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The modeling of the ultraviolet contributions to the quark determinant in lattice QCD in terms of a small
number of Wilson loops is examined. Complete Dirac spectra are obtained for sizable ensemblé8)of SU
gauge fields a3=5.7 on &', 8* and 1¢ lattices allowing for the first time a detailed study of the volume
dependence of the effective loop action generating the quark determinant. The connection to the hopping
parameter expansion is examined in the heavy quark limit. We compare the efficiency and accuracy of various
methods—specifically, Lanczos versus stochastic approaches—for extracting the quark determinant on an
ensemble of configurationgS0556-282(99)06515-1

PACS numbd(s): 12.38.Gc

[. INTRODUCTION namical spectrum calculations on moderately sized lattices.
Past studies of loop representations of the quark determi-
In a recent papdrl] we introduced a method for perform- nant[3,4] (which typically focused on theompletedetermi-
ing an unquenched Monte Carlo simulation in lattice QCD innant, less accurately described by small Igopave been
which the infrared and ultraviolet modes of the quark fieldshampered by the difficulty of obtaining exact values for the
are treated separately. The low eigenvaliiggically up to a  quark determinant for a sufficiently large sample of indepen-
cutoff somewhat abova ocp) are exactly and explicitly cal-  dent gauge configurations. Stochastic methi@é] can be
culated and included as a truncated quark determinant in th@pplied to fairly large lattices but with limited accuracy,
update Boltzmann measure. The remaining UV modes ar@hereas the direct Lanczos approghloses steam for lat-
included approximately by modeling the high end of thetices larger than about 42In this paper we have employed
spectrum with an effective loop action involving only small the Lanczos approach to obtain complete exact Wilson-Dirac
Wilson loops. It was found that on small latticéspecifi-  spectra for sizeable ensembles df, ®* and 10 lattices,
cally, 6* lattices at3=5.7) the accuracy of such a loop fit to allowing us to study in detail the volume dependel8ec.
the high end of the determinant was remarkably good—thél) and quark mass dependen(gec. Il of the effective
x? per degree of freedom of a fit with loops of up to 6 links l0op action fit to the truncated quark determinant at various
to the logarithm of the quark determinant, including all infrared cutoffs. Technical details of the calculations, as well
modes above 340 MeV was 0.23, while the typical excursiords a comparison of the computational burden of the exact
of the log determinant between uncorrelated configurationtanczos and stochastic approaches, are presented in Sec. IV.
was on the order of 20. Of course, one expects that the ac-
curac':y.of such a fit will dgcrease with i'ncreasi_ng volume, Il. LOOP ACTIONS FOR LIGHT QUARKS—VOLUME
and it is not clear that this approach will remain practical DEPENDENCE
once lattices of physically useful size are reached. As an
illustration, we note that recent studies of electromagnetic The main difficulty we encounter in determining the ac-
effects in lattice QCO2] found that the finite volume effects curacy of a loop representation for full or truncated quark
from even the long-range electromagnetic effects were cordeterminants in lattice QCD lies in the computational effort
trollable on 13X 24 lattices a{8=5.9. A 1¢x 20 lattice at  required to extract complete spectra of the Wilson-Dirac op-
B=5.7 has almost twice the physical volume, while the lat-erator for a sufficiently large sample of independent gauge
tice discretization effects can presumably be substantially resonfigurations on lattices large enough to yield physically
duced by using clover improvement. Our aim in this paper isuseful information. A variety of numerical tools, both exact
therefore to study the accuracy of effective loop action repand statistical, now exist for accomplishing this task. Tech-
resentations to infrared truncated quark determinants fonical details of the implementaion of these methods will be
various size lattices g8=>5.7. We shall show that reason- deferred to Sec. IV. In this section we present a detailed
ably accurate representations of the UV contribution to thestudy of the volume and IR-cutoff dependence of loop fits to
quark determinant in terms of a small number of Wilsonthe quark determinant, for ensembles of 79dtices, 75 §
loops are indeed possible on such physically useful latticedattices and 30 1Dlattices at3=5.74 andk=0.1685. Two
To the extent that a small residual error in the loop represerflavors of Wilson flavors are used and the Wilson parameter
tation of the ultraviolet part of the quark determinant contrib-r is 1. For all of these configurations we have carried out a
utes primarily to an overall rescaling of dimensional quanti-complete spectral resolution using the Lanczos methods dis-
ties such as ground-state hadron massedich are cussed in Sec. IV, and identifying for each configuration all
dominated by quarks with a limited range of offshellpess 15552 (49152, 12000p eigenvalues in the % (84, 10%)
such a representation should be perfectly adequate for dgases. Most of these calculations were performed 8 node
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ing the truncated determinant algorithm[di. In particular,
the update measure included the contributions to the quat
determinant from low eigenmodes of the Hermitian Wilson-
Dirac operatorys(Dyw—m) up to a cutoff Aqcp (specifi-
cally, we chose a cutoff of 0.45 in lattice units, correspond-
ing to about 490 MeV in physical unijts This cutoff
corresponds to the lowest 3Q5 positive and 15 negatiye
eigenvalues for the ‘lattices, and to 120350 low eigen- ) )
values for the 8 (10%) lattices. It is reasonable to expect o= nzl (Sa(n)=Si(n))“/(nc—np) 2
that, by including this infrared contribution in the simulation

measure the low energy chiral structure is properly treate
[1]. The essence of the task being addressed in this paper
then to determine the extent to which the remaining omitte

425
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FIG. 2. Six link fit to Dy, 6% lattices.

n=nc

?or nc configurations andp loop variables(including the

Bnstant term (We note here that the terminology “variance

ultraviolet modes can accurately be fit by a gauge-invarian er degree of freedom” replaces th? usu'al “ch|.-squar.ed per
egree of freedom” as we are dealing with a dimensionless

loop expansion involving relatively few and simple loops. guantity without statistical erropsln Figs. 2—4 we show the
XY]Zercs)Eﬁjh t?]é%ozhei}f)t(gaiﬂyt?\g '3gﬁgsve\lr;§dtén?rsszlxgl?r:':naccuracy of the best fit t®(n,), for the cutoff correspond-

. . , ing to the actual simulation values—namety=30 (120,
physical lattice scale, and the loop coefficents can then b§50) for the 6 (8%, 107) lattices. Theo? is 0.24, 0.28 and
retuned if necessary to allow an even more accurate repr ' ' R

sentation of the UV part of the determinant in the full un-%'79 for_the 3 cases stud_led. The vergﬁglose matching of the

quenched theory. loop action to thg determlnant values fet<<1 sugge.sts that
The loop actions discussed here will include only Ioopsafgcl?;at?hgyg{a/mlgglO(;?Lc;IaSgrrI](s dZ?grl:rl]?ngﬁt EOSSSL'EIE ab?;c:e—

(or Polyakov linegwith up to 6 links, although the inclusion P 9 P q y P

of loops with 8 links is completely straightforward in prin- Ansatz.

. ' - : The accuracy of the loop fit to a truncated determinant is
ciple and would of course give a substantial increase in the ) : . .
) increased either by including longer loops or by raising the
accuracy of the fit.

On a 6 lattice with periodic boundary conditions, there IR cutoff (which requires that more low eigenmodes be com-

are five independent gauge invariant contributions7@o puted explicitly and included in the simulatiorThe varia-
— In de(y5(Dyy— m)) involving 6 links o less, correspond tion with cutoff for the three different lattices studied is il-
- 5 w ’ -

. lustrated in Fig. 5. The eigenvalue cutoff has been
ength 6 Palyakow o raveramg the ulllongih of the atice SSXPressed as a physical latice momentun, with the con-
in agny direc}[/ion,Lz(U), and 3 ir?dependent ?ength 6 closed version performed using an average spectral density obtained
curves[denotedL 3 4 5(U)], illustrated in Fig. 1. In the case
of the 8 and 10 lattices there are only four such terms—the
plaquette and the length 6 simply connected loops displayet 4ag0 |
in Fig. 1. In addition the fits contain a constant term which

can be regarded as the lattice equivalent of the unit operatol

We shall be studying the ultraviolet contribution 1 in 1870
which then, lowest modes are omitted:

8x8x8x8

In det

1360 -

D(ny)= >, In(|\]) (1)

i>ny,

1350 |-

where \; are the gauge-invariant eigenvalues (af5(Dy
—m)) enumerated in order of increasing absolute value. De- ' '
noting the approximate loop value @f(n,) by S, and the o w0 2 Szonﬁgufaoﬁon R
true value bysS;, the variance per degree of freedom of the

fit, o2, is defined as

FIG. 3. Six link fit to D,,,, 8* lattices.
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FIG. 4. Six link fit to D3so, 10* lattices. FIG. 6. o2 versus pq(lat) for 3 ensembles of 25dattices.

by averaging the individual spectra for all lattices in the en-while at larger values of the cutoff, the size of fluctuations in
sembles used. Loops up to length 6, together with Polyakogach subensemble is comparable to the difference between
lines stretching across the lattice, have been included in thifie o for the different subensembles, suggesting that these
fit of the determinant. The generic behavior is clear from Figfluctuations are statistical in origin.

5. The accuracy of the fit improves rapidly with increasing The accuracy of a simple loop representation for the ul-
cutoff (initially, the variance decreases roughly li&g<Pmin, tra\(iolet part of_the quark determinant, _involving the contri-
wherep,,in= |7‘nA| is the eigenvalue cutoffreaching a small bution of a relatively small number of Wilson loop operators,

nonzero value. For the lattices studied, the minimum attainegeloends on the fact that only a few independent gauge-

o? was less than one in all cases, leading to the close matcm\éagg]rgr OhF;enrgtotLSeeri(lljsr;boérn;?sti %Eeirézlcl)n ;s(}'r?ﬁui(ggable
ing of actual and loop fit determinant values visible in Figs. ' pologically 9

2—-4. Theo? then fluctuates more or less randomly for fur- Wilson loops grows much more rapidiyn fact, exponen-

ther increases of cutoff around this value. This small nonzerga"y) with the length of the loops. This results in very strong

contribution at fixeds (increasing with the lattice volumés Cﬁgeé?gczr gﬁts\g;eg}e;hgf i\;?jlge:ngén?Ilsgigcczéswllzlgfgxfngple
due to higher dimension operators not included in the limite P P : ple,

size loops in the fit and would presumably be reduced as th e single plaquette vaIue_ s _strongly correlated with the
lattice B is increased to push the system towards the con\-/alue of the 21 loop (L in Fig. 1. Thus, although the

. . 2 . . . .
tinuum. The fluctuations are simply a reflection of the lim- minimum o~ attainable for any given cutoff in link number

ited statistics of our relatively small ensembles—they be-iS clearty qnly obtained by employing f”‘l.l Wilson Ioops up to
come more visible at larger cutoff where the signal tothe prescribed length, the actual coefficients of the individual

background is reduced. This can also be seen by plotting th|8°p valued_; exhibit large variations from one subensemble

cutoff dependence of the? for the 6 link loop fits for the to another for a given lattice volume, and also as the lattice

ensemble of 75 8lattices broken into three subensembles Ofvolume Is increased. On the other hand, if only truly mde-_
25 configurations eackFig. 6. At smaller cutoffs, strong pendent operators are included, we should expect the coeffi-

infrared correlations extending over several lattices lead tgents_(properly normalized for the OV?fa” lattice YO'!JD”E’
fairly large differences in ther? of the fits for small gy, remain relatively (;onstant as the Igtnce volumg IS increased
at fixed B, reflecting the contribution of a definite set of
low-dimension operators with expectation values approach-
6 links ing well-defined values in the infinite volume limit. This can
e 10% (30 configurations) be seen in Table |, where we show the loop coefficients as a
. gj gg 22223322223 function of lattice volume for just the single plaquette opera-
tor obtained by minimizing the-? with respect to a fit con-
" . taining just a constant teriithe unit operatgrand the single
o 100Fe . plaguette loopsin operator termsFi,,). The 14 lattice re-
o sults were not included because of the limited statistics avail-
able in this caséonly 30 lattices as compared to 75 lattices
. . for the 6* and & cases
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I1l. QUARK DETERMINANT FOR HEAVY
102 L ) , , . | | QUARKS—HOPPING EXPANSION
0 0.2 0.4 0.6 0.8 1 1.2 1.4 VS EFFECTIVE LOOP ACTIONS
Pmin (lat)

The main physical difference between the behavior of the
FIG. 5. o2 versus p,,(lat) for 6%, 8%, and 10 lattices. quark determinants for light and heavy quarks lies in the
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TABLE |. Variation with volume of fit coefficients of link ex- 185
pansion of tr In(Det) for various low eigenvalue cutoffa .
A loop fit toJiuII deteminant N
Cutoff (1/a) Volume N* Coefficients U determinant from hopping expansion
Agcp N Constant Plaquette
2 A
0.00 6 -0.0225 0.0772 Sosp 4 A \/ \;\ ] A
8 -0.0209 0.0794 g e/\/i \ / MY
0.45 6 -0.0111 0.0695 3 ol A /\ Y
8 -0.0118 0.0699 8 \/ \ /
3 A ‘\
0.56 6 -0.0043 0.0653 165 - .
8 -0.0048 0.0653 . N
/, 7 ] 1/ (P ‘\\ , S
160 | N /I\‘ S \‘.'I
relative variance of the infrared and ultraviolet contributions. \ v, \ . \ .
5 10 15 20 25 30

For light quarks, there are important fluctuations introduced
both by the infrared modes, which incorporate the proper
chiral behavior of the unquenched theory, and by the ultra- FIG. 8. Full determinant, hopping parameter vs nonperturbative
violet modes aboveé\ ocp, which primarily renormalize the fit.

scale of the theory. Indeed, the latter are quantitatively domi-

nant, but closely matched by an effective action involving The simplest approach one might take for the full quark
only plaquettes or 6-link loops which for long distance phys-determinant for heavy quarks employs the well-studit@]

ics reduces to an effective shift in the beta of the simulationhopping parameter expansion fBr=In(ys(Dy—m)), valid

For heavy quarks, the density of the quark Dirac spectrum ign the limit of small k, i.e. large quark mass. In this section
much reduced in the infrare@vhich is cut off by the large we examine the extent to which a truncated hopping param-
bare quark magsas are the fluctuations from the infrared eter expansion can compete with the nonperturbative fitting
modes belowA o¢p, While the UV modes still have substan- of an effective loop action of the kind described in the pre-
tial variance, but again of a form which, as we shall show,ceding section. On a“lattice with periodic boundary con-
can be accurately modeled by a simple loop action. The reladitions, we saw previously that there are five independent
tive variance of the low and high end contributions of thegauge invariant contributions tB of order «® or less, de-
(log) quark determinant is shown in Fig. 7, where the IR/UV notedL;,1<i<5 above. The loop averagegU) on a given

cut is placed at the 15tfpositive or negativemode, roughly  gauge configuratiofU} are normalized to give exactly one
at Aqcp for a 6* lattice at3=5.7 (for the sake of visibility, ~on the ordered configuration where all links are unity. Then a
an irrelevant constant vertical offset has been applied tgtraightforward combinatoric exercise givas= lattice vol-
bring the various contributions close to zerBor the heavier ume

quark, xk=0.1500, there is comparatively little variance in

the IR contributions, but large fluctuations in the UV part.  D(U)=V(288«*L,(U)—512«°L,(U)+ 2304°L 5(U)

+46085L,4(U)+15365L5(U) +O(x8)). (3)

configuration #

5 ——&—=0.1685, UV part
e e, (Note that this computation gives an approximant toftiie
20 | ——*— x=0.1500, IR part determinant, with no obvious way of implementing an
IR/UV cutoff within the hopping parameter expansion.
sl Unfortunately, the coefficients of higher order terms in
the hopping parameter expansion grow fairly rapidtlye
2 number of closed loops increases exponentially with the
3r length of the loop and the expansion converges slowly. For
>
> example, fork=0.15 (with k8=2.6x10"7) the averageD
5 5r over an ensemble of 30 configurations gives 172.4, while the
- hopping expansion gives 147.8. The discrepancy is neverthe-
of less mainly due to a few low dimension operators which
MW"“*W*"""M dominate the contribution of the longer loops, as is apparent
sl from Fig. 8. The hopping parameter expansion through 6th
W order tracks roughly the exact determinants apart from an
. . s s s . offset (the identity operatgr Of course, the nonperturbative
0 5 oo 2 % fit including L,_s(U) does much bettetthe o2 is 0.113.
configuration # . K
We can improve the agreement of the truncated hopping ex-
FIG. 7. IR and UV contributions to quark determinants for light pansion with the data by varying both the offset and the
vs heavy quarks. single plaquette component from the value of #fecoeffi-
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pruning out the spurious eigenvalues by the Cullum-
Willoughby procedurd12]. Typically the extraction of the
complete Dirac spectrum requir¢due to the inexact arith-
metic more Lanczos sweeps than the actual dimension
(12v, whereV is the lattice volumg by a factor of 2—3. For
example, on a 1Dlattice, the full spectrum is obtained after
about 320000 Lanczos sweeps, as compared to the actual
dimension of 120000. The convergence of the procedure is
improved by starting from gauge-fixed configuratioif

spite of the fact that the spectrum is gauge-invariant, it ap-

176 -

174 +

172 | {

170 |-

Ln Det (all eigenvalues)

C d d i i i
o o diting offset ony) pears that the presence of gauge noise can reduce the numeri-
s L *  Hopping expansion (fiting offset and plaquette) cal stability of the Lanczos proceduréccasionally, spec-
. - e p” P - tral fluctuations lead to two eigenvalues which are almost
configuration # degenerate, or a real eigenvalue almost degenerate with a

) S . . spurious one, and the spectrum is found to be missing a
FIG. 9. Hopping expansion fits, with offset vs with offset gma|| number of eigenvalugsote that the Lanczos proce-
+plaquette. dure does not identify the degeneracy of the various eigen-
values. In an ensemble of 75 “lattices, the procedure
cient given in Eq(2) (see alsd11] for another approach to missed a single mode in only two cases. For an ensemble of
improving the hopping parameter)fitThis amounts to in- 20 1¢ lattices, 3 eigenvalues were missed 5 times, 2 for 5
cluding at least the lowest nontrivial dimension operdth  configurations, 1 for 6 configurations, and complete spectra
mension 4 arising from the longer loopslength 8 and \ere obtained for 4 configurations. Although the procedure
highep. This fit is shown in Fig. 9, in comparison with the can probably be tuned to reduce the frequency of missed
unmodified hopping expansion result shifted only by a coneigenvalues, the general trend is nevertheless towards
stant offset. The fit is certainly improved by optimizing the troublesome accidental degeneracies for larger lattices. Re-
single plaquette componetthe o* is now 0.75 but clearly  cently, we have found that the problem on larger lattices can
the nonperturbative fit of Fig. 8, in which all closed loops pe considerably ameliorated by a more careful retuning of
through length 6 are optimized, still wins by a substantialthe algorithm for identifying spurious eigenvalues—the re-
factor. We can conclude that even for quite heavy quarks, theulting complete spectra agree completely with the recon-
hopping parameter expansion, though analytically availablestruycted eigenvalues discussed below. Moreover, the conver-
is not competitive with a nonperturbative fit using even agence of the eigenvalues in the densest part of the spectrum
small number of Wilson |OOpS. Determining the Coefficientsoccurs very rap|d|y as one reaches the end of the procedure’
in such a fit only requires the extraction of the determinanto that the spectrum of the tridiagonal matrix essentially con-
for a few typical configurations. We find that a sufficiently sists of either spurious eigenvalugsasily identified by the
accurate determination of the loop coefficients can be obeuyllum-Willoughby procedureor accurate converged eigen-
tained by calculating the spectrum on as few as 10 gaug@alues. For example, with 320000 Lanczos sweeps orf'a 10
configurations. lattice (120000 eigenvalug®ne finds with a carefully tuned
We pointed out earlier that the IR portion of the Dirac | anczos calculation exactly 200000 spurious eigenvalues
spectrum is relatively inert in the case of heavy quarks. On@nd 120000 converged eigenvalues, with the latter satisfying
therefore expects that a nonperturbative fit with a few smalthe set of exact sum rules discussed below to high accuracy.
loops should be accurate for heavy quarks, even if one insistphe present tuning leaves about 3 orders of magnitude be-
on fitting the full determinant, as discussed above. mdequeen the tolerance test for spurious eigenva|(m at
we saw above that th@z with a fit to the full determinant is 10~ 11) and the arithmetic precisio(ﬁbout 10 14,1%_ For
0.112 including loops up to length 6. The fit is still improved |arger lattices where the volume and hence the maximum
by excising the IR part of the spectrum, though not as draspectral density is a few orders of magnitude higher, we
matically as in the case of light quarks where the IR fluctuaexpect the Cullum-Willoughby procedure to misidentify
tions require the inclusion of large loops. Fer=0.15, one  some true eigenvalues as spurious, leading to incomplete
finds for example that the-* of a 5 loop fit decreases to spectralas we indeed find if the tolerance parameter for spu-
0.035, 0.026 and 0.019 when the lowest 30, 60 or 90 mOdQSous eigenvalues is set to 16), for examp@_
are excluded from the determinant. In fact, in all cases mentioned above, incomplete spectra
can be completely repaired with the aid of exact sum rules
for traces of powers of the Wilson-Dirac mattik= yg(Dy
—m). As we lose at most 3 eigenvalues, the lowest four sum
rules suffice to determine all missing eigenvalues, with a
spare relation left over for checking the accuracy of the re-
A fairly efficient method for performing a complete spec- construction. One easily derives
tral resolution of the Hermitian Wilson-Dirac operator was
described some time ago by Kalkreutij&l. One employs
the usual Lanczos procedurejthout reorthogonalization, Tr(H)=0 (4)

IV. EXTRACTING THE COMPLETE DIRAC
SPECTRUM—EXPLICIT VERSUS
STOCHASTIC APPROACHES
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2N 2
TH(H?)=12V(1+ 16K2) 5 Var(<z||n||-|||z>)=2§j lIn[H[;; |2 9

Tr(H=0 (6)
We have checked that the choice of element$ for the

4y _ T 64K2+ - 4 components of the random vectors is optirtede alsd7]),
THHT) =12V(1+ 64"+ (448~ 9&(P)) k) @ in the sense that the varian¢® obtained with this choice
cannot be further reduced by an alternative choice of random
. X . variable. This procedure therefore gives an unbiased estima-
to be of the form 1 «(link ‘er”.‘s)’ andl?(P) in Eq. (7) 'S tor for the full quark determinant, with errors that are purely
the average plaquette value in the given configuration. .Aétatistical, decreasing asyM with the numbeN of random

check of these sum rules on configurations where the ent"&ectors used. Evidently the accuracy achieved for a given

Specf@”m _has been suc_cessfully ex_tracted givesi HC) amount of computational effort is directly determined by the
=10 " while the quadratic and quartic sum rules are repro, o ¢ o offdiagonal matrix elements ofHf. This is of

duced to at least eight significant figures. Repairing the in- urse a very complicated functional of the gauge field for a

b C
complete spectra with these sum rules reveals, as expecteﬁ%neral configuration. For the ordered configuration, how-

I/Ci?ktl the rr?'sf’r;n? e:g\t/eva\éalues r?\:erengericlonsve lto df?g;n(:rr]a er,H can be explicitly diagonalized, and a straightforward
each other o a converged eigenvalue fro ecomputation yields

Lanczos procedure.

An alternative to the explicit spectral resolution Hf 1
which is only really feasible for small to moderate sized var((z||n|H||z>)=4V[v > In(A(k)?+B,(k)B ,(k))?
lattices, is the stochastic approach developed by Golub and K
co-workers[5,6], and applied by Irving and Sexton in their (

where the Wilson-Dirac operat@,,—m in H is normalized

(=Y

study [4] of loop actions for the quark determinant. Their —
formalism uses the close connection between the Lanczos
recursion and Gaussian integration to generate rigorous (10)
lower and upper bounds to the diagonal matrix element
(v|f(A)|v) of any differentiable functiorf(A) of a positive  where A(k) = 1-2«3 ,cosk,), B,(K=2«sink,), and V is
definite matrixA. The spectral sum giving this matrix ele- the lattice volume. In other words, the variance of the esti-
ment is transformed to a Riemann-Stieltjes integral and thenates(7) is exactly equal to the variance in the logarithm of
usual quadrature rulg&auss, Gauss-Radau, Gauss-Lobattothe free quark lattice offshellnefasA(k)?+ B.(K)B,(K) is
etc) applied to this integral can then be reexpressed in termjst the lattice version ok, k,+ m? in the continuunh For
of a Lanczos recursiorffor further details, we refer the not too heavy quarkft is easy to see that the varian(®
reader to the paper of Bai, Fahey and Gdlah. The use of vanishes withk] the number multiplying the lattice volume
alternative quadrature rulgd which information about the V in Eq. (9) is of order unity, so the optimal stochastic pro-
upper and lower limits of the spectrum is included in thecedure requireN:\/Vto determine In detd|) to within an
Gaussian measureloes not seem to matter much in the ap-additive error of order unity, assuming the free quark case as
plication to the Wilson-Dirac matrix, although we have a rough guide. Explicit calculations show that the order of
found that the Gauss-Lobatto version requires about 50%nagnitude of the variance is indeed as given in @@). For
more Lanczos sweeps to achieve the same precision as tegample, the free quark formu(40) gives about & 10° for
other quadrature rules. It is straightforward to generalize théne variance on an“8lattice (choosingx=0.12), while an
arguments of 6] to show that the Lanczos estimates con-actual run with 2000 random vectors on a nontrivialé®n-
verge to the correct answer even for non-positive definitgiguration (3=5.7, x=0.1685) gives a variance of 9.7
Hermitian matricegsuch as the Hermitian Wilson-Dirac op- x 103 and a final result for the meaiog) determinant is
eratorH), although the strict upper and lower bounds pro-1224.0+ 3.1 (the error is obtained by taking the square root
vided by the formalism no longer hold in the cabA)  of the variance per data pojntThis should be compared
=In(A), as they depend on positivity of the derivatives of yith the exact value obtained from the complete spectral
f(A) over the entire spectrum. The rate of convergence ofesolution carried out by the direct Lanczos approach de-
this procedure is impressive—for arf &ttice the estimate scribed in the first part of this section, which was 1222.148.
of (v|In|H||v) for a generic random vectar with only 300  On a 18X 24 lattice at3=5.9, x=0.1597, a typical con-
Lanczos sweeps is accurate to 7 places ofi laiice, and to  figuration gave a variance of 8QL0%, compared with 7.2
about 5 places on a 12 24 lattice. % 10* from the free quark resultl0) (again usingx=0.12
The Gaussian-Lanczos approach described above immeor the free case An explicit evaluation with 820 random
diately leads to a stochastic method for estimatingvectors gave a final result 868®.9 for the (log) determi-
In det(H|)==;{v;|In|H|lv;}, where the sum extends over a nant in this case.
complete orthonormal basis. Namely, one computes an aver- \We are now in a position to compare the computational
age over a set of random vectdes) where each vector has efficiency of the direct and stochastic methods described

2
= > In(A(k)2+ B,Ak)B,L(k))) ]

k

<

componentst 1 chosen at random: above. The stochastic approach yields an estimate of the
logarithmic determinant accurate to any fixed preassigned
In det|H|)=E({z|In|H||z)), (8)  error with a computational effort growing liké*?, while the

054505-6



LOOP REPRESENTATIONS OF THE QUARK ... PHYSICAL REVIEW 60 054505

full Lanczos spectral resolution, which effectively deter- case the stochastic approach may be the only option for es-
mines the determinant to machine precisiantually, about timating the complete quark determinant. It may be possible
eight significant figures requires an effort of ordeN?.  to apply the stochastic approach [df3] in such situations,
However, the prefactors in each case render the Lanczos aprovided a way can be found to restrict the range of variation
proach advantageous for small to moderétay, 12) lat-  of In det(H|) to ensure an unbiased estimator.

tices. For example, on an*dattice, the complete spectral

resolution requires on the order of 130000 applications of the
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