sec.
II ! and quark mass dependence~Sec. III! of the effective
loop action fit to the truncated quark determinant at vario
infrared cutoffs. Technical details of the calculations, as w
as a comparison of the computational burden of the ex
Lanczos and stochastic approaches, are presented in Se

II. LOOP ACTIONS FOR LIGHT QUARKS—VOLUME
DEPENDENCE

The main difficulty we encounter in determining the a
curacy of a loop representation for full or truncated qua
determinants in lattice QCD lies in the computational eff
required to extract complete spectra of the Wilson-Dirac
erator for a sufficiently large sample of independent gau
configurations on lattices large enough to yield physica
useful information. A variety of numerical tools, both exa
and statistical, now exist for accomplishing this task. Te
nical details of the implementaion of these methods will
deferred to Sec. IV. In this section we present a deta
study of the volume and IR-cutoff dependence of loop fits
the quark determinant, for ensembles of 75 64 lattices, 75 84

lattices and 30 104 lattices atb55.74 andk50.1685. Two
flavors of Wilson flavors are used and the Wilson parame
r is 1. For all of these configurations we have carried ou
complete spectral resolution using the Lanczos methods
cussed in Sec. IV, and identifying for each configuration
15552 ~49152, 120000! eigenvalues in the 64 (84, 104)
cases. Most of these calculations were performed on a 9 node
©1999 The American Physical Society05-1
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A. DUNCAN, E. EICHTEN, R. ROSKIES, AND H. THACKER PHYSICAL REVIEW D60 054505
Beowulf system running Linux.
The configurations used in this study were generated

ing the truncated determinant algorithm of@1#. In particular,
the update measure included the contributions to the qu
determinant from low eigenmodes of the Hermitian Wilso
Dirac operatorg5(DW2m) up to a cutoffLQCD ~specifi-
cally, we chose a cutoff of 0.45 in lattice units, correspon
ing to about 490 MeV in physical units!. This cutoff
corresponds to the lowest 30~15 positive and 15 negative!
eigenvalues for the 64 lattices, and to 120~350! low eigen-
values for the 84 (104) lattices. It is reasonable to expe
that, by including this infrared contribution in the simulatio
measure the low energy chiral structure is properly trea
@1#. The essence of the task being addressed in this pap
then to determine the extent to which the remaining omit
ultraviolet modes can accurately be fit by a gauge-invar
loop expansion involving relatively few and simple loop
When such a loop expansion is reinserted into a simulat
one would then shiftb in the usual way to preserve th
physical lattice scale, and the loop coefficents can then
retuned if necessary to allow an even more accurate re
sentation of the UV part of the determinant in the full u
quenched theory.

The loop actions discussed here will include only loo
~or Polyakov lines! with up to 6 links, although the inclusion
of loops with 8 links is completely straightforward in prin
ciple and would of course give a substantial increase in
accuracy of the fit.

On a 64 lattice with periodic boundary conditions, the
are five independent gauge invariant contributions toD
5 ln det„g5(DW2m)… involving 6 links or less, correspond
ing to the plaquette (131 loop!, here denotedL1(U), the
length 6 Polyakov line traversing the full length of the latti
in any direction,L2(U), and 3 independent length 6 close
curves@denotedL3,4,5(U)], illustrated in Fig. 1. In the case
of the 84 and 104 lattices there are only four such terms—t
plaquette and the length 6 simply connected loops displa
in Fig. 1. In addition the fits contain a constant term whi
can be regarded as the lattice equivalent of the unit opera
We shall be studying the ultraviolet contribution toD in
which thenl lowest modes are omitted:

D~nl![ (
i .nl

ln~ ul i u! ~1!

where l i are the gauge-invariant eigenvalues of„g5(DW
2m)… enumerated in order of increasing absolute value.
noting the approximate loop value ofD(nl) by Sa and the
true value bySt , the variance per degree of freedom of t
fit, s2, is defined as

FIG. 1. Six link closed loop contributions toD.
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„Sa~n!2St~n!…2/~nc2np! ~2!

for nc configurations andnp loop variables~including the
constant term!. ~We note here that the terminology ‘‘varianc
per degree of freedom’’ replaces the usual ‘‘chi-squared
degree of freedom’’ as we are dealing with a dimensionl
quantity without statistical errors.! In Figs. 2–4 we show the
accuracy of the best fit toD(nl), for the cutoff correspond-
ing to the actual simulation values—namelynl530 ~120,
350! for the 64 (84, 104) lattices. Thes2 is 0.24, 0.28 and
0.79 for the 3 cases studied. The very close matching of
loop action to the determinant values fors2,1 suggests tha
accurate dynamical calculations should be possible by
placing the UV part of the quark determinant by such a lo
Ansatz.

The accuracy of the loop fit to a truncated determinan
increased either by including longer loops or by raising
IR cutoff ~which requires that more low eigenmodes be co
puted explicitly and included in the simulation!. The varia-
tion with cutoff for the three different lattices studied is i
lustrated in Fig. 5. The eigenvalue cutoff has be
reexpressed as a physical lattice momentum, with the c
version performed using an average spectral density obta

FIG. 2. Six link fit toD30, 64 lattices.

FIG. 3. Six link fit toD120, 84 lattices.
5-2
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LOOP REPRESENTATIONS OF THE QUARK . . . PHYSICAL REVIEW D60 054505
by averaging the individual spectra for all lattices in the e
sembles used. Loops up to length 6, together with Polya
lines stretching across the lattice, have been included in
fit of the determinant. The generic behavior is clear from F
5. The accuracy of the fit improves rapidly with increasi
cutoff ~initially, the variance decreases roughly likee2Cpmin,
wherepmin5ulnl

u is the eigenvalue cutoff!, reaching a small
nonzero value. For the lattices studied, the minimum attai
s2 was less than one in all cases, leading to the close ma
ing of actual and loop fit determinant values visible in Fig
2–4. Thes2 then fluctuates more or less randomly for fu
ther increases of cutoff around this value. This small nonz
contribution at fixedb ~increasing with the lattice volume! is
due to higher dimension operators not included in the limi
size loops in the fit and would presumably be reduced as
lattice b is increased to push the system towards the c
tinuum. The fluctuations are simply a reflection of the lim
ited statistics of our relatively small ensembles—they
come more visible at larger cutoff where the signal
background is reduced. This can also be seen by plotting
cutoff dependence of thes2 for the 6 link loop fits for the
ensemble of 75 84 lattices broken into three subensembles
25 configurations each~Fig. 6!. At smaller cutoffs, strong
infrared correlations extending over several lattices lead
fairly large differences in thes2 of the fits for small pmin ,

FIG. 4. Six link fit toD350, 104 lattices.

FIG. 5. s2 versus pmin(lat) for 64, 84, and 104 lattices.
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while at larger values of the cutoff, the size of fluctuations
each subensemble is comparable to the difference betw
the s2 for the different subensembles, suggesting that th
fluctuations are statistical in origin.

The accuracy of a simple loop representation for the
traviolet part of the quark determinant, involving the cont
bution of a relatively small number of Wilson loop operato
depends on the fact that only a few independent gau
invariant operators exist of mass dimension 4 or 6@9#. On
the other hand, the number of topologically distinguisha
Wilson loops grows much more rapidly~in fact, exponen-
tially! with the length of the loops. This results in very stron
correlations between the values of distinct Wilson lo
shapes over ensembles of independent lattices. For exam
the single plaquette value is strongly correlated with
value of the 231 loop (L3 in Fig. 1!. Thus, although the
minimum s2 attainable for any given cutoff in link numbe
is clearly only obtained by employing all Wilson loops up
the prescribed length, the actual coefficients of the individ
loop valuesLi exhibit large variations from one subensemb
to another for a given lattice volume, and also as the lat
volume is increased. On the other hand, if only truly ind
pendent operators are included, we should expect the co
cents~properly normalized for the overall lattice volume! to
remain relatively constant as the lattice volume is increa
at fixed b, reflecting the contribution of a definite set o
low-dimension operators with expectation values approa
ing well-defined values in the infinite volume limit. This ca
be seen in Table I, where we show the loop coefficients a
function of lattice volume for just the single plaquette ope
tor obtained by minimizing thes2 with respect to a fit con-
taining just a constant term~the unit operator! and the single
plaquette loops~in operator terms,Fmn

2 ). The 104 lattice re-
sults were not included because of the limited statistics av
able in this case~only 30 lattices as compared to 75 lattic
for the 64 and 84 cases!.

III. QUARK DETERMINANT FOR HEAVY
QUARKS—HOPPING EXPANSION
VS EFFECTIVE LOOP ACTIONS

The main physical difference between the behavior of
quark determinants for light and heavy quarks lies in

FIG. 6. s2 versus pmin(lat) for 3 ensembles of 25 84 lattices.
5-3
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A. DUNCAN, E. EICHTEN, R. ROSKIES, AND H. THACKER PHYSICAL REVIEW D60 054505
relative variance of the infrared and ultraviolet contribution
For light quarks, there are important fluctuations introduc
both by the infrared modes, which incorporate the pro
chiral behavior of the unquenched theory, and by the ul
violet modes aboveLQCD , which primarily renormalize the
scale of the theory. Indeed, the latter are quantitatively do
nant, but closely matched by an effective action involvi
only plaquettes or 6-link loops which for long distance phy
ics reduces to an effective shift in the beta of the simulati
For heavy quarks, the density of the quark Dirac spectrum
much reduced in the infrared~which is cut off by the large
bare quark mass!, as are the fluctuations from the infrare
modes belowLQCD , while the UV modes still have substan
tial variance, but again of a form which, as we shall sho
can be accurately modeled by a simple loop action. The r
tive variance of the low and high end contributions of t
~log! quark determinant is shown in Fig. 7, where the IR/U
cut is placed at the 15th~positive or negative! mode, roughly
at LQCD for a 64 lattice atb55.7 ~for the sake of visibility,
an irrelevant constant vertical offset has been applied
bring the various contributions close to zero!. For the heavier
quark, k50.1500, there is comparatively little variance
the IR contributions, but large fluctuations in the UV part

TABLE I. Variation with volume of fit coefficients of link ex-
pansion of tr ln~Det! for various low eigenvalue cutoffsL.

Cutoff (1/a) Volume N4 Coefficients
LQCD N Constant Plaquette

0.00 6 -0.0225 0.0772
8 -0.0209 0.0794

0.45 6 -0.0111 0.0695
8 -0.0118 0.0699

0.56 6 -0.0043 0.0653
8 -0.0048 0.0653

FIG. 7. IR and UV contributions to quark determinants for lig
vs heavy quarks.
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The simplest approach one might take for the full qua
determinant for heavy quarks employs the well-studied@10#
hopping parameter expansion forD5 ln„g5(DW2m)…, valid
in the limit of smallk, i.e. large quark mass. In this sectio
we examine the extent to which a truncated hopping par
eter expansion can compete with the nonperturbative fit
of an effective loop action of the kind described in the p
ceding section. On a 64 lattice with periodic boundary con
ditions, we saw previously that there are five independ
gauge invariant contributions toD of order k6 or less, de-
notedLi ,1< i<5 above. The loop averagesLi(U) on a given
gauge configuration$U% are normalized to give exactly on
on the ordered configuration where all links are unity. The
straightforward combinatoric exercise gives (V5 lattice vol-
ume!

D~U !5V„288k4L1~U !2512k6L2~U !12304k6L3~U !

14608k6L4~U !11536k6L5~U !1O~k8!…. ~3!

~Note that this computation gives an approximant to thefull
determinant, with no obvious way of implementing a
IR/UV cutoff within the hopping parameter expansion.!

Unfortunately, the coefficients of higher order terms
the hopping parameter expansion grow fairly rapidly~the
number of closed loops increases exponentially with
length of the loop! and the expansion converges slowly. F
example, fork50.15 ~with k852.631027) the averageD
over an ensemble of 30 configurations gives 172.4, while
hopping expansion gives 147.8. The discrepancy is never
less mainly due to a few low dimension operators wh
dominate the contribution of the longer loops, as is appar
from Fig. 8. The hopping parameter expansion through
order tracks roughly the exact determinants apart from
offset ~the identity operator!. Of course, the nonperturbativ
fit including L125(U) does much better~the s2 is 0.112!.
We can improve the agreement of the truncated hopping
pansion with the data by varying both the offset and
single plaquette component from the value of thek4 coeffi-

FIG. 8. Full determinant, hopping parameter vs nonperturba
fit.
5-4
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LOOP REPRESENTATIONS OF THE QUARK . . . PHYSICAL REVIEW D60 054505
cient given in Eq.~2! ~see also@11# for another approach to
improving the hopping parameter fit!. This amounts to in-
cluding at least the lowest nontrivial dimension operator~di-
mension 4! arising from the longer loops~length 8 and
higher!. This fit is shown in Fig. 9, in comparison with th
unmodified hopping expansion result shifted only by a c
stant offset. The fit is certainly improved by optimizing th
single plaquette component~the s2 is now 0.75! but clearly
the nonperturbative fit of Fig. 8, in which all closed loo
through length 6 are optimized, still wins by a substan
factor. We can conclude that even for quite heavy quarks,
hopping parameter expansion, though analytically availa
is not competitive with a nonperturbative fit using even
small number of Wilson loops. Determining the coefficien
in such a fit only requires the extraction of the determin
for a few typical configurations. We find that a sufficient
accurate determination of the loop coefficients can be
tained by calculating the spectrum on as few as 10 ga
configurations.

We pointed out earlier that the IR portion of the Dira
spectrum is relatively inert in the case of heavy quarks. O
therefore expects that a nonperturbative fit with a few sm
loops should be accurate for heavy quarks, even if one ins
on fitting the full determinant, as discussed above. Inde
we saw above that thes2 with a fit to the full determinant is
0.112 including loops up to length 6. The fit is still improve
by excising the IR part of the spectrum, though not as d
matically as in the case of light quarks where the IR fluct
tions require the inclusion of large loops. Fork50.15, one
finds for example that thes2 of a 5 loop fit decreases t
0.035, 0.026 and 0.019 when the lowest 30, 60 or 90 mo
are excluded from the determinant.

IV. EXTRACTING THE COMPLETE DIRAC
SPECTRUM—EXPLICIT VERSUS

STOCHASTIC APPROACHES

A fairly efficient method for performing a complete spe
tral resolution of the Hermitian Wilson-Dirac operator w
described some time ago by Kalkreuther@8#. One employs
the usual Lanczos procedure,without reorthogonalization,

FIG. 9. Hopping expansion fits, with offset vs with offs
1plaquette.
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pruning out the spurious eigenvalues by the Cullu
Willoughby procedure@12#. Typically the extraction of the
complete Dirac spectrum requires~due to the inexact arith-
metic! more Lanczos sweeps than the actual dimens
(12V, whereV is the lattice volume!, by a factor of 2–3. For
example, on a 104 lattice, the full spectrum is obtained afte
about 320000 Lanczos sweeps, as compared to the a
dimension of 120000. The convergence of the procedur
improved by starting from gauge-fixed configurations.~In
spite of the fact that the spectrum is gauge-invariant, it
pears that the presence of gauge noise can reduce the nu
cal stability of the Lanczos procedure.! Occasionally, spec-
tral fluctuations lead to two eigenvalues which are alm
degenerate, or a real eigenvalue almost degenerate w
spurious one, and the spectrum is found to be missin
small number of eigenvalues~note that the Lanczos proce
dure does not identify the degeneracy of the various eig
values!. In an ensemble of 75 64 lattices, the procedure
missed a single mode in only two cases. For an ensemb
20 104 lattices, 3 eigenvalues were missed 5 times, 2 fo
configurations, 1 for 6 configurations, and complete spe
were obtained for 4 configurations. Although the proced
can probably be tuned to reduce the frequency of mis
eigenvalues, the general trend is nevertheless tow
troublesome accidental degeneracies for larger lattices.
cently, we have found that the problem on larger lattices
be considerably ameliorated by a more careful retuning
the algorithm for identifying spurious eigenvalues—the
sulting complete spectra agree completely with the rec
structed eigenvalues discussed below. Moreover, the con
gence of the eigenvalues in the densest part of the spec
occurs very rapidly as one reaches the end of the proced
so that the spectrum of the tridiagonal matrix essentially c
sists of either spurious eigenvalues~easily identified by the
Cullum-Willoughby procedure! or accurate converged eigen
values. For example, with 320000 Lanczos sweeps on a4

lattice ~120000 eigenvalues! one finds with a carefully tuned
Lanczos calculation exactly 200000 spurious eigenval
and 120000 converged eigenvalues, with the latter satisfy
the set of exact sum rules discussed below to high accur
The present tuning leaves about 3 orders of magnitude
tween the tolerance test for spurious eigenvalues~set at
10211) and the arithmetic precision~about 10214,15). For
larger lattices where the volume and hence the maxim
spectral density is a few orders of magnitude higher,
expect the Cullum-Willoughby procedure to misidenti
some true eigenvalues as spurious, leading to incomp
spectra~as we indeed find if the tolerance parameter for s
rious eigenvalues is set to 10210, for example!.

In fact, in all cases mentioned above, incomplete spe
can be completely repaired with the aid of exact sum ru
for traces of powers of the Wilson-Dirac matrixH5g5(DW
2m). As we lose at most 3 eigenvalues, the lowest four s
rules suffice to determine all missing eigenvalues, with
spare relation left over for checking the accuracy of the
construction. One easily derives

Tr~H !50 ~4!
5-5
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A. DUNCAN, E. EICHTEN, R. ROSKIES, AND H. THACKER PHYSICAL REVIEW D60 054505
Tr~H2!512V~1116k2! ~5!

Tr~H3!50 ~6!

Tr~H4!512V„1164k21~448296̂ P&!k4
… ~7!

where the Wilson-Dirac operatorDW2m in H is normalized
to be of the form 11k(link terms), andP(P& in Eq. ~7! is
the average plaquette value in the given configuration
check of these sum rules on configurations where the en
spectrum has been successfully extracted gives Tr(H,H3)
,1027 while the quadratic and quartic sum rules are rep
duced to at least eight significant figures. Repairing the
complete spectra with these sum rules reveals, as expe
that the missing eigenvalues are either close to degene
with each other or with a converged eigenvalue from
Lanczos procedure.

An alternative to the explicit spectral resolution ofH,
which is only really feasible for small to moderate siz
lattices, is the stochastic approach developed by Golub
co-workers@5,6#, and applied by Irving and Sexton in the
study @4# of loop actions for the quark determinant. The
formalism uses the close connection between the Lanc
recursion and Gaussian integration to generate rigor
lower and upper bounds to the diagonal matrix elem
^vu f (A)uv& of any differentiable functionf (A) of a positive
definite matrixA. The spectral sum giving this matrix ele
ment is transformed to a Riemann-Stieltjes integral and
usual quadrature rules~Gauss, Gauss-Radau, Gauss-Loba
etc.! applied to this integral can then be reexpressed in te
of a Lanczos recursion~for further details, we refer the
reader to the paper of Bai, Fahey and Golub@6#!. The use of
alternative quadrature rules~in which information about the
upper and lower limits of the spectrum is included in t
Gaussian measure! does not seem to matter much in the a
plication to the Wilson-Dirac matrix, although we hav
found that the Gauss-Lobatto version requires about 5
more Lanczos sweeps to achieve the same precision a
other quadrature rules. It is straightforward to generalize
arguments of@6# to show that the Lanczos estimates co
verge to the correct answer even for non-positive defin
Hermitian matrices~such as the Hermitian Wilson-Dirac op
eratorH), although the strict upper and lower bounds p
vided by the formalism no longer hold in the casef (A)
5 ln(A), as they depend on positivity of the derivatives
f (A) over the entire spectrum. The rate of convergence
this procedure is impressive—for an 84 lattice the estimate
of ^vu lnuHuuv& for a generic random vectorv with only 300
Lanczos sweeps is accurate to 7 places on a 84 lattice, and to
about 5 places on a 123324 lattice.

The Gaussian-Lanczos approach described above im
diately leads to a stochastic method for estimat
ln det(uHu)5( i^v i u lnuHuuvi&, where the sum extends over
complete orthonormal basis. Namely, one computes an a
age over a set of random vectorsuzi& where each vector ha
components61 chosen at random:

ln det~ uHu!5E~^zu lnuHuuz&!, ~8!
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var~^zu lnuHuuz&!52(
iÞ j

u lnuHu i j u2. ~9!

We have checked that the choice of elements61 for the
components of the random vectors is optimal~see also@7#!,
in the sense that the variance~8! obtained with this choice
cannot be further reduced by an alternative choice of rand
variable. This procedure therefore gives an unbiased est
tor for the full quark determinant, with errors that are pure
statistical, decreasing as 1/AN with the numberN of random
vectors used. Evidently the accuracy achieved for a gi
amount of computational effort is directly determined by t
size of the offdiagonal matrix elements of lnuHu. This is of
course a very complicated functional of the gauge field fo
general configuration. For the ordered configuration, ho
ever,H can be explicitly diagonalized, and a straightforwa
computation yields

var~^zu lnuHuuz&!54VH 1

V (
k

ln„A~k!21Bm~k!Bm~k!…2

2S 1

V (
k

ln„A~k!21Bm~k!Bm~k!…D 2J
~10!

where A(k)5122k(mcos(km), Bm(k)52ksin(km), and V is
the lattice volume. In other words, the variance of the e
mates~7! is exactly equal to the variance in the logarithm
the free quark lattice offshellness@asA(k)21Bm(k)Bm(k) is
just the lattice version ofkmkm1m2 in the continuum#. For
not too heavy quarks@it is easy to see that the variance~9!
vanishes withk# the number multiplying the lattice volum
V in Eq. ~9! is of order unity, so the optimal stochastic pr
cedure requiresN.AV to determine ln det(uHu) to within an
additive error of order unity, assuming the free quark case
a rough guide. Explicit calculations show that the order
magnitude of the variance is indeed as given in Eq.~10!. For
example, the free quark formula~10! gives about 83103 for
the variance on an 84 lattice ~choosingk50.12), while an
actual run with 1000 random vectors on a nontrivial 84 con-
figuration (b55.7, k50.1685) gives a variance of 9.
3103, and a final result for the mean~log! determinant is
1224.063.1 ~the error is obtained by taking the square ro
of the variance per data point!. This should be compared
with the exact value obtained from the complete spec
resolution carried out by the direct Lanczos approach
scribed in the first part of this section, which was 1222.1
On a 123324 lattice atb55.9, k50.1597, a typical con-
figuration gave a variance of 8.03104, compared with 7.2
3104 from the free quark result~10! ~again usingk50.12
for the free case!. An explicit evaluation with 820 random
vectors gave a final result 868269.9 for the~log! determi-
nant in this case.

We are now in a position to compare the computatio
efficiency of the direct and stochastic methods descri
above. The stochastic approach yields an estimate of
logarithmic determinant accurate to any fixed preassig
error with a computational effort growing likeV3/2, while the
5-6
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full Lanczos spectral resolution, which effectively dete
mines the determinant to machine precision~actually, about
eight significant figures!, requires an effort of orderV2.
However, the prefactors in each case render the Lanczos
proach advantageous for small to moderate~say, 124) lat-
tices. For example, on an 84 lattice, the complete spectra
resolution requires on the order of 130000 applications of
‘‘dslash’’ ~lattice covariant quark derivative! operator, while
the stochastic method would require about 10000 rand
vectors, each with 200 Lanczos sweeps—i.e. a total o
million dslash operations—to reduce the error on the de
minant to order unity~four significant figures!. On the other
hand, as discussed previously, on large lattices the d
Lanczos procedure is likely to fail as the machine precis
will be inadequate to resolve the increasing number of a
dental degeneracies due to the high spectral density. In
7
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05450
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ct
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case the stochastic approach may be the only option for
timating the complete quark determinant. It may be poss
to apply the stochastic approach of@13# in such situations,
provided a way can be found to restrict the range of variat
of ln det(uHu) to ensure an unbiased estimator.
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