
PHYSICAL REVIEW D, VOLUME 60, 054502
Scaling analysis of the magnetic monopole mass and condensate in the pure
U„1… lattice gauge theory

J. Jersa´k, T. Neuhaus, and H. Pfeiffer
Institut für Theoretische Physik E, RWTH Aachen, Germany

~Received 24 March 1999; published 27 July 1999!

We observe the power law scaling behavior of the monopole mass and condensate in the pure compact U~1!
gauge theory with the Villain action. In the Coulomb phase the monopole mass scales with the exponentnm

50.49(4). In theconfinement phase the behavior of the monopole condensate is described with remarkable
accuracy by the exponentbexp50.197(3). Possible implications of these phenomena for a construction of a
strongly coupled continuum U~1! gauge theory are discussed.@S0556-2821~99!04915-2#

PACS number~s!: 11.15.Ha, 05.70.Jk, 14.80.Hv
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I. INTRODUCTION

The phase transition between the confinement and C
lomb phases of the strongly coupled pure compact U~1! lat-
tice gauge theory~compact QED! has recently received re
newed interest and two of its aspects were investigate
large numerical simulations. First, several attempts h
been made to distinguish between the weak first order
second order scenarios for the Wilson action and in the
tended coupling parameter space. The question is whe
the two-state signal decreasing slowly with increasing lat
volume extrapolates to a nonzero or zero value, respectiv
in the thermodynamic limit.~For a recent discussion of thi
subject and earlier references see Ref.@1#.!

Second, a scaling behavior of various bulk quantities a
of the gauge-ball spectrum consistent with a second o
phase transition and universality has been observed in
vicinity of some points on the manifold separating the co
finement and Coulomb phases, outside their narrow ne
borhood in which the two-state signal occurs@2–5#. This
suggests that there may exist regions of the parameter s
where the transition is continuous, though it may be not s
for the particular action used in the simulation.

A continuous transition would allow the construction of
continuum theory. But even if no critical point exists, th
theory might be considered as an effective theory, with fin
but large cutoff, provided the range of scales at which
second-order-like behavior holds is large. The question
then whether such a~possibly effective! continuum U~1!
theory would be interesting in some sense, e.g. would it h
a phase transition, confinement, etc., in analogy to the la
regularized theory.

In this paper we address this second aspect and exten
investigation of the scaling behavior to observables relate
the magnetic monopoles. To our knowledge this subject
not yet been investigated in a systematic way. But the is
is important, as whatever is interesting in the compact lat
QED is essentially related to the monopoles: The phase t
sition itself is known to be associated with the occurrence
magnetic monopoles being topological excitations of
theory@6–8#. Modifications of the monopole contribution t
the action have appreciable consequences for its position@9#
0556-2821/99/60~5!/054502~11!/$15.00 60 0545
u-

in
e
d

x-
er
e
ly,

d
er
he
-
h-

ce
h

e
a
is

e
e

the
to
as
e
e
n-
f

e

and properties@10#. The long distance force in the confine
ment phase@11,12# and chiral symmetry breaking@13# are
best understood in terms of the monopole condensate.
charge renormalization in the Coulomb phase is due to
antiscreening by monopoles@14–16#. Thus the existence o
an interesting effective U~1! theory presumably depends o
whether the monopoles persist to play an important role in
i.e. on the scaling behavior of the monopoles.

Our findings are as follows: In the Coulomb phase we fi
at various values of the couplingb a very clean exponentia
decay of the monopole correlation function in a large ran
of distances. This demonstrates the dominance of a si
particle state in this correlation function, the monopo
whose mass we determine. The monopole mass extrapo
to the infinite volume,m` , scales with the distance from th
phase transition as

m`~b!5am~b2bc!
nm, ~1.1!

where

nm50.49~4!. ~1.2!

This value of the exponentnm can be compared with the
values for the correlation length exponentsn obtained for
other observables. One of these values is the non-Gaus
value

nng.0.35 ~1.3!

found for the Lee-Yang zeros@2# at the transition, severa
gauge balls@3,4# and approximately also for the string ten
sion @3,5#. The other, Gaussian value is

ng.0.5. ~1.4!

It has been observed previously for the scalar gauge
@3,4# in the confinement phase.

Our main result is that the value~1.2! of nm is signifi-
cantly greater than Eq.~1.3! and consistent with Eq.~1.4!.
This implies that monopoles would stay important in any
the conceivable scenarios for a construction of an effec
continuum U~1! theory. If such a theory were to be con
structed in such a way that masses and other dimensio
©1999 The American Physical Society02-1
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observables scaling with the non-Gaussian exponentnng
were kept finite nonzero in physical units, then the mon
poles in the Coulomb phase would get massless. Eve
instead the Gaussian exponentng were used, the monopol
mass can be fixed at a finite value in physical units. T
second possibility might be particularly suitable in the Co
lomb phase, where no other scales are known.

In the confinement phase we have determined the sca
behavior of the monopole condensate extrapolated to the
finite volume,r` , to be

r`5ar~bc2b!bexp, ~1.5!

where

bexp50.197~3!. ~1.6!

The function ~1.5! describes extremely well the data in
broad interval and the scaling behavior of the condensa
thus well established.

However, the value of the magnetic exponentbexp alone
is not sufficient for considering the continuum limit. For th
purpose a renormalized condensate is needed. A natural
cedure~like e.g. in the brokenf4 theory! would be to find a
pole in the monopole correlation function in the confinem
phase. We find a contribution suggesting such a pole, bu
data are consistent with its amplitude, as a function of
lattice volume, extrapolating to zero in the thermodynam
limit. Thus currently the results~1.5! and ~1.6! do not allow
a conclusion about the condensate in a would-be continu
limit. They constitute only a necessary step in this directi

The results are presented as follows: In Sec. II we su
marize known facts about theZ gauge theory, which we us
in the simulation. It is a dual equivalent to the U~1! lattice
gauge theory with the Villain action which we actually in
vestigate. In theZ gauge theory the monopole correlatio
functions have a form originally found by Fro¨hlich and Mar-
chetti @17#, which is convenient for measurements. Antipe
odic boundary conditions~BCs! @18,16# are used, allowing
the consideration of a single monopole in a finite volume
agreement with the Gauss law. These BCs reduce the m
netic U~1! symmetry@17,16# to Z2. It is pointed out that this
symmetry is broken in the confinement phase, which nec
sitates some caution during simulations.

In Sec. III we present our results for the monopole m
in the Coulomb phase and determine its scaling behavio
Sec. IV the necessary extrapolation procedure of the mo
pole mass results to the infinite volume limit is discuss
The finite size effects are sizable, as monopoles with th
Coulomb field are extended objects. The leading term in
volume dependence can be determined from electros
considerations, however, and further terms obey a sim
Ansatz.

In Sec. V we present the results for the monopole cond
sate in the confinement phase and describe the search
monopole condensate excitation. We discuss our results
conclude in Sec. VI.
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II. DUAL FORMULATION OF PURE U „1… LATTICE
GAUGE THEORY

A. Z gauge theory

The partition function of pure U~1! lattice gauge theory,

Z5)
xm

E
2p

p

duxmexpS 2(
P

s~uP! D , ~2.1!

with an actions(uP), uP denoting the plaquette angles,
related to theZ ~integer! gauge theory by an exact dualit
transformation@7,17#. In the Z gauge theory, the link vari-
ables nxm have integer values, and the partition functio
reads

Z5E D n expS 2(
P

s* ~nP! D , ~2.2!

E D n5)
xm

(
nxm52`

`

, ~2.3!

with

nP5nxm1n(x1m̂)n2n(x1m̂)m2nxn ~2.4!

being the plaquette integer number associated with
plaquette at positionx and orientation (m,n). In Eq. ~2.2!,
s* (nP) denotes the dual action. The dual theory is a gau
theory invariant under the transformations

nxm°nxm1~¹ml !x5nxm1 l x1m̂2 l x ~2.5!

with an integer valued functionl x of the lattice pointsx. The
theories~2.1! and ~2.2! are strictly equivalent in the infinite
volume limit and they should be comparable in large vo
mina.

The dual action associated with the Villain action

s~uP!52 log (
k52`

`

expS 2
b

2
~uP12p k!2D ~2.6!

is

s* ~nP!5
1

2b
nP

2 ~2.7!

whereas the extended Wilson action

s~uP!5b cos~uP!1g cos~2uP! ~2.8!

corresponds to the dual action

s* ~nP!52 logS E
2p

p

dzcos~z nP!eb cos(z)1g cos(2z)D .

~2.9!

Obviously, for a numerical simulation of theZ gauge theory
the dual Villain action~2.7! is much more practical than Eq
~2.9!. This is the reason we choose the Villain action~2.6! in
our current work.
2-2
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B. Dual correlation functions

The magnetic monopoles in the U~1! lattice gauge theory
are described by fieldsF(x) whose correlation functions ar
defined by certain modifications of the partition functio
~2.2! @17#:

^F!~y1!•••F!~yj !F~z1!•••F~zl !&

5
1

ZE Du expS 2(
P

s~uP1XP! D . ~2.10!

Here the magnetic@in the U~1! language# flux XP is gener-
ated by the magnetic current density

J̃xmnl5X(x1l̂)mn2Xxmn1X(x1m̂)nl2Xxnl1X(x1 n̂)lm

2Xxlm ~2.11!

with sources 2p at z1 , . . . ,zl and22p at y1 , . . . ,yj . For
given sources, the existence ofXP on finite lattices depend
on the topology of the lattice, i.e. on BCs.

In the dual formulation, expression~2.10! becomes a
usual expectation value

^F!~y1!•••F!~yj !F~z1!•••F~zl !&

5E Dn expS 2 i(
xm

JxmnxmDexpS 2(
P

s!~nP! D
~2.12!

of a non-local observable@17#

expS 2 i(
xm

JxmnxmD , ~2.13!

in which Jxm is given by the current density~2.11!:

Jxr5
1

6
J̃xmnlemnlr . ~2.14!

The observable in Eq.~2.12! resembles the non-local expre
sion of a charge operator in terms of its Coulomb field. In
pure U~1! gauge theory an analogous expression would
be gauge invariant. However, in the case ofZ gauge theory,
Eq. ~2.13! is gauge invariant because the sources ofJxm are
integer multiples of 2p @17#.

C. Monopole observable

To determine the correlation functions~2.12! in a Monte
Carlo simulation, it is useful to choose the fieldXP so that
Jxm vanishes on all links in a certain directiont ~referred to
as the ‘‘time’’ direction! @16#. Then the observable~2.13!
decomposes into factors that are local int and nonlocal in the
‘‘space’’ directionsxW .

Therefore one definesJxm for each source located a
(xW0 ,t0) as

J0~xW ,t !50, JW~xW ,t !5BW ~xW !d tt0
~2.15!
05450
e
t

whereBW (xW ) is a solution of

div BW ~xW !52p dxWxW0
~2.16!

in three dimensions. Such aJxm in Eq. ~2.15! yields the
monopole field

F~xW0 ,t0!5expS 2 i(
xm

JxmnxmD . ~2.17!

Products of these fields with sources at different positio
therefore lead to superpositions of currentsJxm in Eqs.~2.12!
and ~2.13!.

In the case of a source~2.15! and ~2.16! the boundary
conditions in the three space dimensions have to be cho
appropriately. Whereas there is no solution of Eq.~2.16!
with periodic boundaries, a solution exists for antiperiod
boundaries@16#,

nm~xW1LeW j ,t !52nm~xW ,t !. ~2.18!

on the lattice of spacial extensionL. That solution can be
obtained by the three-dimensional discrete Fourier trans
mation of Eq. ~2.16! on the lattice with respect to
L-antiperiodic base functions. In terms of the monopole o
servable~2.17!, the boundary conditions~2.18! correspond to
magnetic charge conjugationC @16# and are therefore called
C periodic.

In principle it would be possible also for periodic BCs
correlate monopole-antimonopole pairs at large relative
tance and determine approximately twice their mass. Ho
ever, antiperiodic BCs are much more practical, allowing
to determine the mass of a single monopole on lattices
moderate sizes.

D. Dispersion relation and finite size effects

The real and imaginary parts of the monopole are e
and odd, respectively, with respect toC. The observables
with definite momentum areC even,

F1~pW ,t0!5(
xW0

R@F~xW0 ,t0!#eipW •xW0, ~2.19!

andC odd,

F2~pW ,t0!5(
xW0

I@F~xW0 ,t0!#eipW •xW0. ~2.20!

Since Fourier transformation in Eq.~2.19! is done with
L-periodic functions, the momenta arepW 5(p1 ,p2 ,p3) with
pj52pkj /L and integerkj . In Eq. ~2.20! Fourier transfor-
mation is applied toL-antiperiodic functions, so that the mo
menta arepj5(2kj11)p/L with integer kj . As a conse-
quence, the whole monopole observableF5F11F2 has
no well-defined dispersion relation on finite volume lattice
Only in the infinite volume limit do the momentum spect
degenerate and the monopole mass determined by mea
the even and odd observables~2.19!,~2.20! lead to the same
2-3
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mass. We will have to take this fact into consideration wh
we examine the volume dependence of our results in Sec

The monopole masses on finite lattices are determi
using

m15E1
1 ~2.21!

in the correlation function of the operator~2.19!. In the case
of Eq. ~2.20!, we assume that the mass is obtained from
energy by the usual particle dispersion relation

E1
25m2

2 13S 2 sin
p

2L D 2

. ~2.22!

However, for a particle with a Coulomb field in a finite vo
ume this relation is presumably only an approximation. W
take the possible corrections into account in a phenome
logical extrapolation to the infinite volume. Such a meth
of extrapolation to the infinite volume is necessary anyho
as the finite size effects for a particle with extended Coulo
field are large and only partly under analytic control. T
results do not change significantly if we use the lattice d
persion relation with 2@cosh(E)21# instead ofE2.

The magnetic U~1! symmetry is reduced to aZ2 symme-
try by imposingC-periodic boundary conditions@16,8#. In
the confinement phase of pure U~1! gauge theory, this re
maining Z2 symmetry is spontaneously broken. ThisZ2
symmetry corresponds to the sign of the^F1& expectation
value whereaŝF2&50 due toC antisymmetry. On finite
lattices flips between both signs of^F1& can occur, distort-
ing the measurements. Therefore we discard parts of the
where such flips occur.

III. RESULTS IN THE COULOMB PHASE

A. Simulations and statistics

We simulate theZ gauge theory with the action~2.7!. The
boundary conditions areC-periodic in spacial directions an
periodic in time direction. We use the same heat bath upd
as the authors of@16# together with a new implementation o
the monopole observable~2.17! optimized for vectorization
on a Cray T90.

The lattice volumes areL33T with T528 fixed and dif-
ferent L ranging from 4 to 18. Both monopole operato
~2.19! and ~2.20! are measured after each 25 update swe
for each time slice. From these data, the correlation functi
are computed. In addition, we determine the action dens

Table I gives the simulation points in the Coulomb pha
the rangeL54,6, . . . ,Lmax of lattice sizes, and the integrate
autocorrelation times of the action on theL58 lattice. To
thermalize the system, we skipped the first 2.53103 ~far
away from the phase transition! to 2.53104 sweeps~close to
the phase transition!. At each value of the parameters, at lea
104 measurements have been performed.

The restriction of lattice sizes toL<18 is mainly due to
the costs;L6 in the determination of the monopole obser
able ~2.17! because of the two summations over the sp
volume, one in the exponent, and one in the Fourier tra
formation of Eqs.~2.19!,~2.20!. The statistical errors of the
05450
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monopole masses are determined by the jackknife met
using 16 blocks.

B. Determination of the monopole mass

We use the observablesF1 andF2 with the lowest pos-
sible momenta, i.e.pW 50 for F1 and pW 5(p/L,p/L,p/L)
for F2 . The values of the monopole mass are obtained fr
their correlation function which is assumed to have appro
mately the form

C6~ t !5^0uF6
! ~ t !F6~0!u0&

5u^0uF6~0!u0&u21u^1uF6~0!u0&u2

3~e2E1
6t1e2E1

6(T2t)!. ~3.1!

The first term, the monopole condensate

r5u^0uF1u0&u, ~3.2!

is expected to vanish in the Coulomb phase in the infin
volume limit, but should be allowed on finite lattices.

Figure 1 shows as an example the data obtained on
L512 lattice atb50.668 with the fit by means of the cor
relation function~3.1!. The data in the whole range oft are
consistent with a contribution of only one state to the cor
lation function. To verify this more accurately, we have d
termined the effective energiesEeff with r both free and set
equal to zero. The effective energies corresponding to
correlation function from Fig. 1 are plotted in Fig. 2. The
are stable with respect tot. Similar results are obtained fo
both operators~2.19! and ~2.20! at all investigated points in
the Coulomb phase for all lattice sizes we have used.

Thus we find that within our numerical accuracy thet
dependence of the correlation functions~3.1! can be well
described by a one particle contribution. This is remarkab
as the Coulomb phase contains massless photons w
could in principle substantially complicate the form of th
correlation function~infraparticle!. It justifies the interpreta-
tion of the observed energy as the energy or mass of
magnetic monopole. Furthermore, there is no significant

TABLE I. Values ofb at which the simulations in the Coulom
phase were performed. The lattice sizes areL54,6, . . . ,Lmax. At
eachb, at least 104 measurements have been made.t int is the inte-
grated autocorrelation time of the action density in multiples of
sweeps determined on theL58 lattice.

b Lmax t int

0.645 18 11.0
0.647 18 2.5
0.65 18 2.3
0.654 18 1.9
0.66 16 1.3
0.668 16 1.1
0.678 16 1.0
2-4
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viation fromr50 and therefore from now on we quote on
results obtained under the assumption of vanishing cond
sate.

C. Scaling behavior of the monopole mass

From the finite volume results for the masses of theF1

and F2 observables, we estimate the infinite volume m
m` as described below in Sec. IV. The resulting values
m` are given in Table II and Fig. 3.

Figure 3 demonstrates that the monopole massm` de-
creases with decreasingb and possibly vanishes at the pha
transition. The smallest value ofm` which we obtained is
aboutm`.1/3 ~largest value of the corresponding corre
tion length isjmon.3). In the rangem`50.3–1.2 a scaling
behavior is observed, described by the power law~1.1! with
the critical exponent~1.2! and the critical point located at

FIG. 1. Logarithmic plot of the correlation functionC1 on the
L512 lattice atb50.668. The solid curve is a fit to Eq.~3.1! with
m150.921(5) andr50.0003(15).

FIG. 2. Effective energies corresponding to the correlation fu
tion from Fig. 1. The horizontal lines show the fit results forE1

1

from ~3.1! with r50.
05450
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Coul50.6424~9!. ~3.3!

The valuebc
Coul is consistent with the result forbc ob-

tained for the Villain action in@14,19#. The upper script
‘‘Coul’’ in Eq. ~3.3! indicates that the position of the critica
point has been obtained by means of an extrapolation
some observable from the Coulomb phase. The value of
critical exponentn.0.5 has been found earlier to describ
the scaling behavior of the mass of a scalar gauge ball in
pure U~1! lattice gauge theory with extended Wilson actio
@20,4#.

It is important to realize why the smallest value ofm` we
obtained is restricted. As explained in the next section,
extrapolation of the finite volume results for the monopo
mass to the thermodynamic limit gets gradually more a
more difficult as the phase transition is approached. In fac
the finite volume dependence of the monopole masses w
better understood, the phase transition could be further
proached without entering the region where metastability
curs. On the 284 lattice metastability occurs only atb
&0.6439. An extrapolation of our data using Eq.~1.1! to this
b suggests that this lattice size would allow us to rea
monopole masses at least as small as 0.2. Thus the ran
monopole mass values investigated in this paper is restri

-

TABLE II. Extrapolationm` of the monopole mass to the infi
nite volume with Eq.~4.9!. The errors are estimated as described
the text.

b m`

0.645 0.32~4!

0.647 0.46~2!

0.65 0.59~3!

0.654 0.72~2!

0.66 0.88~3!

0.668 1.05~3!

0.678 1.26~2!

FIG. 3. Scaling of the extrapolated monopole massm` with the
power law~1.1!.
2-5
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from below by an insufficient understanding of finite si
effects and not by the occurrence of the two-state signal

IV. VOLUME DEPENDENCE OF THE MONOPOLE MASS
Since in the Coulomb phase there exists a long ra

interaction mediated by the massless photons, a strong
pendence of the monopole masses on the finite spacial sL
of the lattice is expected. Figure 4 displays the depende
of the massesm6 obtained from the correlation function
C1(t) ~solid curve! andC2(t) ~dashed curve! on the lattices
of sizeL.

The massm1 which is obtained from the symmetric com
bination of monopole and antimonopole is smaller thanm2 .
The splitting of masses apparently vanishes if the lattice
L gets large, as expected from the degeneration of the
menta ofF1 and F2 in the infinite volume. However, for
smaller L the functions m6(L) are rather complicated
m2(L) being even nonmonotonic, and currently we do n
have a sufficient theoretical understanding of thisL depen-
dence. To extrapolate toL5` we therefore combine the
expected asymptotic behavior ofm6(L) with various phe-
nomenologicalAnsätze.

It seems plausible that at largerL, where both masse
have already similar values, the long-range Coulomb field
the monopole might dominate theL dependence. So we tr
to describem6(L) at largeL by the classical energy of
~magnetically! charged particle in a finite volume.

The classical energy of a~magnetic! chargeg with a Cou-
lomb potentialf(rW)5g/4pr in a spherical volume of radiu
L in continuum is

Wcont~L !5
amag

2 S 1

r 0
2

1

L D , amag5
g2

4p
. ~4.1!

The diverging classical energy of the point particle has b
regularized by a restriction tor>r 0. The classical consider
ation gives a characteristic 1/L dependence

FIG. 4. Dependence of the monopole massesm6 on the finite
spacial lattice sizeL at b50.65. The solid and dashed curves f
m1 andm2 , respectively, correspond to theAnsatz~4.8! up to the
1/L2 term.
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m6~L !5m`2
c1

L
~4.2!

with some value of the coefficientc1 depending on the shap
of the finite volume, boundary conditions and regularizatio
There is no difference betweenm1 andm2 at the classical
level. The splitting of masses is probably a quantum m
chanical effect, which we have not estimated.

In order to obtain the value ofc1 for the cubic lattices
used in the simulations, we first carry out a classical com
tation analogous to Eq.~4.1! in the lattice regularization. We
use the lattice Coulomb potential

f latt~rW !5
g

L3 (
pW Þ0

exp~ ipW •rW !

2 (
m51

3

~12cospj !

,

pj5
2p

L
nj , njP$0, . . . ,L21%, ~4.3!

on a L3 cubic lattice with periodic boundary conditions. I
the computation of the energy, the gradient is replaced b
finite difference, and the integral over the volume is replac
by a finite sum. We determine the energy numerically. T
result is very well approximated by

Wlatt~L !50.252421.3881
amag

2 L
. ~4.4!

Compared with Eq.~4.1!, only the pre-factors have bee
changed. We do not specify any errors of the coefficie
because the statistical errors from the simulations are la
by an order of magnitute. The resulting estimate of theL
dependence of the monopole mass on a finiteL3 lattice is
therefore Eq.~4.2! with

c151.3881
amag

2
. ~4.5!

The drawback of this estimate is the fact that the antiperio
boundary conditions on the gauge field are not fully
spected.

Another way to estimate the value ofc1 is to interpret the
antiperiodic boundary conditions for the gauge field as
three-dimensional infinite cubic lattice of alternating charg
the distance between nearest neighbors beingL. For the con-
tinuum space this consideration leads to the problem of
tice sums, relevant for various crystalline materials. Tak
over the well-known results from condensed matter phys
@21# implies that the energy of one monopole in the field
all others is equal to the second term in Eq.~4.2! with

c151.7476
amag

2
. ~4.6!

The numerical factor in Eq.~4.6! is the Madelung constant. I
determines the classical energy of cubic ion crystals, tho
its actual calculation requires particular mathematical att
2-6
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tion @21#. We prefer Eq.~4.6! to Eq.~4.5! because it respect
the correct boundary conditions for the gauge field.

An estimate ofamag can be obtained from the numeric
analysis of the static potential of U~1! lattice gauge theory
with Villain action by using the Dirac relation

g•e52p⇒amag5
1

4ael
. ~4.7!

We use the values of the renormalized electrical coup
ael5e2/4p from @14#. Table III contains the values ofael
andamag for different b.

The fact that classical energy considerations suggest aL
dependence motivates ourAnsätze in terms of a polynomial
in 1/L. The necessary scale is assumed to be provided by
infinite volume massm` itself.

Our first Ansatzis

m6~L !5m`2
c1

(6)

L
1

c2
(6)

m`L2
1

c3
(6)

m`
2 L3

•••. ~4.8!

Here different coefficientsci
(1) and ci

(2) are allowed even
for i 51. Figure 4 shows the fits~4.8! up to 1/L2. The results
obtained form` become stable if the fit is restricted to da
with L>8. In this case,m` is not significantly changed if
more points at smallL are omitted or if 1/L3 contributions
are included. The coefficientsc1

(1) and c1
(2) roughly agree,

supporting the form~4.2! of the estimates. Their values diffe
from the classical values ofc1 in Eqs. ~4.5! and ~4.6! by a
factor of 1.2–1.6.

Nevertheless, it is possible to fixc1
(1)5c1

(2)5c1 to the
classical value and to fit the data by means of anotherAnsatz

m6~L !5m`2
c1

L
1

c2
(6)

m`L2
1

c3
(6)

m`
2 L3

•••. ~4.9!

We have used thisAnsatzwith both estimates of the coeffi
cient c1, given in Eqs.~4.5! and ~4.6!. It turned out that the
results for the monopole mass in the infinite volume are c
sistent within the error bars. In the following we thus d
scribe only the results obtained using the Madelung cons
in Eq. ~4.6!. The corresponding values ofc1 are given in
Table III.

Figure 5 shows the same data as Fig. 4, but with
functions~4.9! up to 1/L3. The fit resultsm` become stable

TABLE III. Dual renormalized couplingamagobtained from Eq.
~4.7!. c1 is the coefficient~4.6! used in theAnsatz~4.9!.

b ael amag c1

0.645 0.1836 1.3614 1.1896
0.647 0.1766 1.4159 1.2372
0.650 0.1687 1.4817 1.2947
0.654 0.1606 1.5571 1.3606
0.660 0.1508 1.6580 1.4487
0.668 0.1402 1.7829 1.5579
0.678 0.1293 1.9329 1.6889
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if the fit includes the 1/L3 contributions. A restriction to
largeL is necessary only forb close to the phase transition

We consider the values ofm` obtained in the fit by means
of Eq. ~4.9! with all listed terms as the best determination
the monopole mass in the infinite volume and list the res
in Table II.

Because of the theoretical uncertainty in ourAnsätze, we
have to be very cautious in estimating the errors ofm` . To
obtain an estimate of the errors ofm` obtained by means o
Eq. ~4.9!, we compare the fit results from Eq.~4.9! with and
without higher 1/Lk terms. Further we omit various numbe
of points at smallL from the fits. The error ofm` is then
estimated from the variation of the fit results under the d
ferent conditions. The values of these errors are also give
Table II. Using instead of Eq.~4.9! theAnsatz~4.8! results in
values ofm` compatible with those in Table II within the
listed errors.

Though insufficiently motivated, our extrapolation proc
dure is rather stable at theb values farther from the phas
transition. Even the use of the coefficientc1 given in Eq.
~4.5! instead of Eq.~4.6! does not change the results signi
cantly. The extrapolation is most problematic at the po
closest to the phase transition,b50.645. Figure 6 shows the
L dependence of them6 masses in this case, using Eq.~4.6!.
Since the finite volume mass splitting betweenm1 andm2

remains significantly nonzero on the largest lattice, the s
tematic error is probably quite large. From the different fi
we estimate it to be about 20% at thisb. In order to reduce
this error and to further approach the phase transition, la
lattices and a more reliable extrapolation procedure would
needed.

V. RESULTS IN THE CONFINEMENT PHASE

A. Simulations and statistics

Our simulations in the confinement phase are perform
with the same algorithm and the same boundary conditi

FIG. 5. Dependence of the masses ofm1 ~solid line! and m2

~dashed line! on the lattice sizeL at b50.65. The curves corre
spond to Eq.~4.9! up to the term 1/L3.
2-7
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as described in Sec. III A. The lattice volumes areL33T
with T524 fixed and severalL. At eachb, at least 5000
measurements have been made starting with an ordered
tem and 5000 starting with a completely disordered syst
Before the measurements we have used 2.53103 ~away from
the phase transition! to 2.53104 ~close to the transition!
sweeps for thermalization. The monopole operators~2.19!
and ~2.20! are measured after each 25 update sweeps.

Table IV displays the parameters of the simulations a
the integrated autocorrelation timest int of the action density
in multiples of 25 sweeps. It has been determined on thL
58 lattice atb,0.6436 and onL512 at 0.6436<b. The
integrated autocorrelation of the monopole condensat
compatible with these values.

The b values are chosen far enough from the phase t
sition, so that the flips between both phases at the ph

FIG. 6. Dependence of the masses ofm1 ~solid line! and m2

~dashed line! on the lattice sizeL at b50.645 which is the point
closest to the phase transition. The curves correspond to Eq.~4.9!
up to 1/L2. Data points withL,10 have been excluded from th
fits.

TABLE IV. Values of b at which the simulations in the con
finement phase were performed. The lattice sizes areL
54,6, . . . ,Lmax. t int denotes the integrated autocorrelation time

b Lmax t int

0.6 12 1.1
0.62 14 1.2
0.625 14 1.3
0.635 14 1.3
0.638 12 2.6
0.64 16 2.9
0.641 16 4.2
0.642 16 5.9
0.6425 18 7.2
0.643 14 10
0.6435 18 15
0.6436 18 30
0.6437 18 35
05450
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transition do not occur in the runs. On the largest lattices
could simulate this leads to the exclusion of runs atb
50.6438.

Because of the brokenZ2 symmetry, the finite system
sometimes flips between the two possible ground sta
within the confinement phase. The flip probability increas
with decreasing lattice volume and when the phase transi
is approached. We observe flips atb<0.643 only on the
small lattices withL<8. At b50.6435, we observe them u
to theL514 and atb50.6436,0.6437 on all lattice sizes u
to L518. On our largest lattices, the system does not
more than one or two times during the whole run. In the
cases we cut the corresponding parts of the runs to en
that the unwanted intermediate states do not contribute to
resulting value of the monopole condensate. However, r
with more frequent flips are discarded.

B. Monopole condensate

The monopole condensate^0uF1u0& is measured directly,
and its modulus~3.2! can be determined from the correlatio
function C1(t) of F1 , Eq. ~3.1!. Both methods yield com-
patible results.

The value ofr does not depend on the lattice extentT in
time direction, but it is weakly dependent on its spacial e
tent L. The L dependence ofr can be described with an
exponential law

r~L !5r`1a e2bL ~5.1!

with constantsa, b and the infinite volume valuer` . Figure
7 displaysr(L) at b50.64 with the fit ~5.1! used for the
extrapolation.

At b50.6436 andb50.6437 the data for the condensa
could be obtained only on large lattices due to the grou
state flips on smaller ones. As there is no significantL de-
pendence ofr on the largest lattices, we take the average
the obtained values to representr` instead of using theAn-

FIG. 7. Dependence of the monopole condensate onL at b
50.64. The curve corresponds to Eq.~1.5!. The scale of they axis
is very fine.
2-8
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satz~5.1!. Figure 8 showsr(L) at b50.6436 and the result
ing value ofr` .

Table V lists the extrapolated monopole condensate
uesr` at different values ofb.

C. Scaling of the monopole condensate

The b dependence of the monopole condensater` is de-
scribed with an astonishing precision by a simple power

r`~b!5ar~bc
conf2b!bexp ~5.2!

with the value~1.6! of the magnetic exponent and

bc
conf50.6438~1!. ~5.3!

Figure 9 shows the scaling of the monopole condensate
the power law~5.2!. The logarithmic plot, Fig. 10, is ob
tained by plotting log@r(b)/ar# versus log(b2bc

conf) with a
andbc

conf taken as the fit results from Eq.~5.2!.

FIG. 8. Dependence of the monopole condensate onL at b
50.6436~close to the phase transition!. The horizontal lines indi-
cate the estimated valuer` and its error.

TABLE V. Extrapolation of the monopole condensater to the
infinite spacial volume.

b r`

0.6 0.823~4!

0.62 0.730~8!

0.635 0.602~5!

0.638 0.560~3!

0.64 0.509~2!

0.641 0.480~6!

0.642 0.441~4!

0.6425 0.414~5!

0.643 0.383~3!

0.6435 0.325~10!

0.6436 0.300~13!

0.6437 0.275~10!
05450
l-
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We note that the value~5.3! of bc
conf and the value~3.3! of

bc
Coul are consistent within two error bars. The value ofbc

conf

is much more precise, because the determination of the
densate in the confinement phase is much more precise
that of the monopole mass in the Coulomb phase.

D. Excited states of the condensate

From the correlation function~3.1! in the confinement
phase, one can determine in addition to the monopole c
densate the energy and amplitude of a first excited stat
these values gave reasonable results in the infinite volu
they would correspond to a magnetically charged partic
like excitation of the monopole condensate.

There have been attempts to determine the propertie
such a state@12#. However, since we use different bounda
conditions than the authors of@12#, and the remaining sym
metry that is dynamically broken isZ2 in our case instead o

FIG. 9. Scaling behavior of the monopole condensate extra
lated to L5` with b. The curve corresponds to the power la
~5.2!.

FIG. 10. Scaling of the monopole condensate extrapolated
L5` with b in a logarithmic diagram. The line corresponds to t
power law~5.2!.
2-9
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the magnetic U~1!, our results are difficult to compare wit
those presented in@12#.

We examine the dependence of the energyE1
(6) and am-

plitude squaresa65u^1uF6u0&u2 on the finite spacial lattice
size L. The corresponding massesm6(L) obtained from
E1

(6) by means of the dispersion relations~2.21! and ~2.22!
show no clearL dependence that would allow an extrapo
tion to the infinite volume. Also the massesm1 andm2 do
not approach each other asL is increased.

Tables VI and VII show the massesm1 andm2 , respec-
tively, for variousb and the spacial lattice sizesL.

The amplitudesa6(L) decrease as the spacial lattice s
is increased. We find that a power law

a6~L !5a`
(6)1

c6

L6
r

~5.4!

gives values of the exponentr in the range 1–3 and value
a`

(6) consistent with zero. Figure 11 shows as an example

TABLE VI. Mass m1 of the even excited state in the confin
ment phase.

m1(L) L

b 10 12 14 16 18

0.6 1.90~3! 1.95~2!

0.62 1.43~2! 1.49~2! 1.53~2!

0.635 0.93~1! 0.94~1! 0.98~2!

0.638 0.77~1! 0.78~1!

0.64 0.63~2! 0.635~8! 0.67~1!

0.641 0.554~8! 0.565~7! 0.582~7! 0.61~1!

0.642 0.461~7! 0.479~8! 0.50~1!

0.6425 0.396~8! 0.439~5! 0.440~7! 0.44~1! 0.446~3!

0.643 0.31~1! 0.29~2! 0.34~1!

0.6435 0.21~2! 0.20~3! 0.18~2! 0.25~3! 0.26~2!

0.6436 0.16~2! 0.20~2! 0.19~2!

0.6437 0.16~2! 0.14~2! 0.16~2!

TABLE VII. Mass m2 of the odd excited state in the confine
ment phase.

m2(L) L

b 10 12 14 16 18

0.6 2.11~2! 2.15~2!

0.62 1.70~1! 1.68~2! 1.69~2!

0.635 1.23~1! 12.3~1! 1.29~1!

0.638 1.08~1! 1.09~1!

0.64 0.99~1! 0.98~1! 0.96~1!

0.641 0.906~7! 0.885~6! 0.890~4! 0.864~5!

0.642 0.810~7! 0.801~9! 0.781~9!

0.6425 0.764~6! 0.762~4! 0.731~8! 0.716~6! 0.725~3!

0.643 0.719~9! 0.66~1! 0.66~1!

0.6435 0.58~1! 0.60~2! 0.51~2! 0.52~1! 0.48~3!

0.6436 0.50~1! 0.50~2! 0.48~2!

0.6437 0.46~2! 0.45~2! 0.42~4!
05450
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amplitudesa6(L) at b50.64 with fits by the functions~5.4!.
These results indicate that the observed excitations are

present in the infinite volume limit and the correspondi
quantitiesm6 should not be interpreted physically as partic
masses. For this reason the question of an appropriate re
malization of the monopole condensate remains unanswe

VI. CONCLUSION AND DISCUSSION

In the pure U~1! gauge theory with the Villain action we
have investigated the scaling behavior of the monopole m
in the Coulomb phase and of the monopole condensate in
confinement phase. Both observables indicate a critical
havior in the vicinity of the phase transition between the
phases, with the values of the corresponding exponents~1.2!
and ~1.6!. Assuming that a continuum theory can be co
structed at this phase transition, these results indicate
monopoles appear also in such a theory. In particular,
monopole mass in the Coulomb phase can vanish or
finite nonzero in physical units. The Gaussian value~1.2! of
the exponent suggests~though not implies! that the corre-
sponding continuum theory may be trivial. This proper
would then hold also for scalar QED in the Coulomb pha
as this theory is obtained by duality transformations from
pure compact U~1! theory @7,17#.

As for the question of the existence of a continuum lim
in this work we do not contribute to the resolution of th
controversy whether the phase transition is of second
weakly first order@1#. This was also not our aim in this
paper, because for this purpose different methods would
more appropriate. As the values~3.3! and ~5.3! of bc ob-
tained from the Coulomb and the confinement phases
consistent within the error bars times 1.5, our results
consistent with the second order. However, a small diff
enceubc

conf2bc
Coulu'0.001 is not excluded by our data, a

lowing a weak first order transition for the Villain action.
What we want to point out is that, in spite of such

possibility, which actually never can be excluded with fu
certainty, the pure compact QED on the lattice remain

FIG. 11. Amplitudesa6(L) of the F1 ~solid curve! and F2

~dashed curve! excitations depending onL with the curves~5.4!.
2-10
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candidate for the construction of an interesting quantum fi
theory in continuum. The scaling behavior of the monop
mass and in particular of the monopole condensate is
high quality, described by a single exponent in the wh
accessible region of values of the observables. The impl
tion is that there is a region of the phase diagram descr
by an interacting effective field theory which includes mon
pole degrees of freedom.

Scaling behavior has been found also for various ot
observables@2–5#. All these scaling properties suggest t
existence of a continuous phase transition somewhere in
parameter space of possible lattice versions of the pure c
pact QED. Such a point of view might be relevant also
.

d
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B
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the compact lattice QED with fermions@22#. Therefore com-
pact QED merits further investigation with larger resourc
and improved methods.
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Jülich!, where the computations have been performed,
hospitality. T.N. thanks the Helsinki Institute of Physics f
hospitality.
.

ys.

s,

,

@1# C. Roiesnel, Phys. Lett. B405, 126 ~1997!; I. Campos, A.
Cruz, and A. Taranco´n, ibid. 424, 328 ~1998!; Nucl. Phys.
B528, 325~1998!; B. Klaus and C. Roiesnel, Phys. Rev. D58,
114509~1998!; G. Arnold, T. Lippert, and K. Schilling,ibid.
59, 054509~1999!.

@2# J. Jersa´k, C. B. Lang, and T. Neuhaus, Phys. Rev. Lett.77,
1933~1996!; Phys. Rev. D54, 6909~1996!; C. B. Lang and P.
Petreczky, Phys. Lett. B387, 558 ~1996!.

@3# J. Cox, W. Franzki, J. Jersa´k, C. B. Lang, T. Neuhaus, and P
W. Stephenson, Nucl. Phys.B499, 371 ~1997!.

@4# J. Cox, J. Jersa´k, T. Neuhaus, P. W. Stephenson, A. Seyfrie
and H. Pfeiffer, Nucl. Phys.B545, 607 ~1999!.

@5# J. Cox, J. Jersa´k, T. Neuhaus, and H. Pfeiffer, ‘‘Scaling analy
sis of Wilson loops in the confinement phase of the pure U~1!
gauge theory’’~in preparation!.

@6# A. M. Polyakov, Phys. Lett.59B, 82 ~1975!; T. Banks, R.
Myerson, and J. Kogut, Nucl. Phys.B129, 493 ~1977!; R.
Savit, Phys. Rev. Lett.39, 55 ~1977!; J. Glimm and A. Jaffe,
Commun. Math. Phys.56, 195 ~1977!; E. Fradkin and L. Sus-
skind, Phys. Rev. D17, 2637 ~1978!; A. Ukawa, P. Windey,
and A. H. Guth,ibid. 21, 1013~1980!; T. A. DeGrand and D.
Toussaint,ibid. 22, 2478 ~1980!; J. S. Barber, Phys. Lett
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