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We investigate the contributions coming from the penguin operators in the nonre&naxtl M~ (M
=7~ ,K™,K% decays. The effective Wilson coefficients of the strong penguin oper@ipesdOg are found
to be relatively larger than those for other penguin operators. We calculate the contributions arising from the
0, and Og operators in the nonresonant dec®s5—MM =~ (M==",K~,K° using a model combining
heavy quark symmetry and the chiral symmetry, developed previously. We find that the CKM-forbidden
nonresonanB ™ — K°K %z~ decay occurs through the strong penguin operators. These penguin contributions
affect the branching ratios fd8 ™ —M M~ (M=7",K7) by only a few percent. The branching ratio for
B~ — KK 7~ is estimated to be of the order 10 [S0556-282199)07613-4

PACS numbds): 13.25.Hw, 12.39.Fe, 12.39.Hg

There is considerable interest in understanding the decayenotesq, y,(1— ys)q,. For the calculation of the matrix
mechanism of the nonlgptonic charmless three-body de(?a)@ement(Ml\ﬂ (Ub)y_»/B) we extend the results obtained
of B mesong1-4]. The importance of penguin operators in in [16], where the nonresonam*—K ™71 decay was
three-.body decays of charg@ mesons ha§ recently b,ee” analyzed. The experimental result for the branching ratio of
guestioned[1]. In the analysis of the Dalitz plot foB the nonresonand*—K 1 decay was successfully re-

T
—mm Tij the aUthlqu do[_l] Ravehas_sumed ;hat th; NON- hroduced within a hybrid frameworkL6] which combines
rﬁSOBaFt eca_lybellmpllt_l;] N ISI at, having q n?] er.:]en encgbqﬂe heavy quark effective theoffAQET) and the chiral La-
the Dalitz variables. They also assumed that the coniribu; rangian(CHPT) approach. The combination of heavy quark

tlogs of the penguin operators can amount to as much mmetry and chiral symmetry has also been quite success-
20% of the dominant decay amplitude. Others have madg), i\ other analyses ob meson semileptonic decaj7—
predictions for the branching ratios of decdys-4] moti- 23

vated in part by the CLEO limits on some of the nonresonant
decays of the typ8*—h*h"h~ [6]. CLEO found the up-
per limits on the branching ratios BR{ —»n7*7 7")
<4.1x10 °and BRB"—»K"K~7")<7.5x 10 °. In addi-
tion there is hope that theP-violating phasey can be mea-
sured from the asymmetry in charg@&lmeson charmless
three-body decay,4,5.

Motivated by the need to understand whether the nonres

Heavy quark symmetry is expected to be even better for
the heavieB mesong20,21]. However, CHPT might be less
reliable inB decays due to the large energies of light mesons
in the final state. It is really only known that the combination
of HQET and CHPT is valid at small recoil momentum. To
take into account the larger recoil energies of the light me-
sons in our previous workl6,22, we modified the hybrid

. — . model of[17-21] to describe the semileptonic decaysf
nant decay amplitudes f " —MM#~ (M=7",K") in- [ J b y

I ianificant effects due to th . 1 mesons into one light vector or pseudoscalar meson. Our
volve signiticant etiects due 10 the penguin operators Wy, ,ification is quite straightforward: we retain the usual

r?—|QET Feynman rules for theerticesnear and outside the

decayB™ —K%K%7 " is forbidden[14,15 at the tree level, instead of using the usual HQET propagat®his quite rea-
but can occur through penguin operators. A measurement @pnable modification of the hybrid HQET and CHPT model
this rate would allow one to estimate the strength of thegnapled us to use it successfully over the entire kinematic
penguin interactions which are needed in the analysiSRf region of theD meson weak decay46,22,23.

violation effects inB— 77 andB— K decays. In the following we systematically use this model to cal-

~ In our analysis we will use the factorization approxima- cylate the contributions of the penguin operators to the non-
tion in which the main contribution to the nonreson&t o o B~ MMr- (M=7",K~,K% decay amplitudes.

MM, (M=7",K") amplitudes comes from the prod- \we first analyze the contributions coming from {bg s pen-
uct(MM|(ub)y_alB™) {7~ |(du)y_a|0), where @,0,)yv—a  guin operators[8,13], since their effective Wilson coeffi-
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cients are the largest. We then determine the dependence on a;=0.003, a,=—0.022, (7)
the Dalitz plot variables. The operat@®,, as defined in
[8,13], has the same dependence on the Dalitz plot variables as=—0.003, ag=-—0.03.

as the tree-level operatdd,, while Og exhibits different

energy dependence. Finally, we discuss the influence ofhus the effective coefficienta; and as are one order of
these operators on the branching ratios fd@~ magnitude smaller tham, and ag and therefore we can
MM (M==*,K*) and estimate the branching rate for safely neglect the contnbut!ons _fro®3 and O operators.
B~ — KOKOm— The quark currents required in the weak Hamilton{&an

; I . can be expressed in terms of the meson fields, as previousl|
The effective weak Hamiltonian for the nonleptonic P P y

. . described explicitly in[4,16,23. The operatorOg can be
Cabibbo-suppressddl meson decays is given §$-11,13 rewritten as the product of the density operators. For the

G E(l— v5)q scalar and pseudoscalar quark density operator
Heffz—F[deVub(clolu+ c,0,,) we use the CHPT resu[24]. The explicit chiral symmetry
2 breaking, to lowest order in the chiral expansion, is obtained

by adding the quark mass teri24
FVEVen( €010+ €2050)] y adding the q 2]

10
- ;3 ([VubViqCl'+ VepVadci + VipVie) O]+ H.c.

f2
£S=Z”{trB(MuT+UMT)}, 8

(1) whereM =diag(m, ,mq,ms) andB is a real constant that can
be expressed in terms of quark and meson masses; e.g., to
where the superscripts ¢, t denote the internal quark. The lowest orderrnﬁo=6(ms+ mg) andU = exp(2[1/f) wherell

operatorO; are defined i118,9,11,13. We rewriteO3—Og, s a pseudoscalar meson matrix. Using E8).one can easily
using the Fierz transformations, as follows: bosonize the density operators:
_ — _ f2
03:q=u,§d;s,c,b dy,(1=ys)bay*(1—vs)q, 3] qi(l_')’S)qj:_?WBUji _ 9)
_ by _ — _ For the calculation of the density operatifl + ys)b we use
0= _ 2 d7.(1-75)day“(1- 7o), the relationg 10]
®3) I
qy5b: m_aa(qya75b)i (10)
- — b
Os= > dy,(1-y9)bay*(1+ys)q,
g=u,d,s,c,b and
4)
— i _
Y — gb=—-3,(qy"b), (11)
Og=-2 2>  d(1-75)qd(1+ys)b. 5 my

g=u,d,s,c,b
wheremg has been dropped sinog,<my, .

The evaluation of the matrix elementgM|q(1
+v5)b|B) and(MM)|q(1+ ys)b|B) can then be reduced to

The Wilson coefficients have the following values for
=my, with my=5 GeV in the leading-log approximation

[9,11) the evaluation of the matrix elements of the weak currents

c;=1.11, c,=-0.26, (MM|qy,vsb|B) and (M[qy,b|B). Assuming factoriza-
tion, we evaluate the matrix elements of the operé&gr

c3;=0.012, c,=—0.026, (6)
C520008, C6: _0033 <M M M |OG|B>: _2u,d§c,b {<M |d(l_ 75)q|0>

This is sufficient for our purpose, as our main purpose here is X(MM |E(l+ ¥s)b|B)

to show the importance of th®@, andOg4 penguin operators _ _

relative to theO; and O, tree-level operators. +(MM|d(1-y5)q[0)(M|a(1+ ys)b|B)

The factorization approximation is obtained by neglecting _
in the Lagrangian terms which are the product of two color- +(MMM|d(1- y5)q|0)

octet operators after Fierz reordering of the quark fields. The
effective Lagrangian for non-leptonic decays are then given
by Eq. (1) with c; replaced bya; . For N.=3, we have

X(0|q(1+ ys)b|B)}. (12)

The matrix eIemeEs<M|E(1—y5)q|0>, (MM|d(1
a;=1.02, a,=0.07, —¥5)q9|0), and(MMM|d(1— ys5)q|0) are easily calculated
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using Eq.(9). For the calculation of the matrix elements

(M|qy,b|B) and (MM|qy,ysb|B) we generalize the re-
sults obtained in the analysis &f meson semileptonic de-
cays described in detail irL6] and[22]. The matrix element

(M|qy,(1—ys)b|B) is given by[22,23

(M(p")[a7,(1— ¥5)b|B(pg))

2 2
) my,—mpy
=| (Pe+P')u— s’ F1(a?)
mz—m2

M
+ T%Fo(qz), (13
whereq=pg—p’ andF(0)=F(0). Theform factors are
found to be[22,23

32 1/2
Mg« Mz

P-ma.

f
Fi(0)=— 7 +gfe (14

fg ¢ [ mg
? g B/ * m

BI*

fB mB/*
—?+ngr* \/ Mg y

whereB’* denotes the relevant vector meson pole grid
the B¥*BM coupling constant.

and
2
q

+ 2
mg—

Fo(q2)_ 2
My

X

(19
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To evaluate the matrix element
(M1(p1)M2(p2)|(gib)v-alB ™ (pg)) we will also use and
generalize the results obtained previously in the analysis of
the nonresona® * — 7t K~ |, decay width[16]. We write

the matrix elementM(p;)M(py)|(ub)y_alB~ (pg)) in
the general form

(M1(p1)Ma(p2)[uy,(1— y5)b|B™(pg))
=ir(pg—P2—P1)HIW (P2+P1), TiIW_(P2—P1)
_Zhe,uaﬁ‘ypgpgp:l).,' (16)

The form factorsw’" for the nonresonant decay are given in
[4,16]:

WY (py.p,) = g foe Mys Mg pl'(pB_pl)]
1.M2)— -
! f1f2 (pg—py)? _mB* 2sz*
fg \/—Baz
2f1f2 2f f2 m2 pB (p2 pl) (17)
W (1= S fg, Mgz mg? pl-(ps—pl)l
— 1:M2 rars
f1f2 (pg—py)? mB* Zmé*
m
4 Ymea (18)
fif,

The parameters; , are defined if22]. Note that both the
aq, and «, terms are important in Eq$17) and(18), which
was previously overlookef?]. Within this same framework
[16,22 we evaluate"':

1+E mB fB'
r"(P1.P2) =~ ¢ Pa- (P2~ P) —
Mg (pg—pP1—P2)
M P1-P2— —Z—P2-(Ps—P1)P1 (P~ P1)
B %4ngBﬁmg,mB, 1 1"P2 é*, 2-(PB—P1)P1- (PB—P1
me faf2 (Pa—P1=P2)*~ Mg, (Pe—P1)?— Mg«
29 fgsMge  pr(pg—py) . fo . ax/mg
! 19
flf2 (pB_pl)z_m;/* mé*, 2flf2 om 2 pB (pz pl) ( )

HereB’, B'*, B” denote the relevar@ meson poles, ant}, , denotes the pseudoscalar meson decay constants. The coupling

B has been analyzed [23] and found to be close to zero and therefore will be neglected.
The matrix element of the operat@r, can be evaluated straightforwardly using factorization:

(m= w04 B ) =(7" 7 [y, (1~ y5)b|B ) m[dy*(1— ¥5)u[0), (20)
and the corresponding expression for Bie—K K" 7~ matrix elements can simply be obtained by the replaceménand

7~ by K™ andK~ respectively. Note that the matrix eIeanMM|quM(1 y5)q2|0> is dominated by resonant contribu-

tions. Using the variables=(pg— P3)®=(P2+ p1)? t=(Ps—P1)®=(p2+Ps)® U=(Ps—P2)*=(p1+Ps)® and the pseudo-
scalar meson decay constafi{s we can then write the nonresonant decay matrix eleme@,cds
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fr
(M1(P1)M2(P2) ™ (P3)|OalB™ (Pa))nr=| fMZr"(s,t) + - (m3—s—mo)wi'(s,t)

f
+?”(2t+s— m3—m2—mz—m2)w" (t) (22)
whereM,, M, represent eitherr™, 7~ or K™, K.
Using factorization the matrix elements ©f can be written as
+ - - - + - ny - pg - A/
(m (P 7 (P2) 7 (P3)|O6|B™ (Pg))nr=—2) (7" (p) 7 (p2)|u?’ﬂb|5 (pB)>m_B<7T (p3)|d(1—ys)ul0)

"

- — p
+(m (py) 7 (p2)m (p3)|d(1- 75)Ul|0><0|Umb|B_(IOB))m—*?3

PE—P5

Mg

+(m " (p) 7 (P2)|u(1— ys)u|0){ 7 (p3)|dy,b|B~(ps)) +(p1ePa) [,

(22

where we have assumea,=mg. The corresponding result f@~ — 7~ K"K~ can be straightforwardly obtained simply by
replacingz* 7~ by K"K ™. Using the expressions for the matrix elements of the current and the density operators we find

B (1
(M1(p1)M2(P2) 7 (p3)|Og|B(Pa))ne=—fa | SLmr™+ (g —ms —)w! +(2t+ 5~ mg—mi—m; —m5)w”]

4 f.f
+[(ME—M)Fo(S)]— = —eomg | (23
3 fyf,

FortheB™— = «* 7~ decay there is an additional term with the replacensent, since there are two identical pions in the
final state in this case.

The nonresonant amplitudes for tBe —M VE (M=7",K™) decays can be written in terms of the following matrix
elements:

_ — Ge — _ — _ — _
Mp(B"—>MM 7 ):_E{VubV:daKMMW [01]B7) = VipVig(as{ MM 7~ |O4B™) +ag(MM 7~ |Og[B™))}. (24)

The matrix elemen{fMM 7~ |O4|B~) (M= ,K~) was given in[4].
Contrary to the Cabibbo-Kobayashi-Maskaw@&KM-)allowed cases in which the main contribution comes from the

operatorO,, we notice that the CKM-forbidden dec&‘—»Koiow‘ occurs through the penguin operat@gs andOg. The
nonresonant matrix elements are

— f
(KApD) ™ (PDK(p2) 7 (P3)|OalB™ (Pe))nr =5 [MRr ™ (5,1) + (Mg~ t~mZ)wl(s,1)

+(2t+s—m3—2mi—m2)w"(s,1)] (25)

and

_ f
<K°(p1>K°<p2>w—<p3>|oelB‘(ps>>m=—Bm—KB (s, tymg +wl(s,t)(mi—t—mg) +w"'(s,t)(2t+s—mi—2mg —m?)

4f_f
+HLmME—mT)Fo(9)] =5~ Me (26
K
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TABLE I. The branching ratios foB~—MM= ", (M=7",K~) and BRB~ —K°K°7") for two cases
of p and » parameters, taken from RdfL3]. The second number in Table I, foM(=7",K™), gives the
increase or decrease due to the penguin contributions.

p ] g BR(m 7" 7) BR(K"K™7") BR(K°K%7 ")
-0.15 0.23 0.2 (1.960.13)x 10 ° (3.42+0.06)x 10" ° 2.57x10°©
-0.15 0.23 0.23 (2.280.12)x10°° (3.58+0.10)x 10 ° 3.06x10°8
-0.15 0.33 0.2 (3.410.17)x10°° (5.09+0.06)x 10°° 2.68<10°°
-0.15 0.33 0.23 (3.880.20)x107° (6.30+0.05)x 107 ° 3.18x10°°©
0.15 0.23 0.2 (1.960.19)x 10 ° (3.42-0.04)x10°° 1.45x10°
0.15 0.23 0.23 (2.280.21)x10°° (3.61-0.03)x 10 1.55x 106
0.15 0.33 0.2 (3.420.22)x10°° (5.95-0.04)x 10" ° 1.72x10°©
0.15 0.23 0.23 (3.880.25)x 10 ® (6.30-0.05)x 10 ° 1.85x 10 ©
The  nonresonant amplitude for the B™(pg) In Table | we present the penguin contributions of the

—KO%p,)KO(p,) 7~ decay can be written in terms of these operatorsO4 ¢ to branching ratios for th® ™ — 7 7" 7~

matrix elementg25), (26):

— G
Mnr(Bi_’KOKoﬂ'i) =——

V2

and B"—K K" 7~ together with the dominant tree-level
contribution of the operatoD,. Both numerical results for

thVfd{a4(K°KO777|04| B-) the Wolfenstein parametefsaseq!) and(ll)], as well as the

range of g, as discussed above, are present®d. do not
give the result for the Wolfenstein parametg+ 0.43, used

+ag(K°K27~|Og|B )} (27)  in [13] since it leads to the branching ratio fdB~

The partial width for the nonresonant decay

—SMM7~ (M=x",K~,K% is given by

I, (B">MMz )=

(2m)® 32m3

f|Mm|2 ds dt

—MMz~, (M=7x",K7) larger than experimental upper
limits.] Since the penguin operators make only small contri-
butions to theB— MM 7 decays, a change in the CKM ma-
trix element would not greatly affect the branching ratios.
For example, as shown below, for the hypothetical case
(28)  Where all CKM matrix elements are taken to be real with the
following values: V,4=0.975Y,,=0.0033Y,q=0.007V;,

In the numerical calculation of the branching ratios we=0.999, we find
follow the discussion of the input parameters given 4h

From heavy quark symmetry we have usdg/fp BRB =7 7 7')=(3.83+0.23 X10 °, g=0.2,
=ymp/mg with the reasonable choicdp=200 MeV
[23,25-217. The B decay constant is thefiz=128 MeV. In BR(B —w 7 m")=(4.35+0.26x10 °, g=0.23,

[4] we found that the parametetg”=—0.13 Ge\W? and

a5P=-0.36 GeV}? lead to the branching ratio BB( and forB™— 7 K"K~

— 7 a'x7") being smaller than the experimental upper

limit [6] and we used this possibility. Here we also use the BR(B™— 7 K"K™)=(6.67-0.52x10"°, g=0.2,
values ofa, ,as in[4]. And, as discussed i@], here we also

consider the range 0s29=<0.23.

BR(B-— 7 K*'K™)=(7.05-0.61)x 105, g=0.23.

For the CKM parameters, we shall use a typical values
given by Browderet al. [13] in their analyses o€P asym-  The first number shows the leading contribution, while the
metry in quasi-inclusive charmlegdecays. Thus we con- second gives the increase or decrease due to the penguin
sider two cases{l) p=—0.15, =0.23,0.33 and(ll) p  contribution. With the same set of the CKM parameters, but
=0.15, »=0.23,0.33, where and 5 are the two parameters Wwith the opposite sign for the produdt,4V,=—0.007
in the Wolfenstein parametrizatid28] of the CKM matrix. ~ X0.999 we find
We have V,,=AN3(p—i7), Vyg=1—MN%12, Vig=AN3(1

—p—in), V=1, with A=0.81 and\ =0.22.

BR(B - 7 7")=(3.83-0.06x10 °, g=0.2,

The numerical value of5 can be determined fron88
=(2m2—m2)/2m,. Taking my(u=5 GeV)=150 MeV, BR(B"— 7 7 m')=(4.35-0.0x107° g=0.23
the same value used [B] for the extraction of the effective
Wilson coefficients, we findB=1.6 GeV. Inspection of the and forB™— 7 K"K,
contributions coming from th&®, ¢ operators shows some
cancellations occur among the combinatioagsO, and BR(B™—m K*K™)=(6.67+0.10x10°, g=0.2,
ag Og. One also can explicitly see the dependence on the

Dalitz variables.

BR(B-— 7 K*K~)=(7.05+0.10 X 10°5, g=0.23.
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It is clear from these quantitative numerical results thating ratio for B® decay intoD® and a neutral light hadron is
the uncertainties coming from the input parameters givéndeed suppressed. Thus we expect FSI would contribute at

much larger uncertainties in the branching ratios than the,ost 5 branching ratio fak°K® mode of the same order as
contributions of the penguin operators. Interestingly the peng, o penguin terms. This could be checked in future measure-

guin contributions, while small, are less sensitive to the inpu
parameters than the dominant tree-level contributions, whic
are quite sensitive to these input parameters. Since the am-

plitudes for theB"— 7" 7 7+ andB™—K* K~ 7" decays

h1ents of this decay rate.
To summarize, we have quantitatively analyzed the pen-

guin contributions to the nonresonaBt —MM 7~ decay

: . _ ; k- KOy ;
receive rather small corrections from the penguin operator@mplitudes ¥ =",K~,K"), including the dependence on

we do not expect significant changes in t8® violating
asymmetry, which we have discussed 4.

the Dalitz variables. We calculated the branching ratios for
B —=MM=~ decays M=% ,K7) including the penguin

For the branching ratio for the CKM-suppressed nonresoeontributions and found that they only changed the branch-

nant decayd ~—K°K°z~ we find the range
1.45< 10 ®<BR(B~—K°K%7)<3.18<10°%, (29

for p, n as discussed above, and the ranges@Z0.23. In

ing ratios by less than 10%. However, while the penguin

contributions are small and not very sensitive to the uncer-
tainties in the input parameters, the corresponding uncertain-
ties in the dominant tree-level contributions are considerably
larger than the penguin contributions. We also found that the

Table | we present this branching ratio for different Combi'branching ratio for the CKM-suppressed nonresonant decay

nations of parameters, » andg.
Measurement of this branching ratio is important as

provides information about the strength of the penguin inte

actions as given by the effective Wilson coefficieatsand
ag in Eq. (7) .

ith—»KOEOTF is entirely induced by penguin effects which
rproduce a rather small branching ratio of the order®10

This work was supported in part by the Ministry of Sci-
ence and Technology of the Republic of Slove(8aH, and

It is interesting to note that in the factorization approxi- by the U.S. Department of Energy, Division of High Energy
mation, as mentioned earlier, this decay is entirely inducedPhysics under grant No. DE-FG02-91-ER4(86J.0). S.F.

by the penguin interactions. Final state interactitfSI) ef-

thanks the Department of Physics and Astronomy at North-

fects, could alter this, however we believe this is unlikely aswestern University for warm hospitality during her stay there
data on color-suppressé&idecays indicate that the branch- where part of this work has been done.
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