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Scaling analysis of the magnetic monopole mass and condensate in the pure
U(1) lattice gauge theory
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We observe the power law scaling behavior of the monopole mass and condensate in the pure c@npact U
gauge theory with the Villain action. In the Coulomb phase the monopole mass scales with the exppnent
=0.494). In theconfinement phase the behavior of the monopole condensate is described with remarkable
accuracy by the exponet.,,=0.1913). Possible implications of these phenomena for a construction of a
strongly coupled continuum (@) gauge theory are discuss¢&80556-282(99)04915-3

PACS numbgs): 11.15.Ha, 05.70.Jk, 14.80.Hv

I. INTRODUCTION and propertie$10]. The long distance force in the confine-
ment phasd11,12 and chiral symmetry breakingl3] are

The phase transition between the confinement and Coupest understood in terms of the monopole condensate. The
lomb phases of the strongly coupled pure compadi) lat-  charge renormalization in the Coulomb phase is due to the
tice gauge theorycompact QED has recently received re- antiscreening by monopol¢¢4-16. Thus the existence of
newed interest and two of its aspects were investigated iAn interesting effective (1) theory presumably depends on
large numerical simulations. First, several attempts hav<_\£\’hether the mqnopoles persist to play an important role in it,
been made to distinguish between the weak first order antle- On the scaling behavior of the monopoles. _
second order scenarios for the Wilson action and in the ex- OUr findings are as follows: In the Coulomb phase we find
tended coupling parameter space. The question is wheth@f V&rious values of the coupling a very clean exponential
the two-state signal decreasing slowly with increasing Iatticéjec"?Iy of the mof‘opo'e correlation functlor_1 in a large range
volume extrapolates to a nonzero or zero value, respectivel f distances. This demonstrates the dominance of a single

in the thermodynamic limit(For a recent discussion of this wi:[)lgleemizéewg] dg‘smﬁﬁ:éeI_?Egnmfounnocuoolg' nzggs nggt?gpgllgfe d
subject and earlier references see REF.) ' P P

Second, a scaling behavior of various bulk quantities an(ﬁ0 the infinite volumem.. , scales with the distance from the

of the gauge-ball spectrum consistent with a second ordé?hase transition as

phase transition and universality has been observed in the m..(8)=am(B—Bo)"™, (1.1)
vicinity of some points on the manifold separating the con-

finement and Coulomb phases, outside their narrow neighyhere

borhood in which the two-state signal occU-5]. This

suggests that there may exist regions of the parameter space vyp=0.494). (1.2

where the transition is continuous, though it may be not such , .
for the particular action used in the simulation. This value of the exponent, can be compared with the

A continuous transition would allow the construction of a values for the correlation length exponentsobtained for
continuum theory. But even if no critical point exists, the Other observables. One of these values is the non-Gaussian

theory might be considered as an effective theory, with finite/alue
but large cutoff, provided the range of scales at which a ~0.35 1.3
second-order-like behavior holds is large. The question is Vng= Y '

then whether such #possibly effective continuum UL 50 for the Lee-Yang zerdi?] at the transition, several

theory would t_)g interes'ging in some sense, e.g. would it hay auge ballg3,4] and approximately also for the string ten-
a phase transition, confinement, etc., in analogy to the latticg;,, [3,5]. The other, Gaussian value is

regularized theory.

In this paper we address this second aspect and extend the v4=0.5. (1.9
investigation of the scaling behavior to observables related to
the magnetic monopoles. To our knowledge this subject hak has been observed previously for the scalar gauge ball
not yet been investigated in a systematic way. But the issul8,4] in the confinement phase.
is important, as whatever is interesting in the compact lattice Our main result is that the valu@.2) of v, is signifi-
QED is essentially related to the monopoles: The phase tramantly greater than Eq1.3) and consistent with Eq1.4).
sition itself is known to be associated with the occurrence ofThis implies that monopoles would stay important in any of
magnetic monopoles being topological excitations of thethe conceivable scenarios for a construction of an effective
theory[6—8]. Modifications of the monopole contribution to continuum W1) theory. If such a theory were to be con-
the action have appreciable consequences for its po$Rion structed in such a way that masses and other dimensionful
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observables scaling with the non-Gaussian exponggt Il. DUAL FORMULATION OF PURE U (1) LATTICE
were kept finite nonzero in physical units, then the mono- GAUGE THEORY
poles in the Coulomb phase would get massless. Even if A. Z gauge theory

instead the Gaussian exponentwere used, the monopole - ] ]

mass can be fixed at a finite value in physical units. This The partition function of pure ) lattice gauge theory,

second possibility might be particularly suitable in the Cou-

lomb phase, where no other scales are known. z:H
In the confinement phase we have determined the scaling Xp

behavior of the monopole condensate extrapolated to the in-. ) . .
finite volume, p.. , to be with an actions(6p), 6p denoting the plaquette angles, is

related to theZ (intege)y gauge theory by an exact duality
transformation7,17]. In the Z gauge theory, the link vari-

w

dGXMex;{ —; s(ep)), (2.1

p=a,(Bc— B)Pew, (1.5  ablesn,, have integer values, and the partition function
reads
where
Z:f Dn exp( -> s*(np)), (2.2
P
Bexp=0.1973). (1.6
The function (1.5 describes extremely well the data in a Dn=]x_£ Ny 2_00 ' 23
broad interval and the scaling behavior of the condensate is "
thus well established. with
However, the value of the magnetic expongay, alone
is not sufficient for considering the continuum limit. For this Np= Ny, Nixs 2o ™ Nixet )™ Nyw (2.9

purpose a renormalized condensate is needed. A natural pro- . , , .
cedure(like e.g. in the brokens* theory) would be to find a  °€ing the plaquette integer number associated with a
pole in the monopole correlation function in the confinementPlaquette at positiox and orientation £,»). In Eq. (2.2),
phase. We find a contribution suggesting such a pole, but th (Ne) denotes the dual action. The dual theory is a gauge
data are consistent with its amplitude, as a function of thdN€ory invariant under the transformations

lattice volume, extrapolating to zero in the thermodynamic _ o
limit. Thus currently the result€l.5) and(1.6) do not allow M= M (Vo= Mt b=l 25

a conclusion about the condensate in a would-be continuumgith an integer valued functioh, of the lattice point. The
limit. They constitute only a necessary step in this directionsheories(2.1) and (2.2) are strictly equivalent in the infinite
The results are presented as follows: In Sec. Il we sumgoume limit and they should be comparable in large volu-
marize known facts about thi& gauge theory, which we use mina.
in the simulation. It is a dual equivalent to the1) lattice The dual action associated with the Villain action
gauge theory with the Villain action which we actually in-
vestigate. In theZ gauge theory the monopole correlation * B
functions have a form originally found by Hitich and Mar- s(6p)=—log >, exp — E(0p+ 2 k)2
chetti[17], which is convenient for measurements. Antiperi- k===
odic boundary condition$BCs) [18,16] are used, allowing
the consideration of a single monopole in a finite volume in
agreement with the Gauss law. These BCs reduce the mag-
netic U1) symmetry[17,16| to Z,. It is pointed out that this s*(np)=
symmetry is broken in the confinement phase, which neces-
sitates some caution during simulations. whereas the extended Wilson action
In Sec. lll we present our results for the monopole mass
in the Coulomb phase and determine its scaling behavior. In s(0p)= B coq Op)+ 7y cOL26p) (2.9
Sec. IV the necessary extrapolation procedure of the mono-
pole mass results to the infinite volume limit is discussedcorresponds to the dual action
The finite size effects are sizable, as monopoles with their
Coulomb field are extended objects. The leading term in the g
volume dependence can be determined from electrostatic s*(np)=—log( f_ﬂdzcos{z Np)ef CosE Ty O .
considerations, however, and further terms obey a simple (2.9
Ansatz
In Sec. V we present the results for the monopole conden©bviously, for a numerical simulation of th& gauge theory
sate in the confinement phase and describe the search forttze dual Villain action(2.7) is much more practical than Eq.
monopole condensate excitation. We discuss our results ar{@.9). This is the reason we choose the Villain act{@rb) in
conclude in Sec. VI. our current work.

(2.6

1, 5
ﬁnp ( 7)
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B. Dual correlation functions

The magnetic monopoles in the(1) lattice gauge theory
are described by field® (x) whose correlation functions are

defined by certain modifications of the partition function

(2.2 [17]:

(P*(y1) - P (y)P(z1) - - P(2))

1
:ZJ DHexp(—; S(6p+Xp)|. (2.10

Here the magnetifin the U1) languagé flux Xy is gener-
ated by the magnetic current density

‘JX,LLV)\:X(X‘FX),MV_XX/.LV+X(X+;L)V)\_XXV}\+X(X+;)))\,U,
(2.11
with sources #r atz;, ...,zy and—27 atyq, ...,y;. For
given sources, the existence X§ on finite lattices depends
on the topology of the lattice, i.e. on BCs.

In the dual formulation, expressiof2.10 becomes a
usual expectation value

(®*(y1) - P (y)P(2z1) - - - P(2)))

:f Dn exp(—iz JXMnXM)ex;{—; s*(np))

- xx)\p,

(2.12
of a non-local observablel7]
eXp< —iE Jxﬂnxﬂ>, (2.13
X
in which J,, is given by the current densit2.11):
1.
‘]szg‘]xuv)\e,uv}\p . (214}

The observable in Eq2.12) resembles the non-local expres-

sion of a charge operator in terms of its Coulomb field. In the
pure U1) gauge theory an analogous expression would not

be gauge invariant. However, in the caseZofauge theory,
Eqg. (2.13 is gauge invariant because the sourced,gfare
integer multiples of 2r [17].

C. Monopole observable

To determine the correlation functiori3.12 in a Monte
Carlo simulation, it is useful to choose the fietg so that
Jy. vanishes on all links in a certain directiorireferred to
as the “time” direction [16]. Then the observablé.13
decomposes into factors that are local and nonlocal in the
“space” directionsx.

Therefore one defined,,, for each source located at
(Xo.to) @s

Jo(X,)=0, JIX,H)=B(X)dy, (2.19

PHYSICAL REVIEW D60 054502

whereB(X) is a solution of

div B(X) =27 s, (2.1
in three dimensions. Such &, in Eqg. (2.19 yields the
monopole field

cp(io,to)=exp( —iY Jxﬂnxﬂ). (2.17)
X

Products of these fields with sources at different positions
therefore lead to superpositions of currefts in Egs.(2.12)
and(2.13.

In the case of a sourc€.15 and (2.16 the boundary
conditions in the three space dimensions have to be chosen
appropriately. Whereas there is no solution of E2.16
with periodic boundaries, a solution exists for antiperiodic
boundarieg16],

(2.18

on the lattice of spacial extensidn That solution can be
obtained by the three-dimensional discrete Fourier transfor-
mation of Eg. (2.16 on the lattice with respect to
L-antiperiodic base functions. In terms of the monopole ob-
servablg2.17), the boundary condition@.18 correspond to
magnetic charge conjugatidh[16] and are therefore called

C periodic.

In principle it would be possible also for periodic BCs to
correlate monopole-antimonopole pairs at large relative dis-
tance and determine approximately twice their mass. How-
ever, antiperiodic BCs are much more practical, allowing us
to determine the mass of a single monopole on lattices of
moderate sizes.

N3+ L& )= —n,(%1).

D. Dispersion relation and finite size effects

The real and imaginary parts of the monopole are even
and odd, respectively, with respect @ The observables
with definite momentum ar€ even,

D, (Pto) =2 RIP(Xo,to) ]P0, (2.19
X

and C odd,

D _(P,to) =2, I[P (X,to)]eP o, (2.20
X

Since Fourier transformation in EG2.19 is done with
L-periodic functions, the momenta ape=(p;,p,,ps) with
p;=2wk;/L and integek; . In Eqg. (2.20 Fourier transfor-
mation is applied td_-antiperiodic functions, so that the mo-
menta arep;=(2k;+1)w/L with integerk;. As a conse-
quence, the whole monopole observalle=® , +® _ has
no well-defined dispersion relation on finite volume lattices.
Only in the infinite volume limit do the momentum spectra
degenerate and the monopole mass determined by means of
the even and odd observablgs19),(2.20 lead to the same

054502-3



J. JERéA(, T. NEUHAUS, AND H. PFEIFFER PHYSICAL REVIEW D60 054502

mass. We will have to take this fact into consideration when TABLE I. Values of 8 at which the simulations in the Coulomb
we examine the volume dependence of our results in Sec. I\phase were performed. The lattice sizes lare4,6, . . . Lyax. At

The monopole masses on finite lattices are determine@achB, at least 10 measurements have been marg.is the inte-
using grated autocorrelation time of the action density in multiples of 25

sweeps determined on the=8 lattice.

m,=E; (2.21)

B L max Tint
in the correlation function of the operat®.19. In the case 0.645 18 11.0
of Eq. (2.20, we assume that the mass is obtained from the 0.647 18 2'5
energy by the usual particle dispersion relation 0.65 18 23
7\2 0.654 18 1.9

EZ=m?+3 2sw5f). (2.22 0.66 16 13

0.668 16 1.1

0.678 16 1.0

However, for a particle with a Coulomb field in a finite vol-
ume this relation is presumably only an approximation. We
take the possible corrections into account in a phenomeno- ) ] ]

logical extrapolation to the infinite volume. Such a methodMonopole masses are determined by the jackknife method
of extrapolation to the infinite volume is necessary anyhowUsing 16 blocks.

as the finite size effects for a particle with extended Coulomb

field are large and only partly under analytic control. The B. Determination of the monopole mass

results do not change significantly if we use the lattice dis-
persion relation with PcoshE)—1] instead ofE?2.

The magnetic 1) symmetry is reduced to &, symme-
try by imposing C-periodic boundary conditiongl6,8]. In
the confinement phase of purg ) gauge theory, this re-
maining Z, symmetry is spontaneously broken. Ths

We use the observablds, and® _ with the lowest pos-
sible momenta, i.ep=0 for ®, and p=(ax/L, /L, /L)

for ® _. The values of the monopole mass are obtained from
their correlation function which is assumed to have approxi-
mately the form

symmetry corresponds to the sign of tt@, ) expectation C.(t)=(0|®%(t)®.(0)|0)

value whereag® )=0 due toC antisymmetry. On finite

lattices flips between both signs @b, ) can occur, distort- =[(0[®..(0)[0)]*+[(1|®.(0)|0)|?

ing the measurements. Therefore we discard parts of the runs CETt, —EN(T-1

where such flips occur. X(e F1ite Y. CHY
Ill. RESULTS IN THE COULOMB PHASE The first term, the monopole condensate

A. Simulations and statistics

We simulate the& gauge theory with the actioi2.7). The
boundary conditions ar€-periodic in spacial directions and
periodic in time direction. We use the same heat bath updatg expected to vanish in the Coulomb phase in the infinite
as the authors dfL6] together with a new implementation of volume limit, but should be allowed on finite lattices.
the monopole observabl@.17) optimized for vectorization Figure 1 shows as an example the data obtained on the
on a Cray T90. L=12 lattice at3=0.668 with the fit by means of the cor-

The lattice volumes ark3x T with T=28 fixed and dif- relation function(3.1). The data in the whole range bfre
ferent L ranging from 4 to 18. Both monopole operators consistent with a contribution of only one state to the corre-
(2.19 and(2.20 are measured after each 25 update sweepftion function. To verify this more accurately, we have de-
for each time slice. From these data, the correlation functiongermined the effective energi& with p both free and set
are computed. In addition, we determine the action densityequal to zero. The effective energies corresponding to the

Table | gives the simulation points in the Coulomb phasecorrelation function from Fig. 1 are plotted in Fig. 2. They
the rangd. =4,6, . . . | 1, Of lattice sizes, and the integrated are stable with respect to Similar results are obtained for
autocorrelation times of the action on the=8 lattice. To  both operator$2.19 and(2.20 at all investigated points in
thermalize the system, we skipped the first>221®* (far  the Coulomb phase for all lattice sizes we have used.

p=[(0|® [0}, 3.2

away from the phase transitipto 2.5x 10* sweepgclose to Thus we find that within our numerical accuracy the
the phase transitionAt each value of the parameters, at leastdependence of the correlation functio(®&1) can be well
10* measurements have been performed. described by a one particle contribution. This is remarkable,

The restriction of lattice sizes tb=<18 is mainly due to as the Coulomb phase contains massless photons which
the costs~L® in the determination of the monopole observ- could in principle substantially complicate the form of the
able (2.17 because of the two summations over the spaceorrelation function(infraparticle. It justifies the interpreta-
volume, one in the exponent, and one in the Fourier transtion of the observed energy as the energy or mass of the
formation of Egs.(2.19,(2.20. The statistical errors of the magnetic monopole. Furthermore, there is no significant de-
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] T \ ‘ T T T T TABLE Il. Extrapolationm.. of the monopole mass to the infi-
-6 12% 28 7 nite volume with Eq(4.9). The errors are estimated as described in
b g =0.668 - the text.
s ] B m..
= o 0.645 0.324)
T el ] 0.647 0.462)
ED -1 ’ ] 0.65 0.593)
ek - 0.654 0.722)
_isf ] 0.66 0.883)
I 0.668 1.083)
Sr ] 0.678 1.262)
~15[" B
C | | 1 | { [ | I
0 1 2 3 4 5 8 7 8 Coul
t Bc=0.64249). (3.3

FIG. 1. Logarithmic plot of the correlation functic@, on the
L=12 lattice at3=0.668. The solid curve is a fit to E¢3.1) with
m, =0.921(5) ancp=0.0003(15).

The valueﬂf"“' is consistent with the result fgB. ob-
tained for the Villain action in[14,19. The upper script
“Coul” in Eq. (3.3 indicates that the position of the critical
o point has been obtained by means of an extrapolation of
viation fromp=0 and therefore from now on we quote only some observable from the Coulomb phase. The value of the
results obtained under the assumption of vanishing condensitical exponenty=0.5 has been found earlier to describe
sate. the scaling behavior of the mass of a scalar gauge ball in the
pure U1) lattice gauge theory with extended Wilson action
[20.4].

It is important to realize why the smallest valuerof we

From the finite volume results for the masses ofdhe  obtained is restricted. As explained in the next section, an
and ® _ observables, we estimate the infinite volume massxtrapolation of the finite volume results for the monopole
m., as described below in Sec. IV. The resulting values ofmass to the thermodynamic limit gets gradually more and
m,, are given in Table Il and Fig. 3. more difficult as the phase transition is approached. In fact, if

Figure 3 demonstrates that the monopole massde-  the finite volume dependence of the monopole masses were
creases with decreasig®and possibly vanishes at the phasebetter understood, the phase transition could be further ap-
transition. The smallest value ofi, which we obtained is proached without entering the region where metastability oc-
aboutm,,=1/3 (largest value of the corresponding correla-curs. On the 28 lattice metastability occurs only a8
tion length iséno=3). In the rangem,,=0.3-1.2 a scaling =<0.6439. An extrapolation of our data using Ef.1) to this
behavior is observed, described by the power (&) with B suggests that this lattice size would allow us to reach
the critical exponentl1.2) and the critical point located at  monopole masses at least as small as 0.2. Thus the range of
monopole mass values investigated in this paper is restricted

C. Scaling behavior of the monopole mass

1.20 F T T T T T T T T T T T 1
3 1 T T T T T
L1 E 12°* 28 3 1.4 T T T T
g =0.668 3 I
1.10 | E 12 [ 7
1.05 E
100 | 3 1.0 [~ n
SooesE N S N S |z os | 1
s kel = T 7 = o
+m 0.90 : T \-E/
085 [ 3 06 [ 7
0.80 [ E
£ E 04 [ .
0.75 | E
070 | E 02 [ 7
065 1 ! ! I 3
o] 1 2 3 4 5 0.0 1 i 1 ! 1
.84 .85 .66 .87 .68
t
. : : . 5
FIG. 2. Effective energies corresponding to the correlation func-
tion from Fig. 1. The horizontal lines show the fit results &©f FIG. 3. Scaling of the extrapolated monopole masswith the

from (3.1 with p=0. power law(1.1).
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C1

| ] m.(L)=m,—— (4.2
8 T‘} B L
7 - with some value of the coefficient depending on the shape
N ] of the finite volume, boundary conditions and regularization.
S ] There is no difference between, andm_ at the classical

level. The splitting of masses is probably a quantum me-
chanical effect, which we have not estimated.

In order to obtain the value af; for the cubic lattices
used in the simulations, we first carry out a classical compu-
tation analogous to Ed4.1) in the lattice regularization. We
use the lattice Coulomb potential

m(L)

S S S g exp(ip )
T 8 8 10 12 14 16 18 Dran(r)= — Z 3 ,

L3Q
L PO (1—cosp;)
n=1

FIG. 4. Dependence of the monopole masseson the finite
spacial lattice sizé. at 8=0.65. The solid and dashed curves for o0
m, andm_, respectively, correspond to tesatz(4.8) up to the pj=—n;

Ny, {0, -1}, 4.3
1/L2 term.

on aL? cubic lattice with periodic boundary conditions. In
the computation of the energy, the gradient is replaced by a
finite difference, and the integral over the volume is replaced

by a finite sum. We determine the energy numerically. The
IV. VOLUME DEPENDENCE OF THE MONOPOLE MASS result is very well approximated by

Since in the Coulomb phase there exists a long range
interaction mediated by the massless photons, a strong de- @mag
pendence of the monopole masses on the finite spacial size Wian(L) =0.2524-1.3881"—. (4.4
of the lattice is expected. Figure 4 displays the dependence

of the massesn.. obtained from the correlation functions Compared with Eq(4.1), only the pre-factors have been

C.(t) (solid curvg andC _(t) (dashed curveon the lattices changed. We do not specify any errors of the coefficients

of sizeL. because the statistical errors from the simulations are larger
The massn, which is obtained from the symmetric com- by an order of magnitute. The resulting estimate of the

bination of monopole and antimonopole is smaller than. dependence of the monopole mass on a fihitdattice is
The splitting of masses apparently vanishes if the lattice sizéherefore Eq(4.2) with

L gets large, as expected from the degeneration of the mo-
menta of® . and ® _ in the infinite volume. However, for @ mag
smaller L the functionsm. (L) are rather complicated, C1:1'3881T' (4.9
m_(L) being even nonmonotonic, and currently we do not
have a sufficient theoretical understanding of thisepen-  The drawback of this estimate is the fact that the antiperiodic
dence. To extrapolate th=< we therefore combine the boundary conditions on the gauge field are not fully re-
expected asymptotic behavior of. (L) with various phe- spected.
nomenologicalAnsdze Another way to estimate the value of is to interpret the
It seems plausible that at largér where both masses antiperiodic boundary conditions for the gauge field as a
have already similar values, the long-range Coulomb field ofhree-dimensional infinite cubic lattice of alternating charges,
the monopole might dominate thhedependence. So we try the distance between nearest neighbors beirigpr the con-
to describem. (L) at largeL by the classical energy of a tinuum space this consideration leads to the problem of lat-
(magnetically charged particle in a finite volume. tice sums, relevant for various crystalline materials. Taking
The classical energy of @agneti¢ chargeg with a Cou-  over the well-known results from condensed matter physics
lomb potentiale(r) =g/4ar in a spherical volume of radius [21] implies that the energy of one monopole in the field of

from below by an insufficient understanding of finite size
effects and not by the occurrence of the two-state signal.

L in continuum is all others is equal to the second term in E4.2) with
2
_ %*mag 11 9 Xmag
Weon(L) = — (E_f)’ Umag= 7 —- (4.1 C1=1.7476—~. (4.6)

The diverging classical energy of the point particle has beeiThe numerical factor in Eq4.6) is the Madelung constant. It
regularized by a restriction to=r,. The classical consider- determines the classical energy of cubic ion crystals, though
ation gives a characteristicll/dependence its actual calculation requires particular mathematical atten-
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TABLE lII. Dual renormalized couplingym,,g0btained from Eq.

(4.7). ¢4 is the coefficient{4.6) used in theAnsatz(4.9).

B Qe Xmag C1

0.645 0.1836 1.3614 1.1896

0.647 0.1766 1.4159 1.2372

0.650 0.1687 1.4817 1.2947 =

0.654 0.1606 1.5571 1.3606 £

0.660 0.1508 1.6580 1.4487

0.668 0.1402 1.7829 1.5579

0.678 0.1293 1.9329 1.6889

tion [21]. We prefer Eq(4.6) to Eq.(4.5) because it respects . ]

the correct boundary conditions for the gauge field. T 6 8 10 12 14 16 18
An estimate ofa,,q can be obtained from the numerical L

analysis of the static potential of(I) lattice gauge theory o

with Villain action by using the Dirac relation FIG. 5. Dependence of the massesnof (solid line) andm..

(dashed ling on the lattice size. at 8=0.65. The curves corre-
1 spond to Eq(4.9) up to the term 1.3,
g~e—27T=>amag—4ael. 4.7

if the fit includes the 1/ contributions. A restriction to
argelL is necessary only foB close to the phase transition.

We consider the values afi,, obtained in the fit by means
/of Eq. (4.9 with all listed terms as the best determination of
the monopole mass in the infinite volume and list the results
H’g Table II. )

Because of the theoretical uncertainty in @ursaze we
have to be very cautious in estimating the errorsmof. To
obtain an estimate of the errors wf, obtained by means of
Eq. (4.9, we compare the fit results from E@.9) with and
= ... (4.8 without higher 1L terms. Further we omit various numbers
L m,LZ maL3 of points at smallL from the fits. The error ofn,, is then

estimated from the variation of the fit results under the dif-
Here different coefficients{™) andc{™) are allowed even ferent conditions. The values of these errors are also given in
fori=1. Figure 4 shows the fitg.8) up to 1L2. The results  Table Il. Using instead of Ed4.9) the Ansatz(4.9) results in
obtained form., become stable if the fit is restricted to data values ofm,, compatible with those in Table Il within the
with L=8. In this casem., is not significantly changed if listed errors.
more points at small are omitted or if 1.3 contributions Though insufficiently motivated, our extrapolation proce-
are included. The coefficients™ andc{™ roughly agree, ~dure is rather stable at the values farther from the phase
supporting the fornt4.2) of the estimates. Their values differ transition. Even the use of the coefficierit given in Eq.

from the classical values af; in Egs. (4.5 and(4.6) by a (4.9 instead of Eq(4.6) does not change the results signifi-
factor of 1.2—1.6. cantly. The extrapolation is most problematic at the point

Nevertheless, it is possible to fo{")=c{)=c, to the  closest to the phase transitigh= 0.645. Figure 6 shows the

classical value and to fit the data by means of anotmesatz L dependence of the.. masses in this case, using £4.6).
Since the finite volume mass splitting between andm_

We use the values of the renormalized electrical couplin
ae=€%l47 from [14]. Table Il contains the values af
and amyg for different 8.

The fact that classical energy considerations suggedt a 1
dependence motivates oAnsdzein terms of a polynomial
in 1/L. The necessary scale is assumed to be provided by t
infinite volume massn,, itself.

Our first Ansatzis

o) el

¢ C(Zt) C(3t) remains significantly nonzero on the largest lattice, the sys-
m.(L)=m,— f+ > >3 (4.9  tematic error is probably quite large. From the different fits
m.L® mL we estimate it to be about 20% at ti@s In order to reduce

this error and to further approach the phase transition, larger

We have used thiAnsatzwith both estimates of the coeffi- |atices and a more reliable extrapolation procedure would be
cientcy, given in Egs.(4.5 and(4.6). It turned out that the [ aeded.

results for the monopole mass in the infinite volume are con-
sistent within the error bars. In the following we thus de-
scribe only the results obtained using the Madelung constant V. RESULTS IN THE CONFINEMENT PHASE
in Eq. (4.6). The corresponding values af, are given in
Table IlI.

Figure 5 shows the same data as Fig. 4, but with the Our simulations in the confinement phase are performed
functions(4.9) up to 1L3. The fit resultsm,. become stable with the same algorithm and the same boundary conditions

A. Simulations and statistics
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FIG. 6. Dependence of the massesmof (solid ling) andm_ FIG. 7. Dependence of the monopole condensatd_cat 8

(dashed ling on the lattice sizé at 8=0.645 which is the point =0.64. The curve corresponds to E.5). The scale of the axis
closest to the phase transition. The curves correspond t¢4E). s very fine.
up to 1L2. Data points withL<10 have been excluded from the

fits. transition do not occur in the runs. On the largest lattices we

as described in Sec. Il A. The lattice volumes ard<T could simulate this leads to the exclusion of runs fat

with T=24 fixed and severdl. At each B, at least 5000 2056438' f the broked v the finit N
measurements have been made starting with an ordered sys- egause f(I)' i t\:\? N zthsynt"lme ry, 'SI nite syds ertnt
tem and 5000 starting with a completely disordered systemSome imes Tlips between the two possible ground states

Before the measurements we have useckd® (away from within the confinement phase. The flip probability increases
the phase transitionto 2.5<10% (close to the transition with decreasing lattice volume and when the phase transition

o is approached. We observe flips @0.643 only on the
sweeps for thermalization. The monopole operai@49 ! . ) -
and (2.20 are measured after each 25 update sweeps. small lattices withL<8. At 8=0.6435, we observe them up

Table IV displays the parameters of the simulations and® theL =14 and a3=0.6436,0.6437 on all lattice sizes up

the integrated autocorrelation timeg; of the action density to L=t1hS. On our Iatv\:get_st Iatt'(;:es.” thti syskt]erln doesl n?:] flip
in multiples of 25 sweeps. It has been determined onlLthe more than one or two times during the whole run. In these

— 38 lattice atB3<0.6436 and orL=12 at 0.6436 3. The cases we cut the corresponding parts of the runs to ensure

integrated autocorrelation of the monopole condensate irg;asﬁtri]r? uc\;ﬁgti? t'ﬂ;eg]oendc;ageﬂ?éﬁzg:sg?é Cagt\/r\;zst; t?ut:]‘se
compatible with these values. 9 P ' ’

The B values are chosen far enough from the phase tran\f\”th more frequent flips are discarded.

sition, so that the flips between both phases at the phase
B. Monopole condensate
TABLE IV. Values of 8 at which the simulations in the con- The monopole Condensdt@|(b+|o> is measured direcﬂy,
finement phase were performed. The lattice sizes &re an( jts modulug3.2) can be determined from the correlation
=46, ... Lmax- Tiw denotes the integrated autocorrelation time.  f,nction C.(t) of @, , Eq.(3.1). Both methods yield com-
patible results.

A L max Tint The value ofp does not depend on the lattice extd@nn
0.6 12 1.1 time direction, but it is weakly dependent on its spacial ex-
0.62 14 1.2 tent L. The L dependence op can be described with an
0.625 14 13 exponential law
0.635 14 1.3 _ bl
0.638 12 26 p(L)=p.tae 6D
0.64 16 2.9
0.641 16 4.2 with constants, b and the infinite volume valup,. . Figure
0.642 16 5.9 7 displaysp(L) at 8=0.64 with the fit(5.1) used for the
0.6425 18 7.2 extrapolation.
0.643 14 10 At B=0.6436 and3=0.6437 the data for the condensate
0.6435 18 15 could be obtained only on large lattices due to the ground
0.6436 18 30 state flips on smaller ones. As there is no signifidarde-
0.6437 18 35 pendence op on the largest lattices, we take the average of

the obtained values to represent instead of using thén-
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FIG. 8. Dependence of the monopole condensate aat 3 FIG. 9. Scaling behavior of the monopole condensate extrapo-
=0.6436(close to the phase transitiprThe horizontal lines indi-  |ated to L= with B. The curve corresponds to the power law
cate the estimated valye, and its error. (5.2).

satz(5.1). Figure 8 showg(L) at 5=0.6436 and the result- e note that the valué.3) of 8" and the valug3.3) of

C

ing value ofp... BS°" are consistent within two error bars. The valugsgf™
Table V lists the extrapolated monopole condensate vals much more precise, because the determination of the con-
uesp.. at different values of3. densate in the confinement phase is much more precise than

that of the monopole mass in the Coulomb phase.
C. Scaling of the monopole condensate

The B dependence of the monopole condengatés de- D. Excited states of the condensate

scribed with an astonishing precision by a simple power law From the correlation functiort3.1) in the confinement
phase, one can determine in addition to the monopole con-

p=(B)=2,(BL"— B)Fer (32 densate the energy and amplitude of a first excited state. If

) ) these values gave reasonable results in the infinite volume,

with the value(1.6) of the magnetic exponent and they would correspond to a magnetically charged particle-
conf like excitation of the monopole condensate.

¢ =0.64381). (5.3 There have been attempts to determine the properties of

such a stat¢12]. However, since we use different boundary
Figure 9 shows the scaling of the monopole condensate witGonditions than the authors pf2], and the remaining sym-
the power law(5.2). The logarithmic plot, Fig. 10, is ob- metry that is dynamically broken i, in our case instead of
tained by plotting lofp(B)/a,] versus logB— ™ with a

and 8°" taken as the fit results from E¢5.2). osF T —r T T A
TABLE V. Extrapolation of the monopole condensateo the | N
infinite spacial volume. o8
B Do E 10 .
0.6 0.8234) S;/
-1.2 7
0.62 0.7308) v
0.635 0.6085) S
0.638 0.56() “ta ]
0.64 0.5092) I
0.641 0.4806) -16 [ 7
0.642 0.4414) J , I ! I 1 I
0.6425 0.416) -8 7 _6 _5 _4 -3
0.643 0.3883) lo
g(ﬁ_ﬁc)
0.6435 0.32610)
0.6436 0.30@3) FIG. 10. Scaling of the monopole condensate extrapolated to
0.6437 0.27B10) L=« with 8 in a logarithmic diagram. The line corresponds to the

power law(5.2).
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TABLE VI. Mass m, of the even excited state in the confine- o2 T T T T T 1

ment phase. r
010 [ 1

m, (L) L N

B 10 12 14 16 18 008 e 8
0.6 1.9@3) 1.952) = \‘\‘,91\
0.62 14%2) 1492) 1532 Rl e i
0.635  0.981) 0.941) 0982 e,
0.638 0.771) 0.791) 004 7 7]
0.64 0.632) 0.6358 0.6711)
0.641 0.5548) 0.5657) 0.5837) 0.611) 002 [~ 7
0.642  0.4617) 0.4798) 0.501)
0.6425 0.39@B) 0.4395) 0.44Q7) 0.441) 0.4483) o1 L L L L ‘ L ‘ L
0.643 031_1) 02%2) 0341) 8 9 10 11 12 13 14 15 16
0.6435 0.212) 0.203) 0.182) 0.253) 0.262) L
0.6436 0.12) 0.202) 0.192)

0.6437

0.162)

0.142)

0.162)

FIG. 11. Amplitudesa. (L) of the ®, (solid curve and ® _
(dashed curveexcitations depending ol with the curved5.4).

amplitudesa.. (L) at 8= 0.64 with fits by the function5.4).
These results indicate that the observed excitations are not
present in the infinite volume limit and the corresponding
quantitiesm.. should not be interpreted physically as particle
masses. For this reason the question of an appropriate renor-
malization of the monopole condensate remains unanswered.

the magnetic (), our results are difficult to compare with
those presented ifl2].

We examine the dependence of the eneE§y’ and am-
plitude squares. =|(1|®|0)|2 on the finite spacial lattice
size L. The corresponding masses. (L) obtained from
E{*) by means of the dispersion relatiot&21) and(2.22
show no cleal. dependence that would allow an extrapola-
tion to the infinite volume. Also the masses, andm_ do
not approach each other hss increased.

Tables VI and VII show the masses, andm_, respec- In the pure W1) gauge theory with the Villain action we
tively, for various and the spacial lattice sizés have investigated the scaling behavior of the monopole mass

The amplitudes. (L) decrease as the spacial lattice sizein the Coulomb phase and of the monopole condensate in the
is increased. We find that a power law confinement phase. Both observables indicate a critical be-
havior in the vicinity of the phase transition between these
phases, with the values of the corresponding expor(@r2s
and (1.6). Assuming that a continuum theory can be con-
structed at this phase transition, these results indicate that
gives values of the exponentin the range 1-3 and values monopoles appear also in such a theory. In particular, the

a'™) consistent with zero. Figure 11 shows as an example thBonopole mass in the Coulomb phase can vanish or stay
) _ ~finite nonzero in physical units. The Gaussian vall®) of
TABLE VII. Mass m_ of the odd excited state in the confine- e exponent suggestthough not impliek that the corre-

VI. CONCLUSION AND DISCUSSION

(), C=
ai(L):aoc7 + _I'

*

(5.9

ment phase. sponding continuum theory may be trivial. This property

would then hold also for scalar QED in the Coulomb phase,
m-(L) L as this theory is obtained by duality transformations from the

B 10 12 14 16 18 pure compact (L) theory([7,17].
As for the question of the existence of a continuum limit,

0.6 2112) 2192 in this work we do not contribute to the resolution of the
0.62 1.701) 1682 1.692 controversy whether the phase transition is of second or
0.635 1.28) 1231 1.291) weakly first order[1]. This was also not our aim in this
0.638 1.081)  1.091) paper, because for this purpose different methods would be
0.64 0.991) 0.991) 0.962) more appropriate. As the valu€8.3) and (5.3 of 8. ob-
0.641  0.9067) 0.8856) 0.8904) 0.8645) tained from the Coulomb and the confinement phases are
0.642 0.8107) 0.8019) 0.7819) consistent within the error bars times 1.5, our results are
0.6425 0.7646) 0.7644) 0.7318) 0.7186) 0.7253) consistent with the second order. However, a small differ-
0.643 0.71%) 0.661) 0.661) ence|BS°"— g5 ~0.001 is not excluded by our data, al-
0.6435 0.581) 0.602) 0.512) 0.521) 0.4893) lowing a weak first order transition for the Villain action.
0.6436 0.501) 0.502) 0.482) What we want to point out is that, in spite of such a
0.6437 0.46) 0452 0.424) possibility, which actually never can be excluded with full

certainty, the pure compact QED on the lattice remains a
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candidate for the construction of an interesting quantum fieldhe compact lattice QED with fermioh&2]. Therefore com-

theory in continuum. The scaling behavior of the monopolepact QED merits further investigation with larger resources

mass and in particular of the monopole condensate is of and improved methods.

high quality, described by a single exponent in the whole

a_\cce_ssmle region of valu_es of the observaples. The |mp!|ca- ACKNOWLEDGMENTS

tion is that there is a region of the phase diagram described

by an interacting effective field theory which includes mono- We thank U.-J. Wiese for numerous discussions, sugges-

pole degrees of freedom. tions and for providing us with his program which we partly
Scaling behavior has been found also for various otheused. Discussions with J. Cox and A. Di Giacomo are ac-

observableg2-5]. All these scaling properties suggest the knowledged. J.J. and H.P. thank NIQidh (formerly HLRZ

existence of a continuous phase transition somewhere in thiiich), where the computations have been performed, for

parameter space of possible lattice versions of the pure contospitality. T.N. thanks the Helsinki Institute of Physics for

pact QED. Such a point of view might be relevant also forhospitality.

[1] C. Roiesnel, Phys. Lett. B05 126 (1997; I. Campos, A. [10] A. Bode, T. Lippert, and K. Schilling, Nucl. Phys. &roc.

Cruz, and A. Taranag ibid. 424, 328 (19989; Nucl. Phys. Suppl) 34, 1205(1994; T. Lippert, A. Bode, V. Bornyakov,

B528 325(1998; B. Klaus and C. Roiesnel, Phys. Rev5B, and K. Schilling,ibid. 42, 684 (1999; W. Kerler, C. Rebbi,

114509(1998; G. Arnold, T. Lippert, and K. Schillingibid. and A. Weber, Phys. Rev. B0, 6984 (1994); Phys. Lett. B

59, 054509(1999. 348 565(19959; Nucl. Phys.B450, 452(1995; Phys. Lett. B
[2] J. Jersk, C. B. Lang, and T. Neuhaus, Phys. Rev. L&f, 380, 346 (1996); 392 438(1997); G. Damm and W. Kerler,

1933(1996; Phys. Rev. D64, 6909(1996; C. B. Lang and P. Nucl. Phys. B(Proc. Supp).63, 703(1998; Phys. Rev. D59,

Petreczky, Phys. Lett. B87, 558(1996. 014510(1999; Nucl. Phys. B(Proc. Supp). 73, 718(1999.
[3] J. Cox, W. Franzki, J. JerkaC. B. Lang, T. Neuhaus, and P. [11] M. Stone and P. R. Thomas, Phys. Rev. L41.351(1978; J.

W. Stephenson, Nucl. PhyB499, 371(1997. D. Stack and R. J. Wensley, Nucl. Phyg371, 597 (1992;
[4] J. Cox, J. Jefda T. Neuhaus, P. W. Stephenson, A. Seyfried, Phys. Rev. Lett72, 21 (1994).

and H. Pfeiffer, Nucl. PhysB545 607 (1999. [12] A. Di Giacomo and G. Paffuti, Phys. Rev. &5, 6816(1997);
[5] J. Cox, J. Jersa T. Neuhaus, and H. Pfeiffer, “Scaling analy- A. Di Giacomo, B. Lucini, L. Montesi, and G. Paffuti, Nucl.

sis of Wilson loops in the confinement phase of the puf®) U Phys. B(Proc. Supp). 63, 540(1998.

gauge theory”(in preparation [13] T. Bielefeld, S. Hands, J. D. Stack, and R. J. Wensley, Phys.
[6] A. M. Polyakov, Phys. Lett59B, 82 (1975; T. Banks, R. Lett. B 416, 150(1998.

Myerson, and J. Kogut, Nucl. Phy&129 493 (1977; R. [14] J. Jersk, T. Neuhaus, and P. M. Zerwas, Nucl. Ph251

Savit, Phys. Rev. Let39, 55 (1977; J. Glimm and A. Jaffe, [FS13, 299 (1985.

Commun. Math. Phys6, 195(1977); E. Fradkin and L. Sus- [15] M. Luscher, Nucl. PhysB341, 341(1990.
skind, Phys. Rev. 17, 2637(1978; A. Ukawa, P. Windey, [16] L. Polley and U.-J. Wiese, Nucl. PhyB356, 629 (1991).
and A. H. Guth,jbid. 21, 1013(1980; T. A. DeGrand and D.  [17] J. Fradnlich and P. A. Marchetti, Europhys. Left, 933(1986;

Toussaint,ibid. 22, 2478 (1980; J. S. Barber, Phys. Lett. Commun. Math. Physl12 343(1987.
1478, 330(1984; V. Grosch, K. Jansen, J. JéksaC. B. Lang, [18] U.-J. Wiese, “Lattice quantization of topological excitations,
T. Neuhaus, and C. Reblilid. 162B, 171(1985; M. Baig, H. finite volume effects, and the use Gfperiodic boundary con-
Fort, and J. B. Kogut, Phys. Rev. B, 5920(1994); V. Cir- ditions,” Habilitationsschrift, RWTH Aachen, 199@inpub-
igliano and G. Paffuti, Commun. Math. Phy&00, 381(1999. lished.
[7] M. E. Peskin, Ann. PhygN.Y.) 113 122 (1978. [19] J. Cox, T. Neuhaus, and H. Pfeiffer, Nucl. Phys.(Proc.
[8] M. I. Polikarpov, L. Polley, and U.-J. Wiese, Phys. Lett. B Suppl) 73, 712(1999.
253 212(1991). [20] J. Coxet al, Nucl. Phys. B(Proc. Supp). 63, 691 (1998.
[9] J. S. Barber, R. E. Shrock, and R. Schrader, Phys. 1LB&B, [21] C. Kittel, Introduction to Solid State Physic4th ed.(Wiley,
221(1985; J. S. Barber and R. E. Shrock, Nucl. PhR257, New York, 1972.
515 (1985; V. G. Bornyakov, V. K. Mitrjushkin, and M. [22] J. Cox, W. Franzki, J. JerkaC. B. Lang, and T. Neuhaus,
Muiller-Preussker, Nucl. Phys. @roc. Supp). 30, 587(1993. Nucl. Phys.B532 315(1998.

054502-11



